
MapGraph: A High Level API for Fast Development of High
Performance Graph Analytics on GPUs

Zhisong Fu
∗

SYSTAP, LLC
Michael Personick

SYSTAP, LLC
Bryan Thompson

SYSTAP, LLC

ABSTRACT
High performance graph analytics are critical for a long list
of application domains. In recent years, the rapid advance-
ment of many-core processors, in particular graphical pro-
cessing units (GPUs), has sparked a broad interest in devel-
oping high performance parallel graph programs on these ar-
chitectures. However, the SIMT architecture used in GPUs
places particular constraints on both the design and imple-
mentation of the algorithms and data structures, making the
development of such programs difficult and time-consuming.

We present MapGraph, a high performance parallel graph
programming framework that delivers up to 3 billion Tra-
versed Edges Per Second (TEPS) on a GPU. MapGraph
provides a high-level abstraction that makes it easy to write
graph programs and obtain good parallel speedups on GPUs.
To deliver high performance, MapGraph dynamically chooses
among different scheduling strategies depending on the size
of the frontier and the size of the adjacency lists for the
vertices in the frontier. In addition, a Structure Of Arrays
(SOA) pattern is used to ensure coalesced memory access.
Our experiments show that, for many graph analytics algo-
rithms, an implementation, with our abstraction, is up to
two orders of magnitude faster than a parallel CPU imple-
mentation and is comparable to state-of-the-art, manually
optimized GPU implementations. In addition, with our ab-
straction, new graph analytics can be developed with rela-
tively little effort.

Keywords
Graph analytics, GPU, high-level API

1. INTRODUCTION
The rapid advancement of many-core processors, in par-
ticular graphical processing units (GPUs), has sparked a
broad interest in developing high performance graph ana-
lytics programs on these architectures, thanks to their low

∗Email: fuzhisong@systap.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org. GRADES’14, June 22
- 27 2014, Snowbird, UT, USA Copyright 2014 ACM 978-1-4503-2982-
8/14/06...$15.00.
DOI:http://dx.doi.org/10.1145/2621934.2621936

cost, high memory bandwidth and high computing capacity.
With appropriate optimization, modern GPUs demonstrate
very strong computational performance, comparable to su-
percomputers of just a few years ago.

However, scalable data-parallel graph processing on many-
core hardware is a fundamentally hard problem that goes
beyond the current state of the art. The single instruc-
tion multiple thread (SIMT) architecture [12] used in GPUs
places particular constraints on both the design and imple-
mentation of algorithms and data structures, making the
development on GPUs difficult, error prone, and inefficient.

Writing a correct and efficient GPU program is challenging.
This is especially true for parallel graph algorithms. This is
because: (a) these algorithms are data intensive, and hence
memory efficiency is very important; (b) graphs are typically
stored in irregular data structures; (c) graph operations have
irregular data access patterns that are particularly inefficient
on GPUs. and (d) different graph algorithms and data sets
can impose very different workloads.

We present MapGraph, a programming framework for high
performance parallel graph algorithms on the GPU (This an
open source project, and the source code can be downloaded
at http://sourceforge.net/projects/mpgraph/). The pro-
posed framework provides a simple and flexible API that
makes it easy to implement a wide range of graph algo-
rithms. This API encapsulates the complexity of the GPU
architecture while permitting the MapGraph CUDA kernels
to make dynamic runtime decisions among a variety of opti-
mization strategies. In our experiments, MapGraph delivers
performance that is comparable to manually tuned GPU
graph analytics implementations.

The remainder of this paper is organized as follows. In
Section 2 we describe related work from the literature. In
Section 3 we introduce the modified Gather-Apply-Scatter
(GAS) abstraction [9] used in MapGraph. In Section 4 we
discuss implementation details and data structures. In Sec-
tion 5 we study the proposed platform using both synthetic
and real-world graphs to measure performance. In Section 6
we summarize the results and discuss future research direc-
tions.

2. RELATED WORK
Several methods and software packages have been intro-
duced in the literature to develop scalable, high performance

parallel graph algorithms on many-core architectures. There
are three approaches that are typically put forward: (1) low-
level approaches that are optimized for specific algorithms,
and which often use an algorithm that is intrinsically more
efficient; (2) high-level abstractions that make it possible to
write many algorithms using the same APIs; and (3) Do-
main Specific Languages with translation rules that target
a specific hardware or software architecture.

