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ABSTRACT

ROBUST TRANSMISSION OF 3D MODELS

Bici, Mehmet Oguz
Ph.D., Department of Electrical and Electronics Engimegri
Supervisor : Prof. Dr. Gozde Bozdagi Akar

November 2010, 141 pages

In this thesis, robust transmission of 3D models represebyestatic or time consistent an-
imated meshes is studied from the aspects of scalable codfintliple description coding

(MDC) and error resilient coding. First, three methods fdD®™ of static meshes are pro-
posed which are based on multiple description scalar qeatittn, partitioning wavelet trees

and optimal protection of scalable bitstream by forwaraecorrection (FEC) respectively.

For each method, optimizations and tools to decrease caitypkre presented. The FEC
based MDC method is also extended as a method for packetdsiigmt transmission fol-

lowed by in-depth analysis of performance comparison watesof the art techniques, which
pointed significant improvement. Next, three methods for@®A@ animated meshes are pro-
posed which are based on layer duplication and partitioafripe set of vertices of a scalable
coded animated mesh by spatial or temporal subsamplingenderh set is encoded sep-
arately to generate independently decodable bitstrearhs. pfoposed MDC methods can
achieve varying redundancy allocations by including a nemndf encoded spatial or tem-
poral layers from the other description. The algorithmseaauated with redundancy-rate-
distortion curves and per-frame reconstruction analy®ien for layered predictive compres-

sion of animated meshes, three novel prediction structaregproposed and integrated into
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a state of the art layered predictive coder. The proposegttates are based on weighted
spatialtemporal prediction and angular relations of trianglesvieen current and previous
frames. The experimental results show that compared te efahe art scalable predictive
coder, up to 30% bitrate reductions can be achieved with dnebaation of proposed pre-

diction schemes depending on the content and quantizagiaei. | Finally, optimal quality

scalability support is proposed for the state of the artadatalpredictive animated mesh cod-
ing structure, which only supports resolution scalabilifiyvo methods based on arranging
the bitplane order with respect to encoding or decodingroade proposed together with a
novel trellis based optimization framework. Possible difitations are provided to achieve
tradedf between compression performance and complexity. Expetahessults show that

the optimization framework achieves quality scalabilitiyhasignificantly better compression

performance than state of the art without optimization.

Keywords: 3D mesh, multiple description coding, errorlrest coding, predictive coding,

scalable coding
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3B MODELLERIN DAYANIKLI ILETIMI

Bici, Mehmet Oguz
Doktora, Elektrik ve Elektronik Mihendislig Bolumi
Tez Yoneticisi : Prof. Dr. Gozde Bozdagi Akar

Kasim 2010, 141 sayfa

Bu tezde statik veya zaman tutarl hareketli tel drgileetamsil edilen 3B modellerin dayanikh
iletimi olceklenebilir kodlama, ¢oklu anlatim (CA) Etama ve hataya dayanikli kodlama
yonlerinden incelenmistir. Ik olarak, statik tel drgilerin CA kodlanmasi icin kia an-
latim skaler nicemleme, dalgacik agaglarin ayriimasblgeklenebilir bitkatarinin ileri hata
koruma (HK) ile en iyi korunmasina dayali U¢c metot onerilmistiHer metot icin en iy-
ilemeler ve karmasikligi azaltici araclar sunulmustiHK kullanan CA kodlama metodu
ayrica paket kayiplarina dayanikli iletim icin bir metdarak genisletiimis ve derinleme-
sine analizin ardindan en ileri teknoloji teknikler ile feemansi karsilastiriimis, dnemli
iyilesmeler gozlenmistir. Sonra, hareketli tel digin CA kodlanmasi igin katman kopy-
alama ve 0Olgeklenebilir kodlanmis tel 6rgunun dilgkimesinin uzamsal veya zamansal alt
orneklenmesiyle bolintilenmesine dayali ic metwrilmistir. Her kiime bagimsiz olarak
kodgdzilebilir bitkatar Uretmek izere ayri olaraidkanmistirOnerilen CA kodlama metot-
lari diger kiimeden belli sayida uzamsal ya da zamansadddari icererek degisken artikhk
tahsis edebilmektediOnerilen metotlar artiklik-hiz-bozulum egrileri ve ¢eve basina geri
catihm analizi ile degerlendirilmistir. Daha sonrarbketli tel drgulerin katmanli ve dngoricl

sikistinimasi i¢in U¢ 6zgun dngoru yapisi dimis ve son teknoloji katmanli dngoricu bir
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kodlayictya eklenmistirOnerilen yapilar agirliklandiriimis uzamgaimansal 6ngérii ve su
anki ve onceki cerceve arasindaki ucgenlerin agliskilerine dayanmaktadir. Deneylerde
son teknoloji dlgceklenebilir ongoriicti kodlama ilerkilastirildiginda, icerik ve nicemleme se-
viyesine bagl olarak onerilen yapilarin kombinasyonile 30%’a varan bit hizi kazanci elde
edilebildigi gorulmustir. Son olarak, son teknoldiceklenebilir dngorict hareketli tel drgu
kodlama yapisina en iyi kalite dlgeklenebilme des@ggrilmistir; ki o sadece ¢ozunurliuk
oOlceklenebilirligi desteklemektedir. Bit dizlemralamasinin kodlama veya kod¢ozme sirasina
gore ayarlanmasina dayali iki metot onerilmistir. Mto6zgun olarak kafese dayali en iy-
ileme cercevesi kullanmaktadir. Sikistirma performare karmasiklik arasi ddinlesim elde
etmek icin olasi basitlestirmeler sunulmustur. Deeéyonuclar en iyileme ¢ergevesinin
en iyilemesiz son teknolojiden dnemli boyutta daha iyigikma performansi elde ettigini

gostermistir.

Anahtar Kelimeler: 3B tel 6rgu, ¢coklu anlatim kodlamajdya dayanikli kodlama, ongorici

kodlama, olgeklenebilir kodlama
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CHAPTER 1

INTRODUCTION

With an increasing demand for visualizing and simulating¢hdimensional (3D) objects in
applications such as video gaming, engineering desigmitactural walk-through, virtual
reality, e-commerce, scientific visualization and 3DT\sivery important to represent the
3D data diciently. The most common representations for the 3D data@tenetric data,
parametric surfaces and 3D meshes. Among the represastatiee triangular 3D meshes
which model the surface of the 3D objects by combination iaintfles are very féective
and widely used. Consequently, the main focus of the thedlisei 3D mesh structure and

throughout the text, 3D model and 3D mesh are used intereladhg

Typically, 3D mesh data consist of geometry and connegtidéta. While the geometry data
specifies 3D coordinates of vertices, connectivity datamless the adjacency information
between vertices. A single 3D mesh whose geometry does aagetwith time is also called
astatic meshwhereas a series of static meshes is callearamated 3D mesfor dynamic 3D
mesh3D mesh sequence). More information about the 3D mesh datzste is provided in

Section 2.1.

To maintain a convincing level of realism, many applicasioaquire highly detailed complex

models represented by 3D meshes consisting of huge numb@arajles. This requirement

results in several challenges for storage and transmisgitiie models. Due to storage space
and transmission bandwidth limitations, it is neededffixiently compress the mesh data.
The aim of compression is to reduce the number of bits redumeepresent the data at a
certain quality level. An important subclass of compreasds® scalable coding where the
data is compressed such that predefined subsets of the cm®grbitstream can be used

to reconstruct model with reduced resolution /andjuality. Another important topic is the



transmission of 3D meshes over error-prone channels wlaaleefs may be lost or delayed

because of congestion, fier overflow, uncorrectable bit errors or misrouting.

This thesis is about robust transmission of both static aimdaed meshes and related issues.
In particular, the investigated issues are scalable codiudfiple description coding and error
resilient coding. Major contributions of this thesis to #dsting body of knowledge can be

summarized as follows:

Multiple Description Coding of Static Meshes [2, 1, 3, 4, 5,16 Three methods for multiple
description coding of static meshes are introduced togettie optimization and com-
plexity reduction tools. An optimal loss resilient transsion system based on forward
error correction is developed. In-depth analysis of penforice comparison with the

state of the art is performend and significant improvemerepsrted.

Multiple Description Coding of Animated Meshes [7, 8, 9] Three methods for MDC of an-
imated meshes are proposed, which are the first works intdratiire. The methods
are deeply analyzed and compared with respect to perfoenanarying redundancy

conditions and flexibility in redundancy allocation.

Improved Prediction Methods for Scalable Predictive Animaed Mesh Compression [10, 11]
For the animated mesh coding structures that are scalabdlpradictively coded, sev-
eral improvements are proposed in the prediction part. Exgatal results indicate

that up to 30% percent bitrate reduction can be achieved.

Optimal Quality Scalable Coding of Animated Meshes [12] Two methods for extending the
state of the art scalable predictive animated mesh codmgtste, which only sup-
port resolution scalability, to support quality scalalilare proposed. An optimization
framework is introduced with possible simplifications tade df between compres-
sion performance and complexity. Experimental resultsvsimat optimization frame-
work achieves quality scalability with significantly betteompression performance

than state of the art without optimization.



1.1 Scope and Outline of the Thesis

In Chapter 2, the necessary background information abeutancepts related to the thesis
is provided. Initially, the mesh data on which the proposexthods are based is explained.
Then the error resilient coding concept is introduced asdhapters focus on this subject.
In particular, MDC and packet loss resilient streaming apphes are explained as the error
resilient coding means. The following concept is scalalddirng, which is also an impor-
tant subject in most of the proposed works. Finally, forwaner correction mechanism is

introduced as it is an important tool in error resilient cagi

In Chapter 3, mesh coding for both static and animated mashiagoduced. The chapter
begins with a literature review followed by explaining twarpicular coding methods in more
detail as these methods are closely related to the propdgedttams. The chapter ends with

the presentation of error metrics used for static and amichateshes during the experiments.

In Chapter 4, first the details of three propose methods foC\bDstatic meshes are provided.
Then one of the MDC methods, MD-FEC, is proposed to be usegdoket loss resilient
streaming purposes. Experimental simulations are prdvidleMDC results and packet loss

resilient streaming results separately.

In Chapter 5, the details of three proposed methods for MD@nirhated meshes are pre-
sented. Then the experimental results including objectgellts and visual reconstructions

are provided.

In Chapter 6, the proposed prediction enhancement modulesimated mesh compression
are presented followed by experimental results which domtarcentage bitrate reduction for

each combination of modules.

In Chapter 7, the details of how quality scalability can agbd from the state of the art
scalable predictive coder in two ways and the optimizatramiwork are introduced. Experi-
ments are conducted to compare the performance of two pedmuhemes and non-optimized

scalable coding.

Finally, we conclude in Chapter 8.



CHAPTER 2

BACKGROUND

2.1 3D Mesh Data

A mesh is a graphics object composed of, typically, triamgle quadrilaterals that share
vertexes and edges, and thus can be transmitted in a coropaettfto a graphics accelerator.

The basic elements in a mesh and related definitions arelas$ol

Vertex: Single point in the mesh.

Edge: Line segment whose end points are vertices. Degree of axviertdefined as the

number of edges connected to it.

Face: Convex polygon that live in 3D, bounded by edges. Amortigdent polygons, triangle
faces are the most popular due to
e Simplicity in storage
e Possibility of fanning convex polygons into triangles
o Wide usage of triangles by the 3D graphics APIs such as Opar@LDirect3D.

Polygonal mesh (or polymesh):A finite collection of vertices, edges, and faces satisfying

following conditions:
e Each vertex must be shared by at least one edge. (No isolatédes are al-
lowed.)

e Each edge must be shared by at least one face. (No isolated edgolylines

allowed.)



¢ If two faces intersect, the vertex or edge of intersectiorstnbe a component in

the mesh. (No interpenetration of faces is allowed.)

Triangular mesh: Polygonal mesh whose faces are triangles.

There are three types of information in a mesh:

Geometry: Concerning with the embedding in a metric space, e.g. Vertesmal coordi-

nates.

Connectivity or Topology: Providing the connecting structure of the mesh, the ad@cen

information between vertices

Pictoric information: Providing additional information useful for visualizinige model (e.g.

color, textures, or scalar field values).

In this thesis, we are concerned with the coding and trarssomisof geometry (vertex co-
ordinates in particular) and connectivity information dd &iangle meshes. The pictoric
information is usually embedded with each vertex locatiod &eated in the same way with

the geometry information. Therefore, we do not explicithatiwith the pictoric information.

We further classify the 3D meshes into two subcategoriesticSheshes and animated meshes.
A single 3D mesh whose geometry does not change with timesés Gdlled astatic mesh
whereas a series of static meshes is calledramated 3D mesfor dynamic 3D mes3D
mesh sequence). Each static mesh in the sequence is calledraframe or simply frame
which corresponds to a time instant. An important subcléasionated meshes, which is also
subject of this work, is the time consistent animated meshese each mesh frame shares

the same connectivity.

2.2 Error Resilient Coding

When transmitting multimedia data, usually the transngttmedium or the channel (e.qg.
wirelesgwired internet, broadcast service, multicast networkrpegeer networks, wireless
transmission) is lossy, i.e. the data transmitted andvedeaire not the same. Although there

are inherent error correction mechanisms in most of thestnégsion protocols, the losses
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may still occur due to higher error rate than error correctapability, network congestion
or other reasons. Some systems (e.g. /TERmploy feedback channel to retransmit the lost
parts of the data. However, this approach has the disadyautit@t delays in reception may
occur, which is usually undesirable for the multimedia dakteere real time reception is an

important issue.

Feedbacketransmission based systems can be considered as possgirg based error re-
silient schemes. Another approach, which is also used $thigisis, is pre-processing based
approaches. In these approaches, the data is processed thefdransmission, usually re-
sulting in an increase in the bitrate, so that the resultastréam is more resilient to losses.
In error resilient coding, a pre-processing based erraligasy approach, the resiliency is
achieved during the compression stage by joint compressidnesiliency operations. In this

sense, the error resilient coding schemes are often callggira source channel coding.

In this thesis, we subdivide the general error resilientrmpgaradigm into parts adultiple
Description CodingMDC) andPacket Loss Resilient Streamiagd treat the two problems
separately, as they are the main focuses in our works. Thdglef the two concepts used in

this thesis are as follows.

2.2.1 Multiple Description Coding

MDC has emerged as afffieient method for error resilient coding of multimedia datde
idea of MDC is coding the source into multiple independetdti@ams or so-called descrip-
tions instead of a single bitstre#mescription. The independency implies that each desoripti
can be decoded on its own without the need of any other déisciép This property gives

power to MDC in lossy scenarios.

Figure 2.1 illustrates the Single Description Coding (S2@J MDC cases. In SDC, the
input is encoded at one target bitrak), resulting in a distortion oDg. In the most common
MDC setting, the MDC encoder generates two descriptionggaaqual bitratesRt andR?)
and importance. The descriptions are packetized indepdgdand sent over either same
or separate channels. As long as the two descriptions ardestatimultaneously, the MDC
decoder can make a reconstruction. If only one of the ddsm is received, the MDC

decoder decodes the received description usingitieedecodeand reconstructs the data with
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a low but acceptable quality. The resulting distortion @& ttata is called theide distortion

(D! or D?). If all of the descriptions are received successfully, MC decoder decodes the
descriptions together using thentral decodewith a higher quality. The resulting distortion

is called thecentral distortion(Dg). In the more general settings, there can be more than
two descriptions not necessarily having identical bisati this work, we deal with MDC

scenarios with the descriptions having equal bitrates.

Input Ro Do
SD Encoder SD Decoder —>
(a) SDC
. D!
Side Decoder 1 S
Rl
Input Do
—_ > MD Encoder R2 Central Decoder ———>
Side Decoder 2 D2
—>
(b) MDC

Figure 2.1: Single description and multiple descriptioding. Ry: central or single descrip-
tion bitrate.Dg: central distortionR!,R?: side bitratesD*,D?: side distortions.

In-depth analysis of MDC with dierent applications can be found in [13, 14]. Here we pro-
vide several important applications of MDC. An importanpkgation of MDC is multimedia
transmission over lossy links. Providing adequate qualithout the need of retransmission
of packets, MDC can be very useful in real-time applicatiand simplifies the network de-
sign. Itis also useful for Multi Path Transmission (MPT)sasos where the data is sent over
multiple independent paths instead of a single path. Inwlaig, trefic dispersion and load
balancing can be achieved in the network, which déctively relieve congestion at hotspots

and increase overall network utilization.

Another application where MDC is suitable is distributegrage. Distributed storage is com-
mon in the use of edge servers for popular content in databafsencoded media data. If

identical data is stored at the servers, reception of nieltppies does not bring any advan-
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tage. However, if the distributed storage is performed witkitiple descriptions, then a user
would have fast access to the local image copies and in codeattieve higher quality, more

remote copies could be retrieved and combined with the lomay.

MDC can also be utilized in P2P networks where the users laelp ether to downlogsdtream
multimedia files. If the files are cut into pieces blindly, tha case of partial reception of the
pieces (e.g. due to unfinished download, missing pieceseimétwork or downlinguplink
capacity mismatch during live streaming), it would not begible to achieve a useful playout.
However, if the pieces are generated with multiple desorigt then it is still possible to

obtain a playout at a reduced quality in case of partial récep

2.2.1.1 Redundancy Allocation

All the mentioned useful properties of MDC come at a pricetr&sedundant bits need to be
spent compared to conventional single description codligerefore, the performance of an

MD coder depends on howfeient the redundancy is allocated.

One of the most common ways to measure the performance of ahddBeme is the Redundancy-
Rate-Distortion (RRD) curve [15]. The RRD curve shows tifeas of redundant bits on the
average side distortion for a given central distortion. Wéatatically speaking, for the two
descriptions case without loss of generalRy,andDg denote the bitrate and distortion (cen-
tral bitrate and distortion) that result when the data isecbaith single descriptiorR* and

R? denote the bitrates of descriptions 1 and 2 B denotes the distortion when only de-
scription 1(2) is received (side distortion) as depicte#igure 2.1. Also note that, receiving
both of the descriptions result in the same or very similatreg distortionDg as the single
description case. Then the redundangyas a percentage of single description bitrate can
be expressed as= (R! + R? — Ry)/Ry and the average side distortidd; can be calculated
asD; = (D! + D?)/2. As a result, the RRD curve shows the variatiorDgfwith respect to

differentp values for a giverbg value.

2.2.1.2 Mismatch Control

Efficient coders make use of predictive coding extensively. Miwnatch condition occurs

when the encoder uses a signal for prediction that is uregblailin decoder due to loss of
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descriptions. For the time-varying multimedia data likdeo or dynamic meshes, it is com-
mon to exploit inter-frame temporal redundancies. For ganiet frameF; be encoded by
predicting from frameF;_; and assume that an error occursHini. The error #&ects both
Fi_1 andF;. Similarly let frameF; 1 be encoded by predicting frof. SinceF; is not recon-
structed perfectly in the decoder, the reconstructioR;of is afected as well. As a result, the
mismatch also causes the propagation of error throughetirtte. Therefore, the mismatch
needs to be controlledficiently in an MDC scheme. Because of the aforementioned agemp
ral dependency, the mismatch occurs in time-varying dida ¥ideo, dynamic meshes) more

frequently than static data (like image, static meshes).

2.2.2 Packet Loss Resilient Streaming

In a packet loss resilient streaming scheme, the sourceded and controlled redundancy
is added to the source bitstream. Packets are generatedHi®iitstream and typically the
packet sizes are much less than a size of description in an Bth€me. Moreover, the
packets in this scenario are not necessarily independerigsing some of the packets may
cause remaining packets to be useless. But the main aim #itoipe the redundancy and

packetization so that expected distortion in the receiweninimized.

2.3 Scalable Coding

An important class of multimedia compression techniquescaable coding. In scalable
coding, the data is compressed such that, decoding a subsetuitant bitstream allows

reconstruction of the data at a reduced fidelity. The mostneomscalability types are spa-
tial/temporal scalability where a subset of the bitstream resula data with reduced resolu-
tion and quality scalability where a subset of the bitstreasults in an increased distortion.
In an ideal quality scalable coder, it is desired for evetyalbé point obtained by a subset
of the bitstream to achieve the same distortion with the swadable coding at that bitrate.
Several applications benefitting from scalable coding arer eesilient coding, rate control

and transmission with heterogenous clients.
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2.4 Forward Error Correction

The Forward Error Correction (FEC) is used very commonlyefioor resilient coding pur-
poses. In our works, we also make use of FEC as we will see ipt€hd. In particular, Reed
Solomon (RS) codes are perfectly suited for error protactigainst packet losses because
they are non-trivial maximum distance separable codes,there exist no other codes that

can reconstruct erased symbols from a smaller fractionogfived code symbols [16].

An RS(n, k) code of lengthn and dimensiork encodesk information symbols containinm
bits each into a codeword afsuch symbols. The codeword lengtfs restricted byr < 2M-1.

In our worksmis chosen as 8 so that the symbols are bytesndadhosen as 100.

Amongn sent packets, error-free reception of any subsétdckets are enough to recover
original information by erasure decoding since the packesnumbered and the locations of

lost packets are known.
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CHAPTER 3

3D MESH CODING

In this chapter, we present a literature review on bothcstatd animated 3D mesh coding, fol-
lowed by the error metrics to measure fidelity of a mesh. Irnfélilewing chapters where we

describe the proposed works, this chapter is referencetiéamesh coding related concepts.

3.1 Literature Review on Static 3D Mesh Coding

The field of static 3D mesh compression is very mature and mumsevorks about compres-
sion of both geometry and connectivity of 3D mesh data erighé literature. The reader
is referred to [17] and [18] for detailed surveys. Since wendbpropose any improvement
on static 3D mesh compression, we provide a brief classificatnd give details of specific

methods which are important for error resilient coding.

Performance of loss resilient coding techniques is higligretated with the compression
techniques on which they are based. 3D mesh compressionideels can be classified into
two categories: Single-rate compression and Progressipm@ssion. In single-rate com-
pression, the aim is to compress the mesh as much as posEitdesingle-rate compressed
mesh can only be decompressed if the whole compressecaitsis available, i.e. no inter-
mediate reconstruction is possible with fewer bits. Prsgjk@ compression is more suitable
for transmission purposes in which some parts of the corapdebitstream can be lost or
erroneous. By progressive compression, the mesh is repeelsby diterent levels of detail
(LODs) having diterent sizes. Progressive compression techniques camifln¢hclassified
into two categories: connectivity driven and geometry elitechniques. In connectivity

driven progressive mesh compression schemes, the comgmesentation of connectivity
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data is given a priority and geometry coding is driven by @mtivity coding. On the other
hand, in geometry driven compression, data is compresgadittle reference to connectivity
data, for example even the mesh connectivity can be chandesdr of a better compression
of geometry data. It is shown in [18] that better compressatins can be obtained by geom-
etry driven progressive compression methods. Figure 3rirarizes the classification of 3D

mesh coding techniques.

3D Mesh
Compression

7N

Single-rate  Progressive
Compression Compression

N

Connectivity Geometry
Driven Driven

Figure 3.1: Classification of 3D mesh compression methods

Next, we present two representative progressive statidyrempression algorithms each
of which belongs to a progressive compression categoryribescabove. The progressive

compression algorithms and the corresponding categaiéessafollows:

e Geometry driven - geometry encoded progressively: Wabelséd scalable coding, in

particularProgressive Geometry Compressi®¥GC) scheme [19].

e Connectivity driven - connectivity encoded progressivelyompressed Progressive

MesheqCPM) scheme [20].

3.1.1 Wavelet Based Scalable Static 3D Mesh Coding and PGC

Wavelet based mesh coding techniques belong to the geodreteyn progressive mesh cod-
ing category. In the literature, there exist a numberfitient wavelet based compression
schemes such as [19], [21], [22], [23], [24], [25] and the &lav subdivision surfaces tool of
MPEG-4’s Animation Framework eXtension (AFX) [26],[27].

