
CONTROLLING DISCRETE GENETIC REGULATORY NETWORKS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

OSMAN ABUL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

COMPUTER ENGINEERING

JANUARY 2005



Approval of the Graduate School of Natural and Applied Sciences.

Prof.Dr. Canan Özgen
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ABSTRACT

CONTROLLING DISCRETE GENETIC REGULATORY NETWORKS

Abul, Osman

PhD., Department of Computer Engineering

Supervisor: Prof.Dr. Faruk Polat

Co-supervisor: Prof.Dr. Reda Alhajj

January 2005, 141 pages

Genetic regulatory networks can model dynamics of cells. They also allow for study-

ing the effect of internal or external interventions. Selectively applying interventions

towards a certain objective is known as controlling network dynamics. In this thesis

work, the issue of how the external interventions affect the network is studied. The

effects are determined using differential gene expression analysis. The differential

gene expression problem is further studied to improve the power of the given method.

Control problem for dynamic discrete regulatory networks is formulated. This also

addresses the needs for various control strategies, e.g., finite horizon, infinite hori-

zon, and various accounting of state and intervention costs. Control schemes for

small to large networks are proposed and experimented. A case study is provided

to show how the proposals are exploited; also given is the need for and effectiveness

of various control schemes.

Keywords: microarray, data mining, learning, differential gene expression, genetic

regulatory network modeling, genetic regulatory network control, saccharomyces

cerevisiae.
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ÖZ

KESİKLİ GENETİK DÜZENLEYİCİ AĞLARIN KONTROLÜ

Abul, Osman

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof.Dr. Faruk Polat

Ortak Tez Yöneticisi: Prof.Dr. Reda Alhajj

Ocak 2005, 141 sayfa

Genetik düzenleyici ağlar hücre dinamiklerini modelleyebilmektedirler. Bu ağlar

aynı zamanda dahili ve harici müdahalelerin etkilerini araştırmaya izin vermekte-

dirler. Bu çalışmada harici müdahalelerin genetik ağlara etkileri konusu üzerinde

çalışılmıştır. Etkiler farklı gen ifadesi analizi kullanılarak belirlenmiştir. Farklı gen

ifadesi problemi üzerinde yöntemin gücünü artırmak için ilave çalışma da yapılmıştır.

Kesikli dinamik düzenleyici ağlar için kontrol problemi formüle edilmiştir. Ayrıca bu

formülasyonda, sonlu kontrol, sonsuz kontrol, ağ durumu ve müdahale masraflarının

farklı biçimlerde hesaba katılması gerekleri gibi çeşitli hususlar da göz önünde bu-

lundurulmuştur. Küçük ve büyük ölçekli ağlar için kontrol düzenleri önerilmiş ve

örneklendirilmiştir. Bir durum çalısmaşı üzerinde önerilerin nasıl çalıştığı gösteril-

miştir. Aynı zamanda, önerilen yöntemlere olan gerekler ve bu yöntemlerin etkililiği

verilmiştir.

Anahtar Kelimeler: mikroarray, veri madenciliği, öğrenme, farklı gen ifadesi, genetik

düzenleyici ağ modelleme, genetik düzenleyici ağ kontrolü, saccharomyces cerevisiae
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTERS 1

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Roadmap of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 MINING GENE EXPRESSION DATA . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Molecular Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Microarray Technology and Gene Expression Data . . . . . . . . . . 11

2.3 Overview of Data Mining . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Pre-Processing Gene Expression Data . . . . . . . . . . . . . . . . . 15

2.4.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Missing value imputation . . . . . . . . . . . . . . . . . . . . 17

2.4.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Gene expression data analysis . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

viii



2.5.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 FINDING DIFFERENTIALLY EXPRESSED GENES . . . . . . . . . . 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Multiple Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 PaGE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Improving the Power of PaGE . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Estimating Prob(not de) . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Estimating Prob(not up) and Prob(not down) . . . . . . . . 34

3.4.3 Computing q-values for Up-regulation and Down-Regulation 39

3.5 Simultaneously Finding Up and Down Cutoffs . . . . . . . . . . . . . 40

3.5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 DISCRETE GENETIC REGULATORY NETWORK MODEL-

ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Boolean Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Probabilistic Boolean Networks . . . . . . . . . . . . . . . . . . . . . 56

4.5 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1 Learning Bayesian Networks . . . . . . . . . . . . . . . . . . . 57

4.5.2 Learning Probabilities . . . . . . . . . . . . . . . . . . . . . . 58

4.5.3 Learning Structure . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.4 Dynamic Bayesian Networks . . . . . . . . . . . . . . . . . . 61

4.6 Markov Chain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Other Modeling Approaches . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 Using DEG Analysis for Interventions . . . . . . . . . . . . . . . . . 63

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 INTEGRATED CONTROL AND MONITORING FOR REGU-

LATORY NETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 The Necessary Background . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . 67

5.2.2 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . 68

5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



5.3.1 Required Models for Control . . . . . . . . . . . . . . . . . . 68

5.3.2 Finding Optimal Policies . . . . . . . . . . . . . . . . . . . . 71

5.4 Finite Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.1 State-Action Costs Unavailable . . . . . . . . . . . . . . . . . 74

5.4.2 State-Action Costs Available . . . . . . . . . . . . . . . . . . 76

5.4.3 Execution of Optimal Policy . . . . . . . . . . . . . . . . . . 79

5.5 Finite Control-Infinite Monitoring . . . . . . . . . . . . . . . . . . . 79

5.5.1 Available State-Action Costs . . . . . . . . . . . . . . . . . . 80

5.5.2 State-Action Costs Unavailable . . . . . . . . . . . . . . . . 81

5.6 Finite Control-Finite Monitoring . . . . . . . . . . . . . . . . . . . . 81

5.7 Repeated Application of Finite Control Methods . . . . . . . . . . . 82

5.8 Infinite Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.8.1 State-Action Costs Available . . . . . . . . . . . . . . . . . . 83

5.8.2 State-Action Costs Unavailable . . . . . . . . . . . . . . . . . 84

5.9 Multi-Objective Control . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.9.1 Basics of Multi-Objective Optimization . . . . . . . . . . . . 85

5.9.2 Constructing Multi-Objective Solution . . . . . . . . . . . . . 86

5.10 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.10.1 State-action cost unavailable . . . . . . . . . . . . . . . . . . 91

5.10.2 State-action cost available . . . . . . . . . . . . . . . . . . . . 93

5.11 Scaling Up for Large State Spaces . . . . . . . . . . . . . . . . . . . 95

5.11.1 Reinforcement Learning Approach . . . . . . . . . . . . . . . 97

5.11.2 Backward Sparse Sampling . . . . . . . . . . . . . . . . . . . 99

5.11.3 Forward Sparse Sampling . . . . . . . . . . . . . . . . . . . . 99

5.11.4 Parametric Function Approximation . . . . . . . . . . . . . . 102

6 CASE STUDY: SACCHAROMYCES CEREVISIAE . . . . . . . . . . . . 104

6.1 Genomics of S.Cerevisiae . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Dynamic Modeling of Yeast Cell Cycle . . . . . . . . . . . . . . . . . 106

6.2.1 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.2 Selecting the Gene Set . . . . . . . . . . . . . . . . . . . . . . 107

6.2.3 Markov Chain Modeling of the Selected Gene Set . . . . . . . 108

6.3 Controlling Cell Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.1 Setting the Objective . . . . . . . . . . . . . . . . . . . . . . 114

6.3.2 Selecting External Control Actions . . . . . . . . . . . . . . . 115

6.3.3 Controlling the Large Network . . . . . . . . . . . . . . . . . 117

6.3.4 Controlling the Medium Network . . . . . . . . . . . . . . . . 118

x



6.3.5 Controlling the Small Network . . . . . . . . . . . . . . . . . 120

6.4 Controlling Bayesian Network . . . . . . . . . . . . . . . . . . . . . . 122

6.4.1 Network Construction . . . . . . . . . . . . . . . . . . . . . . 122

6.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 SUMMARY, CONCLUSIONS & FUTURE RESEARCH DIREC-

TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 129

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xi



LIST OF TABLES

3.1 Gene expression matrix with one control and two treatment condi-

tions; each has 3 replicas . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Multiple-hypothesis testing scenario of M(−|−) genes . . . . . . . . . 27

3.3 Mixture rates used in Artificial Datasets . . . . . . . . . . . . . . . . 39

3.4 True values and Estimates of Prob(not up) and Prob(not down) . . 39

3.5 Improvement of power for BRCA dataset . . . . . . . . . . . . . . . 40

3.6 BRCA dataset cutoffs for .65 and .85 confidences . . . . . . . . . . . 45

3.7 Effect of Prob(not de) = 1 vs. Prob(not de) = π̂0 . . . . . . . . . . . 45

5.1 Policies under unavailable state-action costs . . . . . . . . . . . . . . 92

5.2 Policies under available state-action costs . . . . . . . . . . . . . . . 94

5.3 Policy found by semi-MDP method . . . . . . . . . . . . . . . . . . . 95

5.4 Policy found by Multi-Objective control method . . . . . . . . . . . 96

6.1 Genes selected for modeling . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Predictor Genes for 23 Genes . . . . . . . . . . . . . . . . . . . . . . 112

6.3 DEGs result for selected conditions . . . . . . . . . . . . . . . . . . . 116

6.4 Results of Controlling with individual actions . . . . . . . . . . . . . 118

6.5 Results of considering Menadione and Hyper-osmotic shock together 118

6.6 Predictor genes for medium network of 9 genes . . . . . . . . . . . . 119

6.7 Profile of actions selected for action costs=0 and action costs=1 . . . 119

6.8 Predictor genes for small network of 6 genes . . . . . . . . . . . . . . 120

6.9 Profile of actions selected for action costs=0 and action costs=1 . . . 122

6.10 Results of Methods for the Bayesian Network . . . . . . . . . . . . . 124

xii



LIST OF FIGURES

2.1 Steps of microarray experiments (from Brazma et al [11]) . . . . . . 13

2.2 Effect of intensity dependent normalization (on M vs A plot) . . . . 17

2.3 A dendrogram representing a sub cluster of cdc15 dataset . . . . . . 20

3.1 Acceptance and rejection regions for two-sided hypothesis . . . . . . 25

3.2 Histogram of p-values computed from 250 random permutations un-

der the null hypothesis of no differential expression . . . . . . . . . . 32

3.3 Estimation of π̂0(λ) using cubic splines . . . . . . . . . . . . . . . . . 34

3.4 Histogram of p-values computed from 250 random permutations . . 35

3.5 Behavior of π̂0(λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Estimation of π̂+
0 (λ) and π̂−0 (λ) . . . . . . . . . . . . . . . . . . . . . 38

4.1 A Boolean network and its wiring diagram (from Akutsu et al [8]) . 51

5.1 The control problem: 5 cases . . . . . . . . . . . . . . . . . . . . . . 73

5.2 State transition diagram for the example (from Shmulevich et al [80]) 89

6.1 Cell cycle stages (from Chen et al [12]) . . . . . . . . . . . . . . . . . 105

6.2 Interpolation and Discretization of gene Cln2 . . . . . . . . . . . . . 110

6.3 Bud and Cln2 levels in three different settings . . . . . . . . . . . . 115

6.4 KEGG cell cycle network of S.cerevisiae . . . . . . . . . . . . . . . . 123

6.5 Dynamic Bayesian network studied . . . . . . . . . . . . . . . . . . . 124

xiii



CHAPTER 1

INTRODUCTION

The last decade witnessed the revolution of biological sciences; transition from data

poor science to data rich science. High-throughput technological advancements

made this transition possible. Maintenance, analysis and interpretation of huge

data made Biology a computation intensive science as none of them can be done

manually as used to be. This in turn created an interdisciplinary field of science

called bio-informatics, an intersection of Biology, Computer Science and Statistics.

After the announcement of the complete genetic sequence of bacterium in 1995

and S.cerevisiae in 1997, genetic blueprints of lots of organisms have been announced

to date including homo-sapiens. The analysis ( similarity search, alignment, gene

finding, prometer analysis, etc) of such sequences categorized as structural analysis.

Structural analysis is usually performed on gene sequence data and gene product

(protein) data obtained with sequencing technologies [38, 11]. The former is known

as structural genomics and the latter is structural proteomics. On the other hand,

functional genomics/proteomics studies functions and roles of genes/proteins in the

organism. Functional (behavioral) genomics/proteomics studies are mostly using

microarray technology.

The advent of the microarray technology enabled researchers to measure the

expression levels of thousands of genes in a single experiment. As a result, a huge

amount of gene expression datasets are being produced. The challenge is finding

methods to analyze them for different needs, and to interpret the obtained results

for discoveries.

Microarary gene expression data analysis tasks include, finding differentially ex-

pressed genes, clustering, classification, regulatory network induction, and control-

ling genetic networks. To date most of the efforts are devoted to the first four of

them. Controlling genetic networks is relatively new compared to others. This is
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because the others are usually pre-requisite for the controlling process. To be spe-

cific, to explore the controlling process almost correct genetic models are needed.

The need for almost a correct model makes the controlling process and the other

tasks tightly coupled. Having this identified, the problem studied in this thesis is

controlling genetic regulatory networks as defined next.

1.1 Problem Definition

To analyze the temporal behavior (dynamics) of cells, a number of microarray exper-

iments are conducted on samples collected at different times. If each experiment is

associated with a time information, a time series gene expression dataset is obtained.

Given the time series gene expression data, the dynamic model that generated

the data can be reverse engineered. Numerous approaches are proposed to con-

struct the model. The approaches include, boolean networks [8, 9, 61, 82, 81, 58],

probabilistic boolean networks [78, 80, 79], bayesian networks [41, 55, 95, 26, 67],

differential equations [13, 12], petri nets [65], linear/quasi linear regression [17, 91],

markov chains [54], etc.

The variety of approaches is mainly because the mechanism (cell model) generat-

ing the data is not known exactly. The other reasons include complexity, dimension-

ality, size, and quality of data, among others. But, all the approaches try to recover

the underlying true model (or a simplification of the true model). The models are

usually generated for human consumption. That is, the results are presented to the

biologists for interpretation. On the other hand, using the model for other purposes

is also possible. One of the directions is the controlling process.

By controlling what is meant is interacting with the model in a certain way

for achieving a specific goal. Given the model, it can be simulated for any starting

state; this way, the resulting states can be observed. If we pursue to reach particular

states, intervention to the model is required most of the time as normal transitions

may not lead to there.

Given the model and the available control actions (interventions), deciding on

the kind of intervention for every state is known as policy generation. The objective

is to generate optimal or near-optimal policy which increases likelihood of being in

desired states.

The kind of intervention can be dichotomized as internal or external. Internal

interventions are usually in the form of gene deletions and gene over-expressions (in

the model this corresponds to setting respective variable to its lowest and highest

2



values, respectively). On the other hand, external interventions include applying

treatments (chemical, radiation, etc.) or forcing to live under some stress (e.g. heat

shock, acidic/salty environment, etc), where deciding on the effects of respective

action on the model is not trivial. In both of the cases, effects of every action on the

model should be identified, i.e., how actions change the dynamics of the underlying

model. In case of internal actions, it is given by definition, e.g., deleting a gene

means setting its expression level to zero. But, in case of external control, the

effects of them on the model is not easy to understand. Automatic methods for this

have not been studied in the literature yet.

Although every state (of cell or model) can be attributed as desirable or unde-

sirable (cost of state). They should be quantized in a way to be biologically valid.

Also, needed is to account for the cost of intervention itself. This is because for

example, even though some interventions provide high percentage of success, they

might not be feasible economically. Clearly, like state desirability, costs of exter-

nal action interventions should be quantized. Both of these require good domain

engineering. It must be emphasized here that quantization of desirability of states

and costs of interventions are just basics that must be accounted. In other words,

there may be other relevant measures or these costs can be broken down, e.g., cost

of interventions can be defined separately in terms of labor, money, time, etc.

From these discussions, it is clear that the problem is not unique. That is, two

researchers can easily come up with completely different instances to be solved. For

instance, one can desire (based on horizon): ”I will apply intervention lifelong”,

and another can state: ”I can only apply 3 steps of intervention” etc. For another

instance, the requests can be based on the cost of interventions, e.g., one can have

cost of interventions, while others do not care this, etc. So, the key issue here is

while developing methods how to address all these varieties. Even, they may be

unaware of the kind of intervention that can be applied. In such case and based on

the objective, the interventions should be evaluated and their effect on the model

should be estimated.

To sum-up, the problem can be stated as how to control dynamics of regulatory

networks for various accounting cases of both the desirability of states and the cost

of intervention.

3



1.2 Motivation

The work by Datta et al [16] presents a dynamic programming method for controlling

dynamic discrete genetic regulatory networks. Specifically, the method derives an

optimal policy based on the definition of the control problem. By executing this

optimal policy, desirable states of the model can be reached while avoiding the

undesired states. This is akin to applying treatments in medicine to bring an ill

patient to healthy state. Obviously, an optimal policy in this case is choosing proper

treatment option for the case.

Although their work is pioneering in this area, the following weaknesses have

been identified as a result of my extensive analysis.

1. To apply the method, the domain must be engineered well;

2. The method only scales to small networks;

3. The method developed only addresses finite control;

4. Although it is termed external, it is effectively internal.

The first weakness originates from the fact that both the desirability of states (or

costs of states) and cost of interventions are assumed additive for a given horizon

of control. So, for example when the horizon changes the domain should be re-

engineered to make the addition of these costs makes sense. The second weakness

originates from the assumption of tabulating all model components and also from

exact computation of value functions. So, large networks (which are not amenable

for efficient tabulation) can not be handled because of huge storage requirements and

huge time requirements for sweeping this storage. Their method assumes that the

state just after the control period is important but nothing else, i.e., they do not care

about the fact that there are further transitions even the control is terminated (the

third weakness). In other words, their method is not general in terms of horizon of

control and ignores the monitoring stage. They assume that effects of interventions

on the model are known and they develop optimal control strategies based on that

(the fourth weakness). But, in cases for which the internal effects of external actions

are not known apriori, the effects must be determined for each external actions.

Unfortunately, to the best of my knowledge, these weaknesses are not addressed

in the literature. This study is mainly motivated to tackle these deficiencies. So,

this thesis develops a principled approach for controlling dynamic discrete regulatory

networks.
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The first three of the above four weaknesses can be modeled under the umbrella

of developing control strategies. But, determining effects of interventions on the

model require other approaches. Here, I realized that the differential gene expression

analysis task can be used to automate this process.

Although, sophisticated methods for finding differentially expressed genes (e.g.,

PaGE of Manduchi et al [22], and q-values of Storey [45]) have been proposed and

already cited in the literature. If the number of differentially expressed genes is

small, then this can lead empty set of intersection of these genes and the genes

included in the model. So, this is another motivation for finding more differentially

expressed genes within a given confidence level so as to increase power.

1.3 Contributions

This thesis contributes in different aspects to the ongoing research in the area of

analyzing gene expressions. The contributions are enumerated next chapter by

chapter. To start with, contributions in Chapter 3 are:

• Improving the power of PaGE: This is done by estimating the prior probability

involved in the confidence computation.

• Computing q-values for up-regulation and down-regulation separately: In its

basic form, q-values are computed on the basis of differential expression. Com-

puting them for up and down regulation separately enables us with improved

power and more specific interpretation.

• Finding the up and down cutoffs simultaneously: In PaGE, up and down

cutoffs are found separately and independently. Here, I show how they can be

computed simultaneously and for non-symmetric rejection regions.

Also, experiments on real and synthetic data are performed to show the ef-

fectiveness of the proposed methods. Parts of this chapter mainly those focusing

on generating patterns from differentially expressed genes has already been pub-

lished [3, 6].

Contributions in Chapter 4 are:

• Deciding on the required number of non-random time series experiments for

induction of Boolean Networks: Using information theoretic lower bounds, the

required number of experiments is proven to be Ω(
√

n · logn).
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• Determining the effect of interventions (external control) on a given model:

This is done by applying differential gene expression analysis (from Chapter 3)

between the dataset of the condition for which the model is obtained and the

external control condition.

• Using multiple predictor sets for inducing Markov Chains directly: It is con-

sidered that the predictive power of some other predictor sets can be very close

to that of the best predictor. The utility of this is shown in Chapter 6.

It is also noted that boolean networks, probabilistic boolean networks, discrete

dynamic bayesian networks, and direct Markov chain models can be abstracted as

Markov chains. This is especially important for developing the optimal control

strategies presented in Chapter 5.

Contributions in Chapter 5 are:

• A principled approach for the control problem of dynamic discrete regula-

tory networks: The control problem and its ingredients are formulated and

cases of the problem (Finite Control (FC), Finite Control/Infinite Monitoring

(FCIM), Finite Control/Finite Monitoring (FCFM), Infinite Control (IC)) are

identified.

• Generalization of Datta et al [16] control method: Their approach is identified

as addressing only the FC case. It is further generalized for FCFM, FCIM,

and IC cases. Discounted settings are addressed to account for uncertainty as

well. For all of the cases, optimal control strategies are given.

• Derivation of optimal control strategies for cases where the state-action costs

are unavailable: The problem is formulated and for all of the four cases, for-

mulas for control strategies are derived.

• Completeness of finite control methods for sequential control: FC, FCFM, and

FCIM together are shown to be complete for sequential control applications.

• Design of a multi-objective control strategy: A general multiple-objective con-

trol method is introduced. This is motivated from the cases where the state

costs and state-action costs are not additive.

• Development of methods for scaling up to large state-spaces: The model com-

ponents are stored implicitly (so compactly) instead of the tabulation used for

small scale networks. The methods employed are approximate computations
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of value functions and random sampling. The effectiveness of these methods

are shown in Chapter 6.

On a running example, the utility of FC, FCFM, FCIM, IC, and multi-objective

control approaches are shown. Parts of this chapter have already been published [4,

5].

In Chapter 6, S.Cerevisiae (budding yeast) is selected as a case study to show

how the methods proposed in Chapters 3, 4, and 5 can be used in a holistic manner.

Holistic use of these approaches is shown to be important as the control problem

can not be posed and solved in isolation. Also, all the steps starting from the raw

microarray data and ending with optimal control policy are shown.

1.4 Roadmap of the thesis

This thesis is organized in 7 chapters. In addition to this introductory chapter, the

other 6 chapters are organized as follows.

Chapter 2 includes an overview of the background necessary to understand the

contributions presented in the other chapters. In particular, a brief introduction

to molecular biology, gene expression data and microarray technology are given.

Overview of the data mining process is presented. In this context, pre-processing

methods and data analysis tasks are briefly given with emphasis on their usage

for gene expression data. The considered pre-processing methods are used for pre-

processing the dataset utilized for the case study presented in Chapter 6.

In Chapter 3, one of the analysis methods for gene expression data, called finding

differentially expressed genes, is presented along with our contributions. The PaGE

method is presented along with its main drawback of conservatively underestimating

the true confidences. This study attempts to solve this problem by estimating prior

probabilities needed to compute confidences. I extend the work of Storey [45] for this

estimation for one-sided tests. I further generalize the problem definition of PaGE to

find all cutoffs for a given minimum confidence level. Under this formulation of the

problem, Storey’s estimation method can be directly incorporated to improve power.

Examples are also given to show and assess the power of the proposed methods.

In Chapter 4, genetic regulatory network modeling methods are surveyed and

how the DEGs analysis can be used for determining effects of interventions on in-

duced genetic networks is explained. The proof on the required number of ex-

periments for induction of boolean networks from non-random time series data is

provided as well.
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In Chapter 5, methods for controlling genetic regulatory networks are given.

