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Abstract

This paper combines three exploratory data analysis methods, principal component
methods, hierarchical clustering and partitioning, to enrich the description of the data.
Principal component methods are used as preprocessing step for the clustering in order
to denoise the data, transform categorical data in continuous ones or balanced groups of
variables. The principal component representation is also used to visualize the hierarchi-
cal tree and/or the partition in a 3D-map which allows to better understand the data.
The proposed methodology is available in the HCPC (Hierarchical Clustering on Principal
Components) function of the FactoMineR package.
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1. Introduction

Exploratory Data Analysis (EDA) refers to all descriptive methods for multivariate data set
which allow to describe and visualize the data set. One of the central issue of these methods is
to study the resemblances and differences between individuals from a multidimensional point
of view. EDA is crucial in all statistical analyses and can be used as a main objective or as
a preliminary study before modelling for example. Three kinds of methods are distinguished
in this paper. The first kind is principal component methods such as Principal Component
Analysis (PCA) for continuous variables, Multiple Correspondence Analysis (MCA) for cat-
egorical variables (Greenacre 2006), Multiple Factor Analysis (MFA) in the sense of Escofier
and Pages (1998) for variables structured by groups, etc. Individuals are considered in a
high dimensional Euclidean space and studying the similarities between individuals means
studying the shape of the cloud of points. Principal component methods then approximate
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this cloud of points into an Euclidean subspace of lower dimensions while preserving as much
as possible the distances between individuals. Another way to study the similarities between
individuals with respect to all the variables is to perform a hierarchical clustering. Hierarchi-
cal clustering requires to define a distance and an agglomeration criterion. Many distances
are available (Manhattan, Euclidean, etc.) as well as several agglomeration methods (Ward,
single, centroid, etc.). The indexed hierarchy is represented by a tree named a dendrogramm.
A third kind of method is partitional clustering. Many algorithms of partitional clustering
are available and the most famous one is the K-means algorithm. This latter is based on
the Euclidean distance. Clusters of individuals are then described by the variables. The
aim of this paper is to combine the three kinds of methods, principal component methods,
hierarchical clustering and partitional clustering to better highlight and better describe the
resemblances between individuals. The three methods can be combined if the same distance
(the Euclidean one) between individuals is used. Moreover, the Ward criterion has to be used
in the hierarchical clustering because it is based on the multidimensional variance (i.e. iner-
tia) as well as principal component methods. Section 2 describes how principal component
methods can be used as a pre-processing step before hierarchical clustering and partitional
clustering. As usual in clustering, it is necessary to define the number of clusters. Section 3
describes an empirical criterion to choose the number of clusters from a hierarchical tree.
Section 4 then focuses on graphical representations and how the three methods complement
each other. Finally section 5 gives an example on a real data set and a second example which
consists in converting continuous variable(s) in categorical one(s) in a straightforward way.

2. Principal component methods as a pre-process for clustering

The core idea common to all principal component methods is to describe a data set (X with
I individuals and K variables) using a small number (S < K) of uncorrelated variables while
retaining as much information as possible. The reduction is achieved by transforming the
data into a new set of continuous variables called the principal components.

2.1. Case of continuous variables

Hierarchical clustering as well as partitional clustering can be performed on the principal
components of the PCA (i.e. the scores scaled to the associated eigenvalues). If all the
components are used, the distances between individuals are the same than the ones obtained
from the raw data set, and consequently the subsequent analysis remains the same. It is then
more interesting to perform the clustering onto the first S principal components. Indeed, PCA
can be viewed as a denoising method which separates signal and noise: the first dimensions
extract the essential of the information while the last ones are restricted to noise. Then
without the noise in the data, the clustering is more stable than the one obtained from the
original distances. Consequently, if a hierarchical tree is built from another subsample of
individuals, the shape of the top of the hierarchical tree remains approximately the same.
PCA is thus considered as a preprocessing step before performing clustering methods. The
number of dimensions kept for the clustering can be chosen with several methods (Jolliffe
2002). If this number is too small, it leads suppression of information. It is less problematic
to specify an excessive number of clusters than a too small number that leads to loss of
information.
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2.2. Case of categorical variables and mixed variables