PGC is a progressive compression scheme for arbitrarydaggohighly detailed and densely
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sampled meshes arising from geometry scanning. The methbdsed on smooth semi-
regular meshes, i.e., meshes built by successive triangldrigection starting from a coarse
irregular mesh. Therefore the original model in PGC showddmeshed [28] to have a
semi-regular structure so that a subdivision based watresform can be applied. After
the remeshing, the resultant model with full resolution roagsist of 3-4 times of the orig-
inal number of vertices. However, despite this increaséebeompression performance is
achieved. Resulting semi-regular mesh undergoes a Losgd29] or butterfly-based [30]
wavelet decomposition to produce a coarsest level mesh awelet coéicients [19]. Since
the coarsest level connectivity is irregular, it is codedTimpma and Gotsman’s (TG)[31]
single-rate coder, which is one of the vefjigent single-rate coders reported in the literature.
Wavelet coéficients are coded with (SPIHT) algorithm [32]. For improvedgressivity, a
predetermined number of bit-planes of the coarsest lewahgéry can be transmitted initially
with the coarsest level connectivity. The remaining refieatrbit-planes can be transmitted
as the SPIHT coder descends a given bit-plane of wavelélicieats [19]. As a result, an

embedded bitstream is generated as illustrated in Fig. 3.2.

Coarsest level
geometry

Input
Mesh Ccarse§( !eve\

— > REMESHING —>T,¥‘m'§F'§EM comed y TG CODER —>c:>arsest]e,vel—f\\; | siccacacs | s1 Jes| sz [er|  s3 [ |

Wavelet
coefficients SPIHT coded
SPIHT = “itstream

Figure 3.2: Generation of embedded bitstream from PGC cotlee bitstream starts with
compressed coarsest level connectivi§) @s it is the most important part on which the
whole mesh connectivity depends. The next part of the bastris a predetermined number
of bit-planes (5 in the figure) of the coarsest level geom@B¥G2G3G4Ghsince wavelet
codficients would have no use without coarsest level geometrynaReng part of the bit-
stream consists of the output bitstream of SPIHT fdfedent quantization level$S1S2S3).
and after each quantization level, refinement bit-planesoafsest level geometrz6G7.)
are inserted for improved progressivity.

3.1.2 Compressed Progressive Meshes (CPM)

The CPM method is a connectivity driven progressive meshpression scheme. Therefore
if the whole bitstream is received successfully, then thgimal connectivity of the model
can be reconstructed. The encoder starts with the origimshnand generates meshes at

different LODs iteratively. During each iteration a simplifietlacoarser LOD of the model
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is generated from the present LOD of the model.

The basic operation for coarsening the present LOD is the edfjapse operation. This
operation combines two vertices of an edge into one vertegdippsing the edge. This
results in a decrease in the number of triangles by two. Thgaeed triangles form the cut-
edges that are incident on the newly generated vertex. Imiéax@tion, a certain subset of
edges are chosen to be collapsed. The encoder decides west@ting coarser LODs at a

point and ends up with the simplest base meshMrdODs.

The decoder performs just in the reverse direction of encoldestarts with the base mesh
and constructs finer LODs in each iteration. The basic ojperdbr this construction is the

vertex split operation. This operation produces two newices from the vertex that was
generated by collapsing an edge in the encoder. The losatibnew vertices are predicted
and displacement errors are corrected. The details of Weéslancrease in each iteration as

new triangles are generated from the cut-edges.

All the operations needed for decoder to decode a finer leveh the present level in an
iteration is coded as a batch in the encoder. The encodel biastream is composed of 1)
Collapse Statysone bit to specify whether a vertex is to be splitted or naE@) Edgesthe
indices of cut-edges for the vertices to be splitted aréo3jtion Error, quantized and entropy
coded dfference in geometric coordinates between the collapsedxvartd the predicted
vertex locations. For quantizing the prediction error, edgtermined number of bits is used.
Compressing the base mesh with a single-rate coder, théftatbam of the CPM algorithm
is generated by the concatenation of compressed bitstréaase mesh (base layer) of size
R© and theM batches 1 enhancement layers) of sig¥), i = 1, ..., M. As it can be noticed,
each batch contains information regarding to both corwvigctind geometry. Therefore, the

connectivity is encoded progressively in this scheme.

3.2 Literature Review on Animated 3D Mesh Coding

Recently, compression of animated 3D meshes (or dynamic &het3D mesh sequences)
represented as series of static meshes with same contyebtd attracted great attention.
Each static mesh in the sequence is called a mesh frame dydiame which corresponds

to a time instant. In the literature, the reported works atibe compression of animated
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meshes can be broadly grouped istegmentation based methoagvelet based methads

Principal Component Analysis (PCA) based methaddprediction based methods

Segmentation based methotlengyel [33] presented the pioneering work for mesh secgien
compression. In this work, the input mesh sequence isligisegmented and the motion of
each segment is approximated by &ine transform. After the transform, the approximation
residuals and the transform parameters are encoded. Arsgbmentation based compres-
sion method was proposed by Ahn et al. [34] where the appratiam residuals are encoded
using Discrete Cosine Transform (DCT). Zhang and Owen [8%,pBoposed to represent
mesh sequences with a reduced set of motion vectors gethdomteach frame by analyz-
ing the motion between consecutive frames where the matioepresented with an octree.
Motion for vertices within a cell is approximated usingltriear interpolation of the motion
vectors. Mueller et al. [37, 38] presented another octaset) approach and introduced RD
optimization which includes étierent prediction modes, namely mean replacement, trilinea
interpolation, and direct encoding as well as an RD cost edatipn that controls the mode
selection across all possible spatial partitions to findctbstering structure together with the
associated prediction modes. Mamou et al. [39] introducedpgroach based on a skinning
animation technique with improved clustering and motiompensation. After segmenting
into patches, correspondingfiae transforms approximating the frame-wise motion of each
patch are obtained. Then frame-wise motion of each verteepiesented by weighting pre-
vious dfine transforms. Subsequently, motion compensation isebfillowed by DCT of

residual errors.

Wavelet based methadSuskov and Khodakovsky [40] proposed the first waveleedaod-

ing approach in which the input mesh sequence is transfommitbdan anisotropic wavelet
transform running on top of a progressive mesh hierarchy difierence of wavelet cdi-
cients between adjacent frames are progressively encé&ds@n and Antonini [41, 42] used
a temporal wavelet filtering to exploit temporal coherentge resulting wavelet cdigcients

are quantized optimally by a bit allocation process. Chad.448] proposed a similar wavelet
based coding algorithm which also supports lossless casijore Boulfani-Cuisinaud and
Antonini [44] proposed a coder based on the clustering ofipeat mesh geometry into
groups of vertices following the samdéfiae motion and employing a scan-based temporal

wavelet filtering geometrically compensated.
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Briceno et al. [45] presented a new data structure calledebenetry video which is based on
the geometry image mesh representation [46]. In this approavery frame of the original
mesh sequence is resampled into a geometric image. In thisthk& new data structure
provides a way to treat an animated mesh as a video sequenedirdt frame is intra-coded
while subsequent frames are predictively coded with finexmotion compensation. This

approach was later enhanced by Mamou et al. [47].

PCA based methodgalexa and Muller [48] proposed the first scheme that reprssgD ani-
mation sequences based on the principal component an@&h). In this scheme, a matrix
containing the data of all frames of the animation is formaitlally. Then singular value
decomposition (SVD) is applied to obtain a basis set cangisif so called eigen-frames and
a value for each eigen-frame indicating its importance @nrédtonstruction quality. In this
way, the mesh sequence can also be represented by the sgrfieimes and the projected
values of each frame onto each eigen-frame so called PCficieats. The idea behind the
compression is to represent each frame with a subset ofgha-fiames that have the highest
contribution to the reconstructed mesh quality and onlyodeche corresponding PCA co-
efficients. Later, Karni and Gotsman [49] proposed applyingseorder linear prediction
coding (LPC) to the PCA cdkcients in order to further reduce the code size by exploitireg
temporal coherence present in the sequence. Sattler 8Dginfroduced clustering for PCA
based compression. Instead of analyzing the set of vefticesach frame, the vertex trajec-
tories are analyzed which lead to segmentation of the mésimeaningful clusters. Then the
clustered parts are compressed separately using PCA. Arejal. [51, 52] suggested using
trajectory based analysis along with expressing eachctajein a local coordinate frame
defined for each cluster. Additionally, a bit allocation gedure is applied, assigning more
bits to cluster where more PCA d@ieients are needed to achieve desired precision. For the
basis compression, simple direct encoding without prigicind with uniform quantization

of the basis matrices is suggested.

Heu et al. [53] proposed a SNR and temporal scalable PCA basdidg algorithm using
SVD. The basis vectors obtained by SVD to represent a mesteseq are encoded with a bit
plane coder. After analytically deriving the contributioheach bit plane to the reconstruction

quality, the bit planes are transmitted in the decreasidgraof their amounts of contribution.

VéaSa and Skala also proposed several compression schEsed on the trajectory space
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PCA, suggesting a combination of the PCA step with an Edga&elike [54] predictor. In
their first work named the Coddyac algorithm [55], PCAffiméents are predicted using the
parallelogram local predictor and better performance tharclustering-based approaches is
achieved. Following the Coddyac, vertex decimation wasthiced as a part of the compres-
sion [56]. In this work, the encoder can partially steer theighation process according to the
accuracy of the predictors, making the approach well sdideshterchanging predictors. The
authors also proposedfieient compression of the PCA basis in [57] and significantrove-
ments were reported. Finally, the authors reported fuithprovements in [58] by proposing
two geometric predictors suitable for PCA based comprassalhemes. Knowledge about
the geometrical meaning of the data is exploited by the ptex allowing a more accurate

prediction.

Prediction based method¥ang et al. [59] proposed a mesh sequence coder based on the
traversal of frames in the same breadth-first order and tagesvertex-wise motion vector
prediction. In the first stage, motion vector of the vertegrisdicted by using the neighbor-
hood. In order to exploit the redundancy in prediction esydm the second stage, the error
vectors are predicted spatially or temporally by using e@-gistortion optimization technique.
Ibarria and Rossignac [60] proposed to obtain a vertex engoorder by a deterministic
region-growing algorithm. Using the order, each vertexredicted using three of its neigh-
bors in current and previous frames and prediction ressdaisd encoded. Two extrapolating
space-time predictors are introduced, namely the ELP sixterof the Lorenzo predictor, and
the Replica predictor. In [61], Amjound and Strasser prepo® use predictive and spatial
DCT coding instead of PCA used in their previous works [52hick makes it suited for
real-time compression. In [62], the authors introducedwa c@nnectivity-guided predictive
scheme for single-rate compression for animated meshesl lmssa region growing encod-
ing order, and encoding prediction errors in a local co@ttirsystem, which splits into two

tangential and one normal components.

Stefanoski and Ostermann [63] presented a predictive cesajan approach using an angle-
preserving predictor. This predictor is based on the assamthat the dihedral angle be-
tween neighboring triangles remains invariant from framé&ame. Then, Stefanoski et al.
introduced spatial scalability support for predictive icmpwith a linear predictor in [64] and
a non-linear predictor based on local coordinate framesy Pinoposed a patch-based mesh-

simplification algorithm to derive a decomposition of coctingty in spatial layers. Later,
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Stefanoski and Ostermann added temporal scalability ih fgally, the authors introduced
their codec named SPC (Scalable Predictive Codec) in [66]this work, the prediction

is performed in the space of rotation-invariant coordisatempensating local rigid motion.
The quantized prediction errors are entropy coded by fastrpiarithmetic coding approach
proposed by Marpe et al. [67]. In addition to the support @tisph and temporal scalabil-
ity, SPC enablesficient compression together with fast encoditegzoding and low memory

requirements.

Apart from the aforementioned works, a standardizatiorcgss was initiated by the Moving
Picture Experts Group (MPEG) for compression of animatedhege and a new standard
referred to as Frame-based Animated Mesh Compression (MPEEMC) [68, 65] has been
adopted. MPEG-4 FAMC is based on the skinning-based appro@damou et al. [39] and
the spatially scalable predictive approach of Stefandsii 64, 65] where Context-Adaptive
Binary Arithmetic Coding (CABAC) [69] is employed as the ey coder. Several modes
are supported in MPEG-4 FAMC, such as download-and-playemwagere the only aim is

efficient compression and several types of scalable modes.

Among these works, the most notable ones are Vasa's PCédhasrks, MPEG-4 FAMC
and Stefanoski's SPC. Vasa’s works and download mode &GH FAMC show very high
compression performance. However, neither of the appesaetiow scalable frame-wise
decoding. They are suited for download the whole sequeng@lay scenarios. On the other
hand, SPC provides these features at a comparable congorgssiformance and a better
performance than scalable and streaming modes of MPEG-4G-fgd]. Moreover, SPC is
a one-pass (no need to examine the whole sequence initaltier with low complexity and

memory requirements.

3.2.1 Scalable Predictive Coding (SPC) - MPEG-4 FAMC

Since we heavily make use of the layered decomposition agdigtion structure present in
both the SPC algorithm and MPEG-4 FAMC in the proposed warkspresent the necessary
details of the SPC algorithm in this section. Since the &talmode of MPEG-4 FAMC and

SPC employ the same layered structure and SPC achieves dmtipression performance
[66], we use SPC as the reference scalable coder in the réisé aéxt. SPC is a layered

predictive method whichfciently compresses by creating embedded scalable binstrea
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that allow layer-wise decoding and successive recongbruct

The SPC takes four encoding parameters:S1)number of spatial layers, 2): number
of temporal layers, 3: quantization bin size and 4) temporal prediction mode: iWéee
short term or long term temporal prediction used. Bhgarameter is used in spatial layered
decomposition andfiects vertex encoding order and spatial prediction strasturTheT
parameter is used in temporal layered decomposition &edta the frame encoding order
and inter-frame prediction structure. TReparameter fiects the precision of reconstructed

geometry locations.

Before the encoding, the mesh sequence first undergoesa spattemporal decomposition
generatingS spatial layers for each frame afdtemporal layers. Spatial layered decompo-
sition is applied on the whole set of vertices. The decontppostloes not take into account
the vertex locations, instead only the vertex connectiigtysed. Since the connectivity is
constant throughout the sequence, spatial layered deitiopois performed once at the
beginning and all frames use the same decomposition. Tdrerehis is a deterministic de-

composition for a given 3D mesh.

The aim of the spatial layered decomposition is to gene®adesjoint sets of vertices where
each set is called a spatial layer. ISk;,i = 0,1, ..., S — 1 denotei-th spatial layer. Then the
union of all layers§LoU S U...U S Ls_;) is equal to the set of all vertices. The Oth spatial
layer is also calledpatial base layeand it is self-reconstructable, i.e. it does not need any
other spatial layers to be available. On the other hand,farhitrary spatial layelS Lj, to

be reconstructed, all the previous laye3s,_1,SLj_», ..., S Ly, are required to be available.

The decomposition process in summary is as follows: Thetinmsh undergoes an iterative
mesh simplification procesS — 1 times. At each iteration, a set of vertices is removed with
a patch-based vertex removal algorithm. The triangle pst@re non-overlapping and the
middle vertex of the patch is removed followed by a re-trilatjion. Then next iteration
chooses new triangle patches for this simplified mesh andvesnew vertices. This process
continues for a total 06 — 1 times and finally the simplest remaining mesh is our sphtiaé
layerS Ly. Consequently, the vertices removed at each iterationsaigraed to a spatial layer
in the reverse order. As a result of the decomposition, dtieer the base layer, every vertex

can be predicted by the surrounding neighbor vertices eigrto previous spatial layers.
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Temporal layered decomposition is applied on the whole &dtames and after the de-
composition, each frame is placed in a temporal layer setblt temporal layers. Let
TL,i = 0,1,..,T — 1 representth temporal layer. Each temporal layer corresponds to a
frame rate level. Therefor€L, corresponds to a sequence with frame rate equat2b-1

of original frame rate. If we continue with the remaining fsoral layers, the frame rate in-
creases by a factor of 2 with each new temporal layer. In tlaig, & hierarchical temporal

structure is obtained.

Having obtained the temporal decomposition, the predidtioection of each frame is deter-
mined. Similar to the video coding, | frames make no temppradiction, P frames predict
from only past frames and B frames predict bidirectionalni both past and future frames.
Temporal prediction directions and frame encoding ordempéxample sequence consisting

of 9 frames and decomposed into 3 temporal layers is showigiré-3.3.

Prediction directions /\ /—\
(\\/%4:::;:§§//“\sz/“\\ /%ﬁ:::;:ti?ﬁﬁ::;\:>>\§
Frame types and I

encoding order 0 B3 BZ B4 Pl 86 P5
F

B7 B8
SLoo SLs, Slg,
gr:gz;él‘;ggh - . . l < l . . =
SLoo SLygo SLgo
F1 F2 F3 F5 6 F7

F4 F8

Frame numbers FO

SLo, Sl SLg,
T|_0 SLos SLy, Sl
Sloo Slyo Slgo
FO F4 F8

. ) l l ) .
F1 F3 F5 F7
Figure 3.3: Hierarchical temporal prediction structure

After the spatial and temporal layering structures are gead, the encoding process starts.

The general idea of the encoder is to process each frame ahdvedex in a frame with
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Reference frame from past Current frame Reference frame from future

Figure 3.4: Prediction of a vertex in SPC. The vertex to belipted is denoted byzt.

the order defined by the spatial and temporal decomposjtimmeslict the location of each
vertex using previously processed vertices, quantize ribeigtion residuals and entropy en-
code. The vertex traversal order during encoding is obthimspatial layered decomposition

process and the frame encoding order is obtained in temjayeied decomposition.

Spatial and temporal neighboring information of an examphtex (<) to be predictencoded

is illustrated in Figure 3.4. In the figure and rest of the texiperscriptp, c and f are used

for past, current and future frames respectivefyis the vertex to be predicted in the current
frame andv andvé denote the vertices at the same connectivity location witim the past

and future frames respectively,p’c’f,i = 0,1,...,N — 1 denote the topological neighbors of
vé”c’f. In this exampleyS belongs to a B frame and makes prediction from one past and one
future frame. Note that, both past and future frames ara@djrencoded before the current
frame. Future is used in the sense of frame display order. pfésiction ofvg consists of

spatial prediction followed by a temporal prediction.

The motivation behind the prediction of a vertex is as foBowrirst the vertex is predicted

spatially using its topological neighbor vertices. Thisdliction only makes use of spatial in-
formation and then temporal information is taken into actda increase the accuracy of the
spatial prediction to generate the final prediction. Nog tor the vertex at the same topolog-
ical position with the current vertex in the previously eded frame(s), the same topological
neighboring structure also exists. Since the spatial ptiedi and the original locations of

these vertices are already available, the spatial predi@irors in the previous frames are
used to refine the current spatial prediction, which sigaiftly increases the prediction accu-

racy. The details of the prediction process is given in thievieng paragraphs.
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In the SPC, the first step during the prediction in the encisdealculating a spatial prediction.
The spatial prediction of the vertel®®" denoted bwPS" is calculated as average of the

topological neighborsvf’c’f,i =0,1,..,N-1):

Vg,c,f —

2l

N-1
Dovpet (3.1)
i=0

where N is the number of topological neighbor vertices. After thatsd prediction, the
spatial prediction error of?%" denoted bye?¢" = vP&" — vP< is obtained as illustrated in

Figure 3.4.

The spatial prediction errors are not directly used for eimap except for the | frames. For
P and B frames, the spatial prediction is followed by a terapprediction procedure which
aims to refine the spatial prediction err@)(in order to obtain the final prediction of
denoted byig. V¢ is calculated as:

0 =V + AC (3.2)

whereAf can be regarded as the temporal prediction or a spatialgii@ucorrectiofrefinement
term coming from previously encoded framas.is actually a prediction of and calculated
as

&l

where&! andéé are the spatial prediction correction terms correspontbngast and future

frames respectively and calculated as

O (e Ve (3.4)

whereMP<T denotes the local coordinate frame fxfrc’f which is a Rotation-Invariant Co-
ordinate (RIC) system definedd}®" [66]. In other wordsMPfel" is the spatial prediction
error transformed into local coordinate frames defined sYfoaure frames.ég’f is obtained
by transforming back to global coordinates usiMgcf~. Note that, settingV® and MP

equal to identity matrix results in a linear and rotatiomyirag prediction.

The temporal prediction procedure explained is fof & a B frame. No temporal prediction
is employed for | frames. For P frames, the onlffelience is thaA{ is calculated a8l in

Equation 6.3.
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After predicting each vertex, the prediction residualswaréormly quantized withQ param-

eter. Then the quantized residuals in each spatial layeerdtrepy coded separately using
CABAC [67]. The decoder performs the inverse operationshefdéncoder. First, the pre-
diction residuals are entropy decoded followed by degmatitin. Then the frames and the
vertices are traversed in the same order of the encoder arghthe predictions are applied.
Finally, the prediction errors are corrected by the dedmadtresiduals and the vertex loca-

tions are reconstructed.

3.3 3D Mesh Distortion Metrics

In order to measure the performance of a method which presesgiven mesh, itis necessary
to measure the quality or fidelity of the processed mesh coadpi original mesh. For
example, the processed mesh may be obtained by comprdssiagginal mesh or simulating
a received mesh after lossy transmission. For this purpesg@resent the error metrics used

in measuring the quality of meshes in the following parts:

3.3.1 Static 3D Mesh Distortion Metrics

In order to describe the quality of a procegseconstructed 3D model, either objective or
subjective quality measures should be defined. There is nuetlfate objective distortion
metric in 3D meshes like mean-square error in images. Orertii metric used in the

literature is the Hausdfirdistancedy (X, Y), between two surfaces andY which is defined

by

dn (X, Y) = max max d(x, Y), maxd(y, X) }, (3.5)
xeX yeY

whered(x, Y) is the Euclidean distance from a poibn X to the closest point oi. Another

distortion metric is thé.? distanced, (X, Y), between two surface$ andY and is defined by

dL (X, Y) = max{ d(X,Y), d(Y, X) }, (3.6)
where "
d(x,Y) = (arei(x) fx ) d(x, Y)de) . (3.7)
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Hausdoff distance takes the maximum of Euclidean distances wheredistance takes root
mean square of the distances. Therefiotalistance reflects the average distortion of a 3D
model while the Hausdéf distance reflects the maximum error. For this reason we_ése
distance as the objective distortion metric in the expenitsie To compute this distance, we

use Metro tool [70].

3.3.2 Animated 3D Mesh Distortion Metrics

Although there is not a consensus on the best distortionierfetr animated meshes in the
literature, the most widely used metric is the error mettigol is defined in Karni and Gots-
man’s work [49]. In our works, we also use this metric in ortiebe able to compare our

results with the literature. We denote this errorkd$ Error and it is calculated as:

SV sl f) - G(v. f|?

V-1 wF-1 _E 2’ (3.8)
Suso Ziso|lG(v f) = G, 1)

KGError = 100

whereG(v, f) is the original mesh daté_s(v, f) is the reconstructed mesh data &b, f) is

per frame average of the original mesh data Withertices and- frames.
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CHAPTER 4

MULTIPLE DESCRIPTION CODING OF STATIC 3D MESHES

4.1 Introduction - Literature Review

The pioneering work in error resilient transmission of 3Ddals is that of Bajaj et al. [71]

where compressed VRML streaming problem is addressed.idmtbthod, the encoded bit-
stream is classified into independent layers accordingaaépth-first order of the vertices.
In this way, a layer can be decoded regardless of whether tathers are received or not.
In [72], error resilience is achieved by segmenting the naashtransmitting each segment
independently. At the decoder, these segments are stitedieg the joint-boundary informa-

tion which is considered the most important. The drawbacthe$e algorithms is that they
are not scalable with respect to the channel packet lossRgteand they do not provide a

coarse-to-fine representation of the model.

In [73], the 3D mesh is first converted to@eometry Imageaising the algorithm in [46]

and coded with JPEG 2000. The resulting coded image is st@aising JPIP (JPEG 2000
Internet Protocol) [74]. In [75], a generic 3D middlewardvibeen the 3D application layer
and the transport layer is proposed. However this study istljnaoncerned with network

issues which is not within the scope of this thesis.

Multiple Description Coding (MDC) is used to achieve erresitiency in [76]. where the

multiple descriptions are generated by splitting the mestngetry into submeshes and in-
cluding the whole connectivity information in each destioip. However, in this scheme,
descriptions are created with heuristic methods and nonaptsolutions are proposed for

varying network conditions.
In[77], [78], [79], [80] error resilient techniques thatascalable with respect to both channel
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bandwidth andP g are proposed. The methods in [77], [78], [79], [80] try to iagk error
resilience by assigning optim&brward Error Correction(FEC) codes to layers of the pro-
gressively coded 3D mesh. The progressive scheme employbdse works is Compressed
Progressive Meshes (CPM) [20]. While the ideas used in tvesles are similar, a more gen-
eral optimization problem is tackled in [78], which maximézthe expected decoded quality
for a given model, total bit budget ar®] . Another important property of these methods is
that the 3D model can be reconstructed at a resolution bateasrse and fine representation

with respect to varying packet loss rates.