Merrill et al. [11] developed the first low-level, work efficient
implementation of BFS on GPUs, proposed adaptive strate-
gies for assigning Threads, Warps, and CTAs to vertices and
edges, and optimized frontier expansion using various heuris-
tics to trade off time and space and obtain high throughput
for algorithms with dynamic frontiers. The authors of [5]
present a cost-efficient GPU-based PageRank implementa-
tion that achieves a 10-20× speedup compared to a quad-
core CPU implementation. Other low-level approaches for
efficient parallel graph algorithms are proposed in [4, 13].
While these approaches achieve high efficiency, they force
users to address hardware issues, the challenges of parallel
computations and data representations, and fail to offer a
reusable and general purpose framework for writing paral-
lel graph algorithms. The performance gain is achieved at
the cost of programming complexity and generality. Fur-
ther, users are often required to revisit or reinvent low-level
optimizations for each new algorithm.

To address these issues, several high-level abstractions are
proposed in the literature. Gharaibeh et al. [1] present
Totem, a processing engine that provides a convenient envi-
ronment to implement graph algorithms on hybrid platforms
(CPU and GPU). This processing engine places low-degree
vertices on the CPU and places high-degree vertices on the
GPU. This improves overall performance if the graphs have a
power-law vertex degree distribution. This work also defines
a performance model for hybrid CPU/GPU graph process-
ing and tests that model with up to two GPUs using random
edge cuts.

Zhong et al. introduce Medusa [15], a GPU-based program-
ming framework for parallel graph algorithms. Medusa helps
developers leverage the capabilities of GPUs by writing se-
quential C/C++ code. Medusa offers a small set of user-
defined APIs, and embraces a runtime system to automat-
ically execute those APIs in parallel on the GPU. The au-
thors develop a series of graph-centric optimizations based
on the architecture features of the GPU. While Totem and
Medusa present high-level abstractions for graph processing
on GPUs, their performance is not comparable to the state
of the art low-level GPU implementations.

In [9], the authors introduce GraphLab, a machine learning
and graph programming framework based on the Gather-
Apply-Scatter (GAS) model. GraphLab compactly expresses
asynchronous iterative algorithms with sparse computational
dependencies, ensures data consistency, and achieves a good
performance on CPU architectures when compared with sim-
ilar CPU graph processing platforms. In [14], the authors ex-
amine parallel graph algorithms on the CPU, compare their
approach with GraphLab, and note that graph algorithms
quickly become memory bound, thus limiting throughput.
Our experiments have shown that GraphLab often experi-

ences negative scaling as the number of CPU cores is in-
creased.

Another approach that aims to solve the programability is-
sue is Domain Specific Languages (DSL). Hong et al. intro-
duce a DSL for easy and efficient graph analysis in [8] that
they call Green-Marl. However, Green-Marl is focused on ef-
ficiency for coarse-grained parallelism systems (CPUs), and
its optimization strategies are not amenable to many-core
systems (GPUs) and fail to demonstrate performance on
parallel graph algorithms approaching that of low-level GPU
implementations. Modern DSLs generate thread assignment
decisions through a static analysis of the user’s program.
However, data-dependent parallelism on GPUs (assigning
threads to vertices based on the number of edges) requires
deferring the thread assignment until runtime against a spe-
cific graph. Therefore, in order to achieve high performance,
DSLs may need to target efficient runtimes, such as the one
proposed here.

3. GAS ABSTRACTION
The GAS model [7] presents a vertex-centric abstraction
similar to Pregel [10]. The input to a GAS program is a di-
rected graph G(V,E), where V denotes the vertex set and E

denotes the directed edge set. Each vertex is uniquely iden-
tified by an integer vertex index, denoted vi, and vi ∈ V . A
directed edge is associated with a source vertex index vi and
a target vertex index vj and is denoted eij . Typically, each
vertex and edge is associated with user defined data, that we
call the vertex value and edge value respectively. An edge
eij is called an in-edge of vj and an out-edge of vi. We call
vi an in-edge neighbor of vj and vj an out-edge neighbor of
vi if there is an edge eij .