First, the problem is formalized. Then based on the availability of the state-action

cost function, formulas for optimal policies are derived for the addressed cases of

FC, FCIM, FCFM, and IC. Also a multi-objective control method for this problem

is provided. On a running example, proposed methods are evaluated. Finally, to

solve the scaling problem, methods for medium size and large size networks are

developed.

In Chapter 6, a case study for S.cerevisiae organism from pre-processing to ge-

netic network inference to controlling is experimented. 23 genes are selected for

model building using prior biological knowledge and a network is induced using

Markov chains approach. This network is termed as large and forward sparse sam-

pling algorithm is applied to find near-optimal control policy. This set is further

reduced down to 9 genes (medium network) and 6 genes (small network) to explore

the effects of different actions under the proposed methods. Control actions and

their internal effects are determined using differential gene expression analysis.

In Chapter 7, a summary of the work done in this thesis is provided along with

the contributions. Future research directions are also outlined.
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CHAPTER 2

MINING GENE EXPRESSION DATA

This chapter prepares for the necessary background required to understand the other

chapters. It includes overview of molecular biology, microarray gene expression data,

the ingredients of data mining, and literature review on pre-processing and analysis

tasks for gene expression data. The pre-processing methods presented are employed

in Chapter 6.

2.1 Molecular Biology

Molecular biology concentrates on the basic building constituents of excess number

of species to analyze their structure and functionality. In this sense, the estimated

number of species is between 5 and 50 million [11]. Species can be broadly classified

as prokaryotic (e.g. bacteria) and eukaryotic (e.g. cat, yeasts, worms), depending

on the kind of their cells. In prokaryotic organisms, genetic material is not enclosed

within a nucleus; it is floating in the cytoplasm. On the other hand, eukaryotic

organisms are complex and genetic material is enclosed within a nucleus. Most

of the eukaryotic organisms are multi-cellular, but there are uni-cellular eukaryotic

organisms as well, like yeasts. Species show very diverse number of cell counts, e.g.,

1 for bacteria and 6× 1013 for humans [38].

In most of the multi-cellular organisms, cells form tissues (a tissue corresponds

to a group of specialized cells), and tissues form organs. For example, in human

there are 320 different tissue types. Cell is in turn composed of nucleus, cell wall,

cytoplasm and a number of organelles (golgi, mitochondria, etc). Organelles work in

an orchestrated manner. For instance, mitochondria provides cell respiration while

golgi provides for the transportation of micro molecules.

DNA (Deoxyribose Nucleic Acid) is stored in the nucleus and contains the genetic

material. All the cells in an organism have the same genetic material; however, cells
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do differ and specialize. So far, it is not totally and exactly known (there are a

number of hypothesis but no consensus) how the same code specializes and creates

diversity across tissues.

DNA is organized into chromosomes (23 pairs for human) and has a three di-

mensional double stranded helix shape (one named Watson and the other Crick to

honor the discoverers). Each strand is composed of very long sequence of repeated

units called nucleotides. All nucleotides in all the chromosomes make the genome

of the organism. The genome size of human is about 3 billion pairs of nucleotides

(called base pairs or bp for short). So, human chromosomes contain 130 millions bp

on the average. Genome size and chromosome count differs among organisms.

Each nucleotide is composed of 3 main parts: sugar group, phosphate group and

base group. Depending on the chemical structure of the base group, every nucleotide

is classified into one of four types, namely A, T, C and G. Given the sequence of one

strand, the sequence of the mating strand can be determined exactly. This is because

only A-T and G-C pairings are possible, and connected by weak hydrogen bonds.

This is clearly a redundancy; but this redundancy is important when one strand

is damaged and needs repairing. Also, only this redundancy makes cell division

possible.

Some specialized regions in the long strands are called genes. They encode

proteins, which are the functional building blocks for cells. Not all the nucleotides

are part of a gene, which means that some genome parts are not functional at all.

These parts are called introns. Estimated number of genes for human is about

50000. Average size for human gene is about 3000 bp, i.e., about 95% of human

genome is composed of introns.

Basically, corresponding to a gene is a protein. Proteins are composed of se-

quences of amino acids. Each amino acid contains exactly 3 consecutive nucleotides,

e.g., the nucleotide sequence ATG encodes amino acid methionine. For instance, a

gene with 3000 bp nucleotides encodes a protein with 1000 amino acids. Proteins

are very important for cell life as they function as sensors, actuators, transforming

substances, enzymes, immune system, basic building blocks, breaking foods, etc.

Proteins are identified from sequence information of constituting amino acids. Be-

sides sequence information, the 3D shape is very important as they form complexes

based on 3D shapes. Predicting the 3D shapes of proteins from amino acid sequence

is an active research area.

Some of the proteins are known as transcription factors (TFs). They bind to a

specific region (prometer) of genes on the DNA to enable or disable the production
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of corresponding protein to that gene. So, they adjust the abundance levels of

other proteins and themselves. This is a complicated machinery and resembles the

auto-regressive feedback systems. Gene expression means production of genes and

gene expression level is the quantity. According to the central dogma of biology, a

protein is produced with two consecutive events called transcription and translation.

During transcription, DNA temporarily opens up at specified location corresponding

to respective gene and RNA (Ribo Nucleic Acid) is synthesized by complementation.

This RNA is called messenger RNA, since it carries the code of its encoding gene.

The messenger RNA moves out of the nucleus and enters the ribosome (a machinery

producing protein from the messenger RNA). The process of ribosome is known as

translation.

Thousands of genes can express this way in parallel, and the overall process is

known as genetic regulation. When and which genes are going to be expressed, and

when and which genes are going to cease expression is again encoded in the genome.

This is a complex process and there are extensive research on this topic to recover

the governing rules (more details are provided in Chapter 4). The rules may change

across tissue types, developmental stages, various diseases, environmental factors,

etc.

2.2 Microarray Technology and Gene Expression Data

Microarray is a tool for measuring the expression levels of genes in the genome. This

section presents an overview of the cDNA microarrays, which is the most common

technology [92]. cDNAs can not measure the expression levels directly. They rather

measure them indirectly by comparing the expression levels of genes across two

samples. So, they give the relative abundance of genes across two samples. This

is convenient, since multiple experiments can be done and compared by using the

same reference sample.

Microarray experiments basically follow the steps enumerated next [23]:

1. Preparation of Target DNA

2. Preparation of Slides

3. Printing of DNA microarrays

4. Preparation of Probes

5. Hybridization
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6. Scanning

In Step 1, target genes are selected and amplified. The set of target genes can

change depending on the experiment. For organisms (like yeast) having ≤ 10, 000

genes, the set usually contains all the genes. But, for higher order organisms (like

human with ≈ 50, 000 genes), the set is usually selected from a library, which is a

subset of all the genes. This is mainly because of the capacity of the microarrays used

in the process. The typical capacity of a microarray is 10, 000− 20, 000 genes [92].

In Step 2, the type of slides are decided and pre-processed. The pre-processing

include the coating and cleaning of the slide. Usually glass microscope slides are

used.

In Step 3, the DNA prepared in Step 1 is printed on the slide prepared in Step 2.

This is done by an automated hardware (robot) called arrayer. An arrayer has print

tips which are used for slightly tapping on the slides and leaving a small drop of

the DNA. Every tapped place is called spot. Each spot is filled with a pre-specified

gene. Spots are almost equally spaced and aligned both horizontally and vertically,

resembling matrices. During the printing process, the sharpness of the print tips

changes, which in turn changes the geometry and size of the spot on the slide (i.e.,

print tips do not behave identically). For this reason, print tips are periodically

replaced with new ones.

In Step 4, two probes from two samples in two different conditions are selected.

The mRNA is extracted and reverse transcribed to complementary DNA. Then each

probe is labeled with fluorescent dyes. Usually, one probe is dyed with red and the

other with green.

In Step 5, the two probes prepared in Step 4 are hybridized on the same slide

(Figure 2.1). Since, the genes in the probes and the spots are complementary to

each other, they bind. Each gene only binds to its complement spot on the array.

In Step 6, abundance of genes can be determined by measuring the intensity of

red and green fluorescent dyes. The idea is that if a gene is highly expressed in a

sample then its product is abundant and its intensity is high. By measuring the

intensities, expression levels can be deduced. The intensity measurement is done by

a separate hardware called scanner. It scans all the slide and generates its colored

picture. The output of the scanner is high-resolution color picture of the slide.

The color picture output by the scanner is processed by image analysis programs

to detect boundaries of the spots. Because of the inherent noise, the scanned image

is not perfect. The background is expected to be completely black but hybridization

and scanning errors introduce noise. The two channels (red and green colors) are

12



Figure 2.1: Steps of microarray experiments (from Brazma et al [11])

measured separately and combined to represent the gene expression levels. If a

particular spot is red, then its corresponding gene is more abundant in probe dyed

with red than the one dyed with green and, vice versa. If they have almost equal

quantity, the color is yellow (red+green). Having the spot black means that the

gene is not expressed in both samples.

To summarize, a microarray experiment contains probe preparation, target prepa-

ration, scanning and low level data analysis (image processing). After these steps,

the raw dataset is obtained. In the raw dataset, there is a row for each gene on the

slide. Each row has the two intensity levels for green and red channels. Also each

row has the two background colors for these channels (see Section 2.4).

2.3 Overview of Data Mining

Data mining (DM) is defined as the nontrivial extraction of implicit, previously un-

known, interesting, and potentially useful information from data [14]. Data mining

has wide range of application domains including (but not restricted to), medicine,

control theory, engineering, marketing and finance, public administration, fraud de-

tection and scientific databases (e.g., biological databases). Basically, data mining

process consists of the following steps in order [14, 21],

1. Defining the problem

2. Collecting and selecting data
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3. Preparing and preprocessing data

4. Selecting and applying a model or an algorithm

5. Final evaluation

Data mining process starts with a well defined problem. Then, relevant data to

the defined problem is collected. Among the collected data useful data is decided to

be selected for use. The selected data is prepared and preprocessed. The selected

model or algorithm usually requires data in a certain format and conforms some

rules. In case the raw data selected can not be used by the selected algorithm, it is

preprocessed. On the preprocessed data, the selected algorithm or model is applied.

Performance (correctness, validity, run-time performance, etc.) of the algorithm is

assessed in the final stage. The result produced also needs to be interpreted towards

the objective of the problem specified to get knowledge. In short, data mining starts

with data and ends with knowledge.

Closely related to data mining is structural querying (e.g., SQL) and on-line

analytical processing (OLAP). They also query data and extract useful information.

OLAP works on multidimensional data and extends the aggregation operators of

SQL. Common to both structural querying and OLAP is the precise results they

produce. On the other hand, data mining results are almost always vague. The

other difference is that structural querying and OLAP have predefined operators,

while DM has no predefined operators. Yet, DM emerged as a discipline at the

intersection of algorithms, artificial intelligence, statistics, information retrieval and

databases. Techniques of DM include, parametric-nonparametric modeling, similar-

ity measurements, decision trees, neural networks, genetic algorithms, etc [21].

To date, several DM tasks have been identified, including characterization, re-

gression, classification, clustering, and association rule mining. Among them the

last three are more common. The techniques considered are used for these tasks for

problem solving. It must be emphasized here that not all the tasks are applicable

to all DM problems. That is, problem specification determines the kind of task to

be used.

In the following section, the common pre-processing techniques applied for mi-

croarray gene expression data are presented. The considered techniques are used

in the case study presented in Chapter 6. Data mining tasks for microarray gene

expression data are presented in Section 2.5.
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2.4 Pre-Processing Gene Expression Data

Omitting the categorical data (location on the slide, the print tip used, etc), a

microarray experiment gives four values (one foreground and one background in-

tensities for each of red and green colors) for every gene. Let the number of genes

be n, and let the intensities of red and green colors be Rfi and Gfi for gene i,

i = 1, 2, . . . , n. Usually, the intensities in the vicinity of spots are not zero. This

means that, Rfi and Gfi contain some background intensities even if there is no

binding. So, the background color must be subtracted for finding true intensities

for both channels. Let, background colors be Rbi and Gbi for gene i and for red

and green colors, respectively. So, the correct intensities of spots are calculated

as follows: Ri = Rfi − Rbi and Gi = Gfi − Gbi. The reason for the subtraction

is because of the fact that the foreground color contains both the true expression

intensity and the background color.

The relative gene expression level for gene i is Ri
Gi

(green color is assumed to

correspond to the reference sample). The ratio is ≈ 1 in case of equal expression,

and > 1 for over expression in the experimented sample, and < 1 for over expres-

sion in the reference sample. Usually, the Ri
Gi

values are log-transformed for analysis.

This is done for ease of interpretation because the equal amount of under and over

expression becomes symmetric around 0, also note that 0 corresponds to equal ex-

pression. Besides ratio, Mi = log2(Ri
Gi

) and Ai = log2(
√

Ri ·Gi) values are computed

for every gene. Clearly, Mi provides the information of relative expression and Ai

provides the information of total intensity. MvsA plots (Figure 2.2) are very helpful

for explorative data analysis.

2.4.1 Normalization

As it is already discussed in Section 2.2, lots of steps are involved in the experimenta-

tion process, each introducing its own error/bias/noise. So, the resulting measured

expression levels are not fully accurate, i.e., contain noise. Fortunately, this noise

can be removed with high rates using normalization. Normalization in this context

refers to removing systematic errors. This makes sense because all genes undergo

the same procedure. In the microarray experiments, systematic biases are assumed

to be multiplicative. So, if the overall factor is determined then systematic errors

can be removed easily.

Yang et al [94] surveys the normalization for cDNA microarray experiments.

In the most widely used global normalization method, a constant k is assumed to
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capture the relation R = k · G for a particular gene set. After finding k, the

normalized expression values are shifted as:

log2R/G → log2R/G− log2k = log2R/(k ·G) (2.1)

To find the value for k, usually the mean or median of R/G values are used

for a particular gene set, which can be decided based on the previous biological

knowledge. The methods of exogenous spiked controls and housekeeping genes all

fall in under this category [33]. In the exogenous spiked control methods, equal

amount of dummy genes are inserted into both probes. In the housekeeping genes

method, a set of genes already known not to change over almost all experimental

conditions are used. But, in practice k is selected so that the distribution of log-

ratios is shifted to zero over all genes.

The other normalization method (intensity dependent normalization) assumes

that the multiplicative factor changes across intensity levels, i.e., systematic bias is

not the same across intensities. So, k becomes a function of A, denoted k(A). The

function k(A) is estimated from the scatter-plot smoothers such as lowess, a robust

locally linear fitter. Additionally, if the print tip information (a kind of location

data) is available, then the lowess smoother can be estimated within the print tip

data. That is, the genes printed with the same print tip normalized independent of

other genes printed with other print tips. In this case, the function is indexed by

print tip number t as kt(A). Although print tip normalization makes all log-ratios

within a print tip centered around zero, the spread (variance) of them can change.

A post processing to this can roughly make the spreads equal. This is called scale

normalization [94].

The experimental results reported in [94] show that the shape of lowess curve

is not horizontal in MvsA plot. This means that intensity dependent biases are

considerable, as evident in Figure 2.2. The results also show that using print tip

location information is negligible.

All the methods considered are for single slide normalization. However, scaling

might be needed for making expression levels of genes across multiple experiments

comparable. In such case, scaling methods used for within slide print tip normaliza-

tion can be used. But, in practice every experimental data is normalized using one of

the already discussed methods, and no normalization is applied across experiments.
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(a) before normalization (b) after normalization

Figure 2.2: Effect of intensity dependent normalization (on M vs A plot)

2.4.2 Missing value imputation

Although there are analysis methods (like Bayesian networks) capable of operat-

ing on missing valued data, some analysis methods (like boolean networks) require

complete data for operation, so bringing the missing value imputation is an issue.

Assume that the number of genes is n and the number of experiments (samples)

is m. In the n ×m matrix, some entries might be missing or not computed. This

is because of noise and very low level of measured intensities; some genes are not

assigned a value and the field is left blank, so causing missing values. Estimating

and filling the blanks in the dataset is known as imputation.

There are some simplistic approaches including, imputing with a fixed value

(usually 0), and imputing with the average of non-missing gene values. The subject

has been well-studied in statistics, like likelihood methods, but almost all of them are

model-based. Since, the missing value mechanism may change across experiments

and it is not known exactly, these sophisticated methods are not applicable. For

this reason, simplistic approaches are usually the case.

Troyanskaya et al [88] reviewed the missing value estimation methods for cDNA

microarrays. They explored KNNImpute, SVDImpute and row averaging methods.

Row average of a gene is the average value of its expression values over a number

of experiments. The authors favor for the KNNImpute method, which first finds K

genes similar to the gene the value for which is to be estimated. Then, a weighted av-

erage of the values for the most similar K genes on the same experiment determines

the missing value. Here, similarity metric must be decided; the authors discuss the

Euclidean Distance as an appropriate norm. After applying KNNImpute for every

17



missing value we get a complete dataset.

2.4.3 Discretization

Discretization is the process of converting continuous (real valued) data into discrete

values. The purpose with discretization is two-fold; first many algorithms require

discrete data, and second for some tasks improved performance over continuous

values is possible. There are numerous methods proposed in the literature. Liu

et al [62] provides a hierarchical framework for existing methods. Critical to the

problem is selecting the number of discretization levels. Methods automating the

selection of the number of discretization levels is also available (such as CAIM

algorithm of Kurgan et al [57] and ChiMerge method of Kerber [62]).

The simplest and most common methods are equal width and equal frequency.

Given the number of discretization levels, the former divides the interval between

minimum and maximum values for a given attribute into equal length intervals

(bins). These intervals are numbered in ascending order, and the values within the

interval is assigned to respective bin. The latter does the same thing, but it ensures

that each interval has equal number of attribute values. So, in the latter the bins

may have variable width, on the other hand in the former bins may have variable

instances. Besides these two basic methods some statistical and ad-hoc methods

have been developed.

Statistical methods are general purpose. They include Bayesian discretizers,

enthropy-based, information gain, and Chi2 methods, etc [62]. Ad-hoc methods are

usually application specific. For example, for microarray gene expression data, usu-

ally the number of the discretization level selected is 3, to represent over-expression,

under-expression and baseline. This leveling approach is adopted by microarray

community, e.g., [26, 95, 20]. Friedman et al [26] discretizes based on the log trans-

formation normalized expression data. The cut-point (boundary between two con-

secutive levels) they use is 0.5 and -0.5, i.e., values larger than 0.5 are over-expressed,

smaller than -0.5 are under-expressed and baseline otherwise. On the other hand,

mean (µ) and standard deviation (σ) of gene profiles across samples are used as

well [95, 20]. Usually, (µ + σ, µ−σ) or (µ + σ/2, µ−σ/2) are selected as cut-points.

2.5 Gene expression data analysis

Microarray gene expression data analysis can be grouped under four basic categories,

finding differentially expressed genes (DEGs), classification, clustering, and model

18



induction. I note that although association rule mining tasks can address microarray

data, the literature lacks use of this task. One possible use is explained in Section 7.1.

Association rule mining addresses finding data dependent rules in the form of

if-then rules. The items (attributes) in the rules are frequent item sets, meaning

coexistence rate (support) of these items in the dataset is more than a pre-defined

threshold called minimum support. Also, the confidence of the rules must be above

a certain threshold called minimum confidence. A number of algorithms have been

developed for finding such rules, among them the Apriori Algorithm and its

variants are more popular [21]. Rules found by these algorithms show tendency of

relationships between attributes, a good clue for understanding the domain.

Since DEGs analysis is considered in detail in the next chapter and model in-

duction is considered in the following chapters, only clustering and classification are

reviewed here.

2.5.1 Clustering

Basically, Clustering is grouping similar patterns containing no class information.

Jain et al [44] provides a good review of clustering. Actually, clustering has been

extensively studied in the literature as there are hundreds of algorithms proposed

using various techniques such as genetic algorithms, neural networks, simulated

annealing, graph theory, etc. The variety is mainly because of the diversity of

domains, e.g., categoric/numeric data, large/small volume, etc.

The algorithms can be dichotomized as follows, agglomerative/divisive, mono-

thetic/polythetic, hard/fuzzy, deterministic/stochastic, incremental/non-incremental,

and possibly others. For example, the well-known k-means algorithm is agglomera-

tive, polythetic, hard, stochastic and non-incremental.

The integral part of the clustering is similarity metric. Objects are clustered

based on the similarity measure. Most of the time, algorithms require only the

similarity matrix as an input, i.e., not the patterns themselves. The similarity

metrics include, Euclidean distance, Manhattan distance, Mahalanobis distance,

Pearson correlation, etc. The similarity metric is important since different metrics

used with the same algorithm usually give different results.

Also important is deciding on the number of clusters a dataset contains. Most of

the algorithms (like k-means) require this value as an input. But some algorithms

estimate this value from the data and clusters accordingly.

Clustering is one of the most applied tasks to gene expression data. Both genes or
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samples can be clustered, or they can be handled together (this case is known as two-

way clustering). The clustering of the genes is found to be useful for determining the

their function. Particularly, if a gene with unknown function clusters together with

a gene with known function, then it is a sign that they have the same (or similar)

function. That is co-expression means co-regulation. Clustering samples is also

useful as this corresponds to identifying similar tissues, environmental conditions,

drug treatments, etc. Since gene expression data is high dimensional, clustering also

helps in dimension reduction for other tasks such as modeling.

Figure 2.3: A dendrogram representing a sub cluster of cdc15 dataset

K-means, hierarchical clustering and self-organizing maps (SOM) algorithms are

common for gene expression data. Particularly, hierarchical clustering is most com-

mon as it also provides explorative data analysis. That is, it shows the relationship

at all the levels. The output of the hierarchical clustering algorithm is a dendrogram

where leafs are individual genes (in case of clustering genes). At the leaf level, every

gene is a cluster and they unite bottom up pairwise and reach just a single cluster

containing all the genes at the top. Figure 2.3 shows a sub-cluster of cdc15 dataset

having 24 time course data for every gene (the dataset is described in Chapter 6).

One of the pioneering work of applying hierarchical clustering to gene expression
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data is by Eisen et al [24]. The authors applied hierarchical clustering to budding

yeast data and detected clusters. Application of SOM to gene expression data is

studied by Hautaniemi et al [34]. The article by Jiang et al [47] provides a good

survey of clustering analysis for gene expression data.

2.5.2 Classification

Classification is attributing predefined classes to given patterns. Usually, it involves

two stages: 1) Model building; and 2) Applying model for attributing class labels to

given patterns (possibly novel). The first step is known as induction, and the second

step is prediction. There are numerous techniques for model building including,

decision trees (e.g., ID3, C4.5), support vector machines, neural networks, simple

statistics (e.g., 0R and 1R), naive bayesian, k-nearest neighbor, and rough sets.

Classification can be dichotomized almost with the same dimensions as clustering.

Classification is studied by the Machine Learning community and numerous al-

gorithms and techniques have been discovered with applications to real world prob-

lems, including hand-written character recognition, speech recognition, and tissue

classification using gene expression data, etc.

Described in the literature are several approaches on applying classification on

gene expression data. For instance, Dudoit et al [85] compares the different clas-

sification methods on 3 gene expression tumor dataset. The authors also explore

the aggregating classifiers (bagging and boosting). Hedenfalk et al [40] identifies

the gene set to differentiate between two classes of tumors, namely BRCA1 and

BRCA2. Actually their study is related to finding differentially expressed genes,

but can also be used for classification. Keller et al [51] applied naive Bayes clas-

sification on three datasets for tissue classification. Fuzzy classification methods

are also employed [69, 93]. The use of boosting methods has been studied for the

classification of gene expression data as well, e.g. [63].