Even though CPM based error resilient transmission teciesidpave been studied in the lit-
erature, no study exists on wavelet based methods evenhtheaxglet based compression
techniques have superior distortion-rate performancepeoad to CPM. Only in [77], it is
stated that the given algorithm can be applied to any pregey coded 3D date with minor
modifications. However, since the algorithms are not desidgior granular scalability, it is

not dficient to apply it to an embedded bitstream produced by a whaiaked codec.

4.2 Proposed MDSQ

In this MDC approach [2], we apply multiple description stcajuantization (MDSQ) [81] to
wavelet transformed geometry data. Wavelet transformasimbtained by the PGC method
described in Section 3.1.1 In this way, two independentlgngized sets of wavelet cfie
cients are obtained. Each description is obtained by cantpia coded quantized wavelet

codficients set and the compressed bitstream of connectivigy dat

MDSQ was first proposed by Vaishampayan [81] as a practi¢alieo to MDC and its anal-
ysis is thoroughly addressed in [82]. An important propeftyDSQ is that it provides an

asymptotic performance close to the rate-distortion bound

Design of MDSQs can be viewed as creating two coarse sidetigegemnwith acceptable
distortions when used alone and one finer central quantib@hws obtained by combining
two coarse side quantizers. Actually MDSQ implementatiomsgsts of a central quantization
with regular joint cells followed by an index assignment igh@n to create side quantizers.
The index assignment is often represented by an index assigimmatrix, whose elements are

central quantization indices and the column and row indéiceshe side quantizers’ indices.
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Therefore cells of side quantizers consist of union of apoading central quantizer cells

and depending on the matrix these side quantizer cells aadlysinion of disjoint intervals.

There are two parameters, R and k, for adjusting bitrate a@stdrdon of central and side
descriptions. R is the bits per source symbol for side dasode 2R is the column or row
length of index assignment matrix. 2k is the number of diaj@rlosest to main diagonal
in index assignment matrix which adjusts distortions byodticing diferent amounts of re-
dundancy. As an extreme case, whetDkindex assignment matrix consists of only main
diagonal and both of the side descriptions are same as tdaseription which causes max-
imum redundancy but minimum side distortions for a given R.kAincreases, redundancy
decreases causing more side distortion but central dmtodecreases as it is quantized with

more source symbols.

Detailed block diagrams of encoder and decoder of the pempakyorithm are given in Fig-
ures 4.1 and 4.2. After applying PGC and MDSQ), two sets of leaeedticients are obtained
as if they are two distinct coarsely quantized wavelettiocients. Then, each set of wavelet
codficients is coded by SPIHT. Descriptions are obtained by ad@i(a-coded coarsest level
irregular connectivity data and coarsest level geomettg @dnich is uniformly quantized
with a chosen number of bits giving acceptable distortioh l§its is a good suggestion) to
each set. The reason why coarsest level geometry vertieasoaiquantized to two descrip-
tions by MDSQ is that even small errors in this level causaifigant visual distortion. Since
the size of this level is small compared to remaining leviile, redundancy introduced by

including it in all descriptions does noftact overall performance considerably.

SPIHT ——
Wavelet Description 1
Coefficients MDSQ —
REMESHING J 1 SPIHT o
nput & Description 2
Mesh | WAVELET TRANSFORM >
Coarsest level connectivity and

geometry data

Figure 4.1: Encoder block diagram

Experiments are performed with tBainnymodel which is composed of 34835 vertices and

69472 triangles. The original uncompressed model is showFigure 4.3. Hects of two
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Figure 4.2: Decoder block diagram

parameters in index assignment matfk(bits per source symbol for side decoders) and k
(half of number of diagonals closest to main diagonal) avestigated. Tables 4.1, 4.2 and
Figure 4.4 show the MDC performance fofférentR whenk = 1 and Tables 4.3, 4.4 and
Figure 4.5 show the performance foffdrentk whenR = 6. Results are given for compressed
file sizes in bytes and relative? distance as objective distortion metric. Relativedistance

is obtained by dividing distance by bounding box diagonall.ttée L? errors in this section

are given in units of 1¢*. Visual illustrations are also shown in Figure 4.6.

Reconstructed models with one description are labeleSidesland Side2and the one with
both of the descriptions is labeled @sntral In addition, error values for single description

coded model having average file sizes of side descriptiangiaen and labeled &ingle

Table 4.1: File Sizes for fierentRwhenk = 1

| Model | ML4,1 [ML51 [ML61[ML71[ML81|ML91|

Side 1 1757 2402 3548 5152 7775 | 11941
Side 2 1870 2420 3546 5217 7862 | 11931
Central || 2227 3180 4715 6981 | 10614 | 16360

As shown by the results, increasing bits per source symbsidef wavelet ca@cients de-
crease all distortions andftirence between side and central distortions are much latger
low rates. Increasing number of diagonals closest to maigatial in index assignment matrix

decreases redundancy by adding more index values to cgoaatization resulting increase
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(b)

Figure 4.3: Test data (Bunnymodel; (b)Venus heaanodel.

Table 4.2: Relativé.? errors for the case in Table 4.1

| Model [ ML4,1 [ML51 |[ML61[ML71[ML81|ML91|
Sidel| 3459 | 24,61 | 1648 | 1135 | 7,71 | 5,04
Side2 || 32,95 | 24,15 | 17,43 | 11,49 | 7,59 | 4,96
Central || 1558 | 9,35 | 6,15 | 3,87 | 249 | 1,74
Single | 14,32 | 10,74 | 6,84 | 457 | 3,00 | 210

in side distortions and decrease in central distortion. &l@ it is observed that increase in

side distortions are much larger than decrease in censtrtion.

Final remark for the proposed MDSQ based method is that thik was performed at the
early stages of the thesis and the results are not favorabipared to the proposed methods
in the following sections. Also, this method has the disatlvge that increasing the number
of descriptions is notfécient. Therefore, we do not provide performance comparon

following proposed methods with this method.
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(a) (b) (c)
Figure 4.6: Reconstructed models for ML(6,1): (a)-(b) Restouction from one description

(SidelandSide? (c) Reconstruction from both of the descriptio@eqtral).
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Table 4.3: File Sizes for ffierentk whenR = 6

[ Model [ML6,1[ML6,2 ML6,3 | ML6.4 | ML6,5 | ML 6,6 |
Side 1| 3548 | 4842 | 5728 | 7071 | 7902 | 8939

Side 2 || 3546 4840 5564 6980 7782 8958
Central || 4715 6305 7452 8739 9805 | 10762

Table 4.4: Relativé.? errors for the case in Table 4.3

[ Model [ML6,1[ML6,2 [ ML6,3 | ML6.4 | ML6,5 | ML6,6 |
Side 1| 16,48 | 26,41 | 29,18 | 34,95 | 37,13 | 40,30
Side2 || 17,43 | 2557 | 28,69 | 34,11 | 3543 | 39,59
Central|| 6,15 | 4,39 | 354 | 3,06 | 276 | 247
Single | 6,84 | 490 | 424 | 334 | 298 | 2,64

4.3 Proposed Tree Partitioning

This MDC approach [1] is also based on Progressive Geomeatmyptession (PGC) scheme
while it can be adapted to any mesh coding scheme employingletaransform and zero-
tree coding. In order to obtain multiple descriptions, wateodficient trees are grouped
into several sets which are to be independently coded. "esare packetized into multiple
descriptions in such a way that each description contaiest@® set which is coded with

higher rate and several redundant tree sets which are caitietbwer rates.

The general scheme is shown in (Figure 4.7). Waveleffiotent trees are split into several
setsW,, i = 1...N and coded by SPIHT algorithm with high bitrate. Each desionipcon-
tainsM copies of dfferent tree setd < N). Namely,Description icontains one séd; coded
atrateR; o andM — 1 sets of redundant tre&¥;, j # i. TheseM — 1 tree sets represent coding
redundancy and are coded at lower rates Ran The redundancy included in each descrip-
tion is obtained as a result of the optimization algorithrsatibed in following paragraphs.
As the most important information in the embedded streamdated at the beginning of the
bit-stream, the redundant copies would be used if the g#igms with corresponding high-
rate coded tree subsets are lost. If some descriptions sttéde most important parts of the
original trees in those descriptions will be recovered heeaheir copies at lower rates will
be present in the received descriptions. The compressegesbanesh representatiGnwith
rateRc is included in every description to facilitate the inversavelet transform even if only

one description is received. Duplicating coarsest nigslso increases coding redundancy.
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Figure 4.7: TM-MDC encoder scheme.

The way of grouping the cdiécient trees into sets is particularly important, sincedent
sets are reconstructed withfidirent quality in case of description loss. Therefore, 3Dhmes
locations corresponding tofierent tree sets will have féierent quality. To perform grouping
of trees into sets, ordering of the coarsest mesh vertiggsrisrmed, as proposed in [83, 84].
It provides ordering of the vertices that has good localitg @ontinuity properties. Then,
the desired type of wavelet trees grouping is obtained by#fagithe one-dimensional array
[83, 84]. Two types of tree set splitting have been compar@dt - grouping the closely
located trees together and second - grouping spatiallyedisptrees. The spatially close
grouping is obtained by assigning successive vertices fhenarray to the same group. The
disperse grouping is obtained by sampling the array in ada@ohin fashion. It has been
observed the latter case yields annoying artifacts in cés®wnly one description is received
and that the former case given better visual quality in gandihis is illustrated in Figure 4.8
where modeBunnyis encoded into four descriptions and optimized for PER5%. One
can see that although grouping disperse disperse treeashower objective distortion than
grouping close trees, it produces annoying visual arsfatherefore remaining results of this

work are obtained by spatially close grouping method.

Redundancy of the proposed algorithm is determined by th&eu of redundant tree copies,
their rates and the coarsest mesh size. Bit allocation @moblas to minimize expected distor-
tion at the decoder subject to probability of packet IBsand the target bit budget. A simple
channel model where probability of packet |d3%or each packet is assumed to be the same
and independent of previous channel events is used. Ana#isaimption is that one packet
corresponds to one description. If the description has fodggnented into dferent packets,

probability of the description log8 can be found from PLR.
Suppose thal descriptions are generated. Then,fiognt trees are split intdl tree sets,
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(3) PSNR- 50.73 dB (b) PSNR:= 4851 dB

Figure 4.8: Reconstruction of modBunnyfrom one description among four descriptions
for different types of tree grouping. (a) Spatially disperse groypPSNR= 50.73 dB. (b)
Spatially close grouping, group size is 10; PSN&.51 dB.

and M copies of tree sets are included in one descriptidn< N). GivenP, it is easy to
determine for each copy of the tree set the probabillfigs = O, ... M that this copy is used
for reconstruction wher®; is the probability of using the full-rate copy of the tree, std

Pw is the probability of not receiving any copy of the tree setolfbilities P; can easily
be found fromP and the packetization strategy. Thus, we have to minimizeettpected

distortion

E[D] =

N
i=1

M
ZPjDij(Rij), (4.1)
=0

whereDj; is the distortion incurred by usingth copy of a tree saétandR;j represents bits
spent for j-th copy ofi-th tree set. Optimization is performed under followingr&tié con-

straints

N M
ZZQJ +NR: <R (4.2)

i=1 j=0
whereR s the target bitrate and R is the rate of the coarsest mesh. The rate of the coarsest

mesh is chosen constant with geometry information quashtizd 4 bitplanes.

Optimization of bit allocation requires computation BfR) function for every allocation
step. Calculation oD(R) is a computationally expensive operation. However, eesh set
contributes to total distortioD. Since each tree set corresponds to some separate location o
the mesh surface (defined by the root edge) in grouping dyatlase trees, the distortions
corresponding to separate tree sets can be considered/additerefore, distortion-rate (D-

R) curveD;(R)) for each co#ficient tree set is obtained in advance. Calculatior®;{R) are
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performed only once before the optimization algorithm isdufor the first time. Then D-R
curves are saved and can be used every time in bit allocatjionitam for new values oR

andP.

Optimization is performed with generalized Breiman, Fmeh, Olshen, and Stone (BFOS)
algorithm [85]. BFOS algorithm first allocates high rate éarch copy of the tree set. Then,
the algorithm consequently deallocates bits from the skey@D(R) curves shows the lowest

decay at allocated bitrate. This process stops when bitdiuabgstraints are satisfied. In case
optimization brings zero rates for some redundant treegspihese copies are not included

in the descriptions.

The embedded bitstream can be stopped literally at any.pbimts, calculation of the whole
D-R curve requires considerable time. Therefore we emgieyWeibull modeling of D-R
curve presented in [86] for coding of images. It has been shnjd] that the output of PGC

coder can also be approximated with this model. The modedssribed by

D(R) = a- be R, (4.3)

where real numbera, b, ¢, andd are the parameters which depend on the D-R character-
istics of the compressed bitstream. As there are four paeama this modelD(R) curve

can be found by using at minimum four points. This model capraximate bothL? and
PSNR curves. To fit this model to D-R samples, we use nonlilezest-squares regression.
Figure 4.9 shows the comparison of true operational D-Reasiof Bunnymodel and their
Weibull models. One can see that the model closely apprdgsnifie real data. Moreover,

the model has a nice feature of convexity, which is desirfdalit allocation algorithm.

Experiments are performed for mod@&sinnyand Venus head The original uncompressed
models are shown in Figure 4.3. In the experiments, m8deinyis coded into four de-
scriptions at total 22972 Bytes (5743 Bytes per descriptaord eight descriptions at total
25944 Bytes (3243 Bytes per description). Modehus heads coded into four descriptions
at 24404 Bytes (6101 Bytes per each description). The rémmti®n distortion metric is
the same metric as in Section 4.2 which is relatiedistance. Also the same numbers are
provided in PSNR scale where PSNR20log,, peakd, peak peak is the bounding box

diagonal, and d is the? error.
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Figure 4.9: Comparison between the Weibull model (10 ppiatsl operational D-R curve
(L?) for Bunnymodel. (a) Relative.? error; (b) PSNR.

In the experiments, three coders are compared. The first ¢éodiee one proposed in the
algorithm, which is named Tree-based Mesh MDC (TM-MDC). $heond coder is a simple
MDC coder in which each description contains the coarsesthna@d one set of wavelet
codficient trees. The sets of dbeient trees in both coders are formed from spatially close
groups of trees of size 10. This coder is the same as TM-MD@niged for P = 0 (for

P = 0, no redundant trees are included in the descriptions). tHihgé coder is unprotected
SPIHT. The packetization for unprotected SPIHT is perfatrirethe following way. The
output bitstream of PGC coder is divided iftbparts of equal size, wheg is the number
of descriptions in the MD coder that unprotected SPIHT is parad to. PGC produces the
embedded bitstream. Thus, the received part can be useecfmmstruction if all the packets
containing earlier parts of bitstream have been received ekample, if parts one, two, and
four are received, only parts one and two are used for rexatigmn. If part one is lost, no

reconstruction is available.

Figures 4.10 and 4.11 show the average distortions for stagrtion from diferent number
of received descriptions for modBunnycoded into four and eight descriptions respectively.
The curves are generated for TM-MDC with bit allocationsimpted for diferentP. From
the figures, it is observed that when all of the descriptiaesnat received, the coder opti-
mized for higherP has the best PSNR value. However this does not mean thatrHagse
rates lead to better performance because the coder is aptrto minimize expected distor-
tion driven by the packet loss rate. Therefore since thercopimized for a high loss rate

expects more description losses, it tries to achieve baigesrtion in cases when small num-
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ber of descriptions are received. On the other hand, ther ayutemized for a low loss rate

is expected to receive more descriptions and it tries toeaehbetter distortion in cases when

most of the descriptions are received. This can be verifiau fihe figures by the observing

that the coder optimized fd® = 1% shows the best performance in case all descriptions are

received.
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Figure 4.10: Reconstruction 8unnymodel from diferent number of received descriptions.
The results are given for bit allocations fofférent packet loss rates (PLR). The redundancy
p is given in brackets. (a) Relatite error; (b) PSNR.
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Figure 4.11: ModeBunnyencoded into 8 descriptions at total 25944 Bytes. Recartsiiu
from different number of descriptions. Compared to unprotected BPIH

Figure 4.16 compares the performance of the proposed TM-MIECsimple MD coder, and

unprotected SPIHT for mod&unny The results are calculated fBr= 0,1, 3,5, 10, 15, 20%.
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Figure 4.12: The comparison of network performance of tieppsed TM-MDC with a sim-
ple MDC scheme and unprotected SPIHT. (a) Reldtferror; (b) PSNR.

In TM-MDC coder, bit allocation is optimized for each P. Fonple MDC coder, redundancy

is always fixegp = 10% which occurs due to including coarsest level data in dashription.

For eachP, the average distortion is calculated by averaging resfili®)0000 experiments
(simulations of packet losses). FBr= 0, coders show the same performance because the
optimized forP = 0 TM-MDC coder and simple MDC coder are in fact the same coder.
However, for higher packet loss rates, the performancenoplsi MDC coder dramatically
decreases while the reconstruction quality of TM-MDC shawnk/ mild degradation. For

P = 20%, the optimized TM-MDC coder is 15 dB higher than the sendD coder.

In the figure, TM-MDC method results are shown for twéelient labels, namely TM-MDC
(L? dist) and TM-MDC (Weibull). The former corresponds to theuks obtained by us-
ing original D-R curves in optimization while the latter cesponds to results obtained by

modeling D-R curves by Weibull model [86] to decrease coxipte

Figure 4.13 shows visual reconstruction results for the ehBdnnywhich is encoded with
redundancy = 63% and Figure 4.14 shows visual reconstruction resulth#®modeNMenus
headwhich is encoded with redundangy= 53%. The reconstructed visual models corre-
spond to reconstructions from one, two, three, and fourrggim. One could see that even

the reconstruction from one description provides accéptabual quality.
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Figure 4.13: Reconstruction of tlBunnymodel from (a) one description (48.36 dB), (b) two
descriptions (63.60 dB), (c) three descriptions (71.44, d@)four descriptions (74.33 dB).
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Figure 4.14: Reconstruction dfenus headnodel from (a) one description (53.97 dB), (b)
two descriptions (65.18 dB), (c) three descriptions (721B), (d) four descriptions (77.08
dB).
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4.4 Proposed FEC Based Approach for MDC

This approach can be used for both MDC [4] and packet losiergtsstreaming [5]. The
packet loss resilient streaming analysis is provided irti@ee.5. Our aim is to achieve best
reconstruction quality with respect to channel bandwidid packet loss rateP(Rr). The
proposed algorithm adapts the FEC based packet loss nesitiage coding schemes [87].
The algorithm first generates an embedded bitstream by @ssipg the mesh with PGC

algorithm. The bitstream is protected by optimal FEC aggigmt.

4.4.1 Problem Definition and Proposed Solution

In this work, we try to minimize the expected reconstructilistortion of the 3D model trans-
mitted over an erasure channel for a given target bit-Rtg,and channel model. In order to
achieve this, first the 3D model is compressed with PGC agitieslcin Section 3.1.1 and an
embedded bitstream is produced. After the embedded litstie produced, the problem of
optimum loss protection is stated as follows: The embeddkstrdam is protected with RS
codes and transmitted over an erasure channélpackets each with the length bisymbols
(bytes in this work). The protection system buildsource segmentS;, i = 1, ..., L which
have the lengthey € {1, ..., N} and protects each segment withRS(N, m;) code. For each
i=1,..,L, let ff = N - m denote the number of RS redundancy symbols protecting the se
mentS;. An example of this FEC assignment is illustrated in Tabfe #.n out of N packets
are lost, then the RS codes ensure that all the segmentsathiairc at mosiN — n source
symbols can be recovered. Adding the constréint f, > ... > f_, one can be sure that if
f, packets are lost, then the receiver can decode at leastshiestigments. Lef denote the
set ofL-tuples (fi, ..., f) such thatf, € {0,..,N—-1} fori = 1,...,Landf; > f, > ... > f_. Let
p(m, N) denote the probability of losing exacthy packets out oN and let

k
on() = > p(mN)fork=0,...,N (4.4)
m=0
Thencyn(f) is the probability that the segme8t can be decoded successfully. LU2(R)
denote the distortion-rate (D-R) function of the sourceeroth order to achieve an optimum

packet loss protection, we need to fiRd= (f, ..., f.) € F such that the expected distortion
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L
Eo = cn(N)D(ro) + ) en()(D(ri) - D(fi-1)) (4.5)
i=1
is minimized where

0, fori=0

ShogmMe=iN-Xl_, fi, fori=1.L

Note that the D-R curve modeling introduced in Section 4.8l$® applicable during the

optimization of this problem.

The next step is to determine the optimum FEC assignmentsitiyniming Ep in Equation
4.5. In the literature, there are sever&iaent methods for similar optimization problems
used for scalable image coders [87], [88], [89], [90], [®R]. In [91], it is shown that the
method in [88] performs very well in terms of expected distor and the method in [91] has

the lowest computational complexity with slightly worsepegted distortion performance.

In [88], givenp = LN points on the operational D-R curve of the source coder, Itmithm
first computes thé vertices of their convex hull. Then, the solution is foundd¢hN log N)
time. This solution is optimal under the assumption of thaveaity of the D-R function
and of fractional bit allocation assignment. In [91], a losaarch algorithm withO(NL)
complexity is presented that starts from a solution thatimepes the expected number of
received source bits and iteratively improves this sotutibhe reader is referred to [88], [91]
for the details of the algorithms. Since we also use a salbit$tream produced by PGC

coder, we employ in our experiments the optimization meshoain [88] and [91].

Table 4.5: An example FEC assignment on an embedded bitstrEaere ardN = 5 packets
each composed df = 4 symbols. Therefore there are 4 source segménts,= 1,2,3,4
each of which containgy data symbols and; FEC symbols wheren + fi = N. In this
examplemy = 2, f1 =3, mp =3, f, =2,mg = 3, f3 = 2,my = 4, f, = 1. Earlier parts of the
bitstream are assigned more FEC symbols since they catetnibare to overall quality.

\ HPl\PZ\ P3\ P4\ PS\
Segmentl| 1 | 2 | FEC| FEC| FEC
Segment?2| 3 | 4 5 FEC| FEC
Segment3| 6 | 7 8 FEC| FEC
Segment4| 9 | 10| 11 12 | FEC
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4.4.2 MDC Experimental Results

In this part of the experiments, we try to obtain the MDC perfance of the proposed method.
We compare the proposed coder with the coder TM-MDC of previgection [1]. We have
performed the experiments on mod&lnny In the experiments, mod&unnyis coded at
22972 Bytes (5743 Bytes per each description). The reaaigin distortion is the relative

L2 error and PSNR values are calculated as in previous sections

In the experiments, Figure 4.15 shows reconstruction frafergnt number of descriptions.
In the figure, labeL? distancemethod corresponds to usithg distance obtained by metro
tool, approximate B distance method corresponds to using approxirhdteistance value
obtained by disabling face and edge samplings in metro twblabelWeibull modemethod
corresponds to using(R) curve obtained by modeling originBI(R) curve with 10 values of
L2 distances during optimization procedures. Both MDC codezptimized for PLR: 5%.
As one can see, both MD coders outperform unprotected SPtedpefor the case, when all
the descriptions are received. The TM-MDC achieves higl8XR for reconstruction from
one description, but lower PSNR for reconstruction froneéhdescriptions. We think that this
can be strongly connected with the fact that each desaniptid M-MDC method includes
whole coarsest level geometry while descriptions in outhmeétoes not contain all bitplanes
of coarsest level geometry. Another observation is thailt®®f L? distance approximate
L2 andWeibull modemethods are indistinguishable in the figure which provestiueess of

modeling.
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Figure 4.15: Reconstruction fromftérent number of descriptions (PSNR) Bunnymodel.
(a) Relativel? error; (b) PSNR.
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Figure 4.16: The comparison of the MD-FEC with TM-MDC codemf [1]. (a) Relativel?
error; (b) PSNR.

Figure 4.16 compares the average performance in the losspement of the proposed coder
using L? distance, approximatk? distance, Weibull model with the performance of unpro-
tected SPIHT and TM-MDC coder from [1]. As seen in the figute proposed approach
shows competitive results compared to TM-MDC and conshigrautperforms unprotected

SPIHT.

4.5 Extension of MD-FEC to Packet Loss Resilient Coding

In this section, we extend the MD-FEC approach describeldarmptevious section to be used
in packet loss resilient streaming scenarios by simplyeiasing the number of descriptions
to achieve smaller and meaningful packet sizes for commomank protocols. This would
not be possible with the TM-MDC method since increasing timloer of descriptions bring

extra redundancy.