A typical GAS computation consists of three stages: the
data preparation stage, the iteration stage, the output stage.
The data preparation stage initializes the graph, the vertex
and edge values, and the initial frontier for the computation
(the frontier is the set of vertices that are active in a given
iteration). The iteration stage consists of a sequence of iter-
ations that update the vertex values and edges values until
the algorithm terminates. Each iteration updates vertices
that are in the current frontier and defines the frontier for
the next iteration. The output stage extracts the desired
data.

Each GAS iteration consists of three conceptual execution
phases: Gather, Apply, and Scatter. The Gather phase as-
sembles information from adjacent edges and vertices through
a generalized sum over the neighborhood of the central ver-
tex (Figure 1 left). It may read on the in-edges, the out-
edges, or both. The Apply phase acts on each vertex in the
current frontier and updates the value of this vertex (Fig-
ure 1 middle). The Scatter phase distributes messages to the
adjacent edges and vertices of the central vertex, and may
operate on the in-edges, the out-edges, or both (Figure 1
right).

A large number of interesting algorithms can be implemented
with this abstraction. For instance, the PageRank algo-
rithm can be implemented with the GAS model as follows.
In the Gather phase, each vertex vi in the frontier com-
putes φj =

rj

Nout
j

for all in-edges with source vertex vj ,

where rj denotes the rank of vj , and Nout
j denotes the num-

ber of out-edges of vj . Then, each vertex sums up all φj :
φi =

∑
φj . In the Apply phase, each vertex updates its

value by ri = 0.85 + 0.15 ∗ Φi. Finally, in the Scatter stage,
vertex vi checks if it is changed and if so adds its out-edge
neighbors to the new frontier.

4. IMPLEMENTATION
In this section, we provide a detailed description of the Map-
Graph runtime.

4.1 Data Structure
Graphs are often stored as a sparse matrix. MapGraph cur-
rently uses the Compressed Sparse Row (CSR) data struc-
ture [3] to store the topology of a graph. CSR consists of
two arrays: row-offsets, column-indices. The column-indices
array contains the concatenation of the adjacency lists of the
graph. The row-offsets array contains the indices indicating
where each adjacency list starts. (deleted graph for CSR)

4.2 Strategies
Parallel graph algorithms are generally data intensive and
hence, memory bound. GPUs enjoy ten times the memory
bandwidth of CPU architectures. However, the relatively
restrictive architecture of the GPU makes it challenging to
fully release their potential. Graphs have an irregular struc-
ture and access patterns and the degree of vertices (the num-
ber of in-edges or out-edges) in real world graphs can vary
over several orders of magnitude. On a GPU, these char-
acteristics cause uncoalesced memory access patterns, cre-
ate unbalanced workloads for threads, and lead to thread
divergence. High performance on GPUs requires low-level
optimizations to addresses these problems. For higher pro-
ductivity, these optimizations should remain hidden from
the users. The GAS Apply phase is embarrassingly parallel,
therefor our optimization strategies focus on improving the
performance of the Gather and Scatter phases. MapGraph
uses two strategies to address these architectural challenges:
dynamic scheduling and two-phase decomposition.

4.2.1 Dynamic Scheduling
Merrill et al. [11] introduced a work-efficient implementation
for BFS on the GPU and used a dynamic scheduling strategy
to improve memory performance. This strategy distributes
the workload to the threads according to the degree of the
vertices. We adopt the same idea and extend it to more
algorithms using the GAS abstraction.

In the Scatter phase, each vertex in the frontier accesses
its adjacent edges (stored in column-indices) and vertices in
parallel. If we assign each vertex to a thread, the memory
access would be uncoalesced, and workload would be unbal-
anced due to the variation in vertex degree. Therefore we
apply three different strategies depending on the degree of
the vertices.

CTA-based scattering distributes the workload for a Cooper-
ative Thread Array (CTA) among threads according to the
vertex degrees. It assigns the workload of a vertex in the
frontier to a whole CTA, and each thread of the CTA is re-
sponsible for only one neighbor of the vertex. This strategy
is used when the degree of the vertex is large.

Scan-based scattering uses a prefix sum to compute the start-
ing and ending points in the column-indices, according to the
vertices assigned to a CTA and the row-offsets array. This
operation forms a compact scatter vector in shared mem-
ory, local to the CTA. Scan-based scattering then enlists
the entire CTA to gather the referenced neighbors from the
column-indices array using this perfectly compact scatter
vector.