Feature selection is an important integral of classification as this boosts the

predictive performance. Ding et al [20] explores this for gene expression data. It is

also found that, feature selection leads to improved classification performance.
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CHAPTER 3

FINDING DIFFERENTIALLY EXPRESSED

GENES

3.1 Introduction

It is true that using the microarray technology for gene expression measurement is

considered as a breakthrough; however, it has some inherent problems. In particular,

there are three main problems specific to gene expression data. These are:

1. Dimensionality: the number of genes is expressed in thousands; and hence

it is relatively large compared to the number of samples, which is in general

expressed at most in hundreds.

2. Noise: the major cause of which is the substantial amount of steps taken to

produce data and each step causes some systematic measurement errors.

3. Natural variability: genes tend to have varied expression levels under the same

conditions, even if there is no measurement error. This leads to the fact that,

in addition to systematic measurement errors, gene expression is inherently

variable.

For these reasons, expression levels of genes are generally measured in replicas

in order to alleviate these deficiencies. So, if there is a large number of replicas

for a specific gene for a specific condition, then we can use such replicas to induce

its distribution. But mostly it is not the case, and in general only few replicas

are available.

In general, the normalized gene expression matrix consists of real numbers as

shown in Table 3.1, where there are 3 conditions and n genes; and for each con-

dition there are 3 replicas. Note that the condition identified as 0 in Table 3.1
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Table 3.1: Gene expression matrix with one control and two treatment conditions;
each has 3 replicas

Genes Condition 0 Condition 1 Condition 2
Gene 1 x101, x102, x103 x111, x112, x113 x121, x122, x123

Gene 2 x201, x202, x203 x211, x212, x213 x221, x222, x223
...

...
...

...
Gene n xn01, xn02, xn03 xn11, xn12, xn13 xn21, xn22, xn23

serves as control (reference) for the other two treatment conditions. Usually, the

control condition measures the expression level of genes under normal condition,

and treatment conditions measure expression levels under particular exposures: like

heat shock, salty/acidic environment, medication, etc.

The problem of identifying differentially expressed genes (DEGs) can be stated

as follows: given replicated gene expression measurements of two conditions (control

and treatment), find a subset of all genes having significant expression levels across

these two conditions. This statement implies that there are some other subsets

where the change is not significant (i.e., expression levels are almost the same). So,

given the set of differentially expressed genes, we can further group them as over-

expressed (up-regulated) and under-expressed (down-regulated) genes. The former

set corresponds to genes having significant difference where treatment condition

measurements are very high compared to control condition. Genes in the latter set

are treated similarly.

In case of a large number of replicas, the average gene expression may be

estimated using the well-known statistics approaches. However, classical statis-

tics approaches are very conservative when few number of replicas are available.

For 2 and 3 replica experiments, differentially expressed genes are, respectively,

|xg,t−xg,c| > 22.3σ̂ and |xg,t−xg,c| > 5.2σ̂, where σ̂ is the estimated standard error,

xg,k is the average expression of gene g in condition k, and the statistical significance

level is 1% [48]. Biologically, these values are found very conservative for differen-

tial expressions, especially in case only few replicas are available. This motivated

researchers to design new methods for finding differentially expressed genes.

Schena et al [64] developed a threshold method where expression intensities which

are not within half average distance from the overall average are considered as noise,

and hence are omitted. For the remaining intensities, differentially identified genes

are those which have at least two-fold ratios: xg,t

xg,c
≥ 2 or xg,t

xg,c
≤ 1

2 . This method

produces results with very small significance (less than 5%), and causes increase
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in wrong identification. Finally, there are some other more sophisticated methods

to handle this problem, including Patterns from Gene Expression (PaGE) [31] and

q-values [45]. Statistical hypothesis testing is common to both methods.

In this chapter, I first give statistical hypothesis testing. Next, the PaGE method

and its main drawback of conservatively underestimating the true confidences are

presented. To overcome this drawback, the method of estimating prior probabilities

needed to compute confidences is introduced. Then, the DEGs problem is refor-

mulated under the PaGE approach to find all cutoffs (instead of one symmetric

cutoff) for a given minimum confidence level. Examples are also provided to show

effectiveness of the methods proposed.

3.2 Multiple Hypothesis Testing

Given only two datasets and posing the question: whether these datasets are gen-

erated from the same distribution or not requires a statistical hypothesis testing.

The datasets can have more than one feature and the question can be restated

for a particular feature, i.e., whether the feature values make difference across two

datasets. Or the problem can be asked as ”find all those features having differential

value across these datasets”. This kind of problems are studied under statistical

hypothesis testing discipline. Note that finding differentially expressed genes forms

a specialization of this general problem.

Let Hg = 0 be the two-tailed null hypothesis: gene g is not differentially ex-

pressed across the given two conditions. Similarly, let Hg = 1 be the alternative hy-

pothesis: gene g is differentially expressed (either up-regulated or down-regulated).

Finally, let Xg be the random variable measuring the expression level of gene g from

a random sample.

Statistically, when the null hypothesis is rejected, there is a probability of wrong

rejection, i.e., the decision is not 100% correct. This probability of being uncertain

about the decision is expressed as the p-value. So, p-value is an important measure

for the uncertainty of a particular decision (e.g., gene g1 is differentially expressed).

Definition 3.1 (p-value). p-value is the probability of rejecting the null hypothesis

against an observation (Xg = x), it is expressed as:

p− value(x) = inf
Γα:x∈Γα

Prob(Xg ∈ Γα|Hg = 0)

where Γα is the rejection region corresponding to significance level α. ¤
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The nested set of rejection regions are usually parameterized with α. Nested

property implies Γα ⊆ Γα′ for α ≤ α′. The interpretation of the p-value is the

degree of evidence against the null hypothesis. So, the smaller the p-value, the more

evident it is against the null hypothesis. For single hypothesis testing, if the p-value

of observation Xg = x is less than a predefined significance value (0 < α < 1),

then the null hypothesis is rejected (gene g is decided to be differentially expressed),

otherwise it is retained.

Figure 3.1: Acceptance and rejection regions for two-sided hypothesis

A representative mixture model for a random variable Xg is illustrated in Fig-

ure 3.1, where all the components have density of normal distributions. Also shown

in Figure 3.1 is a sample rejection region for the null hypothesis of Xg = 0.

There are four rates at the heart of the hypothesis testing: False Positive Rate

(FPR), False Negative Rate (FNR), True Negative Rate (TNR) and True Positive

Rate (TPR). These rates express the uncertainties of decisions when the outcome

of the hypothesis is given. In other words, these rates numerically quantize the

probability of true/false decisions under the true/false null hypothesis.

Definition 3.2 (FPR, FNR, TNR, and TPR). The four rates: FPR, FNR,

TNR, and TPR are interpreted as follows (the rejection region is denoted as Γα for

significance level α):

• FPR is the probability of rejecting the null hypothesis given that it is true,

i.e.,

FPR = Prob(X ∈ Γα|Hg = 0).

• FNR is the probability of rejecting the alternative hypothesis given that it is
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true, i.e.,

FNR = Prob(X not ∈ Γα|Hg = 1).

• TNR is the probability of accepting the null hypothesis given that it is true,

i.e.,

TNR = Prob(X not ∈ Γα|Hg = 0).

• TPR is the probability of accepting the alternative hypothesis given that it is

true, i.e.,

TPR = Prob(X ∈ Γα|Hg = 1)

¤

Note that it is easy to compute all the rates given in Definition 3.2 when the

probability density functions for X are given and rejection regions are set.

Any statistic resulting in the region Γα rejects the null hypothesis within the

significance level α. If we extend the rejection region (by reducing the value of α),

FPR and TPR will decrease, but FNR and TNR will increase. The power of the

test is 1 − FNR. The objective of hypothesis testing is finding the most powerful

tests. Note that the power of the test depends on the distribution of the alternative

hypothesis. So, estimation of the power requires the distribution of the alternative

hypothesis which is usually not known as it is the case in gene expression domain.

Parametric methods can not be used because there is no prior information on

the distribution of genes in microarray experiments. In other words, the use of

non-parametric methods should be adopted. So, given the replicas of particular

treatment and control samples, it is possible to compute the t-statistics for any gene

g for differential expression by using the following formula under the assumption

that genes have differing standard deviations [74],

tg =
xg,t − xg,c√

s2
g,t

nt
+

s2
g,c

nc

(3.1)

where xg,t and xg,c are means of replicas of treatment and control conditions with

respective standard deviations s2
g,t and s2

g,c, and replica counts nt and nc for gene

g. It is clear that t-statistics favor for large mean differences and small standard

deviations and it is a good balance between them.

The p-value for each gene can be computed using the Permutation algorithm,

under the assumption of no differential expression. The method exploits the fact

that permutation of columns of treatment and control conditions are immaterial

26



when the null hypothesis is true. So, to estimate the null distribution of gene g, the

t-statistics is computed for each permutation. From these statistics, the p-value of

gene g can be computed non-parametrically easily by using the following formula [29]

(in case of two-tailed tests).

pg =
#{b : |tg,b| ≥ |tg|, b = 1, 2, . . . , B}

B
(3.2)

where B is the number of permutations generated, tg is the t-statistics for the

original sample and tg,b is the t-statistics of b t́h permutation of gene g.

There are usually thousands of features (genes) in microarray experiments, and

this necessitates considering thousands of tests at the same time. Therefore, multiple-

hypothesis testing rather than single-hypothesis testing should be adapted.

Table 3.2 characterizes multiple-hypothesis testing scenario of M(−|−) number of

genes (features). The columns indicate the true case (either null true or alternative

true) while rows indicate the decision (either reject or retain).

Table 3.2: Multiple-hypothesis testing scenario of M(−|−) genes

H = 0 H = 1
retain H = 0 M(0|0) M(0|1) M(0|−)

reject H = 0 M(1|0) M(1|1) M(1|−)

M(−|0) M(−|1) M(−|−)

The number of false-positives (Type I error), false-negatives (Type II error),

true-negatives, and true-positives are M(1|0), M(0|1), M(0|0), M(1|1), respectively.

Also, M(0|−) and M(1|−) are, respectively, predicted number of non-differentially

and differentially expressed genes; while, M(−|0) and M(−|1) are, respectively, true

number of non-differentially and differentially expressed genes; and
M(1|1)

M(−|1)
gives the

power of the test.

In multiple hypothesis testing, we can compute the p-values of genes using t-

statistics of the other genes. This results in the increased accuracy in p-values

since the number of t-statistics is huge. Formula 3.3 given next, can be used for

p-value computation [46] from the t-statistics computed using Formula 3.1 (in case

of two-tailed tests).

pg =
B∑

b=1

#{j : |tj,b| ≥ |tg|, j = 1 · · ·M(−|−)}
B ·M(−|−)

(3.3)

In this regard, there are a number of error measurement schemes proposed to
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control the error for multiple-hypothesis testing using p-values, including Per Com-

parison Error Rate (PCER), Family Wise Error Rate (FWER), False Discovery

Rate (FDR), and positive False Discovery Rate (pFDR). [45];

Definition 3.3 (PCER, FWER, FDR and pFDR). The four rates PCER,

FWER, FDR and pFDR are computed as follows:

PCER =
E[M(1|0)]
M(−|−)

FWER = Prob(M(1|0) ≥ 1)

FDR = E[
M(1|0)

M(1|−)
|M(1|−) > 0] · Prob(M(1|−) > 0)

pFDR = E[
M(1|0)

M(1|−)
|M(1|−) > 0]

(3.4)

After ordering the p-values in increasing order: p(1) ≤ p(2) ≤ · · · ≤ p(M−|−), methods

controlling PCER and FWER estimate a k̂ and reject all hypothesis corresponding

to p(1), p(1), . . . , p(k̂). For example, letting k̂ = max{k|p(k) ≤ α} strongly con-

trols PCER while k̂ = max{k|p(k) ≤ α/M(−|−)} (known as Bonferroni correction)

strongly controls FWER at level α. Strong control means that the procedure does

not require the number of null hypothesis (M−|0) in estimating the rejection region.

FDR and pFDR are relatively new and more exploratory. Note that FDR and

pFDR become equivalent when the rejection region contains at least one gene.

Storey [45] presents strong control methods for both FDR and pFDR. Because of the

exploratory nature, FDR and pFDR well suit the microarray data analysis. FDR

and pFDR can be computed from the p-values as well as the original t-statistics.

In case they are computed from p-values, rejection regions can be defined by more

concrete concept of t (0 < t < 1), instead of abstract concept Γα. In this case, the

interpretation is reject all genes having p-values smaller than t. So, FDR can be

predicted for the rejection region [0..t] as given next in Formula 3.5,

F̂DR(t) =
π̂0 ·M(−|−) · t

#{pi ≤ t} (3.5)

where the only unknown item in the formula is π̂0; an estimate of π0 =
M(−|0)

M(−|−)
(it is

considered in Section 3.4). For the microarray domain, π0 is the prior probability

that any gene is not differentially expressed: π0 = Prob(not de). Finally, the author

defined FDR analogue of p-values called q-values.

Definition 3.4 (q-value). The q-value for gene g is defined as the expected rate
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of false-positives in the set of genes having p-values smaller than or equal to that of

g. i.e.,

qg = mint≥pg F̂DR(t). ¤

The interpretation of the q-value for gene g can be stated as follows: q-value of g,

denoted qg, gives the minimum FDR when all genes having smaller or equal q-values

than g are selected as significant. For example, assume genes are sorted in ascending

order based on their q-values, and consider a gene g having index i = 500 and let

qg = 0.02. This indicates that among the first 500 genes, on the average at most 10

of them are false-discoveries (not significant) and 490 of them are true-discoveries.

However, this does not necessarily mean that the first 490 are true-positives.

As another example, assume we take the risk of 1% false-discoveries, then we

should choose q-value cutoff as 0.01. This mechanism also guides researchers to

fine tune the selection of genes for further experiments based on the objective of

the experiment. In other words, results can be used multiple times without extra

computations for differing needs. Another advantage of q-value is related to the

fact that by bounding false-discoveries, the amount of waste of time and money can

also be bounded with the same rate of false-discoveries beforehand. This is true

because in microarray experiments, biologists consider significantly selected genes

to experimentally verify in further experiments.

3.3 PaGE Method

The work described in [22, 31] studies the problem of confidence estimation for

identifying differentially expressed genes using the ratio statistics. The authors have

developed a method called PaGE. In their settings, there are several conditions for

every gene, and for each condition there are replicas as presented in Table 3.1.

Their process works as follows. First, they select a treatment and a control condi-

tion. Second, average values of replicas are calculated. Third, the shifted average

expression value of the treatment condition of each gene is divided by that of the

control condition. A gene for which the ratio is above a cutoff ratio Cr (Cr > 1), is

considered up-regulated in treatment condition compared to control condition. The

main problem here is how to find Cr > 1 values for each treatment-control condition

pair with a guaranteed false-positive rate on the average. By achieving this, rea-

sonable confidence can be satisfied. Finally, it is worth noting that down-regulation

can be considered in a similar way.
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Consider a gene, say g, which is not up-regulated and let µg,t, µg,c, Xg,t and

Xg,c, respectively, be the true mean value of expression level and the expression

level of samples for the treatment and control conditions of g. Then, the probability

of false-positives (FPR, a.k.a. Type I error) -the probability of attributing g as

up-regulated is:

Prob
(Xg,t

Xg,c

> Cr|µg,t

µg,c
≤ 1

)
(3.6)

Based on the fact that µg,t

µg,c
≤ 1, an upper bound on Formula (3.6) can be obtained

as follows:

Prob
( Xg,t

µg,c

Xg,t

µg,c

> Cr|µg,t

µg,c
≤ 1

)
(3.7)

It is required to find a least cutoff value of Cr, satisfying the maximum false-

positive rate s (say 1%, for example). This is because any cutoff larger than Cr

increases confidence but at the same time reduces power; Cr is the best balance of

FPR and power. Using the fact that the two events on both sides of the symbol ”|”
are independent in Formula (3.7), we get the following formula,

Prob
( Xg,t

µg,t

Xg,c

µg,c

> Cr
)

< s% (3.8)

The following approximation is suggested for the distribution of Xg,j

µg,j
, j ∈ {t, c}

(see [22] for details):
Xg,j,k

Xg,j
− 1

√
tj − 1

+ 1 (3.9)

where g varies over genes for condition j, k varies over replicas and tj is the replica

count. Values from the dataset are used for the estimation of variables: xg,j,k for

Xg,j,k and xg,j for Xg,j . Let fc(x) and ft(x) be, respectively, the density functions

(of distribution given in Formula 3.9) of the control and the treatment conditions.

Then, for a particular Cr value, the following integral computes FPR.

∫

x

∫

s>Cr·x
fc(x)ft(s)dsdx (3.10)

The correct value of Cr is found by a binary-search: if the result of the integral

is above FPR, then Cr is raised, otherwise it is lowered.

Let Prob(not up) (Prob(not down)) be the prior probability that any gene is

not up-regulated (down-regulated). In PaGE, the Bayes’ formula can be used to
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determine the confidence level for each gene for up-regulation and down-regulation

separately. Note that the conditional probability in Formula 3.11 is FPR, and

(1− Confidence) is FDR for a given rejection region Cr. In other words, the only

unknown term is Prob(not up). Since this is neither known nor can be estimated,

the approximation is done based on the worst-case that Prob(not up) = 1.

Confidence = 1− Prob(not up|predicted up)

= 1− Prob(not up)Prob(predicted up|not up)
Prob(Predicted up)

≥ 1− Prob(predicted up|not up)
Prob(predicted up) (3.11)

In Formula 3.11, it is clear that if exact value of Prob(not up) ≤ 1 is known,

then the power will be increased within the same confidence level. This means that

large number of differentially expressed genes will be recalled. In the next section,

I will show that this probability can be estimated from the dataset itself.

3.4 Improving the Power of PaGE

This section present one approach for improving the power of PaGE within

the same confidence level. The method is based on estimating Prob(not up) and

Prob(not down). As discussed in the previous section, Prob(not up) is needed to

compute the confidence from the given FPR. Since this prior probability is not

known nor can be estimated, the worst conservative case that Prob(not up) = 1 is

assumed to estimate the confidence. In other words, all the genes are assumed to

follow the null distribution of no differential expression.

On the other hand, even though most genes are not differentially expressed, not

all genes in microarray experiments follow the null-distribution. So, if we estimate

the proportion of them, the power of PaGE within the same confidence level can be

increased. This is evident from Formula 3.11, where instead of using Prob(not up) =

1, any value Prob(not up) < 1 increases the right hand side of the inequality. That

is, it produces results more close to the predefined Confidence value.

The method presented next estimates value of Prob(not de). Then, Prob(not up)

is estimated using the similar arguments of estimating Prob(not de).
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3.4.1 Estimating Prob(not de)

Figure 3.2 shows the histogram of p-values for the BRCA dataset under the null hy-

pothesis that no gene is differentially expressed. I use the same BRCA dataset used

in [46] where there are two conditions (BRCA1 with 7 replicas and BRCA2 with 8

replicas) for 3170 features (genes). The p-values are computed from t-statistics us-

ing Formula 3.3. The formula requires computing both t-statistics of every gene and

t-statistics of genes under null distributions. I computed t-statistics of genes under

the assumption of genes having different variances. Null t-statistics are computed

by the method of permutation (Formula 3.1).

If we make two reasonable assumptions: 1) Almost all genes having p-values

close to 1 are null; and 2) null genes have uniform distribution of p-values between

0 and 1; exploiting both together, the proportion of null genes can be estimated.

Figure 3.2: Histogram of p-values computed from 250 random permutations under
the null hypothesis of no differential expression

As it is clear from Figure 3.2, we see that after a certain p-value of λ, (0 ≤ λ ≤ 1)

the right of the histogram shows a uniform distribution. For this example, the value

of λ seems to be between 0.2 and 1. If somehow the value of λ is fixed (say at 0.5),

the proportion of null genes can be estimated easily using Formula 3.12 (known as

Storey estimator);

π̂0(λ) =
#{pi > λ}

M(−|−)(1− λ)
(3.12)
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The rationale of the formula for estimating the fraction of non-differentially ex-

pressed genes is based on the fact that most genes in the region to the right of λ

must be null, and all null genes should be distributed uniformly between 0 and 1.

For a fixed λ, it is easy to compute π̂0(λ); but the decision on the value of

λ is not trivial because there are many p-values, the right of which shows almost

uniform distribution. Fortunately, Storey [45, 46] provided two automatic methods

for selecting λ, namely bootstrapping and curve fitting.

Bootstrapping Method

The bootstrap method estimates the value of λ at which the mean squared error

(MSE) is minimum. This is because there is a bias variance tradeoff for selecting

the value of the best λ. The algorithm developed for this process is given next [45].

Algorithm 1 Bootstrap Estimation of π̂0

Require: p-values, B given
Ensure: Estimate of π0 computed

for λ = 0 to 0.99 by 0.01 do
Compute π̂0(λ) using p-values
MSE(λ) ← 0

end for
π̂min

0 = min{π̂0(λ)}
for b = 1 to B do

p-values b ← bootstrap sample of original p-values
for λ = 0 to 0.99 by 0.01 do

Compute π̂∗b0 (λ) using p-valuesb

MSE(λ)+ = sqr(π̂∗b0 (λ)− π̂min
0 )

end for
end for
π̂0 = min{π̂0(λ)|MSE(λ) ≤ minλ′MSE(λ′)}
π̂0 = min{π̂0, 1}

In Algorithm 1, first estimates are computed for original dataset. Second, for B

bootstrap samples, the p-values of the samples are computed. Minimum value of λ

giving the smallest MSE is selected as the best value. This is reasonable because it

gives best balance between bias and variance.

Curve Fitting Method

The curve fitting method is based on fitting the cubic splines to (λ, π̂0(λ)) values

computed for λ = 0, 0.01, 0.02, · · · , 0.95. The best value for λ is expected near 1

(λ ≥ 0.95) because almost all genes are null in that region. However, the number
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of p-values is small in that region because the region contains small number of p-

values. Changing λ by small amounts (say 0.01) causes instability again due to the

small number of p-values. This is why curve fitting is essential to estimate the best

λ.

(a) without weighting (b) weighting (λ, π̂0(λ)) by 1− λ

Figure 3.3: Estimation of π̂0(λ) using cubic splines

So, the main use of curve fitting is to prevent instability because π̂0(λ) becomes

unstable when λ gets closer to 1, (see Figure 3.3). Let f be cubic splines fit, then

the natural estimate of π̂0(λ) is obtained at f(λ = 1), the value of spline at λ = 1.

There are two methods that can be used to fit points either by weighting or without

weighting. In the case of weighting, the weights of (1− λ) is suggested [46], where

smaller weights are given to large values of λ because of instability. The estimations

and their cubic splines fits are given in Figure 3.3.

From Figure 3.3, it is clear that f(1) for without weighting case is larger than

f(1) for weighting by 1− λ case. For this reason (underestimation is never desired)

and from my experience, I suggest following the no weighting case because cubic

splines already remove the instability and the values of π̂0(λ) are more reliable when

λ is very close to 1.

3.4.2 Estimating Prob(not up) and Prob(not down)

Storey estimator estimates Prob(not de), which is smaller than both Prob(not up)

and Prob(not down). So, it is not possible to substitute Prob(not de) to be used in

PaGE. Therefore, estimates for both of these probabilities should be found directly

and separately.
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(a) up-regulation (b) down-regulation

Figure 3.4: Histogram of p-values computed from 250 random permutations

The null hypothesis now is either genes are not up-regulated, or genes are not

down-regulated. And, the alternative hypothesis is one-sided. Under the null hy-

pothesis assumption, I computed the p-values of genes from BRCA dataset and

present their histograms in Figure 3.4a and Figure 3.4b for up-regulation and down-

regulation cases, respectively.