We compare our results with the state of the art CPM basedauetfr8],[80] in terms of
expected distortion and flexibility in packetization. Téfre, we first provide an overview
of CPM based loss resilient coding approaches. In the fite=a CPM based methods were
tested only with 3D models with small number of triangles.tiis work by decreasing the
complexity, we manage to do the performance evaluationBom®dels with high number of
triangles. The experimental results show that, higherityuaith more flexible packetization

can be achieved by the proposed algorithm.
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45.1 Packet Loss Resilient Coding Based on CPM

The compression algorithm of CPM was described in Sectidr23For loss resilient trans-
mission of the data generated by the CPM algorithm, optinrak €orrecting codes (in par-
ticular Reed-Solomon - RS codes) can be assigned to theslajé¢he progressively coded
mesh. LeRS(N, ko) denote the RS code applied to base layer (level-O)RS(@N, k;) denote
the RS code applied to j-th enhancement layer (level-j) revhe 1, ..., L. HereLy denotes
the number of enhancement layers transmitted ol @nhancement layers according to the
bitrate of the channel. RS codes are applied vertically arukgtization is performed hori-
zontally. Therefore receiving arkj out of N packets of level-j allows successful decoding
of level-j. A simple protected CPM output bitstream is ithaged in Table 4.6. A drawback
of this packetization is that since N aRf) are constant, packet sizes offdrent layers vary
for different assignments & values, which is not the case in wavelet based loss resilient
techniques. Padding the shorter packets with zeros woulskcan increase in the bandwidth
requirements.

Table 4.6: An example CPM output withyy + 1 = 3 layers. Pi denotes Packetgenerated

horizontally while FEC is applied vertically. In this singpexampleN = 6, kg = 2, k; = 3
andk, = 4.

| Base Mesh || Batch 1 ] Batch 2 |
P1 1 2 P7 5 6 P13 11 12 13
P2 3 4 P8 7 8 P14 14 15 16

P3 | FEC FEC P9 9 10 P15 | 17 18 19
P4 | FEC FEC|| P10 | FEC FEC|| P16 | 20 21 22
P5 | FEC FEC|| P11 | FEC FEC|| P17 | FEC FEC FEC
P6 | FEC FEC|| P12 | FEC FEC|| P18 | FEC FEC FEC

The problem definition can be formulated as follows: Givelbar®del and a total bit budget
B, the aim is to determine an optimal combination of the folloyvyparameters to minimize
the expected decoded model distorti@n(Ly)): 1) I, number of bits used in quantizing the
position error; 2)Ly, the number of transmitted batches;@)the total number of channel
coding bits; 4)C. = [CO,c®, .., ctm)] c® denoting the number of channel coding bits
applied to level (or [Ko, ki, ..., ki,,] sincek; is a function ofc®, R® andN).

To quantify the expected distortidep(Lw), first let P; denote the probability of terminating

the decoding operation at level-j and it can be calculated as
N

Pi= > pmN) (4.7)

m=N-kj+1
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where p(m, N) is the probability of losingm packets within a block oN packets. Then

expected distortioep(Ly) can be calculated as

LM j—l LM
Ep(Lm) = PoDnr+ ) PiDja | [ =P+ Dy, [ [@-P)) (4.8)
=1 i=0 j=0

whereD; is the distortion of level-jDyris the distortion when no reconstruction of the model
is possible (i.e. if the base mesh is lofd),,, is the distortion if all the levels are successfully

received.

4.5.2 Proposed Modifications for CPM based Loss Resilient @ing

AlRegib et al. [78] propose an algorithm to find the optimdugion for this problem. Ac-
cording to the distortion-rate (D-R) curves, the algoritseiects the best,(Ly) pair by
varying C values using a step sif@. For each selectddandLy, the lowest expected distor-
tion andC, are found using a local search algorithm. Final output ofalgerithm is theC,

corresponding to lowest distortion among all steps.

A drawback of this algorithm is that it contains many repédatperations since the results are
iterated by varyingC using the step siz@. As there are finite choices &fLy andk; values
for aC, itis very likely to encounter samelLy andk; values for several values during the
local search. In [77], this computational redundancy isoesd by iterating only the finite
kj values and putting the constraint that< k; < ... < k.. Although in [77] the problem
definition also assumes th@tis given andLy, is fixed, we can generalize the algorithm by
removing this assumption. In our experimental results, am@line the two methods such

that, for given possible finite sets Ii§ andLy’s:

e The combined algorithm computes expected distortion ferek; values satisfying

the bit budget requirement and tke< ki < ... < k_ condition.

¢ k; values corresponding to the least expected distortiondseras the optimum FEC

assignment.

AlRegib et al. [79] tackle with a similar problem in whidhis also assumed to be given

in addition to our general problem definition. An exhaustearch of C@,c®, ... cL]is
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proposed to find the optimal solution. In [80], Ahmad et alogwse improvements on [79]
in terms of complexity and packetization flexibility inspit from the work in [92]. In our
experimental results, in order to obtain Ahmad et al.'s lteswe first find the local optimum
parameters for all possibleralues. Then the parameters corresponding to the lowestg

distortion is chosen as the global optimum parameters.

4.5.3 Distortion Metric and Simplifications in Calculations

In order to use Equations (4.8) and (4.5), the distortibpandD(R) are chosen ds? distance
as in previous sections. To reduce complexityLéfdistance computations, modeling D-
R curve with Weibull Model is employed as in Section 4.3. F&NMbased methods, this

complexity is decreased by using quadric error metric apgwed in [77].

45.4 Channel Model

In order to take into account the packet loss behavior tomiize the expected reconstruction
distortion, the channel is needed to be modeled approlytiditethis work, we use a two-state

Markov model which is shown to be verytective in modeling packet losses [93], [94].

Figure 4.17: Two state Markov channel model.

The Markov model described in [93] and [94] is a renewal maidel, the event of a loss resets
the memory of the loss process. Such models are determintiet lafjstribution of error free
intervals (gaps). Let a gap of lengitbe the event that after a lost packet; 1 packets are
received and then again a packet is lost. The gap densityidang(v) gives the probability
of a gap lengtly, i.e.,g(v) = Pr(0"-11]1), where '1’ denotes a lost packet and~® denotes

v — 1 consecutively received packets. The gap distributioctfan G(v) gives the probability
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of a gap length greater than- 1, i.e.,G(v) = Pr(0"1|1). In our model, in state B all packets

are lost ('1’), while in state G all packets are received)(§ielding

1- PBaG, ifv=1
g(v) = (4.9)
pec(1 - pee)' ?pee, ifv>1

1, ifv=1
G(v) = (4.10)

pea(l - pep) 2, ifv>1
Let R(m, N) be the probability ofm— 1 packet losses within the nedt— 1 packets following

a lost packet. It can be calculated using the recurrence.

G(N), m=1
R(m, N) = (4.11)

S lgWMRM-1L,N-v), 2<m<N

Then the probability o lost packets within a block dfl packets given in Equations 4.4 and
4.7 is

N-m+1
pMN)= > PeGWRMN -v+1),if1 <m<N (4.12)
v=1
wherePg is the average loss probability.

4.5.5 Experimental Results

In this part of the experiments, we try to obtain the packss lesilient streaming performance
of the proposed method where the number of packets are mgblerhcompared to MDC
case. We compare the proposed method with CPM based metkidelfiave used the test
modelsBunnyand Venus head The packets are sent over the two-state Markov modeled
packet erasure channel with the average burst length ofl Shékexperiments are performed
using an Intel Pentium 4 2.2GHz 1Gb RAM Windows XP installechputer. Although it is

not possible to estimate exact complexity with these giit{e.g. due to possible ifiecient
implemented parts of algorithms or multitasking of OS), wevide the results to mention

the order of complexity of the algorithms compared to eableiot
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In the following experimental results, if the 3D model nanmel ahe coding bitrate are not
explicitly specified, then these results correspond toRttienymodel coded at.8 bpv and

packetized withN = 100.

In the rest of this section, we categorize the experimendspagsent in dierent subsections.
We start with the results of CPM based methods which inclhdgtopose&S te pparameter
and comparison of CPM based method simulation distortibhen we provide the results for
D-R curve modeling for PGC based methods followed by the @impn of CPM and PGC
based methods in terms of simulation distortions. Then veenéxe the mismatch scenario
which occurs when the real loss rate and the one used in @gatiion difer. We continue
the results with complexity comparisons for the optimiaatimethods and finally we provide

visual results for subjective evaluation.

4.5.5.1 Proposed kStep for CPM Based Methods

For AlRegib’'s CPM based methods, since iterating all pds$S(N, k;) pairs for each layer
is not feasible due to significant complexity requiremewes propose a new parameke tep
With kS tepparameter, instead of iterating’s in RS(N, kj) pairs one by one, we increment
and decremenk; values by an amount &S tepin the iterations. Figure 4.18 shows the
simulated PSNR values and Figure 4.19 shows the optimizaitioes for diferentkStep

values.
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Figure 4.18: Hect of k step size on quality: Simulated PSNR vs k step siz8fwmmymodel
optimized forP g = 2%, 4% and 10% and coded abdpv.
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Figure 4.19: Hect of k step size on complexity: Optimization time vs k stie $or Bunny
model optimized folP g = 4% and coded at.B bpv.

From the figures, it can observed that it is possible to sagatgamount of time during op-
timization by increasing thkS tepvalue. In addition, while increasing thes tepvalue, the

decrease in the simulated PSNR value is not significant feerént packet loss rates.

4.5.5.2 Comparison of CPM Based Methods

—+— AlRegib kStep = 2
—— AlRegib kStep = 5
—e— AlRegib kStep = 5 Quad|-
—=— Ahmad

—6— Ahmad Quad

PSNR (dB)
3

57r

55 L L L
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Packet loss rate (%)

Figure 4.20: Comparison of CPM based methods for Bunny mioddrms of simulated
distortions for variou®| g’s.

After defining thekS te pparameter, we proceed to comparison of all aforementiorieil C

based methods. Figure 4.20 summarizes all of the mentioR&diliased error resilient meth-
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ods. In the figure, simulated PSNR ®gr values are presented for several configurations.
The curves in the figure are AlRegib’s method with a fkSte pvalue of 2 AIRegib kStep-

2), AlRegib’s method with a coars&sS tepvalue of 5 AIRegib kStep: 5), AlIRegib’s method
with kS tep= 5 and using quadric error metric during optimizatiéiRegib kStep- 5 Quad,
generalized Ahmad’'s methodimad and generalized Ahmad’s method with using quadric

error metric during optimizationAhmad Quadl

From the figure, it can be deduced that all the CPM based methindilar performance,
where none of the methods achieve significantly higher sitedl PSNR. Nonetheless, best

PSNR is achieved bglRegib kStep- 2 as expected.

4.5.5.3 Performance of D-R Curve Modeling for PGC Based Metbds

After examining the CPM based methods, we start the anabj$GC based methods. For
the PGC based methods, FEC assignments are optimized witdgbrithms of Mohr et al.
[88] and Stankovic et al. [91] and labeled R& CMohrand PGCStankovidn the rest of the

chapter.

We initially examine the performance of the proposed D-Rreunodeling described in pre-
vious sections. Figure 4.21 shows simulated distortiomsesponding to variou® r’s for
PGCMohremploying the original D-R curve and modeled D-R curve dyoptimization. It
is observed that quite acceptable results can be achievBdRygurve modeling. Therefore
we present the remaining PGC based results with modeled DR which significantly

reduce optimization times.

4.5.5.4 Comparison of CPM and PGC Based Methods

In this part, we present comparison of the CPM and PGC basttba®ein terms of simulation
distortions for three cases: 1) Bunny Model Coded at 3.5 BpRunny Model Coded at 1.2
bpv and 3) Venus Model Coded at 4 bpv.

Bunny Model Coded at 3.5 bpv

For this case, a comprehensive summary of the results fonetthods is presented in Table

4.7. Also comparison of CPM based and PGC based methodsria tdrsimulated PSNR can
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Figure 4.21: Comparison of using original D-R curve and gsitodeled D-R curve during
optimization forBunnymaodel in terms of simulated distortions for varioRss’s.

be seen in Figure 4.22. From the results, one can notice @&thased method significantly

outperform the CPM based methods.

Table 4.7: Simulated distortion results of the first scaméot variousP, g values. The distor-
tion metric is relative_? error in units of 10%.

\ | Simulated distortion for dierentP r \

| PLRvalues | 0% | 2% | 4% | 6% | 10% | 15% | 20% | 30% | 40% |
PGCStankovic | 1.89] 2.52] 2.61] 2.78] 3.09 | 3.48 | 3.78 | 4.7 | 5.89
PGCmohr 1.85]2.42| 2.62| 2.66| 3.06 | 3.32 | 3.87 | 455 | 6.67
AlRegib kStep2 6 | 7.90] 853 8.78] 9.91 | 11.06| 12.30| 14.21| 17.16
AlRegib kStep5 6 | 7.94] 855] 8.83] 10.00| 11.08| 12.36| 14.32| 17.29
AlRegib kStep5 Quad| 6 | 7.94| 8.55| 8.83| 10.17| 11.08| 12.36| 14.32| 17.29
Ahmad 6 |7.92]854|882]1001] 1111 12.35] 14.30| 17.28
Ahmad Quad 6 | 7.98] 855|8.83] 10.04| 11.16| 12.40| 14.35| 17.28

Bunny Model Coded at 1.2 bpv

In this case, we decrease the bitrate and code Bunny mod&l bp¥ to observe low bitrate
error resilient characteristics. Comparison of PGC and GRsEd methods is provided in

Figure 4.23. We observe that the results do not change bealsiog the coding bitrate.

Venus Model Coded at 4 bpv
Finally in this case, we repeat the experiments performeBuwmymodel withVenus head
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Figure 4.22:P, r vs Simulated distortion in PSNR scale ®unnymodel coded at.5 bpv.
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Figure 4.23:P g vs Simulated distortion in PSNR scale Bunnymodel coded at.2 bpv.
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model which is coded at 4 bpv and packetized vtk 100. Simulated PSNR comparison
of PGC based and CPM based methods can be seen in Figure 4dar $ the results
with the Bunnymodel, we observe that PGC based methods again significauntherform
the CPM based methods.
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Figure 4.24:P r vs Simulated distortion in PSNR scale f&nus headnodel coded at 4 bpv.

4555 Mismatch Scenario

In the experiments presented so far, the assumption is thatgdthe optimization we know
the channel loss rate and optimize the protection paramatmordingly. However, in real
cases, the channel packet loss rate used during the optiionizand the actual loss rate en-
countered may dlier. Therefore in this part, we investigate what happens whemodel
optimized for a loss rate is transmitted over a channel wilffarent lost rate. The results of

this experiment are shown in Figure 4.25.

The first observation in the figure is that when the transmisgiacketization is optimized
for a low loss rate and a channel with a higher loss rate iswarieced, the performance
degradation can be severe. On the other hand, when the muct&irders a channel with
a lower loss rate, the performance loss is not significantotier observation is that both
CPM and PGC based methods behave similarly in mismatch scearad the performance

gap between the methods does not vary.
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Figure 4.25:Bunnymodel is coded at.3 bpv and FEC assignment is optimized with respect
to three dfferentP g’s for PGCStankoviandAlRegib kStep 5 methods. Performance of the
three diferent assignments for vario®sRr’s in terms of simulated distortion in PSNR scale.

455.6 Complexity Comparison

In the packet loss resilient 3D mesh transmission framesvpriesented in this chapter, it
should be noted that the methods are not suitable for real tiensmission. The reason is
that the algorithms need to compress the model first androBtdR curves, which require
significant amount of time. However, if we are allowed to coess models and store D-R
curves diline, then real time transmission may be possible unlesdrtireedpent during the
optimization, so called optimization time, is high. In tligase, the optimization time of an

algorithm becomes an important measure for real time trezssom.

In order to compare the complexities of the optimizationtgpaf the methods, we measured
the optimization time for each algorithm as described atodginning of Section 4.5.5. Ta-
ble 4.8 summarizes time requirements fofetient optimization schemes mentioned in this

chapter.

Table 4.8 shows th&®GCStankovitias the smallest complexity. However, as seen in previous
results, the complexity is smaller than thatRG&CMohr at the cost of occasional slightly
worse simulated PSNR. Examining the CPM based methods,evhia®\hmadandAlRegib
kStep:=5 show significantly higher complexity. However, frokstep= 8, the complexity

values are comparable with those of PGC based methods.
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Table 4.8: Optimization times of flerent methods. Each method is optimizedRpg = 4%

\ Optimization Times \
Methods Time (sec)| PSNR

PGCMohr 0.250 71.63
PGCStankovic 0.004 71.68
Ahmad 11.110 61.37

AlRegib kStep5 | 8.350 | 61.36
AlRegib kStep8 | 0.365 | 61.35

4.5.5.7 Visual Comparison of CPM and PGC Based Methods

Apart from the objective distortion metric results, we afgesent results oBunny model
coded at 3.5 bpwandVenus head model coded at 4 hpvterms of visual reconstructions.
Figures 4.26 and 4.27 show visual reconstruction8BiannyandVenus headanodel for vari-

ousP, R values, respectively.

4.6 Conclusions

In this chapter, we have presented various MDC and packetrésslient coding techniques
for static 3D meshes. In the literature, there was only onkwalated to MDC of 3D static
meshes [76]. We have proposed three MDC methods, naMeliiple Description Scalar
Quantization Based ApproadR], Partitioning Wavelet Cgficient Trees Based Approach
[1] and Forward Error Correction Based Approadb] [4]. To compare the techniques, all of
them except the one in [76] are based on wavelet coding. Hagtter compression ratios and
bitrates for descriptions are obtained in our wavelet basbemes. Also neither the work in
[76] nor MDSQbased scheme in Section 4.2 does not employ any optimizadibrrespect
to varying bandwidth and loss rate of the channel while TM-MDC method in Section
4.3 andFEC based method in Section 4.4 make use of optimization tofgignily improve
expected distortion performance. Moreover, number ofrifggms and description sizes can

be adjusted more flexibly itM-MDC andFEC based methods.

To compareTM-MDC and FEC based methods, although the methods show similar perfor-

mance in terms of expected distortidREC based method has several advantages. While

the FEC based method generates one compressed bitstream to @pEE@ assignment for
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Figure 4.26: Expected reconstructions of Bennymodel, left column byPGCStankovic
method and right column b&lIRegib kStep5 method. (a)-(b)PLr = 2%, (c)-(d)P r = 10%,

(e)-(f:PLr = 20%. PSNR values: (a) 72.18 dB (b) 62.44 dB (c) 70.52 dB (BB4B (e)

69.09 dB (f) 58.61 dB
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Figure 4.27: Expected reconstructions of tlenus headmodel, left column byPGC-
Stankovicmethod and right column bjlRegib kStep5 method. (a)-(b):P g = 2%, (c)-
(d):PLr = 10%, (e)-(f)PLr = 20%. PSNR values: (a) 76.95 dB (b) 67.79 dB (c) 75.04 dB (d)
65.19 dB (e) 74.24 dB (f) 65.19 dB
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different total number of descriptionEM-MDC needs to generateftiérent compressed bit-
stream to optimize for dierent total number of descriptions. The reason is that thefse
wavelet coéficient trees to be assigned to description$eds with respect to éierent total
number of descriptions. TherefoREEC based method can produce any number descriptions
using the same compressed bitstream wheréa$/1DC method needs to have the knowledge
of total number of descriptions to be able to generate bastis for optimization of bit allo-
cation for each description. Another advantag&BC based method is thdiM-MDC needs

to include whole coarsest level geometry in each descriptibereas-EC based method
spreads the bitplanes of coarsest level geometry accotalihgir importances in compressed
bitstream. In this way more important compressed wavelefficents are assigned more
FECs than lower bitplanes of coarsest level geometry argkthigplanes are not included in

each description unless they are assigned repetition dndegtimization algorithm.

As mentioned before, our propose&C based method is also used for packet loss resilient
streaming purposes. Regarding to this part, we have pexbamt extensive analysis of loss
resilient coding methods for 3D models. The methods aredbaseoptimally protecting
compressed bitstreams with FEC codes with respect to givennel bandwidth and packet

loss rate constraints.

We first examined the CPM based methods reported in thetliterand came up with a gen-
eral problem definition and solution. We introducell&te pparameter to iterate protection
rates with dfferent steps and showed that increadiBge pconsiderably decreases optimiza-

tion times at the expense of very small PSNR degradation.

Then we compared CPM and PGC based methods and experimesuls rshow that PGC
methods achieve approximately 10db better PSNR for allfates. It was already reported

in [19] that, compression performance of PGC method is 10eiBebthan CPM method. In
our results, we show that the 10dB compression performaapebgtween the methods is
preserved in packet loss resilient transmission. For theesgason, expected reconstructed
models of PGC method at the decoder have a better subjectaligygthan the ones of CPM
method. We also note that the performanc@edénce may depend on the coarseness of the
model. Apart from the PSNR performance, PGC based methagsameadvantage of flexible
packetization. Since the bitstream of PGC method is emlakdte bitstream is generated

only once. Given the channel and bandwidth conditions, itstréam can be truncated to

58



desired bitrate precisely and FEC assignment is perforrasillye The CPM based methods
need to generate fiierent bitstreams for ffierent quantization values and number of bitrate

values that can be achieved is limited.

Finally we simulated performance of optimization methadsimismatch scenario i.e. the
model is protected with FEC codes optimized for a given lass but transmitted through a
channel with a dferent loss rate. We observed that when the model is optinicrea low
loss rate and encounters a channel with a higher loss r&@etiormance degradation can
be severe. On the other hand, when the model encounters nethvaith a lower loss rate,
the loss in the performance is not significant. Therefore ereclude that when the channel
conditions are uncertain or time varying, it is more robwsbptimize loss protection with

respect to a higher loss rate.

59



CHAPTER 5

MULTIPLE DESCRIPTION CODING OF ANIMATED
MESHES

5.1 Introduction

As presented in Section 3.2, recently many works have bempoped for compression of
animated meshes in the literature. On the other hand, teametimuch research on trans-
mission and error resilient coding of 3D dynamic meshes.r@feonly one previous work
[95], where the mesh is spatially partitioned into segmant$s each segment is encoded and
protected by Forward Error Protection (FEC). The disachgambf the method is that the loss
of some parts of the bitstream means complete loss of camespy spatial areas. In this
chapter, we focus on MDC of animated meshes as the erroiergdibol. Although there are
many works related to MDC of video [13, 15, 96, 14, 97, 98] and®/of static 3D meshes
[76, 2, 1, 4, 99], MDC of animated mesh data is at a very easdgest

In this work, we propose three MDC schemes for animated 3DhasesThe main dier-
ence between the MDC of static and animated meshes is thaktteedimension of time in
animated meshes brings additional challenges. The firgtogead scheme is based on par-
titioning vertices spatially to be encoded independeniifiis scheme resembles the static
mesh methods in [76] and [1] (TM-MDC) in the sense that spptatitioning of the vertices

is common in all the methods. However, the proposed methsdhesadditional challenge of
handling reduced compression performance due to infegioporal prediction. The second
proposed scheme is based on subsampling frames tempoyakplwiting the hierarchical B
frame structure, which makes it a completely fiatient approach compared to static meshes.

The final proposed scheme makes use of the layered scalaltéust and is based on du-
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plicating layers in the descriptions. From the bitstreamtgrtion point of view, this scheme

shows similarity to the static mesh approach in [4] (MD-FE@h two descriptions.

The rest of the chapter is organized as follows. In Secti@nwe mention the reference dy-
namic mesh coder on which the proposed MDC methods depei@kdiion 5.3, we describe
the proposed MDC methods. In Section 5.4, we present theiexgatal results and finally

we conclude in Section 5.5.

5.2 Reference Dynamic Mesh Coder

The single description (SD) dynamic mesh coder on which olCMnethods is based is
the scalable predictive dynamic mesh coder presented Jn To® coder can also be viewed
as the layered prediction structure of MPEG-4 FAMC [65] dimit any other modules like
skinning-based motion compensation (SMC). We have chdssncoder as our reference
coder because of bothieient compression performance and the layered structuiehwh
gives flexibility to the design of MD structures. Additiortabols like SMC that improve the
SD compression performance may also be incorporated tsitthiy not necessarilyffect
the RRD performance for MDC, i.e. if a tool improving the SDrgaression improves the
compression of multiple descriptions at the same leveh there is not much RRD perfor-
mance diference. Since the primary focus of this work is to inveségatd compare MDC
performances of the proposed methods, we address the lpog$iets of adding tools that
improve the SD compression performance on the MDC perfocmas a future work. The
details of the coder, which is referred Reference Dynamic Mesh Cod&DMC) in the rest

of the text, are provided in Section 3.2.1.