Warp-based scattering performs a coarse-grained redistribu-
tion of scattering workloads. Each thread enlists its en-
tire warp to access information from its adjacent vertices
and edges. Each thread first attempts to vie for control of
its warp by writing its thread-identifier into a single word
shared by all threads of that warp. Only one write will suc-
ceed, thus determining which thread is subsequently allowed
to command the warp, as a whole, to access its correspond-
ing neighbors. This process repeats until all threads have
all had their adjacent neighbors accessed. Warp-based scat-
tering is similar to CTA-based scattering, but each vertex
enlists the warp rather than the CTA to access the adjacent
vertices and edges.

We combine these three scheduling strategies (CTA-based,
scan-based, warp-based) for better load-balance and mem-
ory performance. We first perform the CTA-based scat-
tering for vertices with degrees larger than the CTA size.
Then, we apply warp-based scattering to vertices with ad-
jacency lists smaller than the CTA size, but greater than
the warp width. Finally we perform scan-based scattering
to efficiently process the remaining “loose ends”. The same
scheduling strategies can be applied to the Gather phase in
an analogous manner.

While dynamic scheduling yields very high performance for
some problems, including BFS and SSSP on many graphs, it
has several drawbacks. Since we separate each work-group
into three separate stages within our kernel, we lose paral-
lelism among the stages and hence the the instruction level
parallelism is decreased. Also, since each thread in the scan
portion of the algorithm must communicate its whole adja-
cency list to the rest of the CTA, other threads stall while
waiting for all of these items to be loaded. Finally, the strat-
egy assigns equal numbers of frontier vertices to the CTAs,
so the total number of adjacent vertices can vary largely
among CTAs. This leads to imbalanced workloads among
CTAs.

4.2.2 Two-phase Decomposition
We also explore a two-phase decomposition strategy based
on the work of Baxter [2]. This strategy is used in another
graph processing work [6]. This strategy attempts to achieve
perfect load-balancing for threads within and across CTAs
by decomposing the scattering process into two phases: a
scheduling phase and a computation phase. Instead of as-
signing an equal number of vertices to be processed by a
CTA, this strategy organizes groups having total numbers
of adjacent edges of equal size. The scheduling phase does
this by finding the intersection of each CTA’s adjacency list’s
starting and ending points within the column-indices array
using an efficient sorted search. Then, in the computation
phase, each thread accesses the same number of adjacent
vertices and performs the same operation. The disadvan-

i

i

i
i i

1

7
ii

i

i

i

i

i

i

i

2

9
i

Figure 1: The GAS phases (from left to right: Gather, Apply, Scatter). The red vertices denote the frontier,
and the numbers on the vertices are their values.

Figure 2: MapGraph Computation Pipeline.

tage of this strategy is the overhead of the scheduling phase.

4.2.3 MapGraph Computation Pipeline
As described above, the dynamic scheduling and the two-
phase decomposition have their own advantages and disad-
vantages. For the Gather phase, we always use the two-
phase decomposition strategy, because it is generally faster
according to our experiments, and there is some overhead
associated with making this decision dynamically. For the
Scatter phase, our experiments show that the two-phase de-
composition strategy performs better for iterations with a
large frontier while for iterations with a small frontier, the
dynamic scheduling strategy performs better. In practice,
we use one of these strategies to generate the new frontier
in each iteration for the Scatter phase. We call the process
of generating new frontier the expand process. After the ex-
pand, we perform another process to reduce (or eliminate)
the large numbers of duplicates in the new frontier that can
arise due to simultaneous discovery [11]. We call this the
contract process.

The MapGraph computation pipeline is shown in Figure 2.
In each iteration, after the Gather and Apply phases, we
check if the frontier size is larger than a pre-defined thresh-
old. If true, we perform the expand and contract with the
two-phase decomposition strategy. Otherwise, we perform
the expand and contract with the dynamic scheduling strat-
egy.