Based on the techniques for estimating π̂0(λ), I developed similar techniques for

estimating Prob(not up) and Prob(not down). These quantities are denoted with

π̂+
0 (λ) and π̂−0 (λ), respectively.

Controlling the Directional Error

In a previous work, Abul et al [3], we have proposed to use the Storey estimator for

estimating Prob(not up) and Prob(not down) using the estimate of Prob(not de).

The method employed the use of the q-value approach developed by Storey. We just

find the ratio of up-regulated genes in likely differentially expressed genes (down-

regulation case is similar). In its simplest settings, the method controls the direc-

tional error and is given in Algorithm 2.

Although our previous approach is meaningful, it lacks the power of direct es-

timation. This study extend that intuition to directly estimate this quantity using

analytical methods similar to the estimation of Prob(not de) in Storey estimator.
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Algorithm 2 Estimation of Prob(not up) and Prob(not down)

Require: Estimate π̂0 computed (e.g. by the Algorithm 1), M(−|−) given
Ensure: Estimates for Prob(not up), Prob(not down) computed

M(−|1) = (1− π̂0) ∗M(−|−)

Let p(1) ≤ p(2) ≤ · · · ≤ p(M(−|−))

UP ← 0, DOWN ← 0
for i = 1 to M(−|1) do

if x(i),t ≥ x(i),c then
UP + +

else
DOWN + +

end if
end for
Prob(not up) = 1− UP

M(−|−)

Prob(not down) = 1− DOWN
M(−|−)

Using Bootstrapping

The bootstrap method can be directly used here to estimate Prob(not up) and

Prob(not down). But, the p-values should be computed one-sided as given in Fig-

ure 3.4. Consider the up-regulation case (down-regulation case is similar), most of

the p-values close to 0 belong to up-regulated genes, and most of the p-values close

to 1 belong to down-regulated genes. As long as there are down-regulated genes, it

is the case that limλ→1 π̂0(λ) > 1 (check Figure 3.5a). This makes no sense because

it is impossible to have π0 > 1. So, I find an upper bound for λ based on which I

consider an optimum value for λ. Let this upper bound be λmax; λmax is found by

the maximum value for which π̂0(λ) ≤ 1:

λmax = max{λ|λ ∈ [0..1], π̂0(λ) ≤ 1} (3.13)

The proportion of up-regulated genes can be computed using Algorithm 1 with

the restriction that the values for λ are searched from the region [0..λmax]. The

output of Algorithm 1 is the estimation of Prob(not up); the down-regulation case

is similar.

Using Curve Fitting

Similar to Figure 3.3, I plot (λ, π̂0(λ)) with their cubic splines fit; Figure 3.5a for

up-regulation and Figure 3.5b for down-regulation.

As it is clear from Figure 3.5a and Figure 3.5b, the ratios in both cases become

larger than 1 when λ gets close to 1. This is not surprising because the distribution
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(a) up-regulation (b) down-regulation

Figure 3.5: Behavior of π̂0(λ)

of p-values is bimodal; and when λ gets closer to 1, the average number of genes

in the region [λ..1] is much larger than the average number of genes in the region

[0..λ].

Let f be the cubic splines fit to the plotted data, if we estimate the proportion

of null genes at f(λ = 1), this will not make sense because it is larger than 1. So,

we can not use the cubic splines fit method proposed by Storey directly.

From the p-values histograms of up-regulation and down-regulation, it can be

easily observed that in a region [α..β], (β > α), the p-values show uniform distribu-

tion. From Figure 3.4a, it can also be noted that p-values have uniform distribution

within the vicinity of λmax (for this example λmax = 0.21).

Using this observation, I hypothesize that the ratio of null genes can be found

only by considering the value pairs (λ, π̂0(λ)), where λ ∈ [0..λmax] for cubic splines

fitting. This is because value pairs for λ ∈ [λmax..1] are outliers.

The cubic spline fits for BRCA dataset is shown in Figure 3.6. Here, λmax is

0.21 for up-regulation and 0.79 for down-regulation. There is no instability problem

here when λ gets closer to λmax. Finally, I estimate the proportion of Prob(not up)

by the minimum value of cubic spline fits.

Experiments

This section is dedicated to experimentally assess the accuracy of the developed

methods. Reported here are the result of some experiments conducted on artifi-

cial datasets. The reason for using artificial datasets is to compare true values to
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(a) π̂+
0 (λ) (b) π̂−0 (λ)

Figure 3.6: Estimation of π̂+
0 (λ) and π̂−0 (λ)

estimated values.

Let π0 be the rate of non-differentially expressed genes, and π+
1 (π−1 ) be the rate

of up-regulated (down-regulated) genes, where π0 + π+
1 + π−1 = 1. The artificial

datasets for the treatment condition are generated from the respective mixing of

distributions of F0, F +
1 and F−

1 ; while for the control condition the dataset is gen-

erated from F0 independently across genes. So, the datasets are created using the

following setting:

Xg,t ∼ π0 · F0 + π+
1 · F +

1 + π−1 · F−
1

Xg,c ∼ F0

where Prob(not up) = 1− π+
1 = π+

0 and Prob(not down) = 1− π−1 = π−0 .

Basic assumptions and parameters used in this study are: rates of the mixture

vary for fixed number of genes and distributions; let M(−|−) be 4000, F0 be N(6, 1),

F +
1 be N(9, 1) and F−

1 be N(3, 1). Also, the number of replicas is fixed to 7 for

control samples and to 8 for treatment samples. The p-values are calculated over 250

random permutations (full null model) of treatment and control conditions. Since

the number of genes is huge (4000), the conducted experiments use only one sample

dataset from each settings of mixing rates. Experiments are done with 5 datasets

with the mixing rates given in Table 3.3.

The estimates of Prob(not up) and Prob(not down) are given in Table 3.4, from

which it is evident that both methods correctly estimate the true values. For only 1
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Table 3.3: Mixture rates used in Artificial Datasets

Dataset # π0 π+
1 π−1

1 0.50 0.25 0.25
2 0.60 0.30 0.10
3 0.70 0.10 0.20
4 0.80 0.15 0.05
5 0.90 0.07 0.03

case (dataset 5), bootstrap method underestimated the true value. The cubic splines

method seems to be more conservative as it never underestimated the true values;

yet for some datasets it overestimates the true values. But the overestimation rate

is only 1%. Since underestimation is not desired, results of cubic splines are more

reliable.

Table 3.4: True values and Estimates of Prob(not up) and Prob(not down)

True Bootstrap Cubic Splines
Dataset π+

0 π−0 π̂+
0 π̂−0 π̂+

0 π̂−0
1 0.75 0.75 0.75 0.75 0.76 0.76
2 0.70 0.90 0.70 0.90 0.71 0.90
3 0.90 0.80 0.90 0.80 0.90 0.80
4 0.85 0.95 0.85 0.95 0.85 0.96
5 0.93 0.97 0.91 0.97 0.93 0.97

BRCA - - 0.96 0.79 0.97 0.80

Also given in Table 3.4 are estimated values for the BRCA dataset (the same

dataset used in [46]), which has 7 replicas for BRCA1 type tumors and 8 replicas for

BRCA2 type tumor for 3170 genes. The BRCA1 tumor type is used as the control

condition and BRCA2 as the treatment condition.

The effect of estimating Prob(not up) and Prob(not down) are shown for con-

fidence levels [0.5..0.95] in Table 3.5. The results clearly show increased power of

estimation over not estimating prior probabilities.

3.4.3 Computing q-values for Up-regulation and Down-Regulation

In cases for which the direction of the error is pre-specified, finding confidence in

only up-regulated or down-regulated genes instead of differentially expressed genes
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Table 3.5: Improvement of power for BRCA dataset

π̂+
0 = 1, π̂−0 = 1 π̂+

0 = .97 , π̂−0 = .80
Confidence up down up+down up down up+down

0.50 164 664 828 175 1108 1283
0.55 134 518 652 138 884 1022
0.60 129 358 487 131 636 767
0.65 80 178 258 87 443 530
0.70 49 119 168 55 248 303
0.75 43 13 56 43 142 185
0.80 19 3 22 19 13 42
0.85 17 3 20 19 3 22
0.90 0 2 2 0 2 2
0.95 0 0 0 0 0 0

is more accurate. In other words, specification of more specific information should

not be neglected but taken into account. How this kind of information can be

incorporated is shown in this section.

In the previous section, it is shown how to compute the ratio of up and down

genes separately. So, by incorporating these estimations into the computation of

FDR (Formula 3.4), the q-value associated to each gene can be computed. The

resulting q-value for any gene g gives the measure about the confidence in up-

regulation (or down-regulation) of gene g.

To compute the q-values for genes, it is enough to know the null distribution

and the prior probabilities (Prob(not up) and (Prob(not down)). The latter can be

computed using the presented curve fitting method and the former can be computed

using the one-sided p-value computation.

The interpretation of the q-value changes as well. For up-regulation case and for

gene g, it can be interpreted as follows: average proportion of up-regulated genes

in all genes having q-value larger than or equal to that of g. So, it gives only the

proportion of up-genes (i.e., not proportion of up and down genes together). In

other words, it contains much information by specializing the region of interest.

The down-regulation case is similar.

3.5 Simultaneously Finding Up and Down Cutoffs

Recall that PaGE separately and independently finds up and down cutoff ratios.

Here, I cast the problem to find up and down cutoff ratios simultaneously and
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dependently. Under this formulation, the null hypothesis becomes: any gene g is

not differentially expressed, i.e., their means are the same in both conditions t and c.

If the used statistics is the ratio of mean of samples, Xg,t

Xg,c
, then FPR for a selected

cr and Cr pair is:

FPR = Prob
(

(
Xg,t

Xg,c

> Cr) or (
Xg,t

Xg,c

< cr)|µg,t

µg,c
= 1

)
(3.14)

Since the events are disjoint (because Cr is always larger than 1 and cr is always

less than 1), FPR can be rewritten as follows;

FPR = Prob
(Xg,t

Xg,c

> Cr|µg,t

µg,c
= 1

)
+ Prob

(Xg,t

Xg,c

< cr|µg,t

µg,c
= 1

)
(3.15)

Using similar arguments while rewriting Formula 3.8 from Formulas 3.6 and 3.7,

Formula 3.15 can be rewritten as follows;

Prob
( Xg,t

µg,t

Xg,c

µg,c

> Cr
)

+ Prob
( Xg,t

µg,t

Xg,c

µg,c

< cr
)

(3.16)

It is already given that the distribution of each of the components in Formula 3.16

follows the distribution given in Formula 3.9. So, given the distribution of the null

hypothesis that genes are not differentially expressed and given cr and Cr, FPR can

be easily computed. Note that this exactly computes FPR, whereas in Formula 3.8

it is underestimated for the sake of being conservative. So, this is a possible increase

in the power.

The confidence is computed using the following formula;

Confidence = 1− Prob(not de|pred de)

= 1− Prob(not de)Prob(pred de|not de)
Prob(pred de)

(3.17)

Using Storey estimator, after substituting FPR for Prob(pred de|not de), the

estimated confidence can be written as follows:

Confidence = 1− π̂0 · FPR

Prob(pred de)
(3.18)

Let rmax and rmin be the maximum and minimum average expression ratios
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over all genes, respectively. The up-regulation (down-regulation) cutoff clearly lies

in the region (1..rmax] ([rmin..1)). Without loss of information, we can discretize

these rejection regions. This is because discretization level is arbitrary; it can be

increased if it is not sufficient. Let Numbins be the number of discretizations then,

the rejection region corresponding to indexes (i, j) is;

Cri = 1 +
(rmax − 1) · i

Numbins
, ∀i ∈ {1, 2, . . . , Numbins}

crj = 1− (1− rmin) · j
Numbins

, ∀j ∈ {1, 2, . . . , Numbins}
(3.19)

So, rejection regions (i, j) and (Cri, crj) can be used interchangeably.

Since our rejection regions are two-sided, (Cr, cr) pairs should be considered

together. Given the null distribution and Type I error rate α, there are usually

multiple values for (Cr, cr) satisfying the given α. But, if we consider only symmetric

rejection regions (Cr = 1/cr), which is mostly employed because of ease, then

(Cr, cr) pair is unique. Since using symmetric rejection regions introduces selection

bias, I avoid it and consider all rejection regions with Type I error rate α. By

adopting this, the problem becomes more exploratory (analogues to FDR), since in

case multiple values satisfy the desired quantity, the best is to present all to the

user and let him/her choose how to use it. This is important in microarray domain,

since biologists always have some prior information to utilize while choosing from

the presented solution set. Particularly, they may be interested only in the number

of up-regulated genes, in the number of differentially expressed genes, etc.

It is possible to represent confidences attached to all pairs (Cri, crj) using

Numbins × Numbins matrix Conf . Let entry (i, j) be Conf(Cri, crj), e.g., the

confidence attached to pair (i, j) (and hence (Cri, crj)). The reasonable assumption

for the nested set of rejection regions is the following;

Conf(Cri, crj) ≥ Conf(Cri′ , crj′), if i′ ≤ i and j′ ≤ j.

This is because Γ(Cri,crj) ⊆ Γ(Cri′ ,crj′ ) (i.e., larger evidence means larger confidence).

The confidence for cutoffs (Cri, crj) is first computed with Formula 3.18 (let it be

ConfCri
crj

) and then updated as follows (this is because of nested rejection regions);
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Conf(Cri, crj) = max

{
ConfCri

crj
,

max
{
Conf(Cri′ , crj′) | i′ ∈ {1, . . . , i}, j′ ∈ {1, . . . , j},

(i 6= i′ and j 6= j′)
}}

(3.20)

At first glance, it seems prohibitive to compute the confidence for any cutoff pair

as it requires all of its subsets computed. But, as it is articulated in Theorem 3.1,

it can be computed efficiently.

Theorem 3.1. Assuming that Conf(Cri−1, crj) and Conf(Cri, crj−1) are com-

puted as given in the Formula 3.20, no other value (other than ConfCri
crj

) is required

to compute Conf(Cri, crj), ∀i, j > 1.

Proof : First of all, the need for the computation of ConfCri
crj

is obvious. Consider

all legal pairs (i′, j′) of the inner max operator in Formula 3.20. Clearly, all such

pairs either fall in i′ ∈ {1, 2, . . . , i − 1}, j′ ∈ {1, 2, . . . , j} or i′ ∈ {1, 2, . . . , i}, j′ ∈
{1, 2, . . . , j − 1}, or both. By Formula 3.20, the maximum confidence for the for-

mer set is (by definition) Conf(Cri−1, crj), and the maximum confidence for the

latter set is (by definition) Conf(Cri, crj−1). Then, Formula 3.20 simplifies to

Conf(Cri, crj) = max{Conf j
i , Conf(Cri, crj−1), Conf(Cri−1, crj)}; hence, com-

pleting the proof. ¤
Presented in different word, it is sufficient to solve the following dynamic pro-

gramming problem (see Section 5.2.2 for a concise introduction to dynamic program-

ming);

Conf(Cri, crj) =





0, i = 1, j = 1;

max{ConfCri
crj

, Conf(Cri, crj−1)}, i = 1, j 6= 1;

max{ConfCri
crj

, Conf(Cri−1, crj)}, i 6= 1, j = 1;

max{ConfCri
crj

, Conf(Cri−1, crj),

Conf(Cri, crj−1)}, otherwise.

(3.21)

For a given minimum confidence threshold, Confmin provided by the user, the

cutoff pairs having confidence just above Confmin should be reported for not losing

much power. Also, note that if Conf(Cri, crj) ≥ Confmin, then there is no need

to consider rejection regions Γ(Cri′ ,crj′ ) such that Γ(Cri,crj) ⊆ Γ(Cri′ ,crj′ ), (i.e., i′ ≥ i
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and j′ ≥ j). In other words, Γ(Cri′ ,crj′ ) is more specific than required.

All put together, Algorithm 3 finds all simultaneous cutoffs having confidence

just above the given minimum confidence level Confmin.

Algorithm 3 Simultaneously finding up and down cut-off ratios

Require: Intensities for all genes for two conditions, M(−|−), Numbins, Confmin

Ensure: All maximal up-down cutoffs satisfying minimum confidence Confmin

Compute average intensities xg,t and xg,c for every g

rg ← xg,t

xg,c
{rg = ratio of gene g}

rmax ← max{rg|g ∈ [1..M(−|−)]}
rmin ← min{rg|g ∈ [1..M(−|−)]}
Compute π̂0 using cubic splines fit method
Compute null distribution using the Formula 3.9
Let Conf be Numbins×Numbins matrix {Default value for Numbins is 100}
for i = 1 to Numbins do

for j = 1 to Numbins do
Compute Cri using the Formula 3.19 with parameter i
Compute crj using the Formula 3.19 with parameter j

ConfCri
crj

= 1− π̂0·FPR(Cri,crj)
ProbPred de(Cri,crj) , if (i 6= 1, j 6= 1)

Compute Conf(Cri, crj) using the Formula 3.21
end for

end for
limit ← Numbins
for i = 1 to Numbins do

for j = 1 to limit do
Compute Cri using the Formula 3.19 with parameter i
Compute crj using the Formula 3.19 with parameter j
if Conf(Cri, crj) ≥ Confmin then

limit ← j − 1
Output (Cri, crj)

end if
end for

end for

3.5.1 Experiments

For the BRCA dataset, the sample output of the code presented in Algorithm 3 is

given in Table 3.6.

From Table 3.6, it can be easily seen that no two solutions are nested, as guar-

anteed by the algorithm. It can be also noted that confidences of the solutions are

just above the minimum confidence (the difference is less than 1%). If one is forced

to select a solution among a set of solutions, there are lots of alternatives such as:

maximizing total number of up and down regulated genes, maximum number of
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Table 3.6: BRCA dataset cutoffs for .65 and .85 confidences

Confmin = .65
Solution # Cr cr Conf(Cr, cr) up-genes down-genes

1 1.63 0.67 0.652 176 383
2 1.67 0.68 0.657 162 441
3 1.77 0.71 0.658 133 532
4 1.80 0.73 0.650 125 594

Confmin = .85
Solution # Cr cr Conf(Cr, cr) up-genes down-genes

1 2.77 0.22 0.851 21 2
2 2.80 0.27 0.852 20 3
3 2.84 0.30 0.850 20 4

up-genes, solution pair having closest confidence to minimum confidence, the most

symmetric solution, etc. From this consideration, using symmetric regions is just a

special case of the method proposed in this thesis. Finally, it is worth noting that

given these criteria the selection of a solution from the solution set can be easily

automated.

Instead of selecting one of the solutions, one can get a more conservative solution

obtained by considering the least value of cr and the greatest value of Cr among

all solutions. For example, this kind of solution for .65 confidence is (1.80, 0.67),

and it is (2.84, 0.22) for .85 confidence. Of course, in this case the confidence level

increases and the number of differentially expressed genes decreases. For a cutoff of

(1.80, 0.67), the total number of differentially expressed genes is 383 + 125 = 508,

whereas the mean value of all solutions is 636.

Table 3.7: Effect of Prob(not de) = 1 vs. Prob(not de) = π̂0

Confmin Prob(not de) = 1 Prob(not de) = π̂0 = .76
0.50 717 1340
0.55 469 1011
0.60 339 745
0.65 237 561
0.70 142 320
0.75 49 193
0.80 30 60
0.85 22 29
0.90 0 4
0.95 0 0
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Table 3.7 shows the effect of Prob(not de) = 1 vs. Prob(not de) = π̂0 for

confidence levels 0.50 to 0.95 for BRCA dataset. From Table 3.7, it can be concluded

that the estimation of Prob(not de) increases the power of the method within the

same confidence level for all the experimented minimum confidences. The increase

is significant (note the about two-fold increase).

3.6 Discussion

PaGE is a method based on ratio statistics to find differentially expressed genes

across the two given conditions. It outputs all differentially expressed genes having

confidence larger than a user supplied minimum confidence threshold. The method

is very useful in the sense that it is exploratory; this is because minimum confidence

is supplied by the user. I identified the drawback of the method as underestimating

the confidence in the differential expression of genes. That is, if a gene g’s true

confidence is say 87%, due to underestimation, it can assign a value less than this

(say 78%) to this gene. If the user supplied minimum confidence is 80%, then gene

g will not be called differentially expressed. This clearly results in a reduced power

for the sake of being more conservative than required.

I tackle the problem of avoiding underestimating true confidences as much as

possible, and at the same time never overestimating them. True confidences can

be computed given the prior probabilities Prob(not up) and Prob(not down), but

they are unavailable. I have developed two methods to estimate these probabil-

ities. The first method uses a bootstrapping method while the second one uses

cubic splines fitting. For artificially generated datasets, both methods are demon-

strated to be accurate. The increase of power is shown on BRCA dataset (a real

gene expression dataset) using the estimates produced by the proposed estimation

methods. Although, the increase depends on the distribution of p-values and the

minimum confidence value specified, more than two-fold increases are observed for

some minimum confidences (see Table 3.7).

The PaGE is one-sided and finds up and down cutoffs independently. In this case,

the problem turns to be very easy since, all the rejection regions are nested. I extend

the problem definition of PaGE to find all up and down cutoffs simultaneously and

dependently.Also, I show that, the null distribution for this case can be computed in

a way similar to PaGE. But, for non-symmetric rejection regions, the solution set is

not unique. For a given minimum confidence level, I develop an algorithm that finds

all pairs of cutoffs satisfying this using dynamic programming methods. The nice
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property is the ability to incorporate Storey estimator to this algorithm directly to

increase the power. I show that this incorporation increases power significantly on

the BRCA dataset.

PaGE uses only the average ratio statistics for identifying differentially expressed

genes, but other statistics (e.g., t-statistic) can be used as well with the presented

algorithms. But the main advantage of the ratio statistic is its ease of interpretation,

even though it has some drawbacks (e.g., the two ratios 1/5 and 20/100 are the same,

but the difference between the nominator and denominator is 4 and 80, respectively).

But for normalized datasets, it is considered that ratio statistic is useful and suitable

for extrapolatory data analysis.
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CHAPTER 4

DISCRETE GENETIC REGULATORY

NETWORK MODELING

4.1 Introduction

A cell contains thousands of genes with their associated products, i.e. proteins.

The machinery in the genetic material determines which/when genes are going to

be expressed and their abundance. Genetic regulatory network modeling studies

uncovering code of this machinery. So, the uncovered models are abstractions of

this machinery. Since gene expression data is a snapshot of what this machinery

does, it helps to uncover its code. Note that this is a kind of reverse engineering. Lots

of snapshots (samples) are usually required to reach meaningful models. The models

for various cases are possible, e.g., model under normal conditions, model under a

specific stress, dynamic model from temporal data, model for genetic mutations,

and others.

The objective in the modeling is to get insights in the cell machinery. If almost

correct model is induced, then computational methods can be applied for a number

of goals like, simulating, predicting, controlling, and treatment.

Since the exact mechanism is not known, several modeling approaches have been

proposed for identifying gene regulation network from datasets of microarray exper-

iments. So the main theme of this chapter is covering discrete genetic regulatory

network induction methods. The methods discussed are, Boolean Networks, Prob-

abilistic Boolean Networks, Bayesian Networks, and Markov Chains Model. The

learning, inference and dynamics properties of these methods are considered. Some

other approaches are also mentioned (differential equations, linear models, genetic

algorithm methods, etc). In the context of the Boolean networks, the data require-

ments problem for non-random time series data is analyzed. Also, on a given model
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the problem of finding internal effects of external interventions are addressed. How

the differential gene expression analysis can be used for this purpose is shown.