5.3 Proposed MDC Methods

In this section, we describe the proposed MDC methods foauljo 3D meshes. We propose

three methods which are named after the strategies theyaaesl lon:

Vertex partitioning: Based on spatially partitioning the set of vertices into sets for each

frame.

Temporal subsampling: Based on encoding odd and even frames separately.
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Layer duplication: Based on duplicating the bitstream corresponding to a sufdayers

and splitting the remaining bitstream for each description

A common property in all of the methods is that the compressesh connectivity is included
in all descriptions. Since we deal with time consistent ayitameshes whose connectivity
does not change with time, including this data in each deton causes very small and

negligible overhead.

5.3.1 Vertex Partitioning Based MDC

5.3.1.1 MD Encoder

In this approach, the first step is to partition the set of eltices into two disjoint sets where
each set will correspond to a description. The partitiorsirgtegy &ects the MD perfor-
mance since the missing vertices should be concealed fremetieived ones when only one
of the descriptions is received. For example, an optiontisnguthe model into halves. In this
case, the received vertices (the ones in the received halfjdide compressed and decoded
very dificiently. On the other hand, it would be venfiitiult to conceal missing vertices (the
ones in the unavailable half) since most of the neighboiicestwould be missing. For this
reason, we try to partition the vertices in both descrifgtias dispersed as possible, which

increases the chance of predicting the location of a misgnigx more accurately.

The problem of optimal vertex partitioning to achieve be€d®performance is a flicult
problem. The exhaustive solution is unpractical as it negguioo many combinations. There-
fore we focus on a good enough solution which tries to achilesfgersed set of vertices rather
than the optimal one. In the literature, the authors in [83 pBopose an algorithm which pro-
vides 1D ordering of vertices, which has good locality andtitwmity properties. As a result,
sampling the 1D array with odd and even samples generatespat@lly dispersed sets of
vertices. We tested the performance of this partitioningtegly and achieved quite acceptable
MDC performance. Therefore, we adopt this strategy for #mex partitioning part of the
proposed MDC scheme. We also note that trying other hemasitihoc partitioning methods

resulted in slightly worse performance.
Note that the spatial layered decomposition in the RDMC dmedviertex partitioning pre-

62



sented for this MDC method are two independent processes.véittex partitioning occurs
after the spatial layered decomposition and does not demetite decomposition. The vertex
partitioning is applied on the whole mesh vertices, notiap&yer by spatial layer. In our
future work, we also plan to investigate a better vertexifaming strategy which also takes

into account the spatial layered decomposition.

Having obtained the two sets of vertices, in order to obtaettvo descriptions, we encode
the vertices using the RDMC either in a mismatch-free or mtsfmallowed manner, as de-
scribed below. Note that, for these methods, we refer to tisenatch during decoding of the
received set. Otherwise, mismatch and error propagatiangldecoding of the missing set

is unavoidable.

Mismatch-free In order to avoid mismatch, we modify the reference dynangsimencoder
structure so that when making a prediction for a vertex, dmyneighbor vertices from
the same set are allowed. In other words, no vertex from theratet is used for the
prediction of the vertex. This strategy results in poorexdjtions and consequently
more bits are spent to encode the two sets separately comrpagacoding the vertices

as one set (or equivalently single description coding).

Mismatch-allowed In this case, we keep the existing prediction and reconsbrustructure
in the RDMC same. However, at the entropy coding stage, wegnencode only the
quantized residuals of corresponding vertices for eactriggi®n. This method causes
mismatch when the bitstream of only one description is todmoded since both sets
are used during predictions, which results in poorer sidwodion. On the other hand,
the redundancy due to poorer prediction accuracy is elimthaHowever, this time
the redundancy occurs due to poorer entropy coding as snaatieunt of residuals
are entropy encoded together. As it will be seen in experiahgasults, the resulting

overall redundancy decreases compared to mismatch-fesel maethod.

Rather than independent coding of disjoint vertex setsrderto trade-i between redun-
dancy and side distortion, we can encode a subset of spatairaemporal layers without
partitioning using the RDMC and duplicate the resultargtbéam in both descriptions. In this
way, redundancy is introduced to increase the accuracyrtévkcation predictions both for

encoding and concealment. In some cases, even the residtingdancy may decrease if
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the bitrate saved by better compression due to higher ancpradictions exceeds the extra
bitrate spent for duplicating the layers. For example, weagb duplicated the encoded spa-
tial base layer in both descriptions because the experahtdts showed unacceptably poor
results when the spatial base layer was partitioned intosete too.The points on the RRD
curves of this algorithm presented in Section 5.4 corregpgovarious number of spatial and

temporal layers duplicated and the resulting average satfiertions.

5.3.1.2 WMD Side Decoder

When only one of the descriptions is received, the availaiflamation is compressed pre-
diction residuals of the corresponding vertex set and thpdichted spatigtemporal layers.
The general idea in side decoding is to decode receivedgsréind estimateonceal the lost

vertices by making use of available vertices.

As the concealment algorithm, we make use of the predictiarctsires which are already
available from the reference dynamic mesh decoder as iteid ttsminimize the prediction
error for compression purpose. In the decoding process affatrary frame, vertices in the
frame are decoded in the order of spatial base layer to fieest Epatial layer. After the
spatial base layer is decoded, the vertices in the followgpafial layers are predicted using
the vertices from already decoded spatial layers and gredierrors are corrected by using
the information from compressed bitstream. However, inMieside decoder, only a subset
of the prediction errors are available since the rest of thesrlost with the lost description.
Therefore, we assume that prediction errors were encodaest@aand estimate the locations of
missing vertices as the predicted locations in the decddiete that during the concealment,
it is not required to use the same prediction method usedeiretftoder since mismatch is

unavoidable. Therefore either RIC or No-RIC based preatictian be employed.

We can summarize the side decoding process of mismatchibee for each frame in four

steps:

1. Use the RDMC decoder for the duplicated spagatporal layers.

2. Use the RDMC decoder for the vertices from the receivedrig#®on. Note that only

the restricted neighbors from the same description are disedg spatial prediction.
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3. Set prediction error residuals of unavailable verticezetro.

4. Use the RDMC decoder for the unavailable vertices. Naeiththis case, there is no
restriction on the neighbors used during spatial predictioce it is already impossible
to match the prediction in the encoder due to losses. We wi$dhat using all the
neighbors during prediction performs the best in the expenis. Also either RIC or

No-RIC based prediction can be employed.

Similarly, we can summarize the side decoding process ahatish-allowed MDC for each

frame in four steps:

1. Use the RDMC decoder for the duplicated spagatporal layers.

2. Entropy decode the received description and obtain digead prediction error resid-

uals.

3. Set prediction error residuals of unavailable verticezetro.

4. For all the vertices, run the RDMC decoder proceduresftiiatv the entropy decod-
ing.for all vertices. Either RIC or No-RIC based predictican be employed for the
unavailable vertices while for the received vertices, sanegictions as in the encoder

are used.

5.3.1.3 WMD Central Decoder

The central decoding is performed when both descriptioasaailable. In the mismatch-free
version, first the bitstreams of the descriptions are dettsdparately and then the separately
reconstructed vertices are combined. In the mismatchvatloversion, first the bitstreams
are entropy decoded separately and prediction error r@side obtained after dequantizing.
Then the prediction error residuals from the two descnijgiare combined and the vertices

are reconstructed using the reference dynamic mesh decoder
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5.3.2 Temporal Subsampling Based MDC
5.3.2.1 MD Encoder

In this approach, the mesh frames are split into two sets evhach set corresponds to a
description: The first set contains even indexed frames{€saD, 2, 4 ... assuming that the
indexing starts from 0) and the second set contains the atgkéud frames (Frames 1, 3, 5
...). In this way, we obtain two new dynamic mesh sequencésavirame rate of half of the

original sequence. Then each sequence is compressed lsiRIPMC and each description

contains one of the compressed bitstreams. The total ditfathe descriptions exceed the
bitrate of single description coding because in the MD casee the frames cannot predict

from the frames in the other set, the interframe predictidiciency decreases.

o B & B [~ B B B (-
FO F1 F2 F3 F4 F5 F6 F7 F8

Extra redundancy: one spatial
layer from other description
A

)
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Description 1 | Stos | Stas | Stes
SLO,O SL4.0 SLS,O
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SLiz| SLsz | Skoz [ Sksz | Sksz | layer from other description

A
Description 2 | Stui| Stsa | Stes | Skss | Stsa )
SLyo| SLso | Skggo | Skap | Skso
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- - - : Temporal Layer i

Figure 5.1: Temporal subsampling based MDC. The examplaecseg is decomposed into
three temporal layers and three spatial layers. One spayiad from the other description is
duplicated.

The MD encoding strategy described above results in thenmimi possible redundancy and
maximum side distortion for this method. It is also posstbladd more redundancy (increase
in side bitrate) to decrease side distortions. This can hizeed by adding a subset of com-

pressed spatial layers from the other set of frames. Tha exmnber of bits for this procedure
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is not very high because actually, the frames of the otheargethe frames to be encoded in

the last temporal layer in single description cabegin Figure 3.3).

One can notice the relation between the temporal subsagniptised MDC and the temporal
layered decomposition in the RDMC. To explain the relatidthvan example, assume that
our sequence consists of 10 framesg, 4, ..., Fg for description 1 andrq, F, ..., Fg for de-
scription 2) decomposed into three temporal layers and #aote is decomposed into three
spatial layers as illustrated in Figure 5.1. Odt; denote the ith temporal layer. For the first
description, initially,Fo, F4 andFg in TLg are encoded and thdfy, andFg in TL; are en-
coded. At this point, one can notice that, we have encodedefs&, F», F4, Fg andFg or

in other words, we have encoded even indexed frames withedigting from odd indexed
frames. This situation corresponds to the lowest possdalandancy case. If we wish to add
more redundancy, we can continue encoding spatial layems the remainingrl L, which
consists of frame&4, F3, F5 andF7. The amount of redundancy is adjusted by the number
of encoded spatial layers ifiL, frames. For example, if we encode all of the spatial layers
in TL, frames, then we have a redundancy of 100 % which is equivedengpetition of the
descriptions. In the example case illustrated in Figuredng spatial layer from the last tem-
poral layer is included in both descriptions. The pointstm RRD curves of this algorithm
presented in Section 5.4 correspond to how many spatialdafehe last temporal layer are

included in each description and the resulting averagedisdertion.

For the second description which corresponds to the odaéttizames, the same procedures
are applied with the exception th&t is considered as the starting frame of the original
sequence as depicted in Figure 5Hq and Fg (first and the last frames) are exceptional
frames for description 1 and 2 respectively and can eithemdggected or included in the

encoding process by allowing to predict from the nearestéra

5.3.2.2 WMD Side Decoder

When only one of the descriptions is received, the receivistiéam is fed into the RDMC

decoder. First, all the temporal layers except the last mch contains frames of the other
set) are decoded in the usual way. Then, if any spatial layfettse last temporal layer (the
extra spatial layers from the frames of the other descriptixist in the received description,

the vertices in these spatial layers are decoded in the wsyads well. Finally, for the missing
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spatial layers, the decoder assumes that the predictiorsdor the vertices in these spatial
layers were found to be zero during encoding process. Tdrerethe decoder predicts the
vertex locations for the missing spatial layers using eifREC or No-RIC and the predicted

locations are used as the concealed reconstructed logation

Another possibility is using linear interpolation rathbaih using the prediction structure in
the decoder. In this approach, the missing vertex locatisasestimated as the average of
corresponding vertex locations from the previous and rmaxtés. In the experimental results,
we compare the performances of using linear interpolati@htiae prediction structures of the

decoder.

5.3.2.3 MD Central Decoder

When both of the descriptions are available, each desanifgifed into the reference dynamic
mesh decoder separately. During the decoding, the decaditite last temporal layer is

discarded. In this way, decoding one of the description®gea only even indexed frames
and the other generates the odd indexed frames. Finallgvireand odd indexed frames are

combined to generate the mesh sequence at full frame rate.

5.3.3 Layer Duplication Based MDC

5.3.3.1 MD Encoder

The idea of the method is as follows: Initially, the input megquence is compressed with
the RDMC such that the output bitstream consists of two nmegdini sub-bitstreams appended
head to tail. The first sub-bitstream is self decodable arddiag results in a lower quality
reconstruction which corresponds to a lower spatial or teadgesolution. The second sub-
bitstream is not self decodable but when it is decoded tegetith the first sub-bitstream, it
improves the quality of the first sub-bitstream decodinger€fore the second sub-bitstream
depends on the first sub-bitstream to be decoded. After thddissireams are generated, the
first sub-bitstream is duplicated in both of the descrigi@md the second sub-bitstream is
cut into half so that each half bitstream is placed into artistdescription as illustrated in

Figure 5.2.
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Figure 5.2: Layer duplication based MDC: three layer orteexamples

The amount of redundancy in this method is equal to the siZestfsub-bitstream as it is
duplicated in both descriptions. Therefore, by playingwtite size of first sub-bitstream, the
trade-df between redundancy and side distortion can be adjustedtohe layered structure
(both temporal and spatial) of the RDMC, there are many ptessiays to generate the first
sub-bitstream. Figure 5.2 shows three examples for a sequeith 5 frames decomposed
into 3 temporal and spatial layers. In general, assume tieaRDMC performsl tempo-

ral andS spatial layer decompositions during encoding. The ordimader of the output
bitstream is concatenation &f encoded temporal layers where each encoded bitstream of a
frame in a temporal layer is concatenationSoéncoded spatial layers from spatial base layer
to finest level layer. LeT L;(s) represent the bitstream @h temporal layer in which each

frame is encoded up teth spatial layer out of spatial layers. Then the ordinary bitstream

69



orderis [TLo(s=S)] [TLi(s= )] ... [TLr_1(s= S)]. However, this ordering is not unique.

In the more general case, it is possible to encBdspatial layers of temporal laydrL; for

i =0,1,.., T-1initially and define the resulting bitstream as first sutstbeam (or self decod-
able sub-bitstream). Afterwards, we can encode remaiBindS; spatial layers of each tem-
poral layerT L; fori = 0,1, .., T — 1 and define the resulting bitstream as second sub-bitstream
(or enhancing sub-bitstream) which is appended after thiesfib-bitstream. Then the general
ordering of the bitstream becomes:Lly(s = Sp)] [T Li(s= S1)] ... [TLr_1(s= St-1)] (sub-
bitstream bordernTLo(s= S)-TLo(s= So)][TLi(s=S)-TLi(s=S1)] ... [TLy_1(s=S)-
TLt_1(s= St_1)]where [TLi(s = S)-T Li(s = Sj)] denotes the remaining spatial layers from
first sub-bitstream iith temporal layer (spatial layers fro8i,; to S). It is important to note

the constrainBg > S; > ... > St_; because a vertex at a spatial layer needs to predict from a

vertex at the same spatial layer which was encoded in theguetemporal layer.

5.3.3.2 MD Side Decoder

The MD side decoder receives only one of the descriptionanéstioned earlier, a descrip-
tion contains a self decodable sub-bitstream and half a$ubebitstream which enhances the
quality of the first sub-bitstream. Since the whole enhamsinb-bitstream is unavailable, the
received half of the enhancing sub-bitstream is discardée. self decodable sub-bitstream
is decoded by the usual reference dynamic mesh decoder amdshiting reconstruction is

the side reconstruction of this MD system.

5.3.3.3 MD Central Decoder

The MD central decoder discards the duplicated self dededalb-bitstream, combines the
halves of the enhancing sub-bitstream and as a result sbifanwhole single description
coded bitstream. Using the reference dynamic mesh dectiwecentral reconstruction is

obtained.

5.3.4 Comments on the Mismatch

All the proposed methods can be considered mismatch-freepéxhe mismatch-allowed

version of vertex partitioning based MDC. In the mismatatefversion, the vertices in a set
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are disallowed to predict from vertices in the other sethitemporal subsampling method,
the description of even indexed frames do not predict froenathd indexed frames and vice
versa. In the layer duplication algorithm method, sincd dfathe enhancing sub-bitstream is

discarded and the self decodable bitstream is duplicdteds £xists no mismatch.

5.3.5 Further Possible Improvements on Error Concealment

For the missing vertices, the side decoder may choose eiffigg or not using the rotation-
invariant coordinates during the prediction for error cealment. However, for dierent
frames, the performance of the predictionfali Therefore, we add a property in encoder
so that, the encoder calculates the resultant error of eaateffor all prediction methods and
writes the index of better prediction method for each framthée bitstream. In this way, the
decoder uses this information to decide on which prediati@thod to use for concealment.

This process slightly increases encoder complexity andtesis a negligible bitrate overhead.

We note that the inherent prediction structure in the RDMCtf@ error concealment in
the side decoder may not be the optimal solution. Any othehisticated technique like
[100] which exploits the already available connectivittadaan be employed to estimate
missing vertices. In some cases, a lower distortion may biewed compared to current error
concealment predictions. Furthermore, as described iprdous paragraph, the encoder
may test several other concealment techniques and sigtied sidde decoder which technique
brings the lowest distortion. On the other hand, using oméyibhherent prediction structures
of the RDMC simplifies the codec design by omitting implenagion of new modules for
sophisticated estimators and brings significant gain ingderity. In our works, we use only
the available prediction structures in the RDMC and addtesgcorporation of sophisticated

estimators for the error concealment as future work.

5.4 Results

In this section, we evaluate and compare the performancdsegiroposed MDC methods.
Since we aim to analyze MDC performance, we do not providevgewnison with the work in
[95] where the MDC usage is not considered. In addition, tmearession methods employed

in [95] are less #icient than the one we employed. Therefore in a transmissienasio, it
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is very likely that a comparison would favor the method emjiplg a better compressor since
the bandwidth can be used moif@@ently. However, this comparison would be unfair since

the performance élierence would be mostly due to the compressiditiency diference.

RRD curves presented in the previous sections are used lisaeydMDC performances of
the proposed methods. In the RRD curves, the redundancyagitigonal bitrate introduced
by MD coding ) is given as the percentage of single descnptiitrate. The bitrate values
are expressed in bits per vertex per frame (bpvf). To medbkerside and central distortions
of the reconstructed mesh sequences, we use the error mbtdb is defined in Karni and
Gotsman’s work [49] as it is a widely used metric in the litara. We denote this error by

KG Error and it is calculated as shown in Equation 3.8.

We perform the experiments on the following test dynamic mesquencesCowheavy
Chicken crossingDance Horse Gallop FaceandJump The properties of the sequences
are shown in Table 6.1. We used the following coding pararadte all models:number of
temporal layer decompositiof®@T L)= 4, number of spatial layer decompositignS )= 8,
guantization paramet€@)= 12 and using rotation invariant coordinates in the encoQet.

12 is usually regarded as the visually lossless quantizggarameter. These settings result
in the following central KG error@g) - central bitrate Rp) pairs: 00349% at 1041 bpvf
for cowheavy 0.0432% at 479 bpvf for chicken crossing0.0422% at 424 bpvf fordance
0.0435% at @1 bpvf forhorse gallop 0.0537% at B23 bpvf forfaceand 00426% at 405
bpvf for jump

Table 5.1: The test sequences

Name # Vertices| # Triangles| Frames used
Cowheavy 2904 5804 1-204
Chicken crossing 3030 5664 1-400
Dance 7061 14118 1-201
Horse Gallop 8431 16843 1-48
Face 539 1042 1-200
Jump 15830 31660 431-652

In the following subsections, we first introduce the resolteach algorithm individually
using thecowheavysequence as we obtained very similar individual resulté wie other
sequences. Then we compare each MDC method for all the tpstisees. In the results and

figures, we use the following abbreviations for the relatdd@®/arameters:
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nTLDup Number of temporal layers duplicated in both descriptiamadjust redundancy

and side distortion.

nSLDup Number of spatial layers duplicated in both descriptionadjust redundancy and

side distortion.

Ric Rotation-invariant coordinates based prediction of théecas used for concealing the

missing vertices in the side decoder.

No Ric Rotation-invariant coordinates are not used during thdiptien of missing vertices

in the side decoder.

Best Both Ric and No Ric are tested in the encoder for side distoiind the one with lower

error is used during concealment.
VPme Vertex partitioning based MDC method with mismatch-freesian.
VPma Vertex partitioning based MDC method with mismatch-allowersion.
TS Temporal subsampling based MDC method.

LD Layer duplication based MDC method.

5.4.1 Vertex Partitioning

As stated in Section 5.3.1, there are two ways to vary recwyden V Py andV Pya. First
one is duplicating a number of spatial layer and the otherisraiplicating a number of
temporal layers in each description. Figure 5.3(a) showsdfect of varying humber of
duplicated layers. We observe that when no temporal laygupticated, Ric and No Ric per-
form the same since the temporal prediction cannot be maadefusiowever, with increasing
the number of duplicated temporal layers, we observe sigmifiimprovement with Ric. Ric
results in lower error than No Ric since especially for frarhaving large separation, same
global spatial error correction assumption is weak butrit@ge valid for local errors. As seen
in the figure, many RRD points can be obtained by duplicatiiftgigent number of layers.
In order to compare the method with other MDC methods, we fireddonvex hull of the
possible points as shown in Figure 5.3(b). In this figure, i8e ahow the Best points and it

can be observed that the Best points are almost always Ritspoi

73



Cowheavy VertexPart Central Err: 0.0349 Cowheavy VertexPart Central Err: 0.0349

© nSLDup=1

»
o
Y
IS
o

—o6— No ric nTLDup=0 x
[ @ nsibup=2 —— Ric nTLDup0
—©&— No ric nTLDup=1

IN
IN
T

|
«
T
[
«
T

i
T
[N
T

< <

= =

% 35 Siupa ~—#— Ric nTLDup=1 % 35 g«

3 —©— No ric nTLDup=2 S

ool RSLDUp=4 —— Ric nTLDup=2 g s8r x

o —o— Np ric nTLDup=3 D) ® x  No ric points
Q 25 —+— Ric nTLDup=3 v 25 ® - Ric points
3 ol 3 ol x O Best points
%) %) ® Convex hull
) )

) )

I I

9] 5]

> >

< <

0.5r 0.5r

nSLDup=8 0

40 50 60 90 100 110 40 50 60 90 100 110

70 80
Redundancy (%)

(@) (b)

70 80
Redundancy (%)

Figure 5.3: (a)Vertex Partitioning based MDC: RRD curvasv/arying number of duplicated
layers (b) All achievable RRD points and their convex hull

In Figure 5.4, the RRD comparison of mismatch-free and misimallowed based meth-
ods are shown. It can be observed that mismatch-allowec dara shifted version of the
mismatch-free curve with a higher side distortion but lonestundancy. However thetect

of lower redundancy is much more significant and allows far tedundancy allocations.

Cowheavy Central Err: 0.0349

—— Vertex Part. Mismatch free
Vertex Part. Mismatch allowed
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Figure 5.4: Comparison of mismatch-free and mismatchaatb vertex partitioning based
MDC
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5.4.2 Temporal Subsampling

Figure 5.5(a) shows the RRD curves oftdient prediction methods including simple linear
interpolation. The first observation is that using the pr#aln structure of the coder is sig-

nificantly better than linear interpolation. Another obsgion is that duplicating the spatial

base layer (transition fromS LDup= 0 tonS LDup= 1) results in the most remarkable side
distortion improvement. Further but smaller side distoriimprovements can be achieved by
duplicating more spatial layers at the expense of incrgasidundancy. Figure 5.5(b) shows
the zoomed view of the Figure 5.5(a). It is observed thatetl® no significant dierence

between Ric and No Ric and Best slightly improves the peréorce.
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Figure 5.5: Temporal Subsampling based MDC: (a) RRD cumwedifferent prediction meth-
ods (b) Zoomed view

5.4.3 Layer Duplication

As shown in Figures 5.2 and 5.6, there are numerous redupdiche error pairs that can
be achieved by théD. The red and green points on the Figure 5.6 correspond talal s
bitstream partitioning possibilities obtained bytdrent layer orderings using No Ric and Ric
respectively. Most of the points on the figure are uselesesinower side distortion can be
achieved with the same redundancy ratio. For this reasofinadiéhe convex hull of the points
and use it as the RRD curve of this method during the comparisathis way, we obtain the
best achievable performance of the layer duplication bs4e@. From the complexity point

of view, a faster algorithm to compute the convex hull withoalculating all possibilities
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is required. Nevertheless, since we concentrate on theadiie MDC performance in this

work, we address the issue as a future work.
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No ric redundancy-side error pairs
Ric redundancy-side error pairs
—o6— Convex hull
— — — Central Error

251

20

15

Average Side KG Error (%)

&2 6

PR
isbdiaiand s
pivtop

0 10 20 30 40 50 60 70 80 90 100
Redundancy (%)

Figure 5.6: Layer Duplication based MDC: All redundanageserror pairs and the convex
hull

5.4.4 Comparison

Figure 5.7 shows the comparison of each proposed MDC metiiabd test mesh sequences.