Clustering on categorical variables is an own research domain. A lot of resemblance measures
exist such as Jaccard index, Dice’s coefficient, Sgrensen’s quotient of similarity, simple match,
etc. However, these indices are well-fitted for presence/absence data. When categorical
variables have more than two categories, it is usual to use the y2-distance. Performing a
clustering with the y?-distance is equivalent to perform a clustering onto all the principal
components issue from Multiple Correspondence Analysis. MCA can then be viewed as a way
to code categorical variables into a set of continuous variables (the principal components). As
for PCA only the first dimensions can be retained to stabilize the clustering by deleting the
noise from the data. Performing a clustering onto the first principal components of MCA is
a very usual practice especially for questionnaires.

In the same way, it is possible to take into account both categorical and continuous variables
in a clustering. Indeed, principal components can be obtained for mixed data with methods
such as the Hill-Smith method (Hill and Smith 1976; Pages 2004a). From the (first) principal
components, distances between individuals are derived and a clustering can then be performed.

2.3. Taking into account a partition on the variables

Data sets are often organized into groups of variables. This situation may arise when data
are provided from different sources. For example, in ecological data, soils can be described
by both spectroscopy variables and physico-chemical measures. It frequently happens to have
more spectrum variables than physico-chemical ones. Consequently, the Euclidean distances
between individuals are almost due to the spectrum data. However, it may be interesting to
take into account the group structure to compute the distances and to balance the influence of
each data measurements. A solution is to perform a clustering onto the principal components
of multi-way methods such as Multiple Factor Analysis (Escofier and Pages 1998; Pages
2004b). The core of MFA is a weighted PCA which allows to balance the influence of each
group of variables in the analysis. In other words, a particular metric is assigned to the space
of the individuals. The complete data set X is the concatenation of J groups of variables:
X = [X1, Xo,...Xs]. The first eigenvalue )\{ associated with each data set is computed. Then

a global PCA is performed on [Xl/\/ﬁ , XQ/\/)\»% e XJ/\/E]. Each variable within one
group is scaled by the same value to preserve the structure of each group (i.e. the shape of
each sub-cloud of points), whereas each group is scaled by a different value. The idea of the
weighting in MFA is in the same vein than the standardization in PCA where a same weight
is given to each variable to balance the influence of each variable. A clustering performed on
the first principal components issues from MFA allows to create a clustering balancing the
influence of each group of variables.

In some data sets, variables are structured according to a hierarchy leading to groups and
subgroups of variables. This case is frequently encountered with questionnaires structured
into topics and subtopics. As for groups of variables, it is interesting to take the group and
sub-group structure when computing distances between individuals. The clustering can then
be performed onto the principal components of methods such as hierarchical multiple factor
analysis (Le Dien and Pages 2003a,b) which is an extension of MFA to the case where variables
are structured according to a hierarchy.
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3. Hierarchical clustering and partitioning

3.1. Ward’s method

Hierarchical trees considered in this paper use the Ward’s criterion. This criterion is based on
the Huygens theorem which allows to decompose the total inertia (total variance) in between
and within-group variance. The total inertia can be decomposed:

K Q I K Q K Q I
ZZZ(Squ _fk)g = ZZIq(Eqk _jk)Q +ZZZ($iqk _jqk)Qy
k=1g=1i=1 k=1g=1 k=1g=1i=1

Total inertia = Between inertia + Within inertia,

with x4 the value of the variable k for the individual ¢ of the cluster ¢, Z,; the mean of the
variable k for cluster ¢, Zj, the overall mean of variable £ and I, the number of individuals in
cluster q.

The Ward’s method consists in aggregating two clusters such that the growth of within-inertia
is minimum (in other words minimising the reduction of the between-inertia) at each step of
the algorithm. The within inertia characterises the homogeneous of a cluster.