Boolean networks and Probabilistic Boolean networks are discrete; and Bayesian

networks can be either discrete or continuous. Modeling continuous gene expression

levels with discrete models makes sense because human reasoning is most of the

time qualitative. The inference of discrete models from gene expression data is not

trivial. Reasons for such difficulty include:

• High dimension,

• Continuous valued expression data,

• Lack of large number of experiments,

• Coarse and uneven sampling,

Dynamics of discrete networks can be explored within the discrete Markov

Chains framework. That is, their dynamics can be collapsed into Markov chains.

This is particularly important for this study as dynamic control of discrete networks

is addressed in the next chapter.

4.2 Markov Chains

Markov Chains (MCs) are general tools to model the dynamic properties of a process

having finite or infinite state-space [78, 90]; they define how the process (determin-

istic or stochastic) evolves. MCs have the property (known as Markovian property)

that evolution of the process depends only on the past k states, where the value of k

is known as the order of the model. If this value is 1, it is said that MC is first-order

and has the nice property that the next state depends only on the current state.

The generality of first-order MCs originate from their capability to represent any

order MCs. This is done by just increasing the state space [90].

Let S be the finite state space of process, and consider a particular state s.

Usually, states form vector of components, s =< s1, s2, . . . , sn >, where n is the

dimension of the state space. State to state transition probabilities are defined by

the function T : S × S → [0, 1]. The stationary transition probability from state s

to state s′ is Tss′ = Prob{S(t+ 1) = s′ | S(t) = s}, ∀t ∈ N , where S(t) and S(t+ 1)

are random variables representing the state at time step t and t + 1, respectively.

Equivalently, the transition probabilities can be defined as a matrix where states are

indexed. If the index of state s is i and s′ is j, then entry (i, j) represents the value
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of Tss′ . The constraint here is that
∑

s′∈S Tss′ = 1, ∀s ∈ S; this kind of matrices is

known as stochastic matrices, where every row sums up to 1.

Given any initial state distribution, the unconditional probability of states at

any time can be obtained. Assume that the initial distribution given (at t = 0) is

a0, the probabilities at time t is at = a0 · T t where T t is the t’th power of T . A

state s is called absorbing if Tss = 1. Likewise states can be attributed as recurrent,

transient, periodic, ergodic, etc (for a concise introduction see [90]). Among them,

particularly important is the Markov chain being ergodic. If a Markov chain is

ergodic, as t → ∞ the initial state distribution becomes immaterial, i.e., the same

steady-state distribution exists.

4.3 Boolean Networks

Boolean (Genetic) Networks (BNs) were originally introduced by Kauffman [75], and

extensively studied later [7, 8, 9, 61]. In this approach, expression levels of genes

are represented as boolean variables. For any gene, the expression level is 1 when

the gene is expressed (activated), and 0 when the gene is repressed (not-activated).

Each gene is assigned a boolean variable which is a boolean function of values of

some other variables (genes). A particular state of the network is an instantiation of

all of its variables. So, given n genes, the state space contains 2n states. Since state

transitions happen at discrete times and the state space is finite, BNs are sometimes

identified as discrete BNs. Binary discretization of continuous expression values are

pre-requisite to model gene networks using boolean values.

Definition 4.1 (Boolean Network). A boolean network (BN) is a tuple G =<

V, F >, with a set of nodes V and a set of boolean functions F = {fv|v ∈ V }.
Function fv specifies gene regulation rule for node v. Gene v is expressed (repressed,

resp.) if fv computes to 1 (0, resp.). The function fv for v is a deterministic boolean

function of a subset of V with k elements, i.e., fv(vi1 , . . . , vik); so the value of the

k-subset completely determines the state of gene v; the genes not in the k-subset

are either irrelevant or indirectly relevant to v. ¤

To define the dynamics of BNs, let the state of nodes at time step t be ψt; if gene

v is expressed at time t, then ψt(v) = 1, otherwise ψt(v) = 0. The state of the nodes

at time t+1 is defined by ψt+1 and this value is determined based solely on ψt of

the k-subset: ψt+1(v) = fv(ψt(v1), . . . , ψt(vk)). The state of the network is defined

as a vector s and its value at time t is given by s(t) =< ψt(v1), ψt(v2), . . . ψt(vn) >,

where n = |V |.
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Figure 4.1: A Boolean network and its wiring diagram (from Akutsu et al [8])

The operations of BNs are usually represented by diagrams for ease of under-

standing. The wiring diagram of G = (V, F ) is another graph G′ = (V ′, F ′) showing

inputs and outputs with different nodes. In this diagram, input nodes are genes at

the current time step t and output nodes are genes at the next time step t + 1. In

the wiring diagram G′ of G, nodes are replicated, i.e., V ′ = {v1, · · · , vn, v′1, · · · , v′n}.
The nodes {v1, · · · , vn} are input nodes, while the nodes {v′1, · · · , v′n} are output

nodes. The function set F ′ is essentially the same as F . The only difference is re-

naming of the input and output variables. A sample boolean network and its wiring

diagram is shown in Figure 4.1.

It is trivial to simulate any BN given an initial state s(0); just apply fv, ∀v ∈
V . For any initial state, since the state space is finite and the transitions are

deterministic, after some time T ′ the simulation starts looping with period T , namely

s(T ′) = s(T ′+T ), s(T ′+1) = s(T ′+T +1), and so on. It is clear that both T ′, T ≤ 2n.

The cycle s(T ′), s(T ′ + 1), . . . , s(T ′ + T ) is called an attractor of the respective BN.

If the length of this cycle is 1 (self-loop), it is called point attractor. A BN may have

more than one attractor. Biologically, these attractors correspond to stable states

of the cell, since non-attractor states are transient. It is evident that without any

external perturbation, there is no exit from any of the attractors. So, it is clear that

states of BN can be partitioned into equivalence classes based on their attractors.

Time series gene expression data is needed to infer dynamic BNs. After the

proper pre-processing (feature selection, discretization, etc), the input dataset to

the inference procedure is obtained in the following way. Let the dataset be D

and its length be M + 1; D is indexed from D(0), D(1), . . . , D(M). The input to

the inference procedure is input-output pairs of the form < D(t), D(t + 1) >,∀t ∈
{0, 1, . . . , M − 1}. By this way, one-step back dependency is assumed. Although
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this is the usual way of casting experiments to input-output pairs for dynamic BNs,

there are approaches (like the one described in [82]) that assume multi-step back

dependency.

The consistency problem is defined as finding functions for every node of the

network with a complete agreement to data. Closely related to the consistency

problem is the best-fit extension problem. In the best-fit extension approach, the

function with the smallest disagreement to the input-output pair is searched. In this

sense, the consistency problem (in which disagreement is 0) is a special case of the

best-fit extension [81, 58]. So, inference can be done under this approach as well.

In [7], the authors analyze the number of controlled experiments (instead of

random) to be done for guaranteed identification of BNs. Their main result can be

stated as follows: if the number of manipulated (intensionally set as either 0 or 1)

genes are at most n, the problem can be solved with O(logn) experiments. However,

if the manipulated genes are restricted to at most d, the problem can be solved with

O(n2d) experiments; for details see [7].

Akutsu et al [8, 9, 7] studies the required number of observed input-output pairs

(not controlled) needed for identifying and inferencing BNs. It has been shown that

the number of experiments required for identification from uniformly random input-

output pairs is O(log(n)); but with a considerable constant factor. Indeed O(log(n))

complexity has been first observed by Liang et al [61] in their simulations.

Akutsu et al [8] provides the number of experiments required for identifying

BNs from uniformly sampled random data. Their main result is articulated next in

Theorem 4.1.

Theorem 4.1 (Akutsu et al. [8]). If O(22K ·(2K+α)·log(n)) INPUT expressions

are given randomly, then the following holds with probability of at least 1− 1
nα : there

exists at most one Boolean network of n nodes with maximum in-degree ≤ K, which

is consistent with the given input/ouput pairs.

Proof : Refer to [8] for the complete proof. ¤
The information theoretic lower bound is also provided as given in the following

theorem.

Theorem 4.2 (Akutsu et al [8]). Ω(2K +Klogn) input/output pairs are necessary

in the worst case to identify the Boolean network of maximum indegree ≤ K.

Proof : Noting that for each node Ω(nK) possible combinations of input nodes and

22K
possible boolean functions per node, there are Ω((22K ·nK)n) boolean networks

whose maximum in-degree is at most K. Therefore, Ω(2Kn + n · K · log(n)) bits
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are required to identify a boolean network. Since the information obtained from a

random single input/ouput pair is n bits, therefore Ω(2K +K · log(n)) input/output

pairs are necessary in the worst case. ¤
The corollary to Theorems 4.1 and 4.2 is O(log(n)) input/output pairs are nec-

essary and required to induce a random boolean network.

Both Theorems 4.1 and 4.2 apply for random boolean networks with in-degree

of at most K. On the other hand, time series gene expression data is not random,

but the next sample (at time t+1) is completely dependent over the current sample

(at time t). The authors address this case as well and show that the number of

required samples is still O(log(n)) from their simulations, i.e., this is not an analytic

result. They obtained O(log(n)) complexity (but with a much larger constant factor

of ≈ 20 times) with the simulation method given in Algorithm 4;

I observed from the results of their simulations of time series experiments that

neither the number of attractors nor the required number of input/output pairs do

grow logarithmically with the number of genes as they claim. Actually, required

number of input/output pairs do depend on the number of attractors. For this rea-

son, interpretation of simulation results may mislead. Instead of using simulations,

getting an analytic lower bound for time series experiments motivated me.

In the following, it is proved (using information theoretic lower bounds) that the

necessary number of experiments in this case is not Ω(log(n)) but Ω(
√

n · log(n)).

Algorithm 4 Uniquely identifying a BN from time series simulation
Require: number of genes n, indegree K given

Network ← Randomly construct a random n, K, BN
repeat

select an initial state s(0) randomly
s ← s(0)
repeat

if Is the Network uniquely identified then
Return

end if
s ← state of Network following s

until a cycle is detected
until Forever

In Algorithm 4: for each s(0), when the chain reaches to a state that is already

visited, the strategy is terminating the simulation at that point and restarting from

another random initial state. This is because there is no rationale to continue

the simulation from an already visited state. This continues until the network is

identified uniquely. Note that only the initial state s(0) is selected randomly.
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Basin of an attractor is defined as the states with ultimate transitions to an

attractor. For boolean networks with in-degree of at most K, the number of states

in an attractor grows with O(
√

n) on the average and the number of attractors grows

with O(
√

n) on the average [75, 18]. So, these results clearly means that each cycle

of Algorithm 4 is O(
√

n) (note that even a single movement leads to an attractor

state and O(
√

n) movements are required to come back to that state).

Lemma 4.1. The average number of states visited, starting from an initial state,

before reaching a state that has already been observed is at least O(
√

n)

Proof : From any initial state s(0), to reach a state that has already been visited

requires the sequence,

1. visit states until an attractor state (say s) is visited

2. visit on average O(
√

n) states before returning back to s (see [75, 18])

this lemma proves even when the first step takes zero visits. ¤

Lemma 4.2. The average number of information units obtained from m random

experiments for a network with n nodes is n.

Proof : Consider a network of n nodes, and let X be a random variable denoting

the outcome from a random experiment. n bits are required to specify any outcome

because X can have 2n values. For m independent random experiments, the total

number of information units obtained is nm. So, the average is n bits.¤
Without loss of generality, any value that is in the order of O(

√
n) can be used to

get an asymptotic result for total visits for Lemma 4.1. Both lengths in the lemma

are assumed to be
√

n in the following. So, a trial is totaling to 2
√

n.

Lemma 4.3. The average number of information units obtained from time series

experiments for a network with n nodes and 2
√

n cycle length is n+(2
√

n−1)log2
√

n
2
√

n
.

Proof : Total information content can be calculated as the total information content

of the first random experiment and the information content of 2
√

n − 1 dependent

experiments. By Lemma 4.2, the first is n. Since each of the dependent experiments

can be in one of 2
√

n states, the information content of one dependent experiment is

log(2
√

n). Since there are 2
√

n− 1 dependent experiments, their total information

value at most sums-up to (2
√

n−1)log2
√

n; so the average of dependent experiments

and one random experiment is n+(2
√

n−1)log2
√

n
2
√

n
. ¤
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Theorem 4.3. Ω(logn) trials each containing 2
√

n experiments are necessary for

identifying boolean networks from time series data when cycle length is 2
√

n on the

average.

Proof : From Theorem 4.2, the required total number of bits that should be ob-

tained is Ω(2Kn + n · K · log(n)); and from Lemma 4.3, the total number of bits

obtained from a trial is n+(2
√

n−1)log(2
√

n). By taking the ratio 2Kn+n·K·log(n)
n+(2

√
n−1)log(2

√
n)

and after simplifying, it can be easily found that Ω(log(n)) trials are needed. ¤

Corollary 4.1. The necessary number of experiments required for identifying BN

from time series data is Ω(
√

n · log(n)).

Proof : From Theorem 4.3, the number of trials found is Ω(log(n)) with each

having 2
√

n input/output pairs. So, the necessary number of total experiments is

Ω(
√

n · log(n)). ¤
Corollary 4.1 counter-proves the claim of Akutsu et al [8], where their claim

(from simulations) is that the required number of experiments is still Ω(log(n)) for

time series data as well.

Note that the approach for proving the lower bound for finding the necessary

number of experiments is general. That is, for instance assuming the cycle length is

log(n), the required number of experiments becomes Ω(log(n) · log(n)).

In [8], the authors presented an exhaustive algorithm for finding consistent

boolean functions (functions not violating input-output patterns) with the given

input-output pairs under the constraint of bounded in-degree (number of input

nodes). The algorithm considers all boolean functions for all K-subsets of V for any

node v. For the maximum in-degree K, the number of boolean functions becomes

at most 22K
, for any node v and for a specific K-subset of V . For n genes and(

n
K

)
combinations, the run time complexity of the exhaustive algorithm is clearly

O(22K ·nK ·n ·M). In [9], the authors presented an improved randomized algorithm,

but the order of complexity is between O(nK−1) and O(nK).

An information theoretic algorithm (known as REVEAL) is provided by Liang

et al [61] for the inference of boolean networks from experimental data. The maxi-

mum in-degree is assumed to be bounded by a constant K; otherwise the problem

is NP-Hard. The algorithm is iterative by first considering 1-subsets, then 2-subsets

and finally K-subsets. If any combination of subsets explains the whole variability

consistently, the respective subset is selected with corresponding function as deter-

miners for any node v. The measure for variability is mutual information. They have

observed that the probability of identifying incorrect solutions reduces exponentially

with the number of input-output pairs.
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Most of the time gene expression levels are quantized into ternary values (-1, 0

and 1), where 0 is used for baseline level, -1 for repression and 1 for over expression.

General rules for boolean networks apply for ternary networks, and in general for

n-ary networks.

4.4 Probabilistic Boolean Networks

The recently introduced PBNs [78] form an extension of the standard BNs. Boolean

networks can compute deterministically the next state given the current state and

only randomness in BNs is the starting state. However, this is not the case in the

true genetic networks, where the transition is almost always stochastic; i.e., there

may be more than one next state. PBN approach for this situation is allowing more

than one deterministic boolean function (called predictors) for every node. The

selection probability of a predictor determines whether it is going to be used. In

this respect, BNs are a special case of PBNs, where the number of predictors is one

with selection probability 1.

At any time, it is assumed that one of the predictors is selected for every gene;

and the selected predictor function determines the next state. For simplification

purposes, the probability of selecting predictor for a gene is assumed to be indepen-

dent of predictors of the other genes. For any gene g, assume there are lg number of

boolean functions: f
(g)
1 . . . f

(g)
lg

with selection probabilities: c
(g)
1 . . . c

(g)
lg

. So, the num-

ber of the different function set for the whole network of n nodes is l1× l2× . . .× ln.

Then every instantiation of the function set can be assigned a probability by multi-

plying individual probabilities.

Consider a gene g whose state at time t is going to be determined from S(t).

Clearly, the state of g at time t + 1 is 1 with the probability f
(g)
1 (S(t))c(g)

1 ×
f

(g)
2 (S(t))c(g)

2 . . . × f
(g)
g (S(t))c(g)

g . So, we can compute the transition probability

from any given S(t) to any S(t + 1). We can easily create a stochastic matrix in the

state space of genes. This stochastic matrix is MC because every stochastic matrix

is MC. After getting this matrix, the analysis of the dynamics of the network can

be done using MC theory.

Note that the selection probabilities of predictors are independent of the state.

The selection of predictor sets and their probabilities are important issues in PBNs.

Usually the strategy is similar to BNs. That is, each gene is allowed to have at

most in-degree K. For each of the K-subsets, the utility of each subset is computed

for every possible boolean network. Recall that there are 22K
such functions for
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every K-subset. Error of each function is computed using the coefficient of the

determination (CoD) method [78]. The number of predictors are determined apriori.

The predictors with highest CoDs are selected, and their selection probabilities are

assigned based on their predictive power. Shmulevich et al [80] studies the effect

of random gene perturbations on a given PBN. The authors show that MC of any

PBN with a positive perturbation probability for every gene is ergodic (refer to

Section 4.6).

4.5 Bayesian Networks

A Bayesian network (BN) models the probabilistic relationships among a set of

variables (continuous or discrete). The network consists of two parts, structure S

and probability distribution P associated with S. P is a directed acyclic graph where

there is a node for each variable. The lack of edge in the graph encode conditional

independencies between variables. Associated with each node (hence each variable)

is a conditional probability distribution (CPD), conditioned on parent nodes. P is

the collection of all these CPDs.

Let X = {X1, · · · , Xn} be the set of variables and Pa(Xi) be the set of parent

variables of Xi in S. By using chain rule of probabilities and conditional indepen-

dencies, the joint probability distribution (JPD) is:

P (X1, · · · , Xn) = Πn
i=1P (Xi|Pa(Xi)) (4.1)

Equation (4.1) states that JPD can be easily computed given S and P . From

JPD, any probability of interest can be computed. This process is called inference.

There are several algorithms for this task, but the general problem of exact inference

is NP-Hard [35, 36].

Inference only works when a Bayesian network is given. For cases where the

experts are not available to create networks, or the domain is not known well (e.g.,

regulation of genes) the network should be learned from the data. Learning involves

both learning the structure of network and its parameter values. Also, the objective

network might be desired to model the static or dynamic nature.

4.5.1 Learning Bayesian Networks

In Section 4.5, it is assumed that BN is given. But most of the time, one is resort

to learn (induce) it from data and background knowledge because it might be too
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complex and sometimes impossible for experts to specify, e.g., genetic regulation

networks.

Learning BNs from data is classified into 4 kinds of tasks [67],

• Known Structure, Full Observability

• Known Structure, Partial Observability

• Unknown Structure, Full Observability

• Unknown Structure, Partial Observability

In the known structure cases, it is only needed to learn P , whereas in the un-

known structure cases, both S and P must be induced from the data and background

knowledge (if available). In the full observability cases, there is no missing value

in any cases of dataset. In addition, it is assumed that there is no hidden variable

(i.e., attribute set is complete). In the partial observability case, there are hidden

variables and/or missing values in the dataset.

4.5.2 Learning Probabilities

Since the distribution of any variable is only dependent on its parent set, we can

consider the independent parameters of these distributions. The possible values of

these parameters determine the physical probabilities of joint distribution. Given

the value of the parameters, the joint physical distribution is given as:

P (x1, · · · , xn|θs, S) = Πn
i=1P (xi|pa(Xi), θi, S) (4.2)

where S is the known network structure, θs is the vector of parameters for each node,

i.e., θs = (θ1, · · · , θn), xi is an instantiation of Xi, and pa(Xi) is an instantiation of

Pa(Xi).

The problem reduces to estimating θs given the network structure and dataset

D = {x1, · · · , xN}. In other words, estimate the posterior distribution P (θs|D, S).

Note that not a single value of θs, rather a distribution of it is insisted. Each entry,

xi, in D is called a case, and each case have a single value for each variable (at-

tribute). Since, parameters for each node are assumed to be independent of those

of the other nodes, each parameter distribution can be estimated individually and

independently. By this way, the problem is actually the same as probabilistic clas-

sification/regression problem. Here, any probabilistic supervised learning method

can be used for this task.
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Assume each variable Xi is discrete and has ri possible values. Consider the

multinominal distribution, and there are ri parameters for any single parent config-

uration Pa(Xi) of variable Xi. Let the number of parent configurations be qi for

variable Xi. So, the parameter set is:

P (xk
i |paj(Xi), θi, S) = θijk > 0 (4.3)

where j ∈ {1, 2, . . . , qi} is an index over parent configurations.

Under parameter independence and random sample assumption, the following is

obtained:

P (θ|D, S) = Πn
i=1Πqi

j=1P (θij |D, S) (4.4)

To compute P (θij |D, S), Bayes rule can be used. Consider that S and any other

background knowledge is represented by ξ:

P (θij |D, ξ) =
P (θij |ξ)P (D|θij , ξ)

P (D|ξ)
(4.5)

where (by conditioning on θij)

P (D|ξ) =
∫

P (D|θij , ξ)P (θij |ξ)dθij (4.6)

Given the parameter value, the observations in D are mutually independent and

their distribution depends only on parameters (i.e., do not depend on background

information). So,

P (D|θij , ξ) = Πri
k=1θ

Nijk

ijk (4.7)

where Nijk counts the number of cases of particular instantiations of node Xi to-

gether with a configuration of its parents. Assuming Dirichlet priors, posterior

distribution of the parameters is,

P (θij |D, ξ) = Dir(θij |αij1 + Nij1 · · ·αijri + Nijri) (4.8)

The closed-form formula above can be used to obtain prediction of interest. This

is done by averaging over possible values of the parameters.

When a dataset contains missing values, Formula (4.8) can not be used as the

number of Dirichlet distributions is exponential in the number of missing value cases.

So, approximation techniques are devised to compute posterior probabilities. There
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are a number of approximation methods including, Monte-Carlo methods, Gaussian

approximation, expectation maximization (EM) algorithm, etc [67].

4.5.3 Learning Structure

Structure learning problem is more difficult than learning parameters problem. In

this problem, given only the dataset, it is expected to induce both the structure and

its parameters. By using Bayes rule, probability of structure for the given dataset

is,

P (S|D) =
P (S)P (D|S)

P (D)
(4.9)

In the above formula, P (D) is independent of structures and can be considered

as normalization constant. For the complete data case (under Dirichlet priors and

multinominal distribution), the following is obtained,

P (D|S) = Πn
i=1Πqi

j=1
Γ(αij)

Γ(αij + Nij)
Πri

k=1

Γ(αijk + Nijk)
Γ(αijk)

(4.10)

The full Bayesian approach presented above is not efficient, since the number

of possible model structures are at least exponential. To solve this problem, some

heuristics are proposed including, best-first search, greedy search, greedy search

with restarts, simulated annealing, among others. These search techniques are local

search techniques; so they may stuck to local maxima. For example, greedy search

starts from a random structure and considers all possible local changes and computes

their score, then it selects the operation that produces maximum score (of course, if

maximum is greater than zero). It continues this way until a local maxima is found.

An important problem with model scoring is how to devise the scoring function.

