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1 Introduction

A positive integer n is called a Niven number (or a Harshad number) if it is divisible by

the sum of its decimal digits. For instance, 2007 is a Niven number since 9 divides 2007. A

q-Niven number is one which is divisible by the sum of its base q digits (incidentally, 2007

is also a 2-Niven number). Niven numbers have been extensively studied by various authors

(see [1–5, 7, 8, 10], just to cite a few of the most recent works). We let sq(k) be the sum of

digits of k in base q.

In this note, we define two sequences in relation to q-Niven numbers. For a fixed but

arbitrary k ∈ N and a base q ≥ 2, we ask if there exists a q-Niven number whose sum of

its digits is precisely k. Therefore it makes sense to define ak to be the smallest positive

multiple of k such that sq(ak) = k. In other words, ak is the smallest Niven number whose

sum of the digits is a given positive integer k (trivially, for every k such that 1 ≤ k < q we

have ak = k). We invite the reader to check that, for instance, a12 = 48 in base 10.

In [6] we remarked that q-Niven numbers with only 0’s or 1’s in their q-base representa-

tion, with a fixed sum of digits, do exist. So, we define bk as the smallest positive multiple
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of k, which written in base q has only 0’s or 1’s as digits, and in addition sq(bk) = k.

Obviously, ak and bk depend on q, but we will not make this explicit to avoid complicating

the notation. Clearly, in base 2 we have ak = bk for all k but for q > 2 we actually expect

ak to be a lot smaller than bk.

2 The Results

We start with a simple argument (which is also included in [6]) that shows that the above

sequences are well defined. First we assume that k satisfies gcd(k, q) = 1. By Euler’s theorem,

we can find t such that qt ≡ 1 (mod k), and then define

K = 1 + qt + q2t + · · ·+ q(k−1)t.

Obviously, K ≡ 0 (mod k), and so K = kn for some n and also sq(K) = k. Hence, in this

case, K is a Niven number whose digits in base q are only 0’s and 1’s and whose sum is k.

This implies the existence of ak and bk.

If k is not coprime to q, we can assume that k = ab where gcd(b, q) = 1 and a divides

qn for some n ∈ N. As before, we can find a multiple of b, say K, such that sq(K) = b. Let

u = max{n, dlogq Ke}+ 1, and define

K ′ = (qu + q2u + · · ·+ qua)K.

Certainly k = ab is a divisor of K ′ and sq(K ′) = ab = k. Therefore, ak and bk are well

defined for every k ∈ N.

However, this argument gives a large upper bound, namely of size exp(O(k2)) for ak. In

the companion paper [6], we present constructive methods by two different techniques for the

binary and nonbinary cases, respectively, yielding sharp upper bounds for the numbers ak

and bk. Here we point out a connection with the q-Niven numbers. The binary and decimal

cases are the most natural cases to consider. The table below describes the sequence of

minimal Niven numbers ak for bases q = 2, 3, 5, 7, 10, where k = 2, . . . , 25.
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k base 2 base 3 base 5 base 7 base 10
2 6 4 6 8 110
3 21 15 27 9 12
4 60 8 8 16 112
5 55 25 45 65 140
6 126 78 18 12 24
7 623 77 63 91 133
8 2040 80 24 32 152
9 1503 1449 117 27 18

10 3070 620 370 40 190
11 3839 1133 99 143 209
12 16380 2184 324 48 48
13 16367 3887 949 325 247
14 94206 4130 574 1022 266
15 96255 30615 4995 195 195
16 1048560 6560 624 832 448
17 483327 19601 2873 629 476
18 524286 177138 3114 342 198
19 1040383 58805 6099 1273 874
20 4194300 137780 15620 1700 3980
21 5767167 354291 12369 9597 399
22 165 15070 347732 12474 2398 2398
23 16252927 529253 31119 6509 1679
24 134217720 1594320 15624 2400 888
25 66584575 1417175 781225 10975 4975

Table 1. Values of ak in various bases

We remark that if m is the minimal q-Niven number corresponding to k, then q − 1

must divide m − sq(m) = kck − k = (ck − 1)k. This observation turns out to be useful in

the calculation of ak for small values of k. For instance, in base ten, a17 can be established

easily by using this simple property: 9 has to divide c17 − 1 and so we check for c17 the

values 10, 19, and see that 28 is the first integer of the form 9m + 1 (m ∈ N) that works.

In some cases, one can find an explicitly, as our next result shows. In [6] we proved the

following result.

Lemma 1 If q > 2, then

aqm = qm

(
2q

qm−1
q−1 − 1

)
.

If q = 2, then a2m = 2m(22m − 1).

The first part of the following lemma is certainly known, but we include a short proof

for completeness.
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Lemma 2 Let q ≥ 2 and k, n be positive integers. Then sq(nk) ≤ sq(k)sq(n). In particular,

k = sq(ak) ≤ sq(k) sq(ak/k). A similar inequality holds for bk, and both such inequalities

are sharp regardless of the base q.