The hierarchy is represented by a dendrogram which is indexed by the gain of within-inertia.
As previously mentioned, the hierarchical clustering is performed onto the principal compo-
nents.

3.2. Choosing the number of clusters from a hierarchical tree

Choosing the number of clusters is a core issue and several approaches have been proposed.
Some of them rest on the hierarchical tree. Indeed, a hierarchical tree can be considered as
a sequence of nested partitions from the one in which each individual is a cluster to the one
in which all the individuals belong in the same cluster. The number of clusters can then be
chosen looking at the overall appearance (or the shape) of the tree, the bar plot of the gain
in within inertia, etc. These rules are often based implicitly or not on the growth of inertia.
They suggest a division into Q) clusters when the increase of between-inertia between @ — 1
and @ clusters is much greater than the one between Q and ) + 1 clusters. An empirical
criterion can formalize this idea. Let A(Q) the between-inertia increase when moving from
@ — 1 to @ clusters, the criterion proposed is:

AQ)

AQ+1)
The number ¢ which minimised this criterion is kept.

The HCPC function (Hierarchical Clustering on Principal Components) presented below im-
plements this calculation after having constructed the hierarchy and suggests an “optimal”
level for division. When studying a tree, this level of division generally corresponds to the
one expected merely from looking at it.

3.3. Partitioning

Different strategies are available to obtain clusters. The simplest one consists in keeping the
Q clusters defined by the tree. A second strategy consists in performing a K-means algorithm
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with the number of clusters fixed at (). Another strategy combines the two previous ones. The
partition obtained from the cut of the hierarchical tree is introduced as the initial partition
of the K-means algorithm and several iterations of this algorithm are done. The partition
resulting from this algorithm is finally retained. Usually, the initial partition is never entirely
replaced, but rather improved (or “consolidated”). This improvement can be measured by
inspecting the [(between inertia)/(total inertia)] ratio. However, the hierarchical tree is not
in agreement with the chosen partition.

4. Complementarity of the three methods for the visualization

4.1. Visualization on the principal component representation

Principal component methods have only been used as a pre-processing step but they also
give a framework to visualize data. The clustering methods can then be represented onto the
map (often the two dimensional solution) provided by the principal component methods. The
simultaneous use of the three methods enrich the descriptive analysis.

The simultaneous analysis of a principal component map and a hierarchical clustering mainly
means representing the partition issue from the dendrogram on the map. It can be done
by representing the centres of gravity of the partition (the highest nodes of the hierarchy).
However, the whole hierarchical tree can be represented in three dimensions on the principal
component map. When a partitional clustering is performed, the centres of gravity of this
partition are represented onto the principal component map. For the two clustering methods,
individuals can be coloured according to their belonging cluster.

In a representation with the principal component map, the hierarchical tree and the clusters,
the approaches complement one another in two ways:

e firstly, a continuous view (the trend identified by the principal components) and a
discontinuous view (the clusters) of the same data set are both represented in a unique
framework;

e secondly, the two-dimensional map provides no information about the position of the
individuals in the other dimensions; the tree and the clusters, defined from more dimen-
sions, offer some information “outside of the map”; two individuals close together on the
map can be in the same cluster (and therefore not too far from one another along the
other dimensions) or in two different clusters (as they are far from one another along
other dimensions).

4.2. Sorting individuals in a dendrogram

The construction of the hierarchical tree allows to sort the individuals according to different
criteria. Let us consider the simple following example with eight elements that take the values
6,7,2,0,3,15, 11, 12. Figure 1 gives two dendrograms that are exactly similar from the point
of view of the clustering. The tree on the right takes into account additional information (the
elements have been sorted according to their value) which can be useful to better highlight
the similarities between individuals.
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X <- ¢(6,7,2,0,3,15,11,12)

names(X) <- X

library(cluster)

par (mfrow=c(1,2))
plot(as.dendrogram(agnes(X)))
plot(as.dendrogram(agnes (sort(X))))
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Figure 1: Hierarchical tree with original data and sorted data.