First of all, it should be decomposable to be used by local search techniques like

greedy search. The Binary Information Criterion (BIC) is one such a decomposable

scoring function. Besides, it does not need prior distributions to approximate the

score of a network for a given dataset.

BIC = logP (D|θs, S)− d/2logN (4.11)

where d = Σn
i=1qi(ri − 1) is the dimensionality of the network, and N is the sample

size.

To estimate the score of P (S|D) in formula (4.9) we need to estimate the prior

P (S) (If not using scoring functions that do not depend on priors). There are
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a number of methods proposed for this task. The simplest one is assign every

structure the same probability. Another proposal is have an ordering (probably

given by users) among variables and reduce structure space and assign remaining

ones equal probabilities.

4.5.4 Dynamic Bayesian Networks

Bayesian networks can be used to model dynamic systems. In that case, (like wiring

diagrams of BNs) nodes are replicated and indexed with either 0 or 1. For example,

g0 and g1 are used to represent expression level of gene g at present and next states,

respectively. The nodes indexed with 0 are not allowed to have parents, while nodes

indexed with 1 can have parents from nodes indexed with 0. So, given the state at

any time t, the probability distribution of the next states at time t+ 1 can be found

using inference. Similarly, stochastic states at any time (or up to any time) (say

t + k) can be found by unfolding the network k times.

If the dataset is organized in the form of input/output pairs and forcing the

constraint that nodes indexed with 1 can have parent only from nodes indexed with

0 and the nodes with index 0 can not have any parent, the learning problem becomes

exactly the same as learning static bayesian networks.

The stochastic property of discrete dynamic bayesian networks implies that these

dynamics can be modeled by MC.

In the literature, bayesian networks are used most dominantly for genetic net-

work inference from gene expression data. This is mainly because their result can

be visualized and interpreted easily. Also, lots of schemes can be used and ex-

plored within bayesian learning framework, such as discrete/continuous data, prior

knowledge on the structure, various form for conditional probability distribution,

ability to cope with missing values, ability to model latent variables, selecting scor-

ing function, etc. On the other hand, both learning and inference can be very slow

depending on the network size.

Friedman et al [26] build a discrete state static bayesian model of yeast cell cycle.

They do not use any prior biological knowledge (i.e., just use expression data). They

apply the bootstrap method [25] to assess the robustness of the algorithm. How to

apply techniques for learning models of gene expression data is discussed in [68].

Imoto et al [41] propose to use nonparametric regression to construct conditional

densities and a scoring method for selecting structure. The proposals are run on the

cell cycle data of yeast. How to combine the scoring method proposed with available
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prior biological knowledge and dynamic modeling is given in [42] and [55], respec-

tively. Hartemink et al [32] presents a scoring method for using gene expression data

together with location data (location data specifies which genes are possible targets

for transcription factors). They also build bayesian model of galactose system for

yeast [33]. How to find interactions between genes and subnetworks using bayesian

networks is given in [70]. The case where both experimental (under some external

or internal stress) and observational data are to be used for network inference is

addressed in [95]. Latent variables are used to represent experimental conditions.

4.6 Markov Chain Model

The work described in [54] constructs MC directly from ternary discretized time

course gene expression data. The values for time step t are used as input to time

step t+ 1. For each gene (say gene g) a predictor gene set (3 genes) is selected. The

conditional distribution of each value (-1, 0, 1) of g over the predictor set is computed

as follows. Clearly, 33 = 27 different values of any predictor are possible. For each

of these values conditional distribution of -1, 0, and 1 is computed by counting

frequencies. For the non-observed case of predictor values, the prior probabilities

of -1, 0, and 1 are used for respective conditional probabilities. Combining the

conditional distributions of all genes, we get a single MC having 3n states where n

is the number of genes. Note that, even though the space of the MC becomes huge

for moderate n values, the method is applicable since it implicitly stores transition

probabilities.

Note that the induction method considered does not impose any method for

predictor gene selection, but selects only one predictor set for each gene. I consider

that selecting only one predictor may harm the effectiveness of the induced model.

That is, more than one predictor set can be selected if their predictive powers are

almost same.

Noting this, I propose using more than one predictor set for every gene. The

justification for this proposal is given next. For instance, assume there are 2 pre-

dictor sets with equal or very close predictive power, then selecting only one of

them strongly biases the model. In the case of multiple predictor sets, the value is

determined again based on conditional distribution of predictors weighted by their

power. The other advantage of this scheme is that the probability of prior distribu-

tion selected can be reduced, as for a certain state one of the predictor may have no

occurrence of its projection in the dataset but the other may have. In Chapter 6,
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the proposal is exploited and it has been found that the predictive power of top two

predictors are very close.

I note that this is like an analogy between boolean and probabilistic boolean

networks (c.f., Sections 4.3 and 4.4). In the former, there is a function determin-

ing the output with 100 percent probability, while in the latter multiple functions

compete for the determination based on their predictive power.

4.7 Other Modeling Approaches

Beside the methods already discussed in this chapter, there are other methods that

have been proposed. They include Linear/Quasi Linear Models (LQLM) [17, 91],

Differential Equations (DE) [13, 12], Neural Network (NN) [87, 91], Genetic Pro-

gramming (GP) [56], and Petri Nets (only representation, i.e. no induction) [65].

In LQLM, each gene is modeled as a linear combination of other genes. Some-

times a small white noise is allowed. Being quasi linear means applying a non-linear

function (e.g. sigmoid) on the linear combination. This is done to prevent un-

bounded growing of expression values.

DE models model the rate of change of the concentration for genes. Usually

in the models, there are other variables other than genes, such as mass of the cell,

expression levels of proteins and protein complexes, etc. All the variables have

continuous values, and given the initial state, the state at any (continuous) time

can be computed by integration. Depending on the form of the rate equations, they

are further classified as Ordinary DEs, Piece-wise linear DEs, Non-linear Ordinary

DEs, etc.

In NN approach, inputs and outputs to the neural network are gene expression

values corresponding to a set of genes. Given the input/output pairs, networks

weights are learned by training.

GPs identify a target gene for which the network is to be modeled. Possible

networks (each network represents a chemical reaction) and weights on arcs are

searched in such a way that the model fits the observed data.

4.8 Using DEG Analysis for Interventions

Given enough time series data for an external or internal environmental condition,

it is possible to build a corresponding dynamic model. This is irrespective of the

employed modeling approach (BNs, PBNs, Bayesian, and Markov Chain modeling).

Induced models may vary across the environmental conditions, even same set of
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genes are used as model variables. This is because depending on the environmental

condition, cells adjust gene specific expression levels (called homeostatis) using

alternative machineries. So, to induce a regulatory network for each of the dif-

ferent conditions, a time series dataset obtained under that condition is required.

This clearly requires time series experiments (usually > 20) for each condition. By

this way, the behavior of the organism or the cell under a given condition can be

simulated by running the respective model.

On the other hand, since experimentation is expensive and difficult, it might

be the case that only few experiments (≈ 5) are available for a specific condition.

Since few number of experiments are not enough for model building, we need other

methods to solve the problem. In this respect, my proposal is to use the results

obtained from the DEGs analysis.

Assume that under normal conditions (treated as reference condition), there

are enough experiments and the model is induced. Also assume that for a certain

external environmental condition, few experimental data is available. Here, the

concern is how to simulate the original model for the given environmental condition.

So, this clearly suggests the need for prior information of how the specific condition

affects the normal behavior.

In case there is no prior biological knowledge of special effects, these can be

acquired by applying the DEGs analysis between the datasets of the normal and

a given experimental condition if few samples are available for both conditions.

Recalling that DEGs results give the sets of up-regulated and down-regulated genes,

i.e., they make the only difference between condition pairs. This clearly suggests

whenever a gene is up-regulated, its effect can be simulated by letting its value be

over-expressed; the down-regulated case is analogous. Non-differentially expressed

genes are left intact.

For BNs, PBNs and bayesian networks, it is given that perturbations to network

is possible. The perturbations can be random or pre-defined. Under any perturba-

tion, the behavior of the networks can be observed.

Assume that a PBN genetic network G =< V, F > is induced from normal

condition dataset. Also assume that only gene g ∈ V is up-regulated and no gene

is down-regulated between the experimental and normal conditions. So, to simulate

model G =< V, F > under the experimental condition, we always set the value of

g to 1 and do not change other gene’ values. This way, we can simulate a model

inferred under a given normal condition for other conditions.

Usually, interventions to organism or cell are classified as external and internal.
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Internal interventions are genetic changes (gene deletions and mutations) applied to

genome of a cell. External interventions are not related to genetic changes, but the

environmental situations (like heat shocks, acid, and varying nutrients) that cells

are forced to live in. Given the model G =< V, F > inferred under the normal

conditions, I distinguish three cases,

1. The intervention is internal and all the intervened genes are included in V .

2. The intervention is internal and not all the genes are included in V .

3. The intervention is external.

In the first case, the model can be simulated without requiring any dataset for

experimental conditions, i.e., just set the appropriate genes to their intervened val-

ues. For the second case, although internal intervention is considered, it is effectively

external from the perspective of the model. So, this requires experimental data. The

third case is trivial and requires experimental data.

In all of the intervention cases, the objective is to infer dynamics of the cell or

organism in terms of the selected genes. After modeling the dynamics, the next step

is to use them for controlling cell dynamics towards a particular biological objective

by means of selectively applying interventions. This is studied in the next chapter.

In the case study presented in Chapter 6, the DEGs analysis results are employed

to find the effects of certain external interventions. The resulting models (one for

each condition) are used to control cell dynamics.

4.9 Discussion

Any dynamic finite state gene expression network can be modeled by MCs. Because

any given network can be in exactly one state at any time. This suggests that

even the transitions are stochastic, the next state is exactly one of the states in

the state space. In this respect, dynamics of BNs can be represented with MCs in

which state transitions are deterministic. Actually, dynamics of PBNs and discrete

bayesian networks define MC. Furthermore, each instantiation of them corresponds

to exactly one MC. However, they differ only in how they store, induce and infer.
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CHAPTER 5

INTEGRATED CONTROL AND

MONITORING FOR REGULATORY

NETWORKS

5.1 Introduction

The advance in microarray technology has influenced the ongoing research on com-

putational biology, and hence attracted the attention of several research groups who

have mainly concentrated on analyzing microarray datasets for identifying models

for gene regulation network. However, existing achievements can be only considered

as exploration towards the true regulation model. Realizing that correctly modeling

the regulation process should not be the target of the current research has been

the main motivation for producing the novel approach presented in this chapter.

Actually, the already handled process is kind of acquiring domain knowledge. It is

possible to use induced domain knowledge for different directions in the analysis,

although little has been done and reported in the literature. One direction is how to

interact efficiently with the model to find perturbations or external controls leading

to desirable states of the model.

The approach can be used for scientific discoveries, such as finding how to escape

from a given mutant-state to a normal-state, like treatment of cancer. The other

advantage is to help scientists in making further experiments with some recommen-

dations, as well as in generating plans from the domain in order to achieve the target

of reaching the desired states.

In this chapter, first the control problem is formulated. The required compo-

nents are state transition function, state cost function and state-action cost func-

tion. Four basic scenarios are identified for controlling genetic networks, namely

finite control, finite control/infinite monitoring, finite control/finite monitoring, and
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infinite control, where the term control means applying an external action and the

term monitoring means watching without applying any external actions. For each

of these scenarios, optimal control policies are defined separately for whether the

state-action cost function is available or not. Next, multi-objective optimal control

method is presented for the case when both the state cost function and state-action

cost functions are available, but the domain is not engineered well. Then, on a

running example of a PBN model, the control problem is formulated and solved for

the cases identified. Finally, how to scale to large networks is addressed.

5.2 The Necessary Background

5.2.1 Markov Decision Processes

From the definition of MC, there is no way for controlling the process; the system

evolves without external input when the starting state and transition probabilities

are specified. Markov Decision Processes (MDP) extend MCs from control point of

view; MDP allow external control on the process in a way that forces the process to

be in desirable states.

Definition 5.1 (MDP). A finite MDP mdp is a quadruple [84, 66], mdp =<

S,A, T, C >, where

• S is the state space,

• A is the action (control) space,

• T is the transition function- T : S ×A×S → [0, 1]. The transition function T

specifies one-step transition probabilities: T a
ss′ = Prob{S(t + 1) = s′ | S(t) =

s, A(t) = a}, ∀s, s′ ∈ S, ∀a ∈ A.

• C is the cost function- C : S → R. ¤

Transition probabilities for every state-action pair sum up to 1. The cost function

C assigns a non-negative real value to each state. Some MDP problems use the

reward function R : S → R, instead of cost function (C). Sometimes, C (or R) is

defined as a function from (state, action) tuples or (state, action, next-state) triples

to real values, instead of state to real values.

In MDPs, it is assumed that each action takes a unit amount of time to execute.

For some problems, however, the execution time of actions vary depending on the

state being in and the type of action. Semi-MDPs address this kind of problems.

For a brief introduction to Semi-MDPs refer to the article [19].
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5.2.2 Dynamic Programming

Dynamic Programming (DP) is a method to solve optimization problems [10]. It

is based on the principle of optimality, which states that every subsolution of an

optimal solution must be optimal. It is applicable for problems where the optimal

solution can be decomposed into optimal subproblems and there are overlapping

subproblems. Due to overlapping subproblems, the solution of these subproblems

are stored in a table to avoid same computation again and again for efficiency

purposes. For this reason, it is called table based method. Although the method

requires decomposing the original problem top down, the computation is bottom

up, i.e., combining optimal subsolutions to come up with an optimal solution to the

original problem.

DP is employed for wide range of optimization problems. It must be noted

here that it is not applicable to all kinds of optimization problems because some

problems are hard and can not be decomposed. But, it is applicable for solving

MDP problems; and it is in the heart of solving reinforcement learning problems

[84].

5.3 Problem Formulation

The control problem addressed here is devised for studying dynamic regulatory net-

works. In the previous chapter, it has been shown that dynamics of these networks

can be abstracted as MC. So, to be general and to address all these networks (MCs,

BNs, PBNs, and discrete Bayesian networks), the problem is defined over MCs.

5.3.1 Required Models for Control

To control the cell dynamics, a model of the cell is needed. This way, it becomes

possible to get insights how the cell evolves or behaves. The behavior of the model

under different perturbations or interventions should be accessible before starting

control, otherwise appropriate actions can not be taken. Given the model behaviors

under a number of interventions are not adequate for controlling. That is, without

an objective the model can only be simulated not controlled. Given the objective,

control actions can be applied to force the model to be in desired states of the state

space. Also important, in practice, is the cost of applying actions. The cost can be

given in terms of money, labor, time, etc.

In this study, three models are considered for the control problem: Gene regula-

tion network model, State cost model, and State-action cost model. The first model

68



clearly defines the network dynamics, i.e., how the system evolves under different

environmental conditions. Even though, network dynamics are known, the purpose

with control is how to force network to be in desirable states. The second model

is aimed to capture this intuition. The third model originates from the real life, as

every control has a cost (money, labor, time, etc). In other words, state-action costs

sometimes become crucial.

Definition 5.2 (Gene regulation network model). A generic discrete gene

regulation network model M is a triple M =< S, A, T >, where S is the discrete

state-space, A is the discrete action space and T is the transition function or behavior

of the model. ¤

Actually, S defines the possible states that M can be in at any time; A defines

all possible actions that can be applied externally to the model; behavior function

T defines dynamics of the model over time; behavior (T ) of the model can be either

deterministic or non-deterministic.

In the deterministic model case, T is a total function from state-action pairs to

states, i.e., T : S×A → S. In the non-deterministic model case, T is a total function

from state-action pairs to the power set of states; T : S × A → 2S . In both cases,

it is said that T is Markovian; the behavior depends only on the current state and

the current action. Also, the behavior is stationary (does not change over time).

More useful representation of T is as probability distribution of the next states-

T : S × A × S → [0, 1]. Components of T are represented by T a
ss′ with the in-

terpretation as probability of the next state is s′ after taking action a in state s.

Since T a
ss′ specifies a probability distribution, it must obey the probability axioms:

∑
s′ T

a
ss′ = 1,∀s ∈ S,∀a ∈ A and T a

ss′ ≥ 0,∀s s′ ∈ S,∀a ∈ A.

Model M is termed generic because it can be regarded as a black-box with

inputs and outputs, i.e., the way of its computation is immaterial. To be more

concrete, given state s and action a as inputs, it outputs a next state s′ according to

its probability distribution. Model M is also termed discrete mainly because state

transitions happen at discrete times; state-space and action-space are discrete as

well.

Once model M is available, it can be used for computational purposes. Since

sampling from the model corresponds to simulation of the underlying biological

phenomena, it has advantage of being sampled for any state-action for unlimited

number of times. Needless to say, the quality of a model (degree of closeness to the

true model) determines the validity of the results generated using the model. Finally,

to reflect the real world case into a more complete modeling process, I argue that it
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is important to have a state cost model and state-action cost model in combination

with network model M .

Definition 5.3 (State cost model). State cost model L is a tuple L =< S, C >,

where S is the state-space and C is the cost function. C is a total function from

states to non negative real values- C : S → R+. ¤

The purpose of model L is to numerically quantize the desirability of states:

smallest value for the most desirable state. The state cost model is a central issue

in control problems since it is the only way that we discriminate between utility of

states. Sometimes, it is more useful to define the state cost model as a reward model.

For this interpretation, L is written as L =< S, R >, where R is a non-negative

reward function: high rewards means desirability of the corresponding state.

Definition 5.4 (State-action cost model). State-action cost model K is a triple

K =< S, A,C >, where S is the state-space, A is the action-space and C is the state-

action cost function from state-action pairs to non-negative real values, denoting the

cost of applying actions- C : S ×A →R+. ¤

Biologically, the costs of applying particular actions across states are not uniform

most of the time. Hence, model K just exhibits such costs; it shows the costs for

actions applied in states.

We can address different computational problems depending on the source of

availability of models M , L and K. But in this thesis, these models are assumed to be

provided and no restriction is assumed about how these models are acquired. Sources

of these models are not unique, yet multiple competing and inconsistent models are

the case for a single biological phenomena. Usually, M is obtained by induction

from datasets using induction methods, or from prior biological information (or

amalgamation of both).

Model L can be gathered from experts implicitly or explicitly. In the explicit

way, experts define a value for each state exhaustively. But, as the state space grows

larger this method becomes infeasible and implicit methods are employed. In the

implicit way, the rules are defined using some features of the states, thus aggregating

states. For instance, a rule can be in the form:

if gene g1 is high and gene g2 is low then the state cost is 1

It is important to observe that this kind of rules aggregate the states and some-

times result in a conflict because a state may conform to multiple rules. In some

70



cases, some states may not conform to any of the specified rules; this case is usually

handled by a default state cost value.

In case no expert is available, the rules of L can be induced automatically (given

the datasets) by the classification method. However, biological knowledge in the

useful format should be made accessible for automated methods.

Model K must be provided by experts as there is no kind of dataset that can

be used for inducing this kind of model. This is true because the cost model is a

subjective combination of multi-criteria, including time, money, labor, etc. However,

if there is no expert and when worse comes to worse, model K may be predicted

based on existing cost models that share some past similar experience.

Models M , L, and K are defined separately. The main reason is that their

sources and objectives are different as discussed. That is, only M is enough for

simulating and studying the dynamics of the underlying phenomena. Also, L and

K are considered separately as K is not needed from biological point of view. In

other words, L can define the objective of the control in the absence of K. But, as

already discussed, in some cases the real life constraints are in effect, so suggesting

the need for model K.

Given these three models, in the sequel the methods for constructing optimal

policies for control purposes are studied in terms of these models.

5.3.2 Finding Optimal Policies

In this study, two approaches are basically considered for the control based on

availability of model K. The first approach applies when the three models M , L

and K are given; and the second approach is necessary when only M and L are

given. For the latter case, the combined model becomes an MDP (1MDP), which

can be used to assess the utility of states [73]. The latter case corresponds to state-

action costs being unknown, neglected, or unimportant. For the former case, the

combined model becomes 2 MDPs (2MDP): M plus L and M plus K. It must

be emphasized here that the control problem begins after the specified models are

given; it is independent of how the models are generated, e.g., automatic, manual,

etc.

The control problem is considered as finding policies for each state given the

models. The input to the control problem is a combined model (either 1MDP or

2MDP), and the output is a deterministic policy π- π : S → A. From this point

of view, the control problem becomes a planning problem: use the models given to

generate a recommendation of what to do given the initial state [84].
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It is required to have |A| ≥ 2, because A must contain at least one special action

corresponding to doing-nothing and at least one control action. In the absence of

external input or control action, cells make transitions according to their normal

dynamics. The special action do-nothing is aimed to capture this. If the only

control input to the model is the action do-nothing, then another term, namely

monitoring should be used instead of controlling. Monitoring is necessary to keep

discovering flows that could not be realized or predicated during the control process

and hence may appear in the system at a latter stage. Discovering such flows

during the monitoring stage brings the control stage into the process again; this

saves resources, and even lives when applied in medical treatment systems.

Experimenter (Biologist) can decide on using a strategy that combines control

and monitor, depending upon the purpose pursued. Since there is no unique such

strategy, I argue that it is necessary to develop optimal control policies for every

need.

The central issue in the control problem is the duration (or horizon) of controlling

and monitoring. Let H be horizon of control and G be horizon of monitoring. Both

H and G can be either finite or infinite. Whether they are finite or infinite is

completely determined by the domain and the problem posed. To make analogy,

for instance if our time unit is minutes, the treatment of cancer can be assumed

infinite, but the treatment of constant bleeding is finite horizon (e.g., 20 minutes).

Considerations can be combined into the following cases;

• No control : Zero H

• Finite Control (FC) : Finite H and Zero G

• Finite Control-Finite Monitor (FCFM) : Finite H and Finite G

• Finite Control-Infinite Monitor (FCIM) : Finite H and Infinite G

• Infinite Control (IC) : Infinite H

Depending on the duration of control stage (value of H), the control problem is

either no control (H = 0), finite control (H = a positive integer) or infinite control

(H = ∞) (see Figure 5.1). There are three instances of finite control, namely FC,

FCIM, and FCFM and one instance, namely IC, of infinite control. Finite control

case is considered under three different schemes as they differ in how the monitoring

is accounted, i.e., FC does not account for it, FCFM accounts only over a finite

duration G, and FCIM accounts for it indefinitely. In this study, no control case
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Figure 5.1: The control problem: 5 cases

has been excluded because there can not be any policy for this case. Here, it must

be emphasized that the order of control and monitor is fixed: first control then

monitoring; this is the natural way things are done.

A common scenario from the medical domain may be articulated as follows:

after certain controls are applied, the cell (or cancer patient in the medical domain)

is monitored for certain period of time. During monitoring, if everything goes well,

no further control is applied; but if something bad is observed, usually the correct

way is to apply control again. For example, consider a cancer patient who had been

treated for 1 year, and after that monitored for several years. If there is no signs for

recurrence, then there is nothing to be done. But, if the patient has some signs of

recurrence of the cancer, say after 2 years, the control (medication, radiation, etc)

may be decided to start again. As a result, the treatment (or control) problem is

in general terms the repeated application of control and monitoring stages. Some

specific cases can be obtained from the general case, and optimal controls can be

found for such specific cases.

5.4 Finite Control

The assumption here is that for each treatment case (patient), the number of control

steps is finite, i.e., doctors do have finite number of treatment options, including gene

therapy, chemical therapy, radiation therapy, etc. If the number of control steps is H,
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then the problem becomes finding control strategy over time steps t = 0, 1, . . . , H−1.

The horizon of monitoring G is zero in this case, so only the state at time t = H is

important.