Each method uses the Best prediction during concealment.

VPwr always performs the worst, which means allowing mismatchbfetter predictions
during encoding is a better approach than restricting thiex@eighbors during prediction to

avoid mismatch.

LD can achieve very low redundancies other methods cannogvachiHowever, with in-
creasing redundancy, the method is outperformed 8yandV Fya. On the other hand, due
to numerous possible layer orderings, the desired redaydzan be achieved with a better

accuracy. The other methods cannot produce as many RRB pa@nhel D produces.

V Pua performs better at low redundancies except for the modetkeh crossing and face.
The reason is that performance of Mi®ya decreases with spatially coarser models. Con-

sidering the lower spatial prediction accuracyiRya due to partitioned vertices, the spatial
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prediction is &ected substantially when the model is spatially coarse ekample, face is a
very coarse model with only 539 vertices per frame. On therdtland, although cowheavy
and chicken crossing models have similar number of vertiomsex part. mismatch allowed
performs well with cowheavy but worse with chicken crossifidhe reason is that chicken
crossing model is composed of many coarse tiny parts likevthg, causing sharp and non-

smooth regions and reduced spatial prediction accuracghwhialso shown in Figure 5.11.

Increasing the redundancy from low to moderate regions, hgemve thafl S almost always
performs the best. Note that these regions correspond t@tes where the spatial base layer
is already included in both descriptions for ti& method. For high redundancy values, the

MDC methods perform very similarly.
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Cowheavy Central Err: 0.0349

Chicken Central Err: 0.0432

Figure 5.7: RRD performance comparison of the MDC methods
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5.4.5 Per Frame Analysis

In the previous part, we evaluated the methods using thelbeequence whereas there may
be disturbing fects for individual frames with respect to the MDC methods.this part,
we examine the per-frame performance of the MDC methods.uré&sy5.8(a) and 5.8(b)
show the quality of each reconstructed frame of horse gaéxuence MD coded at 25%
and 45% redundancy respectively. In the figures, we exphesguality in Peak Signal-to-
Noise Ratio (PSNR) scale for better visualization. We dateuthe PSNR value @S NR=
10log10(MS E/bboxdiad) where MSE is the mean squared error between the recorstruct
and original vertex locations arsboxdiagis the bounding box diagonal of the mesh se-
guence. For the same sequence and redundancy values,sFgarend 5.10 show visually
the reconstructed frames 1 and 2 obtained by central deg@udlid side decoding of the first
description. Figure 5.11 shows visually the reconstrufteches 259 and 260 of the chicken
crossing sequence MD coded at 44%. Finally, Figure 5.12 shber visualization of error
between central and side reconstructions for horse gatidghicken crossing sequences MD

coded at 25% and 44% redundancy, respectively.

Temporal sub.
Vertex part.
Layer dup. Layer dup.

Temporal sub.
Vertex part.

I I I | I | | | I I I I I I I I I I |
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 50
Frame number Frame number

(a) (b)

Figure 5.8: PSNR values of side reconstruction of each frimmikorse gallop sequence MD
coded at (a) %25 redundancy, (b) %45 redundancy

Examining the figures, for the side reconstruction ofTl8 even frames achieve a high PSNR
(at central decoding quality) and odd frames achieve a I®8MR as shown in Figure 5.8.
This situation of quality dference between consecutive frames may cause significamt pro
lems depending on the content when watching the sequenaethé-tow redundancy case
where the whole spatial base layer is not included in eactrigion, comparing th& S with

VPua andLD, it is observed that even frames have higher or equal PSNRsalhereas
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odd frames have lower PSNR values. HoweVWd?Pya andLD achieve much smaller quality
difference between consecutive frames. Considering both ¢bestuction PSNRs and the
inter-frame quality dierence)V Pya performs the best for the low redundancy case. On the
other hand, when the redundancy is increased at least as asuadcluding the whole spa-
tial base layer for thd S, the PSNR values of S frames increase significantly and always
exceedV Pya andLD. Note that although the frames of theS achieve higher PSNR, the
average quality dierence between consecutive frames is still the highesal Blvservation

is that although thé.D performs the worst PSNR performance for all cases, it hasdhe
pability to achieve minimum quality ffierence between consecutive frames. For example in
Figure 5.8(a), the.D curve achieving very low dierence can be seen. In Figure 5.8(b), a
higher diference is observed. The reason is that, among many redyndémeation possi-
bilities for the LD method, the layer ordering with the minimum KG error is shawrhe
figure. However, it is also possible to choose a layer ordewiith the same redundancy but

lower inter-frame quality dference at the cost of slightly higher KG error.

The observations can also be seen in the visual Figures 39, 5.11 and 5.12 showing
reconstruction of two consecutive frames for the aforeinest cases. Several noticeable
cases are as follows: The poor reconstruction quality of hevith respect to the others can
be seen in Figures 5.9(g) and 5.9(h). For T8, the problems with the leg and foot area
of the horse due to high motion can be seen in Figures 5.9¢ebd®(c). For theV Pya,
problems with the spatial regions can be observed in Fidutgde) and 5.12(f).
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(a) Central frame 1 (b) Central frame 2

(c) Vertex part. mismatch allowed frame 1

2
N/
s

(e) Temporal Sub. frame 1 (f) Temporal Sub. frame 2

(g) Layer Dup. frame 1 (h) Layer Dup. frame 2

Figure 5.9: Central and side reconstructions of frames 12amichorse gallop sequence MD
coded at 25% redundancy
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(a) Central frame 1 (b) Central frame 2

(c) Vertex part. mismatch allowed frame 1 (d) Vertex part. mismatch allowed frame 2

(e) Temporal Sub. frame 1 (f) Temporal Sub. frame 2

(g) Layer Dup. frame 1 (h) Layer Dup. frame 2

Figure 5.10: Central and side reconstructions of framesi2avf horse gallop sequence MD
coded at 45% redundancy
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(a) Central frame 259 (b) Central frame 260

(c) Vertex part. mismatch allowed frame 259

(e) Temporal Sub. frame 259 (f) Temporal Sub. frame 260

Figure 5.11: Central and side reconstructions of framesa?8®260 of chicken sequence MD
coded at 44% redundancy
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(a) Vertex part. mismatch allowed frame 1 (b) Vertex part. mismatch allowed frame 2

(c) Temporal Sub. frame 1 (d) Temporal Sub. frame 2

(e) Vertex part. mismatch al- (f) Vertex part. mismatch al-
lowed frame 259 lowed frame 260

(g) Temporal Sub. frame 259 (h) Temporal Sub. frame 260

Figure 5.12: Visualization of errors between central ade seconstructions for horse-gallop
and chicken crossing MD coded at 25% and 44% redundancyectsgly. Deviation from
red indicates increasing error.
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5.5 Conclusions and Future Work

In this chapter, we have proposed and evaluated three noukipM Description Coding
(MDC) methods for reliable transmission of compressed atech meshes. The methods
make use of anficient 3D dynamic mesh coder based on tempspatial layer decomposi-
tions. We have also proposed necessary modifications tetatijg amount of redundancy to

gain resiliency to losses.

We have presented the experimental results with reduneateydistortion curves and vi-
sual reconstructions. The experimental results showMegdex partitioningperforms better
at low redundancies for especially spatially dense modesaporal subsamplingerforms
better at moderate redundancies (corresponding to ingjuali least the spatial base layer in
both descriptions) as well as low redundancies for spgtiarse models. Layer duplication
based MDC can achieve the lowest redundancies with flexdzlandancy allocation capa-
bility and can be designed to achieve the smallest variahoeconstruction quality between

consecutive frames.

Possible future works include increasing the number of rifggans, searching for the opti-
mized MDC method and parameters for a given model accordiniget spatial and temporal
properties and decreasing the complexity of finding thenogitiayer ordering irLayer du-

plication.
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CHAPTER 6

IMPROVED PREDICTION METHODS FOR SCALABLE
PREDICTIVE ANIMATED MESH COMPRESSION

In this work, our aim is to obtainfgcient predictive animated mesh compression with spatial-
temporal scalability support and suitable for low-delagaining scenarios. Therefore we in-
tegrated our proposed methods into the spatial and temlageried decomposition structure
proposed in the SPC. The first contribution of our work is titeoiduction of a weighted spa-
tial prediction scheme. The second contribution is a weidtiemporal prediction scheme.
Even though the integration is done by SPC, the proposednmieigbased prediction struc-
tures can be used in any predictive coder which makes useatibbpnd temporal layered
structure. Finally, we propose a novel angle based predidto experimental results, we
show that significant improvements can be achieved for batigtion errors and compres-

sion rate.

The rest of the chapter is organized as follows: We providalttails of the proposed predic-
tion schemes, namely weighted spatial prediction in Sedid.1, weighted temporal predic-
tion in Section 6.1.2 and angle based prediction in Sectibr86We present the experimental

results in Section 6.2 and finally, we conclude in Section 6.3

6.1 Prediction Structures

The prediction of vertices is the most crucial part of prédéecanimated mesh coding. Al-
though the SPC algorithm was presented in Section 3.2.1rstedvisit the prediction struc-
ture in the SPC algorithm in this section. Then we providedbtils of the proposed pre-

diction structures. All the prediction structures depemdtiee previously mentioned spa-
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tial/temporal layered mesh sequence decomposition procedhieh g a part of the SPC

method and MPEG-4 FAMC standard.

Spatial and temporal neighboring information of an examphtex (<) to be predictetncoded

is illustrated in Figure 3.4. In the figure and rest of the texiperscriptp, c and f are used

for past, current and future frames respectivefyis the vertex to be predicted in the current
frame andv andvé denote the vertices at the same connectivity location witim the past

and future frames, respectivelyf’c’f,i = 0,1, ..,N - 1 denote the topological neighbors of
vg’c’f. In this exampleyS belongs to a B frame and makes prediction from one past and one
future frame. Note that, both past and future frames ara@jrencoded before the current
frame. Future is used in the sense of frame display order. pfésiction ofv¢ consists of

spatial prediction followed by a temporal prediction.

Inthe SPC, the first step during the prediction in the enczdmalculating a spatial prediction.
The spatial prediction of the vertel®®" denoted bwP" is calculated as average of the

topological neighborsv(lc’f,i =0,1,.,N-1):

pd

-1

vel = vPel, (6.1)

Zl=
Il
o

i
where N is the number of topological neighbor vertices. After thatsd prediction, the

p.c,f p.c.f

spatial prediction error of?%" denoted bye?¢" = vP&" — vP< is obtained as illustrated in

Figure 3.4.

The spatial prediction errors are not directly used for eirap except for the | frames. For
P and B frames, the spatial prediction is followed by a teralpprediction procedure which
aims to refine the spatial prediction err@&)(in order to obtain the final prediction of

denoted byi¢. V¢ is calculated as:

= VS + A, 6.2)

whereAf can be regarded as the temporal prediction or a spatialgii@ucorrectiofrefinement
term coming from previously encoded framas.is actually a prediction of and calculated
as

~p ~f

where&? andéé are the spatial prediction correction terms correspontingast and future
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frames, respectively, and calculated as
&' = (M) TMP el (6.4)

whereMP< denotes the local coordinate frame " which is a Rotation-Invariant Co-
ordinate (RIC) system definedd@®" [66]. In other wordsMPfel" is the spatial prediction
error transformed into local coordinate frames defined sYfoaure frames.ég’f is obtained

by transforming back to global coordinates usiMgcf~. Note that, settingV® and MP:f

equal to identity matrix results in a linear and rotatiomyirag prediction.

The temporal prediction procedure explained is fof & a B frame. No temporal prediction
is employed for | frames. For P frames, the onlffelience is thaA{ is calculated a8 in

Equation 6.3.

6.1.1 Proposed Weighted Spatial Prediction

The calculation of spatial prediction in layered predietanimated mesh coding is not unique.
For example in SPC, equal weighting of neighbors witN is used to calculates as shown
in Equation 6.1. However, we can generalize the calculatibas with the possibility of

assigning dierent weights for each neighbor as shown in Equation 6.5.

N-1

.C, f .c.f. pcf

Vol = E aPlvP (6.5)
i—0

If we search for the optima&’ values for everyg and encode them, this would increase
the bitrate significantly. However, if we can obtaifi values by using only the previously
encoded vertices, then we do not have to encode the weighgssaince both the encoder and
the decoder have access to same values of previously encedaxs. With this motivation,
we propose to use the relation betweé’r{ andvip’f to calculate the weight of eaalf,i =

0,1,...,N — 1 used in spatial prediction of.

For the vertices in the | frames, since there is no infornmafiom previous frames, we keep
the equal weights for the neighbors. Forén a P frame, we use? and calculatejID values

according to inverse proportions between the euclidiaadi®s betweevf and its neighbors

88



vip,i =0,1,...,N -1 as shown in Equation 6.6.

1
pr _ ]

al (6.6)

j
Using theajp values in Equation 6.6 to obtairf results in a more accurate spatial prediction
of v¢ than using equal weights af values. We assume that, for the current frame, saine
codficients also yield similarly better spatial predictiongf Therefore we sed” = aip. For
a B frame, a vertex obtains two setsapfalues from previous and future frama? endqf).
The a1.f values are obtained in the same wa)aﬁsvalues are obtained as shown in Equation

6.6. Here the #ect of two frames can be weighted witland 1- ¢ as shown in Equation 6.7.

& =cal + (1-0)a 6.7)

In our experiments, we always used- 0.5 which consistently produced good results. As a

future work, the &ect ofc value on the compression performance can also be investigat

Even though we integrated the proposed weighted spatidigpien into SPC, it can be used
in any prediction method that makes use of a spatial predictsing neighboring vertices. We
will see in Section 6.1.3 that the proposed angle basedgti@adimakes use of the weighted

spatial prediction as well.

6.1.2 Proposed Weighted Temporal Prediction

In the SPC, we observe in Equation 6.3 that the spatial giedierror terms from previous
and future frames&f andél) are equally weighted. We propose to use unequal weighting f

better prediction as shown in Equation 6.8:
A? = KD + (1 - KO (6.8)

Therefore our aim is to approximate the optinkglvalues for each vertex using only the
previously encoded vertices. Since the encoder and theldeoceconstruct the same vertices
identically, there is no need to encode #fevalues. The main idea behind our proposals
is as follows: During the encoding of, all the spatial neighbors off", i.e., vip’c’f,i =
0,1,...,N -1 are encoded before. Here we introduce two new error teria@®deto encoding

process of/f: ”e‘s”’if denotes the spatial prediction correction term corresipgnih pastfuture
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frame andsgi denotes the actual spatial prediction error\ilbre‘;i is obtained by

€ = Vi - Vg, (6.9)
Wherev‘s”i denotes the spatial prediction of. We assume that the relation betwe?@rif
and e‘;’i fori = 0,1,..,N — 1 is similar to the relation betwe&“xei’f and the current spatial
prediction error termef) we are trying to predict. Therefore we try to approximigesuch
that weightingégi andé; with kg fori = 0,1,..,N-1 produces an approximation f; better

than by equally weighting.

In order to approximate thi€ value, we propose two methods. The first method is based on
inverse proportionality of the distance betwﬂpande;i and the distance betwee@i and

égi. In this methodkS approximation is obtained by

1 N-1
K= >k (6.10)
i=0

wherek:

in Equation 6.11.

i =0,1,..,N-1is thek approximation obtained by usirﬁi, egi andé;i as shown

~f
”e; - es,i”

~f ~p
”e; - es,i” + ||e(s:’| - e$i||

ki = (6.11)

In the second proposed method, we calculatekfheith Least Squares (LS). We construct
an overdetermined system of linear equations using all éhghboring vertices as shown in

Equations 6.12 and 6.13.

ke, + (1 - k8L, = fori=0,..N-1 (6.12)

@ -l K= —8 fori=0..N-1 (6.13)
Then writing the equations in matrix form and taking the pk@overse gives the LS solution
of k&, calculated as in Equation 6.14.
oL - é;i)T(eg,i - é;,i)

N-1,xP _ =f 2
Zizo Hes,i _es’iH

K ~ (6.14)

6.1.3 Proposed Angle Based Predictor

In this section, we present the details of the proposed draged predictor which is based

on the same spatjgémporal layered structure of SPC. The predictor is usedifber P or B
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frames as it predicts the location of a vertex in the currearhe using its previously encoded
neighbor vertices and corresponding vertices in the pusliyoencoded frames. The algorithm
initially makes predictions for the current vertex to be@ied ¢ in Figure 3.4) using each
incident triangle in each previously encoded frame. As altgisobtains predictions as many
as the number of incident triangles for a P frame and twicatimaber of incident triangles for
a B frame. Then it makes a final decision using all the preatisti Since the whole neighbor
triangle information is not usually available in the sphabase layer, the algorithm can be
applied to layers above spatial base layer. In this casegitiiees in the spatial base layer are

encoded with the SPC algorithm.

(a) Previously encoded frame (b) Current frame

Figure 6.1: One incident triangle in previously encoded amdent frame. Note thatg’c,
vh¢, vE€ andv§© lie on the same planig®.

An incident triangle for previously encoded and currentrfeais illustrated in Figure 6.1. In
the figure, superscript denotes the current frame and superscpiptenotes the previously
encoded frame. LetS denote the vertex to be encoded in the current framev3rdkenote
the vertex at the same connectivity location in the previcaime. The vertex paimg,vf and
v§, V; denote the remaining vertices of the incident triangle withresponding angle pairs
aP, BP anda®, 8¢ in previous and current frames respectivelyl andv¢ denote the spatial
predictions ofvY andv§ respectively, obtained by using the neighbor vertices.Ajetenote
the plane defined by the poing§, vi andv. Then the angle in the figure is the angle to

rotate the triangle around its edge defined/fyandv?! so thatvf lies on the plan@®. After
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the rotationv® comes to the point denoted bf} as shown in Figure 6.1(a). Same relations

also exist forvg, Vi, Vg, PS, ve andvg, as shown in Figure 6.1(b).

The basic idea behind the predictor is that the angPeendy® are assumed to be similar, i.e.,
these angles do not vary significantly through the time. guFeé 6.1, all the vertices exceyft
are previously encoded. Therefore, we do not have the valugss°,y© during the encoding
process ofS. However, in order to make use of the similarity assumptietwieeny® and
¥©, we try to estimate$, using previously encoded vertices. Then we rotate backitmggte
defined byvg, v{ and the estimation ofg, with an angle ofyP to predictvg. The detailed
steps of the algorithm are as follows:

(VE-V)T (vE-vh) (vE-VD)T (vB-VD)

1. CalculatexP andpP: af = arccos—r—p-p—p- andgP = arccos = b p— B

INE=VaIIVD =Vl VE—VPIIVG VA
2. Calculatev!, , the point defined by the intersection of the edgev! and the perpen-

dicular line segment fromat to the edgerf-v?.

3. Calculatevt using either simple averaging of the neighbors/pf(v5, v¥,...vR_,) or
the proposed weighted spatial prediction described ini@e6ét1.1. Having calculated

V&, the planePi defined by, vi andvt is obtained.

4. Calculatevg, by redrawing the trianglevf, V¥, v£) and preserving the angles’ and
BP so that the triangle lies on the plaRg. This operation is equivalent to rotating the
triangle with an angle of?. As mentioned before, after this operation, the positidns o

v5 andv! do not change and the new positionvfis equal tovg.

—
5. CalculateyP, using the line segmentg -vE andv? -v& (vVEv? vE) as shown in Equa-

tion 6.15.
p P \T,P p
¥ = arccoste ~Ver) Wer = Ve,
IvE — VP [V = Ve, I

This step completes all the necessary information fromipusly encoded frame.

(6.15)

Steps 6 through 9 give the procedure to fiidthe estimation o¥¢, using the informa-

tion obtained in steps 1-5. We will use Figure 6.2 to illutdrene following steps.

6. Calculatev$ again using a spatial prediction algorithm and obtain tlee@PS defined

by vg, v andvg.
7. CalculateVg,, the estimation ofg,.

We propose three methods to estiméie
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(a) Angles same: As the simplest solutiafi,5¢ are approximated as”,3P as illus-
trated in Figure 6.2(a) where the approximated angles areteld bya® and /.
In this caseg; is calculated such that the trianglg( vg, v5) lies on the plane
P¢ and the angleﬁmf and\”/gjlf\vg are equal tar® andg° respectively.

(b) Angle diferences same: In this method, we first calculate the angline afian-
gles @f, Vi, vE) and (5, V¢, v9). Letak® £ vgﬁg’?vf’c andpl® £ vgﬁf?vgﬁ
as depicted in Figure 6.2(b). The assumption in this methalat the dierence
betweern, 8P anda?f, A% is similar to the diference betweemn®, 8¢ anda$, 85 .e.
the angle dierences between the triangles do not vary significantly tiitke. In
summaryo® ands® are approximated ag® = oS+aP-aof andp® = g+pP -0 as
illustrated in Figure 6.2(b). After approximating the agglrest of the procedure

to calculateVs, is same as il\ngles samenethod.

(c) Local displacement between, andvs same: The motivation behind this ap-
proach is based on the assumption that the local displademeeéneenvh® and
v2¢ is same for the current and the previous frames as illustiatEigure 6.2(c).
The local coordinate frame is defined/f by the unit vectorsif  andul® lying
on the planeP§ with directionsvl“-v5¢ andv§“-vE’. Note that for the calcu-
lation of u$ during encoding, the pointg; andv{;" are unavailable. However,
sinceug andu lie on the same plane, we can calculafeas the vector orthogonal

to ug. ThenVg, is calculated as:
0% = v+ (VB ub) U + (vEer. ub) us (6.16)
where(,) denotes the dot product operation afig is calculated as:
vy = v — VP (6.17)

~

8. Calculatelg, , the estimation ofg,. U is obtained by drawing a perpendicular line

cL»

segment fronvg, to the edgevg-vi.

9. Finally, calculatelg. In this step,y© is estimated agP and the line segmeri,-V¢, is
rotated around the edgg-v; by an angle ofyP. V¢ is the position wherdg, resides

after the rotation.
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Figure 6.2: Angle based prediction (a) Angles same (b) Aulifierences same (c) Local
displacement between, andvs same

In this way, for a vertex to be encodeaymber of triangle neighbors number of references
predictions are obtained. Final step is to make a decisiorthi® prediction using all the
predictions. The straightforward way is to average all thedjztions. However, some of
the predictions may result in very poorly compared otheis$ lzacome outliers. In order to
cope with this, we use an outlier removal process as follows: calculate the mean and

the standard deviation of all predictions and reject theliptns that are a constant times
standard deviation away from the mean.
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6.2 Experimental Results

We evaluate the performance of the prediction schemes tisgtgowheavyChicken cross-

ing, Dance Horse Gallop Faceand Jumptest sequences. The properties of the sequences
are shown in Table 6.1. We express the bitrate as bits pexvper frame (bpvf). In order to
measure the overall sequence distortion, we use the ertacmich is defined in Karni and
Gotsman’s work [49] as it is a widely used metric in the litara. We denote this error B¢G

Error and it is calculated as shown in Equation 3.8. For all the expmnts, we decomposed

the mesh with 8 spatial layers and 4 temporal layers.

Table 6.1: The test sequences

Name # Vertices| # Triangles| Frames used
Cowheavy 2904 5804 1-204
Chicken crossing 3030 5664 1-400
Dance 7061 14118 1-201
Horse Gallop 8431 16843 1-48
Face 539 1042 1-10001
Jump 15830 31660 431-652

Throughout the results, we label the prediction schemes tedied as follows:

SPC Prediction structure of the SPC which is based on rotatwariant coordinates [66].

Angle Proposed angle based prediction.

+ Wsp Using the proposed weighted spatial prediction for eitfe€ ®r Angle

+ Witp-LS Using the proposed least square based weighted tempodittwa for either
SPC or Angle.

+ Wtp-Inv prop Using the proposed inverse proportionality based weiglteetporal pre-
diction for either SPC or Angle.