4.2.4 Programming Interface
MapGraph offers three user-defined data types: V ertexType,
EdgeType, FrontierType. These three types define algorithm-
specific values associated with the vertices, edges and fron-
tier, respectively. MapGraph also offers a flexible variant of
the GAS API for high programmability. Using user defined

Figure 3: MapGraph API. The configuration pa-
rameters and methods are in orange background,
and kernel methods are in blue background.

methods that are invoked from MapGraph kernels, program-
mers can define computations on the vertices, edges, and
frontier. MapGraph also provides a set of configuration pa-
rameters and utility methods as library calls for iteration
control and other functionalities (See Figure 3). The user
defined methods and the utility methods are all C++ meth-
ods. This means users need only write sequential C++ code
to use the framework.

4.2.5 MapGraph Workflow
There are three steps to implement a graph algorithm with
MapGraph. First, the developer defines the basic data struc-
tures (V ertexType, EdgeType, FrontierType) in C using a
Structure Of Arrays (SOA) pattern. Second, the developer
implements the methods according to the specific graph al-
gorithm. Third, the developer composes the main program,
including initializing the graph structure, configuring the
framework parameters and invoking the customized meth-
ods.

Many graph computation tasks require multiple iterations
till convergence. MapGraph provides two ways to control
the number of iterations of the algorithm. Developers can
use both of them for a more flexible iteration control. First,
the developer can specify the maximum number of itera-
tions, ITER MAX. MapGraph terminates when the num-
ber of iterations reaches the predefined limit. Second, Map-
Graph continues the iterations until the frontier size is zero.

5. RESULTS
To evaluate the efficiency of MapGraph, we developed a set
of common graph algorithms using MapGraph and com-
pared peformance with both CPU and GPU implementa-
tions of these algorithms.

5.1 Graph Primitives

We use MapGraph to implement four common graph analyt-
ics operations: Breadth First Search (BFS), Single Source
Shortest Path (SSSP), Connected Components (CC), and
PageRank (PR). These algorithms give rise to different work-
loads, which makes them useful for understanding the per-
formance of the library. These algorithms can also be used
as building blocks for higher level applications such as graph-
based analysis and ranking, community discovery and find-
ing influential nodes.

BFS. BFS is a widely used graph search algorithm. The
search starts from a predefined root vertex and iteratively
expands to find and label all the reachable vertices. In BFS,
vertices are discovered in levels. Each level corresponds to
one iteration of the algorithm. For BFS, only the Scatter
phase of the GAS model is necessary. In this phase, each
newly discovered vertex in the current frontier is assigned
its level and discovers its out-edge vertices for the next iter-
ation.

SSSP. The SSSP algorithm finds a shortest path from a
specified source vertex to all other vertices. The V ertexType

contains a distance attribute array for all the vertices, and
the EdgeType contains an edge weight array for all edges.
We adopt an improved Bellman-Ford algorithm in our imple-
mentation, thanks to our flexible API. The original Bellman-
Ford algorithm iteratively updates the distances of the ver-
tices by looking at in-edge vertices. Instead of accessing
all in-edge vertices for every vertex in the frontier, we only
access the ones whose distances are changed in the last it-
eration. Specifically, we maintain a predecessor distance

array in the FrontierType. In the expand process of the
Scatter phase, we store the distance of the changed prede-
cessor for every out-edge. Then, in the contract process, we
use the predecessor distance array to compute the correct
distances for the vertices in the current frontier. In this way,
we do not need the Gather phase. We call this method the
push-style update because essentially each changed vertex
pushes its value to its descendant.

CC. The CC algorithm finds how many connected compo-
nents there are in the graph, assuming that every graph
is undirected. The algorithm is simple. The V ertexType

contains an array of compindex for all vertices, and this
array is initialized with the vertex indices. The initial fron-
tier contains all vertices. In each iteration, every vertex in
the frontier looks at its neighbors’ compindex values and
updates itself with the minimum of these values and its pre-
vious value. Similar to SSSP, we can use the push − style

update to reduce memory accesses and eliminate the Gather
phase.

PageRank. The initial frontier is all vertices in the graph.
As described in Section 3, the GAS implementation of PageR-
ank makes use of all three phases: Gather, Apply, and Scat-
ter. PageRank does not allow duplicates in the frontier (it
leads to double counting). Hence we used a flag array in
V ertexType to indicate if a vertex is already in the frontier
in the Scatter phase.