In the framework of multidimensional data, this idea can be extended by sorting the indi-
viduals according to their coordinates onto the first axis (i.e. the first principal component).
It may improve the reading of the tree because individuals are sorted according to the main
trend. In a certain sense, this strategy smoothes over the differences from one cluster to
another.

5. Example

5.1. The temperature data

This paper presents the HCPC function (for Hierarchical Clustering on Principal Components)
from the FactoMineR package (Lé, Josse, and Husson 2008; Husson, Josse, Lé, and Mazet
2009), a package dedicated to exploratory data analysis in R (R Development Core Team
2008). The aim of the HCPC function is to perform clustering and use the complementaries
between clustering and principal component methods to better highlight the main feature
of the data set. This function allows to perform hierarchical clustering and partitioning on
the principal components of several methods, to choose the number of clusters, to visualize
the tree, the partition and the principal components in a convenient way. Finally it provides
description of the clusters.

The first example deals with the climates of several European countries. The dataset gathers
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the temperatures (in Celsius) collected monthly for big European cities. We will focus on
the first 23 rows of the data set which correspond to the main European capitals. A PCA is
performed on the data where variables are standardized (even if the variables have the same
unit) to give the same weight to each variable. The first 12 variables correspond to the tem-
peratures and are used as active variables while the other variables are used as supplementary
variables (four continuous and one categorical). Supplementary variables do not intervene in

the construction of the principal components but are useful to enrich the interpretation of the
PCA.

The first two dimensions of the PCA explained 97% of the total inertia. A hierarchical
clustering is performed on the first two principal components. In this case, using PCA as a
pre-processing step is not decisive since the distances between the capitals calculated from the
first two dimensions are roughly similar to those calculated from all the dimensions. Note that
as supplementary variables do not intervene in the distances calculus, they do not intervene
for the clustering but they can be useful to describe the clustering.

The code to perform the PCA and the clustering is:

> library(FactoMineR)

> temperature <- read.table("http://factominer.free.fr/book/temperature.csv",
header=TRUE, sep=";", dec=".", row.names=1)

> res.pca <- PCA(temperature[1:23,], quanti.sup=13:16, quali.sup=17,
scale.unit=TRUE, ncp=2, graph = FALSE)

> res.hcpc <- HCPC(res.pca, nb.clust=0, conso=0, min=3, max=10)

The PCA function keeps the first two dimensions (ncp=2) and thus the hierarchical clustering
only used these two dimensions. The hierarchical clustering is performed via the HCPC function
on the outputs res. pca of the PCA function. The shape of the dendrogram (see Fig. 2) suggests
partitioning the capitals into three clusters. The optimal level of division suggested by the
HCPC function and represented with a solid black line also indicates three clusters. This
number of clusters is chosen between min=3 and max=10 by default (if the minimum number
of clusters equals 2, the procedure often defines an optimal number of 2 clusters, that is why
we suggest to use 3 by default). The user has to click on the graph to specify the number of
clusters (the one suggested or another) since the argument nb.clust=0 is used by default. If
nb.clust=-1 the optimal number of clusters is used and if nb.clust is an integer it fixes the
number of clusters. This latter option is useful for users who want to use another criterion to
define the number of clusters. The argument conso=0 means that no partitional clustering is
used to consolidate the partition obtained by the hierarchical tree.

The individuals are sorted according to the first principal component as far as possible. This
is done using the argument order=TRUE (used by default). The individuals can be arranged
according to another criterion; they have first to be arranged according to the chosen criterion,
then PCA is performed and the argument order=FALSE is used in the HCPC function.

Remark. A hierarchical clustering can be performed on a raw data set with the HCPC function
(the input is the data table considered as a data.frame). In this case, a non-standardised
PCA is performed and all the components are kept for the clustering.