Note that weighted temporal prediction is not used in angleed prediction. However, in
the experimentsingle+ Wtp-LSor Wtp-Inv propmeans that weighted temporal prediction is

used for the vertices in the spatial base layer as explamsddtion 6.1.3.
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Cowheavy Q: 8 bits Chicken crossing Q: 8 bits

X 1 X 1
v 15 v 15
Local disp same VO x [~ 2 Local disp same| O X [> 2
25 D 25
Angle diff same VAR O] Angle diff same| 7 X
Angles same 192 (©) X Angles same AV
2.2 2:4 2.6 218 é 1.4 1:6 1.8 é 2:2
Bitrate (bpvf) Bitrate (bpvf)
(a) Cowheavy (b) Chicken crossing

Figure 6.3: The compression performance of angle basedcficedmethods as a function of
multiplicative constant of standard deviation in outliemoval process as given in the legend.
Q=8 hits:

Cowheavy Q: 12 bits Chicken crossing Q: 12 bits
X 1 X 1
v 15 v 15
Local disp same{/©> X [~ 2 Local disp same [ 5/ > (O X [> 2
25 O 25
Angle diff same vE O X Angle diff same AVARDS!
Angles same & X Angles same \VARE L
8.8 é 9:2 9:4 9:6 9:8 1‘0 3.6 3:8 4‘1 4:2 414 4:6
Bitrate (bpvf) Bitrate (bpvf)
(a) Cowheavy (b) Chicken crossing

Figure 6.4: The compression performance of angle basedcficedmethods as a function of
multiplicative constant of standard deviation in outliemoval process as given in the legend.
Q=12 bits

We start with the angle based predictor and observefibets of the three proposed methods
to calculateVg, and the multiplicative constant of standard deviation itieuremoval process
in Figures 6.3 and 6.4 which correspond to using quantizgterameter ofQ = 8 andQ =

12 respectively. The angle based methods are labeléahgles sameAngle djf sameand
Local disp samén the figures. The bitrate values in the figures correspornttidaesultant
bitrates achieved after compression. We observe lthoatl disp sameerforms the best and

multiplying standard deviation with a value around 1.5 pices consistently good results.
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Therefore, in the rest of the results, we continue with them@meters for the angle based

prediction.
Cowheavy Q=12
— SPC+Wsp
— Angle
3] —— Angle+Wsp| D
~ 2 : J
m
2 Ml
o N\
z 1
N
o
< ol
_1 E
_2 i i

0 20 40 60
Frame number

Figure 6.5: Change in prediction error compared to SPC pendr

In Figure 6.5, we show the prediction error improvementshefAngle and Wspcompared

to SPCfor the first 100 frames. The results are obtained for comjhsagquence coded with

Q = 12 quantization parameter. In this figure, we express thadrarrors in Peak Signal-
to-Noise Ratio (PSNR) scale for better visualization psgoWe calculate the PSNR value
asPSNR= 10log;o(MS E/bboxdiag) where MSE is the mean squared error between the
predicted and original vertex locations ahHboxdiagis the bounding box diagonal of the
mesh sequence. The figure shows that, uSigpconsistently improves prediction error of
SPC with around 1dB. Using only angle based prediction tegubetter or worse prediction
error depending on the frames. However, addivgpto the angle based prediction results in

significant improvement and better PSNR tf&CrWspfor many frames.

In Figure 6.6, we show the percentage bitrate reduction eoetptoSPCfor each frame at

the same conditions with Figure 6.5. In the figure, we obs#rae except for a few frames
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Cowheavy Q=12
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20k — Angle
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Figure 6.6: Percentage bitrate reduction compared to SP{gme

for Angle all proposed prediction schemes achieve bitrate reduclibe bitrate reduction of
Angle in spite of poorer prediction shows that, the angleetggediction residuals are better

compressible.

Next, we present the results of extensive compression iexeets regarding to whole se-
guence bitrate and distortion. Tables 6.2 and 6.3 show treeptage bitrate reductions with
respect t&SPCachieved by the proposed prediction schemes. In the taddel, column cor-
responds to a quantization level obtained by varyingQimarameter. Note that SPC and the
proposed methods achieve very similar distortions for e value. The value with a *
corresponds to maximal bitrate reduction achieved valvemRhe tables, it can be observed
thatWtp-Inv propperforms consistently better thaitp-LS The reason is that in th&/tp-LS
method, outliers in the neighbors may have a laffiect in the calculation ok value. Al-
though better predictions are achievedWyp-LSfor some cases, very bad predictions due
to very large magnitudes &€ can be achieved for some other cases as well. Tiésta

the compressibility of prediction residuals consideralihn the handWtp-Inv propmethod
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restricts the magnitude & to be between 0 and 1. Althoughk@value in this interval may
not be the optimal value for some cases, it avoids very largdigtion errors and provides a

more robust solution.

Continuing with the tables, it is observed that usag&\siphas a significant feect on the
bitrate reduction both foBPCandAngle Anglebased predictions usually perform better at
coarser quantization levels whereaBCcombined with proposed weighted predictions tend
to perform better at finer quantization levels. Another oleston is that the bitrate reductions
achieved decrease with increasi@Qgvalues since the prediction accuracy of SPC increases
with increasing precision. Examining all the results, aB-30% bitrate reductions are

observed to be achieved depending on the content and th&zgtem level.
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Table 6.2: Bitrate reductions compared to SPC for cowheeigken crossing and dance

sequences
\ Methods| Q=8 Q=9 Q=10 Q=11 Q=12 Q=13 Q=14
Cowheavy

SPG-Wtp-LS | -13,27 -8,07 -445 -221 -102 -043 -0,15
SPG-Wtp-Inv prop 1,77 2,47 3,2 3,46 3,39 3,2 2,91
SPG:Wsp| 12,87 12,07 11,22 10,13 9,08 7,97 6,07
SPCGFWsp+Wtp-LS -1,8 2,67 5,34 6,5 6,69 6,31 5,13
SPG-Wsp+Wtp-Inv prop | 12,42 12,6 12,33 11,7 10,68 9,57 8,44*
Angle 4,12 2,81 2,49 2,38 2,34 2,14 1,92

Angle+Wtp-LS 4,74 3,61 3,29 3,18 2,98 2,66 2,36
Angle+Wtp-Inv prop 4,32 3,37 2,94 2,92 2,77 2,47 2,23
Angle+Wsp 148 13,28 12,28 11,27 10,2 9,03 7,95
Angle+Wsp+Wtp-LS | 14,95 13,67* 12,79* 11,76* 10,67 9,44 8,28
Angle+Wsp+Wtp-Inv prop | 14,84 13,58 12,53 11,55 10,48 9,31 8,2

Chicken crossing

SPG-Wip-LS | -15,96 -16 -16,16  -15,6 -14,29 -12,81 -9,49
SPG-Witp-Inv prop 0,61 1,81 2,08 2,38 2,73 2,99 3,52
SPG+Wsp | 10,21 9,36 8,38 7,72 7,21 6,22 5,07
SPG-Wsp+Wtp-LS| -457 -662 -7,34 -782 -801 -781 -577
SPG+Wsp+Wtp-Inv prop 9,45 9,68 9,02 8,23 7,56 6,63 5,82
Angle | 13,03 10,05 7,64 5,61 3,71 2,23 1,02

Angle+Wtp-LS | 12,42 9,63 7,74 5,97 4,4 3 1,93
Angle+Wtp-Inv prop| 13,16 10,41 8,37 6,34 4,74 3,22 2,13
Angle+Wsp 19,3 16,51 14 11,81 9,59 7,48 5,42
Angle+Wsp+Wtp-LS | 18,07 15,71 13,72 11,72 9,88 7,89 5,95

Angle+Wsp+Wtp-Inv prop | 19,37* 16,59* 14,25 12,42* 10,28* 8,13* 6,10

Dance

SPCG+Wtp-LS | -27,03 -23,48 -17,67 -11,25 -6,44 -2,85 -0,6
SPG-Witp-Inv prop| -1,57 -0,21 1,26 2,73 3,91 4,83 5,47
SPCG+Wsp| 11,87 12,87 13,13* 12,89 12,38 11,8 11,09
SPG-Wsp+Wtp-LS | -13,02  -9,66  -4,53 0,49 4,32 6,81 8,22
SPG+Wsp+Wtp-Inv prop 9,41 1159 12,88 13,84* 14,02* 14,00* 13,74*
Angle 8,33 1,82 -2,17  -3,63 -3,7 -2,86 -1/8

Angle+Wtp-LS 6,32 1,77 -09% -198 -2,08 -157 -0,72
Angle+Wtp-Inv prop 8,32 2,59 -1,07 -2,23 -2,51  -1.81 -0,89
Angle+Wsp | 17,74* 13,66 10,96 9,33 8,63 8,59 8,73
Angle+Wsp+Wtp-LS | 14,44 12,63 11,3 10,38 9,79 9,67 9,64
Angle+Wsp+Wtp-Inv prop | 17,18 13,70* 11,66 10,37 9,65 9,51 9,52
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Table 6.3: Bitrate reductions compared to SPC for horsegatace and jump

\ Methods| Q=8 Q=9 Q=10 Q=11 Q=12 Q=13 Q=14
Horse gallop

SPG+Witp-LS | -7,27 -4,17 -0,45 2,87 4,97 6,38 6,49
SPG-Wtp-Inv prop 0,2 2,26 4,39 6,53 7,4 7,98 7,35
SPG+Wsp 11,9 1343 14,02 1368 12,74 11,75 10,26
SPG-Wsp+Wtp-LS 3,48 7,22 9,76 11,48 12,11 11,97 10,81
SPG+Wsp+Wtp-Inv prop 9,65 12,96 14,48 15,4 15,19* 14,43* 12,97*
Angle 5,37 3,37 2,91 2,97 3 3,02 2,67

Angle+Wtp-LS 6,3 5,18 4,47 4,56 4,57 4,65 4,09
Angle+Wtp-Inv prop 6,51 5,16 4,28 3,97 4,13 4,17 3,71
Angle+Wsp 14,7 14,76 1498 1451 13,74 12,75 1114
Angle+Wsp+Wtp-LS | 14,82 15,53 16,03* 15,60* 14,84 13,87 12,25
Angle+Wsp+Wtp-Inv prop | 15,49* 15,84* 15,89 155 1458 1356 11,96

Face

SPCG+Witp-LS | -4,99 -2,65 0,3 2,88 4,52 5,18 5,01
SPG-Witp-Inv prop 0,53 2,33 3,86 5,26 59 5,96 5,54
SPGrWsp 5,34 5,04 4,89 4,72 4,61 4,27 3,77
SPG-Wsp+Wtp-LS | -1,27 0,95 3,35 54 6,82 7,29 6,95

SPG-Wsp+Wtp-Inv prop 4,54 5,77 6,8 7,72 8,26  8,23* 7,58
Angle | 12,65 10,36 8,23 6,46 5,19 4,24 3,58

Angle+Wtp-LS | 11,81 9,81 8,2 7 591 5,05 4,32
Angle+Wtp-Inv prop| 12,64 10,44 8,76 7,17 5,95 4,95 4,24
Angle+Wsp | 15,85* 13,59* 11,73* 10,12 8,86 7,73 6,13
Angle+Wsp+Witp-LS | 14,04 12,24 10,94 9,89 8,98 8,05 7,07
Angle+Wsp+Wtp-Inv prop | 15,19 13,42 11,68 10,30* 9,11* 8,07 7,06

Jump

SPG-Wtp-LS| -9,78 -6,53 -342 -111 0,38 11 1,22
SPGrWtp-Inv prop 2,4 3,57 3,66 3,52 3,14 2,81 2,39
SPG-Wsp| 10,31 11 10,14 9,06 7,89 6,73 5,55
SPCGFWsp+Witp-LS 0,22 3,97 5,92 6,86 6,95 6,5 5,64
SPG-Wsp+Wtp-Inv prop| 11,04 13,05 12,67 11,42 9,86 8,44 6,08
Angle | 23,13 15,1 9,13 5,79 4 3,19 2,61

Angle+Wtp-LS | 17,81 12,4 8,16 5,65 4,28 3,46 2,83
Angle+Wtp-Inv prop | 23,14 15,35 9,47 6,1 4,39 3,48 2,83
Angle+tWsp | 30,36* 24,63 18,72 14,34 1141 9,39 7,68
Angle+Wsp+Wtp-LS | 24,74 21,18 17,06 13,88 11,41 9,48 7,76

Angle+Wsp+Wtp-Inv prop 30,2 24,64 18,75* 14,50* 11,65* 9,58*  7,85¢

Finally, we select the best performing proposed schemesaftin® value and compare the re-

sultant rate-distortion curve with the state of the art esdeamely SPC and MPEG-4 FAMC

download-and-play mode in Figure 6.7. Once again we notethieaproposed methods are

intended for scalable, streamable animated mesh compnesiédwing frame-wise decoding.

Therefore, it is not a major concern to outperform a codetréwpuires the bitstream of whole
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sequence information to decode like MPEG-4 FAMC download-play mode or icient
PCA based coders [58]. As observed from the figure, the pempasrk always outperforms

SPC and shows a competitive performance compared to MPE&@AMCFIownload-and-play

mode.
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Figure 6.7: RD comparison of the SPC and best performinggs@g method for each quan-
tization level.
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6.3 Conclusion

In this chapter, we have proposed three prediction imprevdsifor scalable predictive ani-
mated mesh coding. The firstimprovement, weighted spatligtion, is based on applying
unequal weighting of topological neighboring verticesidgispatial prediction using the pre-
viously encoded frame information. The second improvemeeaighted temporal prediction,
is based on unequal weighting of temporal predictions frast @nd future frames using
the previously encoded neighboring vertex informatione Tihal improvement, angle based
prediction, makes use of the assumption of similarity betweotating angles of incident
triangles to the plane obtained by spatial prediction iviotes and current frames. The pro-
posed methods depend on the spatial-temporal layer de@itiopcstructure presented in the

SPC, which is also a part of the MPEG-4 FAMC standard.

The experimental results show that up to 30% bitrate rednstcompared to SPC can be
achieved with the combination of proposed prediction sa@®alepending on the content
and quantization level. The combination of proposed mettadsb achieve very competitive

performance compared to non-scalable MPEG-4 FAMC coder.
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CHAPTER 7

OPTIMAL QUALITY SCALABLE CODING OF ANIMATED
MESHES

7.1 Introduction

In the literature, scalable coding has been thoroughlysimyated for images, video and static
3D meshes. For the scalable animated mesh coding, the P@A besthods usually support
scalability by decoding with a subset of the eigen-vectblewever, an important shortcom-
ing of these methods is that scalability is provided for thére mesh sequence, not a group
of meshes and frame-wise decoding is not possible, whiclemiile methods unsuitable for
streamingtransmission applications. Apart from PCA based method2EM-4 FAMC and
SPC support spatial and temporal scalability with desitesasing features by employing
the same spatial and temporal layered decomposition. TBep8Hide a slightly better scal-
able coding performance due to improvements in the predi¢66]. The quality scalability
can also be achieved with these methods by treating lowelutésn points as lower quality
points by interpolating the missing vertices. But in thisation, the number of reconstruction

points obtained is limited and the optimal order of layeratig is unknown.

In this work, we propose two algorithms for optimized quaktalable coding of animated
meshes. The first algorithm is based on optimal bitplanediagamrder and the second one is
based on optimal encoding order of bitplanes. The propadgeditams make use of the spa-
tial/temporal layered decomposition and prediction structai®@RC. However, by proposing
bitplane extraction and optimal ordering, the proposechouist achieve more reconstruction

points and better quality scalability performance than SPC
The rest of the chapter is organized as follows: In Sectiodsfid 7.3, we present the details

105



of the proposed quality scalability algorithms. In Sectibd, we provide the experimental

results and finally, we conclude in Section 7.5.

7.2 Proposed Quality Scalable Coding: Decoding Order Based

In this method, we adjust the decoding order of bitplanes BBAC corresponding to each
spatial layer in each frame. We name the method as Decodidgr@ased (DOB). Note
that we process frames GOM by GOM, i.e. we generate qualitlaBle bitstreams for each

GOM.

The first contribution in this method is making use of CABAGpkane decoding to achieve
quality scalability, which is not available in MPEG-4 FAM®@/e also make use of the prop-
erties that bitplanes of a compressed layer can be incrathedecoded individually and in
mixed layer orders. In order to realize these propertiegmied the bitplane decoding order
information as a header at the beginning of each GOM bitstreehich brings a negligible
bitrate and complexity overhead. In this way, the decodemisnin what order it should use

the GOM bitstream to decode the bitplanes.

Note that if the decoding order of the bitplanes is choseh #uat decoding of a new spatial
layer is started only after finishing the decoding of bitglarof previous spatial layer com-
pletely, then what we obtain is simply the intermediate {soof layer-wise scalable coding
of SPC. However, it is not required to finish decoding of atplaines of a SL before pro-
ceeding to another SL. Figure 7.1 illustrates six exampkdfidtplane orderings, which are
ordering for each TISL/bitplane for each ShbitplangTL for each bitplangl'L/SL (denoted
by TL/SL/BP->SL/BP/TL->BP/TL/SL in the figure). In this simple example, one GOM is
encoded with three temporal layers, three spatial layershao quantization levelsBP, jk
denotes the bitstream of the quantization ldyebL j and framd. Note that other than these

six fixed orderings, any other bitplane ordering is also ixss

As different bitplane decoding orderings may result in betterde®rtion performance, we
propose our second contribution: optimization of bitplaleeoding order. To demonstrate
the dfect of diferent bitplane decoding orders, we illustrate a simple vdsare the first 9

frames of cow sequence is encoded with 8 spatial layers aedhgdral layers. We examine

the same six fixed bitplane ordering cases of Figure 7.1. dteedistortion points are shown
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Figure 7.1: lllustration of dferent fixed bitplane orderings on an example case

in Figure 7.2. In the figure, the TESL->BP and SL>TL->BP cases consist of intermediate
points of ordering TLs first and SLs first in SPC respectiviiyall other cases, since predic-
tions were performed using full bitplane precisions, wiven& prediction is performed using
a lower bitplane precision, mismatch occurs. For this neagar example, BL>SL->TL

initially performs worse but then performs better at higbiérates.

7.2.1 Optimization

As mentioned earlier, an optimization is needed to optiynatder the decoding order of
the bitplanes for each frame in a GOM and for each SL in a fraRere, the optimization

should be defined to minimize a cost function. In this worktheessoptimal quality scalability
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Figure 7.2: Rate-distortion curves of fixed bitplane ondgnnethods.

measure, we try to minimize the area under the RD curve teeeelgood RD performance
in the overall range of bitrates. Otherwise, it is also gassarrange the cost function so that
better performance (lower distortion) is achieved for sditr@te intervals at the cost of poor
performance in the remaining bitplanes. Other measuresglsarbe incorporated depending
on the application and we will see in the following sectiohattthe proposed optimization

framework can also support other optimization definitions.

Considering all the combinations of bitplane orderinggréhexist too many possibilities to
try. For this reason, we first impose reasonable restristmnthe decoding order of bitplanes
such that for a bitplane in the decoding order, the followlitplanes should have been de-

coded before:

e All the previous bitplanes in the same SL and same frame

¢ All the previous SLs up to same bitplane level at the samedram

e All the reference frames up to same bitplane level at the sBlme
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After the restrictions, we can view the optimization prasedas an incremental bitplane
selection process. L& P(f, s q) denote the bitplane bitstream of compressed vertices in
frame f of the GOM, spatial layes, 0 < s < S — 1 in frame f and the quantization levg|

0<qg< Q-1suchthat

o f denotes the usual non-scalable encoftiagoding order of frames in a GOM obtained
during hierarchical decomposition of temporal layers. réfae f is between 0 and

2TL-1_ 1 andf = 0 means the first frame to encgdecode in a GOM and so on.

e s = 0 corresponds to the base spatial layer. Therefore, thd asuadingdecoding

orderisfroms=0tos=S-1.

e = 0 corresponds to the most significant bit case. As a resdtallowed bitplane

decoding order is fromg=0toq=Q -1

In this incremental procedure, initially, all the bitplanare considered not decoded yet. We
start with decodind3P(0, 0, 0). Then, according to the previously mentioned decodiniger
ing restriction, next possible bitplanes a@&(0, 0, 1) (next quantization level)BP(0, 1, 0)
(next spatial layer) andBP(1,0,0) (next frame). AfterBP(0,0,0), if BP(0,0,1) is cho-
sen, then the next possible bitplanes B0, 0, 2), BP(0, 1,0) andBP(1,0,0). Similarly,

if BP(O,1,0) is chosen afteBP(0,0,0), then the next possible bitplanes @&&(0,0, 1),
BP(0,2,0) andBP(1,0,0). Similarly, choosingBP(1, 0, 0) results in the next possible bit-
planesBP(0, 0, 1), BP(0, 1, 0), BP(2, 0, 0) andBP(3, 0, 0) (assuming GOM contains more than

2 frames).

In this way, many bitplane orderings are obtained increalgntWe formulate this ordering
problem as a trellis structure. The initial branches of teli$ are illustrated in Figures 7.3(a),
7.3(b) and 7.3(c). In this trellis structure, each posshitplane ordering is called a path.
Each subset of bitplanes which can have an allowed decodey & considered as a state.
Therefore, each path can be viewed as a sequence of trasdigidween states where in each
transition, the new state contains one bitplane more thaprivious state. Each transition is
called a branch. As a result, each path starts with the staiehvenly consists of the single
bitplaneBP(0, 0, 0), branches through filerent states as many as the total number of bitplanes

in a GOM and finally ends with the state which consists of albitplanes.
Modeling the problem with the trellis structure, the optiation problem becomes finding
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Figure 7.3: lllustration of first branches of the trellisustture used in optimization (a) Initial
state (b) First branches (c) Some of the next possible bean@) Elimination of paths when
two paths end up at the same state (same RD point)

the optimal path in the trellis structure. Actually, thisustture is very similar to the viterbi
algorithm [101, 102] and we make use of it for the solution.oider to do this, we need to
define a path metric which can be incrementally updated dwach branch. Note that each
branch corresponds to displacement in the RD curve. Sincaiouis to minimize the area
under the RD curve, we define the path metric to add during leaith as the area under the

line defined by the previous RD point and the RD point achidyethe current branching.

In this way, among all possible paths, the one with the mimmpath metric results in the
RD curve with the minimum area under the RD curve. Howeveingrall the possible paths
would be too complex. Again similar to the viterbi algoriththis complexity is reduced as
follows: After each branch, we check whether two paths rélaetsame state. If this happens,
we compare the path metrics accumulated until that stateeliméhate the path with higher
path metric. This elimination is possible since the two pattart from the same RD point,

reach the same RD point at that moment and they will continitie seme branches since the
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next possible bitplanes are the same and the same bitplemde@ded until that point. This

elimination process is illustrated in Figure 7.3(d).

In order to provide algorithmic description of the optintipa procedure, we introduce the
path list structure where the paths can be stgn@moved during optimization. Before the
optimization starts, thpath listis initialized withBP(0, 0, 0) and the corresponding RD point

is calculated and stored. Then the description of the opétian algorithm is as follows:

Algorithm 1 Quality Scalability Optimization with DOB
1: Initialize thepath listwith BP(0, 0, 0)

2: while path listis not emptydo

3: forall Paths in theath listdo

&

Compute and store rate, distortion and path metric.
5. end for

6: for all Pairs of paths in thpath listdo

7 if Two paths reach the same sttten

8: Remove the one with larger path metric from the list
9 end if

10:  end for

11:  Eliminate a subset of the paths according to a rule, if exists
12: if All the paths are at the final statieen

13: break the loop.

14:  endif

15:  for all Paths remaining in theath listdo

16: Generate the next possible paths.

17: if There exist next possible pattigen

18: Remove the current path from the list and update the list thi¢mewly generated
paths.

19: end if

20: end for

21: end while

22: The survived path in thpath listis the optimal solution.
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7.2.2 Rate, Distortion and Path Metrics

As seen in the optimization algorithm, rate, distortion gath metrics need to be defined.
Rate metrics are straightforward to obtain since the nurobeompressed bits for each bit-
plane is already available. For the distortion metric, tine ia to obtain the distortion of the

GOM in the sense of distortion during optimization. In thisrk, we measure the distortion
of a sequence with the KG error which is actually a scaled nsqaared error (MSE). There-
fore, the most accurate but also complex way to measure shertiibn of a path is to decode
the bitstream and compute the MSE between the decoded GOMawndginal GOM. In our

simulations we calculated the distortion metric in this Waie address the other possibilities
to decrease complexity by approximating the distortionrimésty using quantization values
or incremental approximation of errors as future work. Otingerate and distortion metrics
are obtained, the path metric is calculated as the sum ofrpattic in the previous state (the
area under the RD curve until the previous state) and thdtaesarea under the RD curve

with current branching.