To be general, the optimal policy is assumed state-dependent and non-stationary

(may change for a state across time), i.e., the optimal policy is a function of the

current state and the remaining time steps. The dependence of the optimal policy

on the current state is evident. The dependence over the remaining time steps is

also crucial as this is a constraint. As it is going to be shown, the utility of states

changes depending on the horizon and the remaining time steps.

In this section, how the optimal policies are driven is shown under the finite

control assumption based on two cases: whether state-action costs are available or

not.

5.4.1 State-Action Costs Unavailable

The purpose here is deriving an optimal policy for the case. Since state-action costs

are not available, only state costs are tried to be minimized stochastically. The

stochastic component is model M .

Let s(t) be a random variable denoting the state visited at time t, then C(s(t))

is the cost of step t. And let Vt(s(t)) be the expected H − t step value function

starting at t for state s(t). Given s(t) = s, Vt(s) can be written as the expected

total cost during the next H time steps starting from state s as given next;

Vt(s) = E
[ H∑

k=t

C(s(k)) | s(t) = s
]

(5.1)

Let π = (π0, π1, . . . , πH−1) be a non-stationary deterministic policy. The value

function V π
t for policy π at time t is defined as the total expected cost for the

following H steps acting under the policy π as given next;

V π
t (s) = E

[
C(s(t)) + C(s(t + 1)) + · · ·+ C(s(H))|s(t) = s

]

= C(s) + E
[
C(s(t + 1)) + C(s(t + 2)) + · · ·+ C(s(H))|s(t) = s

]

= C(s) +
∑

s′∈S T πt
ss′

[
C(s′) + E

[
C(s(t + 2)) + · · ·+ C(s(H))|s(t) = s

]]

= C(s) +
∑

s′∈S T πt
ss′V

π
t+1(s′) (5.2)

t = 0, 1, . . . H − 1

where V π
H(s) = C(s), for any policy and any state s.

74



The value function given in Formula (5.2) is easily computable by backing up

values backward (using dynamic programming), i.e., first computing V π
H(·), then

V π
H−1(·), and so on until V π

0 (·) is determined.

Action value function Qπ
t (s, a) is defined to be the average cost of acting by a

in s at time t, and then following the action dictated by a given policy π.

Qπ
t (s, a) = C(s) +

∑
s′∈S T a

ss′V
π
t+1(s′) (5.3)

t = 0, 1, . . . H − 1

where V π
t+1 is computed using Formula (5.2).

Instead of evaluating a given policy, it is particularly more interesting to find the

policy which gives the minimum expected costs for all states simultaneously. This

policy is by definition referred to as optimal non-stationary policy and denoted π∗

with components π∗ = (π∗0, π
∗
1, . . . , π

∗
H−1). Correspondingly, the optimal policy is

the unique optimal value function; and it satisfies the following formula (known as

Bellman optimality equation) [84];

V π∗
t (s) = mina∈A E

[
C(s(t)) + C(s(t + 1)) + · · ·+ C(s(H))|s(t) = s

]

= mina∈A

[
C(s) +

∑
s′∈S T a

ss′V
π∗
t+1(s′)

]
(5.4)

t = 0, 1, . . . H − 1

Usually V π∗
t (·) is denoted V ∗

t (·), since there may be more than one optimal policy;

but the optimal value function is unique.

The value function for the optimal policy can be computed in the same way as

the value function for a given policy, i.e., by backing up values backward. The only

burden is computing the value function for every action in each step and choosing

the minimum one.

Optimal action value function for state s and action a, denoted Q∗
t (s, a), is given

in Formula (5.5) with the interpretation of applying a in s, and then following the

optimal policy.

Q∗
t (s, a) = C(s) +

∑
s′∈S T a

ss′V
∗
t+1(s′) (5.5)

t = 0, 1, . . . H − 1

75



Using the optimal action value function, the optimal policy is defined as;

π∗t (s(t)) = arg mina∈A Q∗
t (s(t), a) (5.6)

t = 0, 1, · · · ,H − 1

Discounted Setting

In some cases, discounted settings may be desired to account for uncertainty of

delayed costs. However, Equation 5.1 is for non-discounted settings. Under the

discounted settings, the state value function is (similar to Formula 5.1) defined as;

Vt(s) = E
[
C(s) +

H∑

k=t+1

γk−tC(s(k)) | s(t) = s
]

(5.7)

where γ (0 ≤ γ ≤ 1) is discount factor for adjusting the importance of the costs

obtained based on time.

The optimal value function in the discounted setting can be derived using ar-

guments similar to those in non-discounted settings; it is given in the following

formula.

V ∗
H(s) = C(s)

V ∗
t (s) = mina∈A

[
C(s) + γ

∑
s′ T

a
ss′V

∗
t+1(s′)

]
(5.8)

t = 0, 1, . . . ,H − 1

The optimal action cost function and the optimal policy can be defined analo-

gously to non-discounted settings.

5.4.2 State-Action Costs Available

When the state-action costs are available, as discussed before, the problem becomes

2MDP problem. These two MDPs should be somehow combined to find optimal

policies. The purpose is trying to reach high utility (low cost) states with the

smallest possible total action cost.

Let the state function at time step t be s(t), and the control input be a(t). Then,

let Ct(s(t), a(t)) be the cost of applying action a(t) in state s(t) at time step t. Note

that s(t), a(t) and Ct(s(t), a(t)) are all random variables. In model K, it is assumed

that the state-action cost function does not depend on time. For this reason and
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for brevity, subscript t is dropped and action cost is denoted by C(s(t), a(t)). The

overall cost function can be written as the expected value of the action cost values

over all possible next states, starting from the given initial state s(0) [16].

E
[H−1∑

t=0

C(s(t), a(t)) | s(0)
]

(5.9)

The net effect of applying H steps control is ending up in state s(H). For-

mula (5.9) does not say anything about which states are desired and which states

are not. One solution is using function C(·) from model L for this purpose. Datta

et al [16] proposes to combine C(s(t), a(t)), t = 0, 1, · · · ,H − 1 and C(s(H)) into a

finite horizon formula, which is to be minimized as follows:

E
[H−1∑

t=0

C(s(t), a(t)) + C(s(H))|s(0)
]

(5.10)

Considering V0(s(0)) as the state value function for the given initial state s(0),

Formula (5.10) becomes:

V0(s(0)) = E
[H−1∑

t=0

C(s(t), a(t)) + C(s(H))
]

(5.11)

The minimization solution to Formula (5.11) is optimal value function V ∗
0 (s(0))

for time t = 0 and can be found using dynamic programming as given next in

Formula (5.12).

V ∗
H(s(H)) = C(s(H))

V ∗
t (s(t)) = mina∈A

[
C(s(t), a) +

∑
s′ T

a
s(t)s′V

∗
t+1(s′)

]
(5.12)

t = 0, 1, · · · ,H − 1

Optimal policy can be computed from the optimal action value function using

Formula (5.6), which in turn is:

Q∗
t (s(t), a) = C(s(t), a) +

∑
s′ T

a
s(t)s′V

∗
t+1(s′) (5.13)

t = 0, 1, · · · ,H − 1

The discounted setting for this case can be easily handled similar to Equation 5.7.
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Note that all the components in Formula (5.12) become known when the three

models M , L and K are given, and all are defined in the same state and action

spaces. That is, C(s(H)) is from C(·) of model L, C(s(t), a(t)) is from C(·, ·) of

model K and T
a(t)
s(t)s(t+1) is exactly T component of model M .

Semi-MDP Approach

Semi-MDPs combine state costs and action execution times into a unique framework.

Motivated by this, it is considered that state costs and action costs can be combined

into a unique framework using the same idea. Although the problem handled here

is not concerned with the action execution times, but the action cost, interpreting

action costs as execution times enables casting the problem as Semi-MDPs.

The value function for a non-stationary policy π can be defined as follows:

V π
t (s) = E

[
C(s) + (1− γC(s,π))

[
C(s(t + 1)) + · · ·

+
[
(1− γC(s(H−1),π))C(s(H))

] · · · ] | s(t) = s
]

= C(s) + (1− γC(s,π)) ·∑s′ T
π
ss′ · V π

t+1(s′) (5.14)

t = 0, 1, · · · , H − 1

where γ (0 ≤ γ < 1) is discount factor and V π
H(s) = C(s), ∀s ∈ S.

The optimal value function can be defined as a minimization solution to Equa-

tion (5.14) as follows:

V ∗
t (s) = mina∈A

[
C(s) + (1− γC(s,a)) ·∑s′ T

a
ss′ · V ∗

t+1(s′)
]

(5.15)

t = 0, 1, · · · ,H − 1

Note that (1−γC(s,a)) provides variable discount factor for each state-action pair

on the long-term cost. When γ = 0, we get Equation 5.4 by assuming 00 = 0. So,

Equation 5.4 is a special case of Equation 5.15. This is particularly important as

when state-costs functions are known but desired to be ignored. In that case what

is important is minimizing state costs, and the formula reduces to the intended one

given in Equation 5.4. Noteworthy, the main quantity in semi-MDP formulation is

state cost; not action cost as opposed to Formula (5.10). The optimal action value

functions and optimal policies can be defined similar to Equations (5.5) and (5.6),

respectively.

The purpose of Equation (5.14) is to make a good parametric balance between
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state costs and state-action costs. This kind of balance is very different than that

presented in Equation (5.10). In the latter equation, the combination is linear, and

needs re-engineering for possible H values. But, the approach here does not depend

on the horizon, and the same cost values can be used with varying H values without

re-scaling.

Note that there is a technical problem with Formula 5.14; costs should be posi-

tive. However, it is already assumed that cost values are non-negative. So, one can

easily replace zero costs with an infinitesimal small cost values. By this way, the

technical problem disappears.

5.4.3 Execution of Optimal Policy

The control methods studied so far select a single action for every (state, remaining-

time) pair. Note that they are computed off-line and performed on-line. This section

briefly presents how they are performed.

Noting the similarities between Formulas (5.4), (5.12) and (5.15), optimal action

value functions and optimal policies have similar formulas as well, it can be easily

realized that optimal value functions and optimal action value functions can be

found using dynamic programming. Since it is straightforward to come up with an

optimal policy given the optimal action function, it can be pre-computed before the

actual control commences.

Algorithm 5 can be used for acting using π∗, starting from initial state s0. Since

π∗t (s) is computed for every time step t ∈ {0, 1, . . . ,H − 1} and for every state

s ∈ S, the optimal action selection is a trivial computation: just a look-up table

with complexity O(1). The function Execute(s, a), performs action a in s, and

returns the next observed state.

Algorithm 5 Acting when optimal policy is computed
Require: π∗t (s(t)), ∀s ∈ S and t ∈ {0, 1, . . . , H − 1} computed

s = s0

for t = 0 to H − 1 do
a ← π∗t (s)
s ← Execute(s, a)

end for

5.5 Finite Control-Infinite Monitoring

In the FC approach, it is strictly assumed that the control step consists of H steps

(sometimes at most) and everything ends after these steps (or the state remains
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thereafter forever). However, it is sometimes more realistic to model the process

having finite control stage first and infinite monitoring stage next, i.e., first apply

H steps of control then stop controlling and commence monitoring. Usually this

kind of control is used in medicine, first apply medication for a certain period (H)

and observe the patient for a certain period (G) of time. During G no medication

is applied.

For each action, there is MC to be followed if the respective action is applied.

This implies that the MC associated with the do− nothing is to be followed during

the entire monitoring period; and this means dynamics do not change because there

is no external input to the system; the system evolves without perturbation.

Let the MC to be followed during the monitoring stage be mMC. So, state space

S, state cost function C(·) and mMC define a single action MDP corresponding to

do−nothing. The solution for this MDP can be found using dynamic programming

techniques. The value iteration method given in Algorithm 6 is the most frequently

employed method for finding the value of every state, i.e., solving the given MDP.

In the algorithm, Css′ = C(s′) because C(s, do− nothing) = 0.

The value of states represents their long term (or infinite) cost. This is reasonable

since the length of the monitoring stage can not be determined a priori most of the

time. So, the canonical approach is assuming infinite monitoring stage.

As it is shown in the sequel, the FCIM case is very similar to the FC case.

Particularly, only the value function of the base case changes; after computing the

value functions for all states for the base case (H’th step). Similar methods to the

FC case can be used.

5.5.1 Available State-Action Costs

Let the value (long term cost) of the states found by the value iteration be V∞(s), s =

1, 2, · · · , |S|. So, the optimal solution to the FCIM setting becomes,

V ∗
H(s) = V∞(s)

V ∗
t (s) = mina∈A

[
C(s, a) +

∑
s′ T

a
ss′ · V ∗

t+1(s′)
]

t = 0, 1, · · · ,H − 1 (5.16)

There is only one difference in the initialization step between Formulas (5.12)

and (5.16). Although the difference is small, it is considered very important. This

is true because in the latter it is considered that after applying H control steps,

the process continues to evolve; however, in Equation (5.12), it is assumed that the
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system stops. Concerning human life, stopping criterion corresponds either to death

or to full-recovery from the illness. Clearly, these are extreme conditions, and most

of the time the system (patient) lives with uncertainty. Consequently, the FCIM

approach exploits this fact.

Algorithm 6 Value iteration for 1 action

Require: C(·) and T do−nothing

Ensure: V ≈ V ∗

repeat
4← 0
for all s ∈ S do

c ← V (s)
V (s) ← C(s) + γ

∑
s′ T

do−nothing
ss′ · V (s′)

4← max(4, |c− V (s)|)
end for

until 4 < ε

After finding the optimal value functions, acting is straight forward as it has

already been shown in the previous section.

5.5.2 State-Action Costs Unavailable

Let CH be the total cost of states for applying H-steps control, and let V∞(s) be

the total discounted cost spent in infinite step monitoring stage. So, the optimal

value function is defined as minimizing the expected value of the sum of these two

costs for all states:

V ∗
0 (s) = minE

[
C(s) + C(s(t + 1)) + . . . + C(s(H − 1)) + V∞(s(H)) | s(0) = s

]

The solution has the same structure as Formula (5.4), but the case V ∗
H(s) should

be initialized to the one found by Algorithm 6.

5.6 Finite Control-Finite Monitoring

This case is similar to the FCIM case. The only difference is in the execution of

the value iteration algorithm for finding the base case values. That is, the algo-

rithm should be iterated G steps if the monitoring horizon is G, instead of until

convergence.

After computing the value functions for the base case, the problem clearly be-

comes FC problem, and since it has been already shown how to solve them for FC
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and FCIM, it is not repeated here. Of course, this does not mean that the methods

under FCFM case will give the same results as FC and FCIM methods for the same

problem.

5.7 Repeated Application of Finite Control Methods

The structure of the solutions for all the finite control methods (FC, FCIM, FCFM)

are similar. Actually, the iterative part is the same, but only the base case changes.

These methods are developed for cases where the control strategy specified is applied

once or applied in independent iterations. In this section, the control strategy is

allowed to be specified in terms of repeated applications of these constituents.

Let FC(H), (FCIM(H)), be the FC (FCIM) problem with control horizon H,

similarly let FCFM(H,G) be the FCFM problem with control horizon H and mon-

itoring horizon G. Clearly, given the finite control method and its parameters,

i.e., only H for FC and FCIM, and both H and G for FCFM, the optimal poli-

cies can be computed as discussed so far. But, consider the case: ”find optimal

policy, for time steps t ∈ {0, . . . ,H1 − 1} ∪ {H1 + G1, . . . , H1 + G1 + H2 − 1},
where application of FCIM(H1, G1) followed by application of FC(H2)”. This

can be solved by solving FCIM(H1, G1) for t ∈ {0, . . . , H1 − 1} and FC(H2) for

t ∈ {H1 + G1, . . . ,H1 + G1 + H2 − 1}, independently. However, such of solutions

are not optimal as they do not exploit the full sequential information provided.

Proposition 5.1. Optimal policies for sequential application of FC, FCIM, and

FCFM can be solved within the FC, FCIM, FCFM framework with restrictions.

Sketch of the Proof: All possible sequential applications are the following (with

appropriate parameters; however, note that nothing can follow FCIM)

• FC(H1) followed by FC(H2) is FC(H1 + H2) with no restrictions

• FC(H1) followed by FCFM(H2, G2) is FCFM(H1 + H2, G2) with no restric-

tions

• FC(H1) followed by FCIM(H2) is FCIM(H1 + H2) with no restrictions

• FCFM(H1, G1) followed by FC(H2) is FC(H1+G1+H2) with the restriction

that the action do− nothing is forced from t = H1 to t = H1 + G1.

• FCFM(H1, G1) followed by FCFM(H2, G2) is FCFM(H1 + G1 + H2, G2)

with the restriction that the action do − nothing is forced from t = H1 to

t = H1 + G1.
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• FCFM(H1, G1) followed by FCIM(H2, G2) is FCIM(H1 + G1 + H2) with the

restriction that the action do−nothing is forced from t = H1 to t = H1+G1.

¤

From Proposition 5.1, it is not difficult to see that the sequential application

of any number (not just 2) of controls can be formulated within the framework of

three basic controls. So, it can be concluded that all kinds of finite control problems

can be formulated in terms of FC, FCIM and FCFM; thus making the framework

complete.

5.8 Infinite Control

In some cases, instead of a finite horizon for control, it is infinite or undetermined.

For both cases, the reasonable assumption is finding optimal stationary (same for

a state at all times) policies. In the infinite control case the approach adopted in

finite control cases can not be used because:

1. infinite sum of cost functions is infinite, and

2. it is impossible to find and store different policies for all time steps as the

number of time steps is infinite.

For these reasons, value functions should be found using discounting and the time

invariant policy. In the sequel, depending on state-action cost function availability,

methods of deriving optimal control policies are given.

5.8.1 State-Action Costs Available

Let Ca
s be the sum of the costs of applying action a in state s and the immediate

utility of s: Ca
s = C(s) + C(s, a). This is computable for every state-action pair.

Under these settings, it is reasonable to minimize the discounted infinite total cost

in order to find optimal policies.

The following formula is used for finding the optimal values for function V .

V π∗(s) = mina∈A E
[∑∞

t=0 γtct | s(0) = s
]

= mina∈A E
[
c0 + γ

∑∞
t=0 γtct+1 | s(0) = s

]

= mina∈A E
[
c0 + γV π∗(s(t + 1)) | s(0) = s

]

= mina∈A Ca
s + γ

∑
s′ T

a
ss′V

π∗(s′) (5.17)

∀s ∈ S
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where ct is the cost at time step t such that E[ct|s(t) = s, a(t) = a] = Ca
s .

The value iteration process presented in Algorithm 7 can be used to solve Equa-

tion 5.17 [84]. After computing the state values, the following deterministic policy

is applied and Algorithm 5 is used for optimal action selection with horizon H = ∞,

π∗(s) = arg min
a∈A

Ca
s + γ

∑

s′
T a

ss′V
π∗(s′) (5.18)

Algorithm 7 Value iteration for multiple actions
Require: Ca

s , s ∈ S, a ∈ A and T and γ given
Ensure: V ≈ V ∗

repeat
4← 0
for all s ∈ S do

v ← V (s)
V (s) ← mina∈A Ca

s + γ
∑

s′ T
a
ss′V (s′)

4← max(4, |v − V (s)|)
end for

until 4 < ε

Algorithm 7 closes the gap between the optimal value function and the current

value function in each iteration. As the number of iterations h is infinite, the

algorithm computes the optimal value function. However, this may turn up as a

very large number for a zero error.

For this reason, optimal value function is computed within an error bound of

infinitesimal value, ε. The nice property of Algorithm 7 is that the number of

iterations can be estimated for any given ε. Let Cmax = maxs,aC
a
s , ∀s ∈ S,∀a ∈ A,

and since limh→∞ V̂ ∗
h (s) = V ∗(s), ∀s ∈ S, the following equation holds,

V ∗ − V̂ ∗
h = Cmax

1
1−γ − Cmax

1−γh

1−γ

≤ ε (5.19)

The desired estimation is obtained by solving Equation 5.19 for h.

ĥ = logγ ε
(1− γ)
Cmax

(5.20)

5.8.2 State-Action Costs Unavailable

The optimality equation is the same as Equation 5.17 with Ca
s = C(s). It can be

solved using Algorithm 7 with initial values V (s) = C(s), ∀s ∈ S .
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5.9 Multi-Objective Control

The two cost functions in Formula (5.10) are assumed to be given by domain experts

(biologists). And it is also assumed in the literature that these two costs are given

in a manner that they are additive and reflect their true values in the biological

domain. Clearly, defining them requires a good knowledge engineering expertise for

every value of H, since it is a parameter. This is true because when H changes,

these values should be re-scaled to make them additive in order to reach meaningful

policies. To be more concrete when the cost functions are kept the same, if H is

too small (say 3), the latter cost has much impact on the score than when H is too

large (say 20).

I argue that these two costs are not additive because one is expressed in terms

of money, labor, facilities, etc; but the other is expressed based on how desirable the

states are. In other words, these two costs are expressed in different units. Clearly,

these two kinds of costs can be combined with difficulty, if ever possible. To relax

this condition, the state-action cost model can be neglected even if it is available.

This approach assumes that every action in every state is applicable with small

and uniform costs. However, this approach does not work when state-action costs

are inevitable. When both state and state-action cost functions are provided and

inevitable, the multi-objective (MO) policy might be the best one. This is because,

as it is already claimed, these cost functions are not additive or comparable and

different actions optimize each cost functions. In other words, this is an inherent

trait of the domain for such cases.

5.9.1 Basics of Multi-Objective Optimization

Let X be a decision space, and f(x) =< f1(x), f2(x), . . . , fk(x) > be a vector of

functions defined over X, and x ∈ X. Then each component of f(x) is called an

objective, so totaling to k objectives. The multi-objective problem is posed as;

minimize f(x) = < f1(x), f2(x), . . . , fk(x) >

such that x ∈ X

where the x values minimizing f(x) are called multi-objective optimal solutions.

In case k = 1, the problem is single-objective optimization, where the meaning of

minimization is obviously clear, i.e., the decision alternatives (x values) can be

ordered. But when k ≥ 2, the meaning of minimize is ambiguous, i.e. decision
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alternatives can not be ordered. In other words, subjective preference structures

should be defined [59].

For the multi-objective problems, the minimized solution is not necessarily unique.

This is mainly because of the lack of objective minimization structure, otherwise the

problem is not multi-objective but single-objective. For instance, consider the prob-

lem of selecting the minimum of two vectors (solutions) < 3, 9 >,< 4, 7 >. Clearly,

without a subjective preference structure the problem can not be solved. But, if the

preference structure is the norm of the vector the second is minimum.

5.9.2 Constructing Multi-Objective Solution

In the multi-objective case, for a given state and horizon there might be more than

one competing actions. In such case, since there is no objective reason to prefer one

of them over others, the best is to present them to the decision maker (Biologist) for a

subjective decision. Note that this process can not be automated as an action might

lead to bias towards optimizing specific objective. This process can be automated

in case a unique action optimizes all the objectives simultaneously.

Let Q∗
t (s, a) =< Q1∗

t (s, a), Q2∗
t (s, a), . . . , Qk∗

t (s, a) > be optimal value function

vector of state s at time step t for action a, where k ≥ 1 is the number of objectives.

Given the computed values for Q∗
t (s, ·), the relations between any two different

actions is defined next.

Definition 5.5 (Dominated). Given any two different actions a1, a2 ∈ A, action

a1 is said to be dominated by action a2 at time t in state s if Qi∗
t (s, a1) ≥ Qi∗

t (s, a2),

∀i ∈ 1, 2, . . . , k and at least for one i, Qi∗
t (s, a1) > Qi∗

t (s, a2) holds.