The outputs of the HCPC function contain many objects. The object res.hcpc$call$t (ta-
ble 1) contains the results of the ascending hierarchical clustering. It gathers the following
results:
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Figure 2: Hierarchical clustering; the individuals are sorted according to their coordinate on
the first principal component.

the outputs of the principal component method in call$t$res;
the outputs of the agnes function (from the cluster package) in call$t$tree;

the number of “optimal” clusters estimated ($call$t$nb.clust): this number is deter-
mined between the minimum and maximum number of clusters defined by the user and
such that the criterion $call$t$quot might be as small as possible;

the within-group inertia of the partitioning into @ clusters ($call$t$intra); for Q =1
cluster (partition into one cluster) within-group inertia is equal to 12 (because there are
12 standardized variables), for 2 clusters 5.237, etc.

the increase in between-group inertia (or equivalently the decrease in within-group in-
ertia) when moving from @ to @ + 1 clusters is given by $call$t$inter; for 2 clusters
(i.e. moving from 1 to 2 clusters) the increase in between-group inertia is equal to 6.763,
for 3 clusters (i.e. moving from 2 to 3 clusters) 2.356, etc.
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$call$tnb.clust
[1]1 3

$call$tPintra

[1] 11.999 5.237 2.881 2.119 1.523 1.232 0.959 0.798 0.643 0.492
[11] 0.370 0.255 0.201 0.152 0.118 0.087 0.065 0.047 0.036 0.024
[21] 0.014 0.007 0.000

$call$tPinert.gain
[1] 6.763 2.356 0.762 0.596 0.291 0.272 0.161 0.155 0.151 0.122 0.115 0.054
[13] 0.049 0.034 0.031 0.022 0.017 0.012 0.012 0.010 0.007 0.007

$call$t$quot
[1] 0.550 0.736 0.719 0.809 0.779 0.832 0.806 0.766

$call$t$i
[1] 11.999

Table 1: Hierarchical clustering outputs.

e the ratio between two successive within-group inertias is given in $call$t$quot (for
example 0.550 = 2.881/5.237).
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Figure 3: Representation of the clusters on the map induced by the first two principal com-
ponents

The partitioning in three clusters is represented on the map produced by the first two prin-
cipal components and the individuals are coloured according to their cluster (Fig. 3). The
barycentre of each cluster is also represented by a square. The graph shows that the three
clusters are well-separated on the first two principal components.

Figure 4 shows 3-dimensional representation of the hierarchical tree on the map produced
by the first two principal components. In this graph, the principal components map, the
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hierarchical tree and the partition issue from this tree bring different information that are
superimposed to better visualize the data set.
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Figure 4: Hierarchical tree represented on the map induced by the first two principal compo-
nents.

In the object res.hcpc$data.clust, the data set is available with a supplement column
named clust. This column gives in label of the cluster to which each individual belongs.

After performing clustering, one of the major issue is the description of the clusters which
can be achieved with the help of the outputs desc.var. All of the variables from the original
data set are used for the description, whether the variables are continuous, categorical, active
or supplementary. The methodology is described in the section 3.3 of Lé et al. (2008) and in
Lebart, Morineau, and Warwick (1984). The results are gathered in table 2 for the continuous
variables and in table 3 for the categorical ones. For continuous variables, it gives the average
of a variable in the cluster (Mean in category), the average of the variable for the whole data
set (Overall mean), the associated standard deviations and the p-value corresponding to the
test of the following hypothesis: “the mean of the category is equal to the overall mean”. A
value of the v.test greater than 1.96 corresponds to a p-value less than 0.05; the sign of the
v.test indicates if the mean of the cluster is lower or greater than the overall mean. The
capitals from cluster 1 are characterised by below average temperatures throughout the year,
and particularly in April (4.22 degrees on average for the capitals in this cluster compared with
8.38 degrees for all of the capitals), March, October, etc. None of the variables characterise
the cities in cluster 2. The capitals in cluster 3 have a hot-climate since the average annual
temperature of this cluster (15.7 degrees) is much higher than the average for all the capitals
(9.37 degrees). The clusters are also characterised by categorical variables. First, a x?-test
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is performed between the categorical variable(s) and the cluster variable. The p-value is less
than 0.05 showing that the categorical variable Area is linked to the cluster variable (see
table 3). Then, the categories of the cluster variable are characterised by the categories of
the categorical variable(s). For example, the cluster 3 is characterised by the category south:
there are more southerly cities in this cluster than in the others. Indeed, 80 % of southerly
cities belong to cluster 3, and 100 % of the cities in cluster 3 are southerly cities. These
percentages are high because 21.7 % of the cities are southerly. The hypergeometric test is
significant since the p-value is less than 0.05.