Proof. Write

n =
∑
i=0

niq
i, and k =

∑
j=0

kjq
j , where ni, kj ∈ {0, 1, . . . , q − 1},

for all indices i and j. Certainly, the product nk =
∑

i=0

∑
j=0 nikjq

i+j is not necessarily the

base q expansion of nk, as a certain value of i+j may occur multiple times, or some products

nikj may exceed q. However, sq(nk) ≤
∑

i=0

∑
j=0 nikj = sq(k)sq(n), which implies the first

assertion.

Let us show that the inequalities are sharp in every base q. If q = 2, then letting k = 2m,

we get, by Lemma 1, that a2m = 2m(22m − 1), s2(ak) = 2m, s2(k) = 1, and s2(ak/k) = 2m,

which shows that indeed s2(ak) = s2(k)s2(ak/k). Similarly, Lemma 1 implies that this

inequality is sharp for an arbitrary base q as well.

�

Let us look at the base 2 case. In [6], we have shown that

Theorem 3 For all integers k = 2i − 1 ≥ 3, we have

ak ≤ 2k+k− + 2k − 2k−i − 1, (1)

where k− is the least positive residue of −k modulo i. Furthermore, the bound (1) is tight

when k = 2i − 1 is a Mersenne prime.

We extend the previous result in our next theorem, whose proof is similar to the proof of

Theorem 3 in [6] using obvious modifications for the second claim, however we are going to

include it here for the convenience of the reader. It is worth mentioning that, as a corollary

of this theorem, the value of ak is known for every k which is an even perfect number (via

the characterization of the even perfect numbers due to the ancient Greeks, see Theorem

7.10 in [9]).

Theorem 4 For all integers k = 2s(2i − 1) ≥ 3, with i, s ∈ Z, i ≥ 2, s ≥ 0, we have

ak ≤ 2s(2k+k− + 2k − 2k−i − 1), (2)

4



where k− is the least nonnegative residue of −k modulo i. Furthermore, the bound (2) is

tight when 2i − 1 is a Mersenne prime.

Proof. For the first claim, it suffices to show that the sum of binary digits of the upper

bound on (2) is exactly k, and also that this number is a multiple of k.

Indeed, from the definition of k−, we find that k + k− = ia for some positive integer a.

Since

2k+k− + 2k − 2k−i − 1 = 2k−i(2i − 1) + 2ia − 1

= (2i − 1)(2k−i + 2i(a−1) + 2i(a−2) + · · ·+ 1),

we get that 2s(2k+k− + 2k − 2k−i − 1) is divisible by k.

For the sum of the binary digits we have

s
(
2k+k− + 2k − 2k−i − 1

)
= s

(
2k+k−−1 + · · ·+ 2 + 1 + 2k − 2k−i

)
= s

(
2k+k−−1 + · · ·+ 2k + · · ·+ 2̂k−i + · · ·+ 2 + 1 + 2k

)
= s

(
2k+k− + 2k−1 + · · ·+ 2̂k−i + · · ·+ 2 + 1

)
= k,

where t̂ means that t is missing in that sum. The first claim is proved.

We now consider that p = 2i − 1 is a Mersenne prime. Then we need to show that the

right hand side of (2) is the smallest number that satisfies the conditions mentioned above.

The divisibility condition implies that ak = 2sx for some x ∈ N. We need to show that

x = 2k+k− + 2k − 2k−i − 1, or in other words, x is the smallest number that has the sum of

its digits in base 2 equal to k and it is divisible by p.

We know that ak ≥ 2k−1. Let us denote by m the first positive integer with the property

that

2k+m − 1 ≡ 2j1 + 2j2 + ... + 2jm (mod p) (3)

for some 0 ≤ j1 < ... < jm ≤ k + m − 2. Notice that any other m′ > m will have this

property and if we denote by y = 2j1 + 2j2 + ... + 2jm the ak = 2s(2k+m − 1− y) where j1,

j2,..., jm are chosen to maximize y. Because

x = 2k+k−+1 − 1− (2k−i + 2k+k−−1 + 2k+k−−2 + ... + 2k) ≡ 0 (mod p)

we deduce that m ≤ k− + 1. Let us show that m < k− + 1 leads to a contradiction. It is

enough to show that m = k− leads to a contradiction. 2k+k− ≡ 2ia ≡ 1 (mod p). Hence
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0 ≡ 2j1 + 2j2 + ... + 2jm (mod p). Because 2i ≡ 1 (mod p), we can reduce all powers 2j of 2

modulo p to powers with exponents less than or equal to i − 1. We get at most m ≤ i − 1

such terms. But in this case, the sum of at least one and at most i− 1 distinct members of

the set {1, 2, . . . , 2i−1} is positive and less than the sum of all of them, which is p. So, the

equality (3) is impossible in this case.