7.2.3 Algorithmic Simplifications

As mentioned earlier, during the optimization if two patkach the same state, one of them
is eliminated by comparing the path metrics. The experimshbwed that even with this
simplification the optimization algorithm is still too comeg. We note that any trellis based
algorithm in the literature can be employed in our scenahioorder to decrease the com-
plexity, we propose two algorithmic simplifications for patlimination in order to reduce
complexity at the cost of worse optimization performancehe proposed simplified path
elimination methods take place in tB#iminate a subset of the paths according to a rule, if

existsstep of the algorithm chart and described as follows:

e Slope based elimination: Path elimination occurs in evegnth. During the opti-
mization, after calculating RD points of all paths, the slepf displacement in the RD
curves are compared and all the paths other than the one mwihest slope (largest

magnitude but smallest slope since slopes are negative)iari@ated.

e Rate interval based elimination: In this method, the mditivais that if a path is not

the optimal solution until a rate value, then it is unliketylie the optimal solution at
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the end of the optimization. A rate interval is given as inpatameter and the rate
axis in the RD curve is divided into the given intervals. Thstead of running the
optimization and deciding in the end, a decision of path ielation is performed when
all the paths just reach and possible pass the next rateahteVhen a path reaches
the rate interval, it pauses and waits for all the other pathseach. When all the
paths reach, the corresponding path metrics are compagdti@amallest one survives.
Choosing a larger rate interval makes the algorithm clasé¢né optimal solution but
the complexity increases. Choosing a smaller rate int@waverges to the slope based
elimination method as the interval becomes very small. dfoee, this parameter gives

a compromise between scalability performance and contglexi

— For the rate interval based elimination, we introduce agopgarameter denoted
by maxP, which forces to make a path decision if the next rate valmeiseached
by the paths when the number of paths reaamedP. The aim of this parameter
is to put an upper bound for the calculations since withoetghrameter and for
some rate intervals, too many paths may be produced caugimficant increase

in the complexity.

7.3 Proposed Quality Scalable Coding: Encoding Order Based

The major problem in the DOB is that when decoding a SL, if tifenence SL(s) are not
decoded with full bitplane precision, then mismatch oceund error propagates to following
predicting SLs. In order to cope with this problem, we pra@asmismatch free scalable

coding method called Encoding Order Based (EOB).

In the EOB, unlike in DOB where the whole GOM is encoded ifiitiand only the bitplane
decoding order is optimized, the bitplane encoding proedsl also included during the
optimization. The same trellis structure used in the DOBnpleyed with the following
modifications: Before the optimization starts, no SLs areoded. During the optimization,
when a path branches to a BP which is the initial bitplane df &t& SL is fully encoded first
and the reconstruction points and compressed bits sperspanding to all the bitplanes are
stored. During this encoding, reference SLs are used wilgtiantization precisions at that
moment rather than the reconstruction values with full ¢g@ation (all bitplanes decoded

case). In this way, mismatch is avoided since bitplane engantder is same as the decoding
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order. On the other hand, memory requirement is increased.

The optimization trellis again starts witBP(0, 0,0). Since initially no SL is encoded, the
SL 0 in GOM frame 0 is encoded first and information of all kaipds are stored. Again
next possible bitplanes ai@P(0, 0, 1), BP(0, 1,0) andBP(1,0,0). if BP(0,0, 1) is chosen,

since the corresponding SL is encoded before, the storedhiation for this bitplane is used.
If BP(O,1,0) or BP(1,0,0) is chosen, since these SLs are not encoded before, fir§iLlthe
is encoded and information of all the bitplanes are storedteNhat during the encoding,
these SLs us8 L(0, 0) as reference. However, since the reconstructiol Ig0, 0) with only

BP(0, 0, 0) is used, the mismatch is avoided.

The disadvantage of EOB is that since reference SLs may libwisle lower quantization
precisions, the prediction accuracy decreases leadingstih compressionfleciency. On
the other hand, increase in the distortion is much smallempared to DOB which may face
significant increase in distortion due to the mismatch. Aaptisadvantage is that during the
optimization, according to ffierent bitplane orderings, encoding of SLs need to be pegdrm
many times. On the other hand, the encoding in DOB is perfdromty once at the beginning

and the compressed bit values are available during the izatiion process.

In summary, the description of the optimization algoritteyas follows:

7.3.1 Rate, Distortion and Path Metrics

In order to achieve the optimal solution, the number of caaped bits for each bitplane
should be used as the rate metric. Since this data changeesitiect to the quantization
precisions of reference SLs, the complexity increases eoegpto DOB due to numerous
encodings. For the distortion metric, the MSE between tlvedied GOM and original GOM
brings the optimal solution as in DOB. Again we address apprations of rate and distortion

metrics to decrease complexity as future work.

Having obtained the rate and distortion metrics, the pattrimis calculated as the sum of
path metric in the previous state (the area under the RD auntiithe previous state) and the
resultant area under the RD curve with current branching BB. However, this time when

two paths reach the same state, although they achieve asdistortion, the rate values may

be diferent. The reason is that, during the branches and encotifBgsp the reference SLs
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Algorithm 2 Quality Scalability Optimization with EOB

1: Initialize thepath listwith BP(0, 0, 0)

2. while path listis not emptydo

3: forall Paths in thepath listdo
4: Compute and store rate, distortion and path metric.
5. end for
6. forall Pairs of paths in thpath listdo
7 if Two paths reach the same sttten
8: Remove the one with larger path metric from the list
9 end if
10:  end for
11:  Eliminate a subset of the paths according to a rule, if exists
12: if All the paths are at the final statieen
13: break the loop.
14:  endif
15:  for all Paths remaining in thpath listdo
16: Generate the next possible paths.
17: if There exist next possible pattien
18: Remove the current path from the list and update the list thi¢mewly generated
paths.
19: end if
20: end for
21: end while

22: The survived path in thpath listis the optimal solution.
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have diferent quantization levels causingfdrent predictions. As a result, it is not sensible
to compare the path metrics (or areas under RD curves) whepatihs reach the same state
since they do not end up at the same RD point. As a solutionyaymope to compare the areas
under the RD curves until the smaller rate point. For algarit simplifications, similar to
the DOB, slope based elimination and rate interval basexirgition are also employed in

EOB.

7.4 Experimental Results

In this section, we evaluate the performances d@fedént methods for scalable coding of
animated meshes. The distortion of the reconstructed ni@delculated with the KG error
and the bitrate is expressed in bits per vertex per framef(bphhe results are presented
with operational Rate-Distortion (RD) curves. For the abl methods to be evaluated, a
full scalable bitstream is obtained for the quantizatiorel€) = 14 and the points on the RD
curves correspond to possible reconstructions when théifatream is truncated until that
bitrate value. The RD performance of reference encodeiraatdy encoding the model with
guantization levels betwee@ = 8 andQ = 14 are also provided as the ideal performance
desired by the scalable methods. We denote the referenee lopdon-scalable in the figures
in the sense that each RD point on the curve correspond tibematit bitstream, not a subset
of the bitstream corresponding to the previ@usalue. This should not be confused with the
fact the reference encoder is also a scalable coder and Wwalsalprovide comparison with

its scalable performance.

7.4.1 Slope Based Optimization

We start the results by first observing the performance qieslzased optimization using the
common encoding parametefs= 4 andS = 8. In Figure 7.4, we present comparison
of slope based DOB and EOB with the best performing fixed reish ordering policies
(SL->TL->BP, SL->BP->TL, BP->SL->TL). It can be observed that the proposed DOB and
EOB perform significantly better than fixed policies in lowdamid bitrates due to the fact
that slope based methods start optimizing from lowestteitemd chooses the next bitplane

with sharpest slope. In this way initially, a good performars achieved but as seen from
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the figure, this does not guarantee a good performance inghebfirates. However, on the
average, the proposed slope based methods perform sigtlifideetter than fixed bitplane

ordering policies.

Cowheavy
25 SL —> TL —> Bitplane
SL —> Bitplane —> TL
Bitplane —> SL —> TL
DOB Slope
2r EOB Slope
— — — Non scalable
)
>
N 15 L
o
(@)
S
S
LLl
g
0.5F
~N
~
Ok
6 8 10 12 14 16 18

Bitrate (bpvf)

Figure 7.4: Comparison of slope based optimizations witkdfigrdering policies

7.4.2 Simple Encoding Parameters - Full Trellis

Next, we continue with simple encoding parameters to etaltiee performance of full trel-

lis structure. The simple encoding parameters consist wiau of temporal layers (T3 2,
number of spatial layers (S) 2. When larger encoding parameters are used, the simulation
of full trellis takes unmeasurably long time. In Figure Tb&mparison of full trellis and slope
based approximation is provided for both DOB and EOB. It isesbed that all the meth-
ods perform similarly for this specific simple parameterbe Elope based methods perform
usually slightly worse and sometimes moderately worse fhkurellis based methods. In
the rest of the experimental results, we will use the largeoding parameters (= 4 and

S = 8) and will not present full trellis results due to consid#yahigh complexity. However,

the results in Figure 7.5 show that it may be possible to &ehiesults close to the full trellis.
As seen from the previous figures, the slope based methodhanwayproblems due to memo-
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Figure 7.5: Comparison of full trellis and slope based ojatition for simple coding param-
eters

ryless nature, i.e. the best decision at a branch may noeldeetst when more branches ahead
are considered together. On the other hand, the full tretitiscture which considers all fea-
sible branching combinations takes unpractically longetimherefore, we proposed the rate
interval based optimization as a compromise solution whijgplies full trellis optimization
for rate intervals given as a parameter. In the followingiltss we present the performance

of rate interval based optimization by considering the iatierval, minP and maxP.

7.4.3 Hfect of Rate Intervals

Figure 7.6 shows the comparison of choosing R025, 0.050 and 0.100 bpvf for maxP00
and 700. In the figure, one GOM of the cowheavy model is scakabtoded with DOB opti-
mization. The results indicate that for this set of RInt ealuincreasing the Rint value brings
minor improvement at the expense significant increase iptienization time. Another ob-
servation is that by increasing the Rint value, the restiRid curves tend to be more close
to being convex, which is a desired property. Note that theselts correspond to only one
GOM case whereas results obtained by more GOMs provider lpettbormance accuracy as

will be presented in the following results.
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Figure 7.6: Comparison of fierent Rint and MaxP parameters for the rate interval based
optimization method.
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Figure 7.7: Comparison of best fixed ordering policies, slbpsed and rate interval based
optimizations.
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In Figure 7.7, we see a comparison of rate interval basednigattion from previous figure
with fixed ordering policies and slope based optimizatiohe Tigure shows that rate interval
based methods outperform the other methods significantlyin® comparison of slope based
optimization with fixed ordering policies in Figure 7.4, wachobserved that fixed policies
performed better at high bitrates. Now we observe that usiagiory during the optimization

by rate interval based optimization, it is possible to aghieetter performance at all bitrates.

7.4.4 Comparison of DOB and EOB

In this part, we compare the operational rate distortiofigperances of the proposed methods
DOB and EOB. The simulations are performed using the first OMS of the test models
cowheavy chicken crossingandface For the DOB and EOB methods, slope based opti-
mization and rate interval based optimization with vari®ist and MaxP combinations are

simulated.

Cowheavy

DOB Slope

DOB RInt=0.025 maxP=100
DOB RInt=0.050 maxP=700
EOB Slope

EOB RInt=0.025 maxP=100
EOB RInt=0.050 maxP=700
— — — Non scalable

KG Error (%)

4 6 8 lb 112 14— B _16
Bitrate (bpvf)

Figure 7.8: Comparison of proposed DOB and EOB methods feheavy model.
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Figure 7.9: Comparison of proposed DOB and EOB methods fekeh crossing model.
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Figure 7.10: Comparison of proposed DOB and EOB methodsafm model.

The resultant RD curves of the aforementioned combinafmrtse models cowheavy, chicken
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crossing and face are presented in Figures 7.8, 7.9 and &peatively. From the figures,

the following are observed:

e Except for the chicken crossing sequence, the rate intbasdd optimization methods
outperform slope based methods significantly. For the enmiaktossing sequence, the

performances are quite similar.

e Comparing the results of one GOM and 12 GOMs for the cowheaguence, the
performance dierence between slope based optimization and rate inteagaldbopti-
mization is more significant for the 12 GOMs case. This is &ixgld by the fact that
the methods may behavefdirently for diferent GOMs.

e |t can be observed from the figures that adding more memooytive system by in-
creasing the RInt and maxP parameters improve the RD peafurenby getting closer

to the non-scalable ideal curve and making the curve moreezon

e Comparing the proposed methods DOB and EOB, EOB performsrbetpecially at
lower bitrates due to the fact the mismatch problem of DOB @arsevere in low

bitrates.

7.4.5 Complexity Considerations

As mentioned earlier, running the full trellis optimizatitakes unmeasurably long time and
requires huge memory usage. However, computation of they paths during the optimiza-
tion by full trellis is redundant since these paths have § l@v chance of being the optimal
solution. Therefore, we proposed several approaches teakethe computation requirement

and rate-distortion results showed that quite acceptalsiglts can be achieved.

In this part, we provide the optimization times of the pragbspproached in the encoder.
Note that the optimization is performed in the encoder amddhtimization result is em-

bedded in the encoded bitstream. Since the decoder jus tieigdnformation and arranges
the bitplane decoding order, there is negligibly small éase in the decoding time which is

approximately same for all the proposed methods.

The optimization times of the proposed methods are giveralieT7.1. The resultant areas
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Table 7.1: Average optimization time during encoding peM&Gi@ minutes.

Method Opt. time (M) | Area Under RD Curve
DOB Slope 1.28 52.30
EOB Slope 1.95 38.22
DOB RInt=0.025 maxk100 2.67 45.95
EOB RInt&0.025 maxk100 3.25 35.12
DOB RInt=0.050 maxk700 67.94 9.97
EOB RInt&0.050 maxkR700 89.61 8.64

under the RD curves are also presented since the algoritinmspgimize this value. The val-
ues are calculated for number of minutes passed during tiimiaation process per GOM.
From the table, it can be observed that DOB takes around 30166s time than EOB. As
expected, slope based methods take the smallest time. émnalbiservation is that the opti-

mization time can significantly change with respecRimt and MaxP parameters.

According to the current implementation and processordsée order to achieve significant
rate-distortion improvements with these parameterspopéition times at the order of hours
are required, which may seem very high for some applicatiitesthe ones requiring real
time compression. However, in many applications, the eingothay be performedfline
and the decoder is required to be fast. For these applicatiba proposed methods are suit-
able. In addition, the presented optimization time resaésfor the current implementation,
where more ficient and optimized implementations may be possible. Famgte, paral-
lel processing with multi-core processors or GPUs may flieiently utilized in the trellis

structure.

7.4.6 Visual Comparisons

In this part, apart from the objective metrics, we also shisual comparison of proposed
methods and best performing fixed ordering policies. Thmésare 4, 6, 7 and 8 of the
cowheavy sequence are reconstructed by adjusting the essgat bitplane to achieve 8 bpvf
and 12 bpvf. The reason behind choosing these frames isubat ffame corresponds to a
different temporal layer. Frame 8 is in TLO, frame 4 is TL1, franigi&é TL2 and frame 7 is

in TL3. The reconstructed frames are illustrated in Figutdd and 7.12 for 8 and 12 bpvf
respectively. Note that in the figures, the models are cdlaxording to the errors in the

surface such that red means low error and deviation fromarethier colors mean increasing
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error.

Examining the figures, first of all, the figure for the 12 bpvéedas more red colors com-
pared to 8 bpvf expectedly. When the methods are comparedetults of the objective
comparisons are confirmed. The proposed methods have mwdleserrors than fixed or-
dering policies. In addition, the distribution of error angoframes are more uniform. In
fixed ordering policies, it is possible to have some frame®agt high quality and some of the
frames at very low quality. The rate interval based methadfopm better than slope based
optimization. Comparing DOB and EOB, EOB looks to perforrttdreslightly for some cases

and moderately for some other cases.
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(a) BP>SL->TL,Fr.4  (b) BP>SL->TL,Fr.6  (c) BP>SL->TL,Fr. 7

(h) SL>TL->BP, Fr. 8

(i) DOB Slope, Fr. 4 (j) DOB Slope, Fr. 6 (I) DOB Slope, Fr. 8

(m) EOB Slope, Fr. 4  (n) EOB Slope, Fr. 6 (p) EOB Slope, Fr. 8

(q) DOB Rate (r) DOB Rate (s) DOB Rate (1) DOB Rate
Int=0.025, Fr. 4 Int=0.025, Fr. 6 Int=0.025, Fr. 7 Int=0.025, Fr. 8

(uy EOB Rate (v) EOB Rate (w) EOB Rate (X) EOB Rate
Int=0.025, Fr. 4 Int=0.025, Fr. 6 Int=0.025, Fr. 7 Int=0.025, Fr. 8

Figure 7.11: Comparison of visual reconstructions of fras@,7,8 for several methods de-
coded at 8 bpvf.
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(q) DOB Rate (r) DOB Rate (s) DOB Rate (1) DOB Rate
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st o od o

(u) EOB Rate (v) EOB Rate (w) EOB Rate (X) EOB Rate
Int=0.025, Fr. 4 Int=0.025, Fr. 6 Int=0.025, Fr. 7 Int=0.025, Fr. 8

Figure 7.12: Comparison of visual reconstructions of fras,7,8 for several methods de-

coded at 12 bpvf.
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7.5 Conclusion

In this work, we have developed quality scalability supdortpredictive layered animated
mesh coding structure, which is also a part of the MPEG-4 FAd§ERhdard. We have in-
troduced two methods to achieve quality scalability by drdgbitplanes, namely DOB and
EOB. We have proposed the usage of a trellis structure fameptbitplane ordering and

proposed several methods to decrease computational catpm€optimization process.

Experimental results show that compared to quality scalabhieved by fixed laygitplane
ordering of reference SPC coder, the proposed DOB and EOBatiefichieve rate distortion
curves significantly closer to the desired non-scalable RWec For the trellis structure in
the optimization, tradef® between complexity and RD performance can be achieved by the
rate interval based approximation. Comparing DOB and EGBB Esually performs better

at lower bitrates due to the fact that EOB avoids mismatchredseemismatch present at DOB
affects the performance more at lower bitrates. The performansimilar at higher bitrates.
We note that the performancefidirence is also content dependent. In order to provide basic
comparison of DOB and EOB methods, we measured the optimizéitne in the encoder
and observed that DOB takes around 30-50% less time sinpe ¢lésts only one encoding

in the DOB optimization. Finally, subjective analysis bgwal reconstructions confirmed the
objective results and also indicated that optimized quatiallable coding also provides better

balanced error distribution among frames.

In this work, the area under the RD curve was chosen as themgttic during the optimiza-
tion. However, the optimization framework can be modifiedupport diferent purposes. For
example, the path metric can be modified such that in additidghe RD performance, mini-
mizing the spatial andr temporal variance are also taken into account. Otheavipuality

metrics can also be used in path metrics.
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CHAPTER 8

CONCLUSION

In this thesis, we studied several aspects of robust trassoni of both static and animated
3D meshes. First, we presented our contributions for MDC emdr resilient coding of
static 3D meshes followed by the contributons for the MDCrifreated meshes in the next
chapter. Then we introduced improvements for predictiienated mesh coding to improve
compression performance. Finally, we presented two metifimdoptimal quality scalable

coding for animated meshes. In summary, the following agsiohs are drawn:

In the first work, for the MDC of static meshes, the MDSQ basathwod is an early work
whereas better results are obtained by the other methodsudeied, TM-MDC and FEC.
Both of the methods employ optimization with respect to iragybandwidth and loss rate of
the channel, which is not available in neither the only prasiwork in the literature [76] nor
the MDSQ based method. Moreover, number of descriptionsdasdription sizes can be
adjusted more flexibly ifM-MDC andFEC based methods. Comparifig/-MDC andFEC
based methods, the methods show similar performance irs terexpected distortion. How-
ever,FEC based method has several advantages. WhilEH&based method generates one
compressed bitstream during optimization for any numbelestriptionsTM-MDC needs to
generate dferent compressed bitstream to optimize fafadent total number of descriptions.
Another advantage dfEC based method is thatM-MDC needs to include whole coarsest
level geometry in each description, which may cause higlirrédncy for higher number
of descriptions wheredsEC based method spreads the bitplanes of coarsest level ggomet

according to their importances in compressed bitstream.

For the usage of the propos&&C based method in packet loss resilient streaming of static

meshes, we have presented an extensive analysis of lolssntesdbding methods which are
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based on optimally protecting compressed bitstreams vt Eodes with respect to given
channel bandwidth and packet loss rate constraints. FACE based methods, we intro-
duced a general problem definiton with solution andkBée pparameter to iterate protection
rates with dfferent steps. The experiments indicates that considerableakse in optimiza-
tion time can be achieved by increasing Kfte pat the expense of very small PSNR degra-
dation. For the PGC based methods, we proposed RD curve imgpaeiich performed very
close to using original RD curve while providing significatgécrease in optimization time.
Comparing the CPM and PGC based methods, experimentatsesolw that PGC methods
achieve approximately 10db better PSNR for all loss ratdss $hows that 10dB compres-
sion performance éierence between the PGC and CPM is preserved in packet ldgsntes
transmission. Apart from the PSNR performance, PGC baseboa® have an advantage
of flexible packetization due to the embedded structure efbitstream which needs to be
generated only once for the PGC method. Simulation in s@nharhere the optimization
and channel loss rates mismatch shows that when the modmirecs a channel with a loss
rate higher than the optimized rate, the performance dagjoadcan be severe. On the other
hand, when the encountered channel loss rate is lower tleapptimization rate, the loss in
the performance is not significant. Therefore when the oblaconditions are uncertain or

time varying, it is more robust to optimize loss protectiohwespect to a higher loss rate.

In the second work of MDC of animated meshes work, we analpeefbrmance of the three

proposed methods with redundancy-rate-distortion cuares visual reconstructions. The
experimental results show theertex partitioningperforms better at low redundancies for
especially spatially dense modelemporal subsamplingerforms better at moderate redun-
dancies (corresponding to including at least the spati&e bmyer in both descriptions) as well
as low redundancies for spatially coarse models. Layerichtgn based MDC can achieve
the lowest redundancies with flexible redundancy allocatiapability and can be designed

to achieve the smallest variance of reconstruction qubtyveen consecutive frames.

In the third work, we developed prediction improvements doalable predictive animated
mesh coding. The improvements are based on weighted spigéittion, weighted temporal
prediction and exploitation of angular relations of trileggbetween the frames. The methods
we introduced depend on the spatial-temporal layer deceitiqo structure presented in the
SPC, which is also a part of the MPEG-4 FAMC standard. Theraxgatal results show that

up to 30% bitrate reductions compared to SPC can be achieitiedhe combination of pro-
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posed prediction schemes depending on the content andzpteot level. The combination
of proposed algorithms also achieve very competitive perémce compared to non-scalable

MPEG-4 FAMC coder.

In our final work, we introduced quality scalability suppéot predictive layered animated
mesh coding structure, which is also a part of the MPEG-4 FAdHDdard. We presented
two methods to achieve quality scalability by ordering kits, namely DOB and EOB. We
proposed the usage of a trellis structure for optimal hitplardering and proposed several
methods to decrease computational complexity of optin@ngirocess. Experimental results
show that compared to quality scalable achieved by fixed faigelane ordering of reference
SPC coder, the DOB and EOB methods achieve rate distortioregsignificantly closer
to the desired non-scalable RD curve. For the trellis stinecin the optimization, tradefio
between complexity and RD performance can be achieved yataénterval based approxi-
mation. Comparing DOB and EOB, EOB usually performs bettéovaer bitrates due to the
fact that EOB avoids mismatch whereas mismatch present & &fects the performance
more at lower bitrates. The performance is similar at hidligates. We note that the per-
formance diference is also content dependent. In order to provide bagiparison of DOB
and EOB methods, we measured the optimization time in thedmm@and observed that DOB
takes around 30-50% less time since there exists only oreergcin the DOB optimization.
Finally, subjective analysis by visual reconstructionsfgmed the objective results and also
indicated that optimized quality scalable coding also jates better balanced error distribu-

tion among frames.
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