The clusters are also described by the principal components. In order to do so, a description
identical to that carried out by the continuous variables is conducted from the individuals’
coordinates (principal components). The table 4 shows that the capitals in cluster 1 (and

$quanti
$quanti$‘1¢

v.test Mean in Overall sd in Overall p.value

category mean category sd

Latitude 2.882 57.100 49.8800 5.7730 6.978 0.0039520
July -2.156 16.350 18.9300 2.3880 3.329 0.0310500
June -2.313 14.220 16.7700 2.3580 3.070 0.0207000
August -2.624 14.980 18.3000 2.0460 3.526 0.0086790
May -2.832 10.270 13.2700 2.1350 2.959 0.0046230
January  -2.855 -5.017  0.1739 2.8160 5.066 0.0043060
December -2.866 -2.800 1.8430 1.9540 4.515 0.0041600
February -3.055 -4.533 0.9565 2.5180 5.008 0.0022540
November -3.085 0.500 5.0780 0.9798 4.136 0.0020380
September -3.160 10.530 14.7100 1.3470 3.682 0.0015770
Average  -3.239 5.233  9.3740 0.4346 3.563 0.0012010
October -3.311 5.467 10.0700 0.6289 3.870 0.0009287
March -3.390 -1.283 4.0610 1.1330 4.393 0.0006989
April -3.415 4.217  8.3780 1.1620 3.395 0.0006367
$quanti$‘2¢
NULL
$quanti$ 3¢

v.test Mean in Overall sd in Overall p.value

category mean category sd

Average 3.852 16.750  9.3740 1.394 3.563 0.0001173
September 3.809 21.230 14.7100 1.537 3.682 0.0001396
October 3.718 16.750 10.0700 1.911 3.870 0.0002011
August 3.705 24.380 18.3000 1.883 3.526 0.0002113
November  3.693 12.170  5.0780 2.264 4.136 0.0002218
July 3.604 24.500 18.9300 2.089 3.329 0.0003139
April 3.532 13.950 8.3780 1.176 3.395 0.0004129
March 3.449 11.100  4.0610 1.275 4.393 0.0005636
February 3.435 8.950 0.9565 1.744 5.008 0.0005926
June 3.389 21.600 16.7700 1.864 3.070 0.0007004
December  3.387 8.950 1.8430 2.337 4.515 0.0007058
January 3.292 7.925  0.1739 2.077 5.066 0.0009931
May 3.183 17.650 13.2700 1.553 2.959 0.0014570
Latitude -3.225 39.420 49.8800 1.524 6.978 0.0012590

Table 2: Cluster description by the continuous variables.

11
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$desc.var
$test.chi2

p.value df
Area 0.001034572 6

$category
$category$‘1e
NULL

$category$‘2°¢
NULL

$category$ 3¢
Cla/Mod Mod/Cla  Global p.value v.test
Area=South 80 100 21.73913 0.001129305 3.256159

Table 3: Cluster description by the categorical variables.

3, respectively) have a significantly weaker (or stronger, respectively) coordinate than the
others on the first dimension. Let us recall that the principal components are used to define
the clusters and consequently the cluster variable is not independent of the principal compo-
nents. Then, the tests must only be used as descriptive tools to sort and select the principal
components for the clusters description.