Therefore m = k− + 1 and one has to choose j1, j2,...,jm in order to maximize y. This

means jm = k + m− 1, jm−1 = k + m− 2, . . ., and finally j1 has to be chosen in such a way

it is the greatest exponent less than k such that 2k+m− 1− y ≡ 0 (mod p). Since j1 = k− i

satisfies this condition and because the multiplicative index of 2 (mod p) is i this choice is

precisely the value for j1 which maximizes y.

�

Next, we find by elementary methods an upper bound on ak.

Theorem 5 If k is a 2-Niven number, then

ak ≤ k
2is(k/s+1) − 1

2is − 1
,

where s = s2(k) and is is the largest nonzero binary digit of k. Moreover, the equality

s2(ak) = s2(k)s2(ak/k) holds for at least

2 log 2
N

log N
+ O

(
N

(log N)9/8

)

integers k ≤ N .

Proof. The observation allowing us to construct a multiple kdk of k such that s2(kdk) = k

out of any 2-Niven number k, is to observe that we may choose dk such that if s2(kdk) = k,

then s2(dk) = k/s2(k). Thus, if

k =
N∑

i=0

ki2i and dk =
K∑

j=0

nj2j ,

then k dk =
∑N

i=0

∑K
j=0 kinj2i+j . The equality holds if this is indeed the binary expansion

of k dk, that is, if i + j are all distinct for all choices of i and j such that kinj 6= 0.
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This argument gives us a way to generate dk. Let ki1 , ki2 , . . . , kis be all the nonzero

binary digits of k, where s = s2(k). Put m = k/s. Recall that dk must be odd, and so the

least nonzero digit of dk is 1. We shall define a sequence of disjoint sets in the following

way. Set d1 = 0, and

A1 = {i1, i2, . . . , is}.

Now, let d2 = min{d ∈ N | d− i1 + i` 6∈ A1, ` = 1, . . . , s} − i1 and set

A2 = {d2 + i1, d2 + i2, . . . , d2 + is}.

Next, let d3 = min{d ∈ N | d− i1 + i` 6∈ A1 ∪A2, ` = 1, . . . , s} − i1 and set

A3 = {d3 + i1, d2 + i2, . . . , d3 + is}.

Continue the process until we reach dm = min{d ∈ N | d− i1 + i` 6∈ A1∪A2∪· · ·∪Am−1, ` =

1, . . . , s} − i1 and set

Am = {dm + i1, dm + i2, . . . , dm + is}.

Further, we define

dk = 2d1 + 2d2 + 2d3 + · · ·+ 2dm . (4)

Next, observe that

k dk =
s∑

`=1

2il

m∑
p=1

2dp =
m∑

r=1

∑
t∈Ar

2t,

and so the binary sum of digits of k dk is s2(k dk) ≤
∑m

r=1

∑
t∈Ar

1 = ms = k, since the

cardinality of each partition set Ar is s.

Regarding the bound on ak, the worst case that can arise would be to take dj = jis at

every step in the construction of the sequence of sets Aj . Thus, an upper bound for ak is

given by

ak ≤ 1 + 2is + · · ·+ 2m·is =
2is(m+1) − 1

2is − 1
.

We now observe that if the equality s2(ak) = s2(k)s2(ak/k) holds, since k = s2(ak),

then k is a 2-Niven number. Finally, the last estimate follows from the previous observation

together with Theorem D of [7] concerning the counting function of the 2-Niven numbers.

�
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Let us consider an example to illustrate the approach of Theorem 5. Let n = 34 = 21+25.

Thus, s = 2, i1 = 1, i2 = 5. Now, the sequence of the sets Ai, where i = 1, . . . , 34
2 = 17 runs

as follows:

{1, 5}, {2, 6}, {3, 7}, {4, 8}, {9, 13}, {10, 14}, {11, 15}, {12, 16}, {17, 21},

{18, 22}, {19, 23}, {20, 24}, {25, 29}, {26, 30}, {27, 31}, {28, 32}, {33, 37}.

Subtracting i1 = 1 from the smallest element of each set Ai, we can define

d34 = 20 +21 +22 +23 +28 +29 +210 +211 +216 +217 +218 +219 +224 +225 +226 +227 +232.

It is immediate that s2(34 d34) = 34 (we invite the reader to check that a34 is strictly smaller

than d34).

One can introduce a new restriction on Niven numbers in the following way: we define

a strongly q-Niven number to be a q-Niven number whose base q digits are all 0 or 1.

Obviously, every 2-Niven number is a strongly 2-Niven number. Other examples include

q + q2 + · · ·+ qq, or q + q3 + q5 + · · ·+ q2q+1,

which are both strongly q-Niven numbers for any base q. The related problem of investi-

gating the statistical properties of the strongly q-Niven numbers seems interesting and we

shall pursue this elsewhere.
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