5.2 Experimental Setup
We have conducted the evaluations on a workstation equipped
with a NVIDIA Tesla K20, two Intel Xeon X5680 CPUs

(12x 3.3GHz CPU cores). Our experimental datasets in-
clude both real-world and synthetic graphs. Table 1 shows
their basic characteristics. Webbase1 is a directed graph
and represents web connectivity. The Delaunay graph2 is
undirected and represents a delaunay triangulation of ran-
dom points in a 2-D plane. The Bitcoin graph3 is directed
and models bitcoin transaction data. It has a small frontier
and a very long tail (over 8000 iterations are required for
traversal). The Wiki graph4 depicts the connections among
Wikipedia articles. The Kron graph5 is an undirected, scale-
free random graph with power-law degree distribution.

Table 1: Graphs.
dataset #Vertices #Edges Max degree
Webbase 1,000,005 3,105,536 23
Delaunay 2,097,152 6,291,408 4,700
Bitcoin 6,297,539 28,143,065 4,075,472
Wiki 3,566,907 45,030,389 7,061
Kron 1,048,576 89,239,674 131,505

5.3 Comparison with GPU Implementations
We compare our MapGraph BFS implementation with the
state-of-the-art GPU implementation for BFS described by
Merrill [11] (B40c) and a GPU-based high-level graph pro-
cessing framework Medusa [15]. The running times in mil-
liseconds are shown in Table 2. The results demonstrate
that performance of MapGraph is comparable to the man-
ually optimized, low-level BFS implementation. For three
of the graphs, MapGraph is faster and for the other two,
MapGraph is slower. The last column gives the speedup of
MapGraph versus Medusa. MapGraph achieves higher per-
formance than Medusa for all graphs and is up to 42 times
faster.

Table 2: BFS GPU implementation comparison.
Speedup is MapGraph against Medusa. B40c and
MapGraph have similar performance.
Dataset Medusa B40c MapGraph Speedup
Webbase 9.1 3.2 1.2 7.6
Delaunay 429.6 33.9 24.5 17.5
Bitcoin 14873.3 411.4 354.3 42.0
Wiki 1167.8 45.2 51.0 22.9
Kron 154.3 31.3 47.7 3.2

5.4 Comparison with CPU-based Framework
In order to compare the performance of MapGraph with a
CPU-based high-level graph processing framework, we im-
plemented the same graph algorithms for GraphLab v2.0.
The comparison results are shown in Table 3. The PR CPU
scaling results in Table 3 are consistent with those obtained

1http://www.cise.ufl.edu/research/sparse/MM/
Williams/webbase-1M.tar.gz
2http://www.cise.ufl.edu/research/sparse/MM/
DIMACS10/delaunay_n21.tar.gz
3https://www.dropbox.com/s/994xui3sgk5pa4c/
bitcoin.mtx
4http://www.cise.ufl.edu/research/sparse/MM/
Gleich/wikipedia-20070206.tar.gz
5http://www.cise.ufl.edu/research/sparse/MM/
DIMACS10/kron_g500-logn20.tar.gz

by the GraphLab authors (private communication) and are
self-consistent across the different algorithms. The compar-
ison results are shown in Table 3. The GraphLab results
are reported for both single thread (GL-1) and 24 threads
(GL-24, 12 cores plus hyperthreading). In many cases, the
best performance for GraphLab was obtained with only a
single CPU core (Table cells are shaded when GL-1 gives
better performance than GL-24). The SU column of the ta-
ble shows the speedups of MapGraph (MPG) compared to
GL-24. All running times are in milliseconds. As shown in
the tables, MapGraph achieves up to 119× speedup com-
pared to GraphLab running on a 12-core CPU.