$desc.axes

$quanti
$quanti$1¢
v.test Mean in Overall sd in Overall p.value
category mean category sd
Dim.1 -3.224 -3.649 1.692e-16 0.553 3.154 0.001264
$quanti$2¢
v.test Mean in Overall sd in Overall p.value
category mean category sd
NULL
$quanti$3¢
v.test Mean in Overall sd in Overall ©p.value
category mean category sd
Dim.1 3.863 5.662 1.692e-16 1.264 3.154 0.000112

Table 4: Cluster description by the principal components.

It may be interesting to illustrate the cluster using individuals specific to that cluster. In order
to do so, two different kinds of specific individuals are suggested: paragons, that is to say, the
individuals which are closest to the centre of the cluster; and the specific individuals, that is
to say those furthest from the centres of other clusters. The object desc.ind$para (see top
of the table 5) contains, for each cluster, the individuals sorted by the distance between each
individual and the centre of its cluster. Thus, Oslo is the capital which best represents the
cities in cluster 1, whereas Berlin and Rome are the paragons of clusters 2 and 3 respectively.
The object desc.ind$dist gives, for each cluster, the individuals sorted according to their
distance (from the highest to the smallest) to the closest cluster centre. Formally, the first
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individual in each cluster correspond to the one for which:

ind(¢,Cy).
e i Al o)
with Cy the barycentre of the cluster ¢’. Reykjavik is specific to cluster 1 as it is the city
furthest from the centres of clusters 2 and 3 (see bottom of the table 5). Brussels and Athens
are specific to clusters 2 and 3.

$desc.ind
$desc.ind$para
cluster: 1
Oslo Elsinki Stockholm Minsk Moscow
0.4314473 0.7040156 0.8928363 1.2830030 2.0302288

cluster: 2
Berlin Sarajevo Prague Sofia Brussels
0.4038069 0.6043247 0.8653273 1.0777958 1.2604097

cluster: 3
Rome Lisbon Madrid Athens
0.3596129 1.7368270 1.8352325 2.1668535

$desc.ind$dist

cluster: 1

Reykjavik Moscow  Elsinki Minsk Oslo
5.444421 4.125370 4.118042 3.535233 3.322268

cluster: 2
Brussels Paris Budapest Dublin Amsterdam
4.526557 4.381074 4.374254 4.303686 4.225883

cluster: 3
Athens Lisbon Rome Madrid
7.773633 5.835851 5.470176 4.309856

Table 5: Cluster description by the individuals.

5.2. Cut continuous variables into intervals

In this example, hierarchical clustering is used to convert a continuous variable into a cat-
egorical one. For example, with a data set containing continuous and categorical variables,
it is possible to perform a mixed data analysis to explore and sum-up the data set or as
pre-processing (see section 2.2). However, it may be interesting to convert the continuous
variables into categorical ones and perform a MCA. This strategy allows to take into account
non linear relationships between the variables.

A first strategy to cut a continuous variable in intervals consists in using “natural” clusters
defined a priori (for example less than 18 years old, 18-30 years old, etc.). A second strategy
consists in cutting in equal-count or equal-width clusters. Of course, the number of clusters
needs to be chosen a priori.

Let us use the well-know Fisher’s example and focus on the sepal length variable. With three
clusters, the following lines of code allow to cut in equal-count:

13



14 Principal Component Methods - Hierarchical and Partitional Clustering

> data(iris)
> vari <- iris$Sepal.Length
> nb.clusters <- 3
> breaks <- quantile(vari, seq(0,1,1/nb.clusters))
> Xqual <- cut(vari,breaks, include.lowest=TRUE)
> summary (Xqual)
[4.3,5.4] (5.4,6.3] (6.3,7.9]
52 47 51

A third strategy determines the number of clusters and the cut-points from the data, for ex-
ample from the histogram which represents the distribution of the variable (Fig. 5). However,
this choice is not easy. We propose to use the dendrogram to choose the number of clusters

0.4
1

Density
0.3

0.2

0.1

0.0
L

Figure 5: Histogram of sepal length.

and the partitioning (issue from the tree or the K-means algorithm) to define the clusters.
The following lines of code allow to construct the partition from the hierarchical tree (using
the empirical criterion based on inertia defined section 3.2) and the results are consolidated
using the K-means algorithm (in practice, the K-means method converges very quickly when
it is performed on one variable alone):

> res.hcpc <- HCPC(vari, min=2, max=10, iter.max=10)

By default, the HCPC function draws the hierarchical tree, the argument iter.max=10 implies
that the K-means method is performed. The hierarchical tree (Fig. 6 on the left) suggests to
define three clusters. The x-axis of the tree (Fig. 6 on the right) corresponds to the individuals’
values for the sepal length variable. It allows to better see the distances between individuals
and between clusters.

A new categorical variable new.fact can then be defined in the following way:

> max.cla = unlist(by(res.hcpc$data.clust[,1],res.hcpc$data.clust[,2],max))
> breaks=c(min(vari) ,max.cla)
> new.fact = cut(vari, breaks, include.lowest=TRUE)
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Hierarchical clustering on the factor map
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Figure 6: Dendrogram of the variable sepal length: the raw dendrogram with the “optimal
level” to cut the graph (on the left) and the representation of the dendrogram with the
individuals represented according to the sepal length variable on the x-axis (on the right).

> summary(new.fact)

[4.3,5.4] (5.4,6.5] (6.5,7.9]
52 68 30

The breaks proposed allow to take into account the distribution of the variable.

If many continuous variables have to be cut into clusters, it can be tedious to determine
the number of clusters and the cut-points variable by variable from the dendrogram (or an
histogram). In such cases, the HCPC function is used variable by variable with the argument
nb.clust=-1 to detect and use the optimal number of clusters determined by the criterion
(it is not necessary to click to define the number of clusters). The following lines of code
are used to divide all of the continuous variables from the data set iris into clusters and to
merge them in the new data set iris.quali:
> iris.quali <- iris
> for (i in 1:ncol(iris.quali)){
+ vari = iris.qualil,i]
if (is.numeric(vari)){

res=HCPC(vari, nb.clust=-1, min=2, graph=FALSE)

maxi = unlist(by(res$data.clust[,1], res$data.clust[,2],max))

breaks=c(min(vari) ,maxi)

new.fact = cut(vari, breaks, include.lowest=TRUE)

iris.quali[,i] = new.fact
} else {

iris.qualil,i] = iris[,il

+ o+ o+ + o+ + o+ A+ o+ +
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16 Principal Component Methods - Hierarchical and Partitional Clustering

> summary(iris.quali)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
[4.3,5.4]:52 [2,3.1] :94 [1,3] :51 [0.1,0.6]: 50 setosa :50
(5.4,6.5]:68 (3.1,4.4]:56  (3,6.9]:99 (0.6,2.5]:100  versicolor:50
(6.5,7.9]1:30 virginica :50

The resultant table iris.quali contains only categorical variables corresponding to the di-
vision into clusters of each of the continuous variables from the initial table iris.

6. Conclusion

Combining principal component methods, hierarchical clustering and partitional clustering,
allows to better visualize data. Principal component methods can be used as preprocessing
step for denoising the data, to transform categorical variables in continuous variables, to
balance the influence of several groups of variables. It can also be useful to represent the
partitional clustering and the hierarchical clustering on a map.

The visualization of the data proposed in this article can be used on data set where the
number of individuals is small. When the number of individuals is very high, it is not possible
to visualize the tree on the PCA map. Moreover, algorithms which construct hierarchical
trees encounter many difficulties. However, a partition can be performed with an important
number of clusters (for example 100) and then the hierarchical tree can be calculated from
the centres of gravity of the partition weighted by the number of individuals of each cluster.
Then the centres of gravity and the hierarchical tree can be represented on the factorial map.
To do so, the PCA function can be performed using the argument row.w to affect weights
of the centres of gravity considered as “individuals”. From the principal components of the
PCA, the hierarchical clustering can be performed as well as the partitional clustering and
the results can be visualize on the principal component map.

The website http://factominer.free.fr/ gives other examples and use for the different methods.
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