Table 3: Results (running times in milliseconds).
Table cells are shaded when GL-1 gives better per-
formance than GL-24. Speedups are against GL-24.
Alg Dataset GL-1 GL-24 MPG SU

BFS

Webbase 80.85 21.0 1.2 17.5
Delaunay 4,715.8 1,806.8 24.5 73.7
Bitcoin 104,201.6 34,733.9 354.3 98.0

Wiki 4,880.7 3,486.2 51.0 68.4
Kron 686.9 3,434.3 47.7 72.0

SSSP

Webbase 85.2 20.8 5.7 3.6
Delaunay 4,692.3 1,790.9 98.3 18.2
Bitcoin 108,288.5 35,044.8 502.5 69.7

Wiki 4,871.1 6,165.9 118.1 52.2
Kron 626.7 6,963.2 104.2 66.8

CC

Webbase 863.5 2,272.2 41.6 54.6
Delaunay 7,988.2 29,586.0 302.2 97.9
Bitcoin 18,280.9 24,703.9 512.4 48.2

Wiki 4,836.5 48,364.7 686.3 70.5
Kron 3,310.0 36,777.8 309.2 118.9

PR

Webbase 731.3 1,924.5 97.0 19.8
Delaunay 1,555.9 4,576.3 146.6 31.2
Bitcoin 57,615.4 72,930.9 796.8 91.5

Wiki 10,706.8 71,378.3 2,610.3 27.3
Kron 4,931.3 44,830.0 1,671.3 26.8

6. CONCLUSIONS
Parallel graph algorithms have severe scalability problems
on CPU architectures due to the limited memory bandwidth.
We have shown that it is possible to obtain high performance
across a variety of graph algorithms and data sets on a GPU
while maintaining a high-level abstraction. Since no single
strategy dominates the others, MapGraph dynamically se-
lects the strategy that will best mitigate the architectural
limits of the GPU for the actual workload. In future work,
we plan to extend the MapGraph platform to parallel graph
algorithms on GPU compute clusters.

7. ACKNOWLEDGMENTS
This work was (partially) funded by the DARPA XDATA
program under AFRL Contract #FA8750-13-C-0002. This
material is based upon work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under Contract
No. D14PC00029.

8. REFERENCES
[1] E. S.-N. Abdullah Gharaibeh, Lauro Beltrao Costa

and M. Ripeanu. Totem: Accelerating graph

processing on hybrid cpu+gpu systems. GPU
Technology Conference, 2013.

[2] S. Baxter. Modern gpu library. 2013.
http://www.moderngpu.com/.

[3] N. Bell and M. Garland. Efficient sparse matrix-vector
multiplication on CUDA. NVIDIA Technical Report
NVR-2008-004, NVIDIA Corporation, Dec. 2008.

[4] G. Chapuis, H. Djidjev, R. Andonov, S. Thulasidasan,
and D. Lavenier. Efficient multi-gpu algorithm for
all-pairs shortest paths. In IPDPS 2014, May 2014.

[5] N. T. Duong, Q. A. P. Nguyen, A. T. Nguyen, and
H.-D. Nguyen. Parallel pagerank computation using
gpus. In Proceedings of the Third Symposium on
Information and Communication Technology, SoICT
’12, pages 223–230. ACM, 2012.

[6] E. Elsen and V. Vaidyanathan. Vertexapi2 - a
vertex-program api for large graph computations on
the gpu. 2014.
http://www.royal-caliber.com/vertexapi2.pdf.

[7] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In Proceedings of the
10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 17–30,
Berkeley, CA, USA, 2012. USENIX Association.

[8] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun.
Green-marl: A dsl for easy and efficient graph
analysis. In Proceedings of the Seventeenth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS XVII, pages 349–362, New York, NY, USA,
2012. ACM.

[9] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Graphlab: A new
parallel framework for machine learning. In
Conference on Uncertainty in Artificial Intelligence
(UAI), Catalina Island, California, July 2010.

[10] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’10, pages
135–146, New York, NY, USA, 2010. ACM.

[11] D. Merrill, M. Garland, and A. Grimshaw. Scalable
gpu graph traversal. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’12, pages 117–128,
New York, NY, USA, 2012. ACM.

[12] NVIDIA. Cuda programming guide.
http://www.nvidia.com/object/cuda.html.

[13] J. Soman, K. Kothapalli, and P. J. Narayanan. Some
gpu algorithms for graph connected components and
spanning tree. Parallel Processing Letters,
20(04):325–339, 2010.

[14] G. Wang, W. Xie, A. J. Demers, and J. Gehrke.
Asynchronous large-scale graph processing made easy.
In CIDR, 2013.

[15] J. Zhong and B. He. Medusa: Simplified graph
processing on gpus. IEEE Transactions on Parallel
and Distributed Systems, 99:1, 2013.