Definition 5.6 (Indifferent). Given any two different actions a1, a2 ∈ A, actions

a1 and a2 are said to be indifferent if a1 is not dominated by a2 and a2 is not

dominated by a1.

If action a1 (a2) is dominated by action a2 (a1) at time t in state s, then clearly

a1 (a2) can not be selected for optimal control, as a2 (a1) is better than a1 (a2)

by considering all the objectives. Note that the dominance relation is strict partial

order as it is clearly both asymmetric and transitive. If indifferent relation holds

between two different actions, preference of one over the other can not be automated

objectively. In short, only the indifferent actions not dominated by other actions

(i.e. minimal set of actions) are needed to be present in the alternatives presented

to the decision maker.
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Assume all the values Q∗
t (s, a), ∀s ∈ S,∀a ∈ A are computed. For any s and t,

let actions not dominated and dominated be ndAt(s) and ¯ndAt(s) = A \ ndAt(s),

respectively. Then, all the actions in ¯ndAt(s) can be eliminated from further con-

sideration for action selection at t in s.

After computing Q∗
t (·, ·) for all t ∈ {0, 1, . . . , H − 1}, Algorithm 8 can be used

for sequential optimal action selection, where the Select function presents to the

decision maker a set of non-dominating actions with the value of actions for the

state in case |ndAt(s)| > 1. And in case |ndAt(s)| = 1, it automatically selects the

respective action. Both s and Q∗
t (s, ndAt(s)) are also included in the Select function

to help the expert in subjective decision making.

Algorithm 8 Acting when MO value functions are computed
Require: Q∗

t (s, t), ∀s ∈ S, ∀a ∈ A and t ∈ {0, 1, . . . , H − 1} computed and
initial state s(0) given
s = s(0)
for t = 0 to H − 1 do

ndAt(s) = {a|a ∈ A, a is not dominated in s at t }
a ← Select(ndAt(s), s,Q∗

t (s, ndAt(s)))
s ← Execute(s, a)

end for

Since, the actions in the set ndAt(s) do not dominate and are indifferent to each

other. The prior selection probability of any of them can be reasonably assumed

equal. This actually originates from being the objective and from the indifferent

relation among them. Note that this does not mean that their preference can not

be ordered subjectively, but objectively they can not. So, the prior probability of

any action a ∈ ndAt(s) to be selected to execute is 1
|ndAt(s)| .

The central issue is how to compute Q∗
t (·, ·). Consider that, the Q∗

t (·, ·) values

are computed by backing up the values from the next time step t+1. This is because

the values are assumed to be given for time step H and values for t = 0, 1, . . . , H−1

are asked to compute.

In time step t, there are |ndAt(s)| number of vectors for state s. None of

Q∗
t (s, a), a ∈ ndAt(s) can determine in isolation the optimal state value (note that

the min operator is not meaningful). To exploit the fact that the actions in ndAt(s)

have equal selection probability, the optimal state value vector V ∗
t (s) can be defined

as the component-wise mean of Q∗
t (s, a), a ∈ ndAt(s) as follows:
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V ∗
t (s) =

1
|ndAt(s)| <

∑

a∈ndAt(s)

Q1∗
t (s, a),

∑

a∈ndAt(s)

Q2∗
t (s, a), . . . ,

∑

a∈ndAt(s)

Qk∗
t (s, a) >

(5.21)

The computation of Formula 5.21 is reasonable as 1
|ndAt(s)| acts as a probability

and components are values for the cost accrued. Note that in the formula, the

components are never compared or added to each other. But, they are considered

holistically when the non-dominated actions ndAt(s) are decided and values are

backed up. In other words, the values (and so optimal policy) at time t−1 is strongly

dependent on the set ndAt(·), and so on (i.e., the computation is synchronous, e.g.,

computed first for t = H − 1, then t = H − 2, and so on until t = 0). So, the

components interact for determining optimal policy, but never summed or compared

to each other. Actually, this is what we want.

The determination and computation of objectives are clearly application de-

pendent. Given the models M , L, and K, there are two objectives (i.e., k =

2), state costs and state-action costs. Let optimal cost vector be Q∗
t (s, a) =<

Q1∗
t (s, a), Q2∗

t (s, a) > and suppose objective 1 is the expected cost for C(s, a) and

objective 2 is the expected averaged cost of C(s). Note that there is no explicit

or trivial way of deriving Q∗
t (·, ·) for a given horizon H for each of the costs. The

components are naturally computed as follows:

Q1∗
H (s, a) = 0

Q1∗
t (s, a) = Ct(s, a) +

∑
s′ T

a
ss′

1
|At+1(s′)|

∑
a′∈At+1(s′) Q1∗

t+1(s′, a′)

t = 0, 1, · · · ,H − 1 (5.22)

and

Q2∗
H (s, a) = C(s)

Q2∗
t (s, a) = C(s) +

∑
s′ T

a
ss′

1
|At+1(s′)|

∑
a′∈At+1(s′) Q2∗

t+1(s′, a′)

t = 0, 1, · · · ,H − 1 (5.23)

In both of the formulas above, the auxiliary variable V ∗
t (s) given in Formula 5.21

is not shown, instead its explicit form is given. Note that there is no term involving
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C(s) in Formula 5.22; and there is no term involving C(s, a) in Formula 5.23. Com-

putations in both formulas are based on backward backup; they should be computed

synchronously, i.e., Q1∗
H and Q2∗

H first, Q1∗
H−1 and Q2∗

H−1 next, and so on. For each s

and t, the set of non-dominated actions are determined before passing to t− 1.

5.10 Running Example

In this section, I show how the control problem can be formulated given a PBN. On

the formulated control problem, the behavior of the presented control methods and

their effectiveness are demonstrated on a running example. Also, the effectiveness

is explored under different problem types (FC, IC, FCIM, and FCFM). All the

algorithms are implemented in Matlab.

Figure 5.2: State transition diagram for the example (from Shmulevich et al [80])

This example is based on the one given in [80], where there are 3 genes, x1, x2,

and x3. There are two predictors for x1, one for x2 and two for x3. So, there are 4

possible selections of predictors for the overall network. Assume these predictors are

enumerated as P1, P2, P3 and P4. The details of how the state transition diagram is

generated from the given PBN are omitted here (for details see [80]); the transition

diagram is shown in Figure 5.2.

Assume the selection probabilities of the predictors are P1 = 0.3, P2 = 0.3,

P3 = 0.2 and P4 = 0.2. After this assignment, the MC that corresponds to normal

dynamics of the given 3 genes can easily be computed. So, the MC obtained in

the absence of any external control determines the dynamics. Two of the states,

namely 000 and 111 are sinks, while others are transient. Biologically, let state 000
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represent cancerous state and 111 represent normal state. There are only two states

that can lead to cancerous state (state 000 itself and state 011). To match with this

discussion, the immediate costs for the states can be assumed as follows;

C(s) =





2, s=000

0, s=111

1, otherwise
For control purposes, two kinds of control have been designed, particularly set-

ting x1 (the leftmost bit) to either 0 or 1. To match real biological systems, it is

assumed that the result of applying controls are non-deterministic; 65% (arbitrar-

ily selected) of the time they have intended result and 35% of the time they have

non-intended results with equal probability of resulting in non-intended state. The

arbitrary values are selected in such a way that all states are reachable from every

state, but with a low probability for non-intended states.

For example, assume that the current state is 001 and we apply the control

x1 = 1, the intended result is 101 with 65% probability and the other 7 states are

resulting states with 0.05% probability each. Under these considerations two MCs

are generated; one for x1 forced to 0 and the other when x1 is forced to 1. So, there

are three MCs, one for action 1 (do-nothing) and one for action 2 (x1 set to 0) and

one for action 3 (x1 set to 1).

The state action cost function used is;

C(s, a) =





0, if a = 1

0, if x1 = 0, a = 2

1, if x1 = 1, a = 2

1, if x1 = 0, a = 3

0, if x1 = 1, a = 3
From the action cost function, it is clear that action 1 has no cost irrespective of

the states, and the other actions have costs depending on the state (depending only

on x1). For actions 2 and 3, if x1 has the same value as the target action, then the

associated cost is 0. Effectively in these cases, only transition probabilities change

compared to action 1.

The performance criteria in all of the experiments used is the percentage of

being in state 111 and not being in state 000 (difference between these percentages)

with hundred percent assumed as being in any of the 8 states. That is high values

for state 111 and low values for state 000 are desired. To test the performance,

initial states are assumed equiprobable (i.e., 12.5% each). Since state transitions

are stochastic, all the results are averaged over 20 runs. Note that the performance

criteria selected gives 0 for prior probabilities (i.e., 12.5% for 111 and 12.5% for 000,
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so the difference is 0).

5.10.1 State-action cost unavailable

When the state-action costs are not available, the control methods generate policies

based only on the biological relevance. So, this case tests the effectiveness of the

control methods. Also important is the kind of problem handled (either, FC, IC,

FCIM, or FCFM) and the kind of approach employed (either, FC, IC, FCIM, or

FCFM). So, to show that for a given kind of problem, the respective solution method

is most effective, a series of experiments are done.

Problem is FC

Assume that the actual problem is FC with H = 3 (Experimenter applies control

for H steps and observes the immediately following state). Here, what is important

is the state after 3 steps of control. Clearly, it is accepted as success if the objective

is achieved with high percentages after applying 3 steps of control.

FC IC FCFM FCIM No control

51.5 47.2 41.7 42.7 8.7

The above table shows that all the control methods are better than no control

(do−nothing, i.e., just applying action 1 irrespective of state and horizon). FCFM

result is obtained for control horizon H = 3 and monitor horizon G = 2 throughout

and discount factor is 0.7. The control horizon for FCIM is set to H = 3 and

discount factor is 0.7 throughout. The FC result is better than all other controls

because the problem and the control types match. Although better than the no

control case, FCFM and FCIM results are poor compared to FC. This is because

they assume that there is a monitoring stage and optimize accordingly. IC result

is close to FC, this also makes sense since IC (discount factor is 0.7 throughout)

considers the control as lifelong (i.e., there is no monitoring stage and it is true in

the experiment case). Also note that no control is better than the score obtained

with prior probability. This comes from the dynamics of the MC used; without

control it tends to be in 111.

It must be noted that the optimal policies generated by different methods do

differ. The policies of each control strategy are presented in Table 5.1. Action 2

is not selected by any of the control methods. This is what we want since it sets

x1 to 0 and our objective requires x1 = 1. The results also show that controlling
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Table 5.1: Policies under unavailable state-action costs

FC FCFM FCIM IC
State t=0 t=1 t=2 t=0 t=1 t=2 t=0 t=1 t=2 t
000 3 3 3 3 3 3 3 3 3 3
001 3 3 1 3 3 3 3 3 3 3
010 3 3 1 3 3 1 3 3 1 3
011 3 3 3 3 3 3 3 3 3 3
100 3 3 1 3 3 3 3 3 1 3
101 1 1 1 1 1 1 1 1 1 1
110 1 1 1 1 1 1 1 1 1 1
111 1 1 1 1 1 1 1 1 1 1

more than two steps does not help because the policy becomes stationary for all the

cases, (the columns t = 0 and t = 1 are all the same). On the other hand, note

that at least one step of control is essential as the column t = 2 is different across

all the methods and differ from the columns t = 0 and t = 1. Also note that from

state 000 all the methods select action 3, this is reasonable since only actions 2 and

3 can provide exiting from this state; among them action 3 guarantees the exit.

Although all the control methods achieve the same basic control, they slightly differ

when t = 2. This shows that different assumptions on the control problem lead to

different policies. Note that the policy found by IC is equal to the column t = 0 of

others, i.e., IC outputs stationary converged policy.

Problem is IC

Assume that the control problem requires infinite control (Experimenter applies con-

trol in each time step). And also assume that FC, FCIM and FCFM are designed as

described in Section 5.10.1. Since FC, FCIM and FCFM suggest control only dur-

ing the first H steps, after H steps, it is assumed that they suggest no control (i.e.,

action 1). To simulate the IC case, the state at t = 10 is sampled for performance

evaluation. The results are as follows;

FC IC FCFM FCIM No control

76 85.2 80.5 80.7 30.5

It is apparent that IC result is the best, and all control methods are superior to

the no control case. The results obtained with this setting is very high compared

to the one obtained in Section 5.10.1 because the samples are taken at t = 10 and
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the underlying MC tends to be in 111 as time advances. Note that the policies are

exactly the ones presented in Table 5.1 because they have been run with the same

parameters.

Comparing the results when the problem is finite (FC) and infinite (IC), it can

be recognized that the respective control strategies are superior to others.

Problem is FCIM

Assume that the problem is FCIM (Experimenter applies H steps of control and

monitors the system thereafter). To simulate the infinite monitoring, the state at

t = 10 is sampled. For the IC experiment, the stationary policy is applied during

the first 3 steps and then action 1 is applied during the remaining 7 steps. For

FCIM, FC, and FCFM, control is applied during the first 3 steps and then action 1

is followed to get the results given next;

FC IC FCFM FCIM No control

81.2 48 75.5 82 30.5

Again, all the control methods score better than no control. Although FCIM

result is slightly larger than FC result, FCIM scores better than all others is incon-

clusive. But, it can be concluded that it is not worse than others.

Problem is FCFM

Assume that the problem is FCFM (Experimenter applies H steps control and ob-

serves G steps of monitoring). Since H + G = 5, the methods are evaluated with

the resulting state at t = 5; and the following results are obtained:

FC IC FCFM FCIM No control

54.5 52.2 59.2 51.5 24.7

It is conclusive that FCFM scores better than all others; and all the control

methods score better than no control.

5.10.2 State-action cost available

Policies of the methods are presented in Table 5.2. Unlike, state-action costs un-

available case, Table 5.2 contains entries where action 2 is selected. This is because

when x1 = 0, (consider state 000 for instance) applying action 3 guarantees escape,
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Table 5.2: Policies under available state-action costs

FC FCFM FCIM IC
State t=0 t=1 t=2 t=0 t=1 t=2 t=0 t=1 t=2 t
000 2 2 2 2 2 3 2 2 3 3
001 1 2 1 1 1 1 1 1 1 1
010 1 2 1 1 1 1 1 1 1 1
011 1 2 2 1 2 3 3 3 3 3
100 3 3 1 1 1 3 1 1 1 3
101 1 1 1 1 1 1 1 1 1 1
110 1 1 1 1 1 1 1 1 1 1
111 1 1 1 1 1 1 1 1 1 1

but it has a cost. On the other hand, in this case action 2 has no cost, but non-

negative probability of escape. In state 111, none of the methods select action other

than 1. This is also reasonable since there is no cost associated to action 1. Note

that action 1 is better than action 3, even though action 3 has zero cost. This is

because for instance action 3 may lead to 000 with 5% probability from 111. In

short, all the methods find basic parts of reasonable actions.

On the other hand, the policies generated differ similar to unavailable state-

action costs case. This shows that methods should be chosen based on the experi-

mental strategy planned. As it is already shown, the control strategy matching the

experimental strategy scores better than other methods. Conducting similar exper-

iments for this section is not meaningful as state-action costs change the resulting

state (i.e., summing together the biological purpose and labor for experimenting,

and then only assessing the biological purpose clearly misleads the process).

To use the semi-MDP approach for controlling, it has been already discussed

that the state-action costs should be positive. For this reason, replacing 0 valued

entries with a small cost value (e.g., 0.1) is required. Under this transformation the

policy (with γ = 0.7) is given in Table 5.3;

Like the other methods, the semi-MDP method gives a reasonable policy satis-

fying some simple observations under the experimental setting.

As it has been already discussed, under different settings if the state value func-

tion and state-action function are carefully designed, the methods presented can be

used for control purpose. But, if there is a doubt in these functions or the domain

is not engineered well, the multi-objective control should be used.
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Table 5.3: Policy found by semi-MDP method

State t=0 t=1 t=2
000 2 2 2
001 2 2 1
010 2 2 1
011 2 2 2
100 3 3 1
101 1 1 1
110 1 1 1
111 1 1 1

Multi-Objective Control

The MO solution is given in Table 5.4. For some cases, the action presented is

singleton (i.e., minimal action set has cardinality 1), which means optimizing both

costs at the same time. In some cases, 2-sets are found, when there is no advantage

of applying the other action. But, for some cases all the actions are applicable.

For any state, the cardinality of MO solution can not be known or anticipated in

advance as the problem must be solved totally with the given parameter values.

In case of multiple competing actions, the action can be based on the respective

Q∗
t (·, ·) values. For example, in the analysis of the Q∗

t values, I observed that first

components are almost equal, but second components differ much, or vice versa.

Since these value functions do not dominate each other (i.e., it requires strict dom-

inance), these actions are retained. But, the decision maker can easily select the

obvious action. In short, there may be a small difference with one component but

large with another; this may be a clue for the decision making.

The experiments in Section 5.10.2 forces to select just one action by turning

the multi-objective problem into single-objective one. On the other hand, not all

the entries in Table 5.4 are singleton sets. This suggests that adding or compar-

ing component cost functions loses power for the sake of the automation of action

selection.

5.11 Scaling Up for Large State Spaces

So far it has been assumed that the state space is small. Since the state space

increases exponentially with the number of genes, the methods presented in Sections

5.4.1 and 5.4.2 become infeasible or even impossible for true genetic networks.
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Table 5.4: Policy found by Multi-Objective control method

State t=0 t=1 t=2
000 2,3 2,3 1,2,3
001 1,2,3 2,3 1,2,3
010 1,2,3 2,3 1,2,3
011 1,2,3 1,2,3 1,2,3
100 3 1 1,3
101 1 1,3 1,3
110 1 1 1,2,3
111 1 1 1, 3

The most commonly used criteria for large and small state spaces is tabulation of

model components. So, if the three models M , L, and K can all be tabulated,

then the state-space problem may be considered small. Consider a problem where

|S| = 1000 and |A| = 5, since the tabulation of the T component for model M

requires O(|S|2|A|) space, more than 5, 000, 000 entries are required 1. Though

this number is not too large for todays computers, the tabulation of transition

probabilities do not make sense when |S| = 100, 000; even when using efficient

data structures like sparse matrices. Even if the tabulation is probable, the time

is very important because all the presented methods require sweeps through all the

entries in the table. For these reasons, for large state spaces, model components like

transition probabilities must be stored implicitly.

Dynamic programming approaches require full backups of value functions. Full

backups are expensive with time complexity O(H|S|2|A|) for H-steps full backup.

Furthermore, since transition probabilities are stored implicitly, finding a particular

transition probability requires inferencing, which is not a trivial computation. So,

full backups are not effective, even though we have all the models.

Scalability is handled using mainly two principles. The first principle is implicitly

storing model components and policies instead of explicit tabulation. The policies

are computed in such a way that acting and planning are interleaved. The second

principle is employing sampling instead of full backups of dynamic programming.

This way, near-optimal policies are obtained.

In the sequel, for scaling up to large state spaces, the following two cases are

distinguished:

• It is efficient to tabulate all state value or state-action value functions during
1A model or a model component having more than few millions of entries is assumed not

amenable for tabulation
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computation, but tabulation of T of model M is not efficient;

• It is inefficient to tabulate neither state value or state-action value functions

nor T of M .

The method employed for both of the cases is simulating model M . For the first

case, the value functions for all the states (or state-action pairs) are tabulated. In

this case, the models L and K can be given implicitly or stored explicitly. The two

approaches for this case are presented, namely reinforcement learning and backward

sparse sampling. Both methods learn approximate value functions for all the states

or state-action pairs.

For the second case, in addition to M , models L and K are stored implicitly.

Since, the state costs and state-action costs are not tabulated, the inference is re-

quired during computation. Two methods (forward sparse sampling and parametric

function approximation) are presented to address the solution to the case. The first

method learns approximate value function for a given state, while the second learns

approximate value function for all states by generalizing.

All the methods given are formulated under the FC case as the approach for

other cases is same as the one already shown.

5.11.1 Reinforcement Learning Approach

Assume that the models are so big that they can not be tabulated, and should be

stored implicitly. The only solution then is to simulate the models. Fortunately,

Reinforcement Learning (RL) methods have been developed for MDP problems,

where the models are not fully accessible, but only simulated. In RL, approximate

value functions are learned through interaction with the model. By this way, value

functions are learned for states that can actually be seen. In other words, value

function computations for states that can not be reached (or are reachable with

very low probability) from the given initial state can be avoided, thus saving the

computation time.

Q-learning is the most commonly employed RL method. It learns action value

functions from sample transitions. Assume that upon taking action a in state s, the

resulting state is s′; and let the current value of (s, a) be Qt(s, a), then the value is

updated according to the following well-known dynamic programming formula [84].

Qt(s, a) = Qt(s, a) + α[C(s, a) + γ min
a′

Qt+1(s′, a′)−Qt(s, a)] (5.24)
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where α is called the learning rate or averaging coefficient, and γ discount factor.

After re-arranging Formula (5.24) as (1−α)Qt(s, a)+α[C(s, a)+γ mina′ Qt+1(s′, a′)]

it becomes clear that the new value is an average of the old value and the value of

the new state plus the immediate cost. Note that Formula (5.24) has been adapted

for the definition given in Equation (5.9). It can be easily modified for the other

covered cases.

Algorithm 9 can be used to compute the value function for a given initial state

for all actions under the FC approach where the horizon is H.

Algorithm 9 H-step action value computation for a given state using Q-learning
Require: Initial state s(0), T , C(·, ·), C(·) and α given
Ensure: Q0(s(0), ·) ≈ Q∗

0(s(0), ·)
s0 ← s(0)
QH(s, a) ← C(s) for every a
Qt(s, a) ← 0 for every a, s and t ∈ {0, 1, . . . ,H − 1}
repeat

for t = 0 to H − 1 do
Select action at using the Qt(st, ·)
Simulate execution of at for st on T and observe resulting state s′t
st+1 ← s′t

end for
for t = H − 1 to 0 do

Update Qt(st, at) as given in the Formula (5.24) for transition (st, at, s
′
t)

end for
s0 ← s(0)

until Q0(s(0), ·) converges

The critical step in Algorithm 9 is how to choose the action given in the current

policy function. Here, the ε-greedy action selection mechanism can be used, since it

satisfies both exploration and exploitation [84]. Another critical step is the termina-

tion condition; the process can run for a specified number of iterations depending on

the problem size. Since the convergence is only guaranteed for the infinite number

of iterations, the resulting value function is always an approximate one. The near-

optimal action is then arg mina Q0(s, a) for starting state s and horizon H. After

applying the first action, the new state s′ is realized, then arg mina Q1(s′, a) gives

the action to be applied at t = 1, and so on.

The rationale behind Q-learning is that when large numbers of samples are

generated from the model, their distribution almost matches the true transition

probabilities. Assuming |A| is constant, the storage requirement of Q-learning is

linear in |S|. Actually, its space complexity is O(H|S||A|). Consequently, it can

be said that Q-learning scales to problems having states in the order of millions in
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space (or scales better than full DP backups). Q-learning has another advantage

that it computes the value functions for states that are probable to be visited if the

initial state is given (and this is the case in our problem). Finally, I argue that all

the presented DP algorithms can be easily converted to Q-learning problems and

solved accordingly.

5.11.2 Backward Sparse Sampling

In Formula (5.12), the value function for a state is computed using the immediate

cost plus the cost of the next states weighted by their transition probabilities. The

difficulty with Formula (5.12) is that very small transition probabilities are included

in the computation. So, in the worst case, it must be averaged for all states, namely

|S| times. Using the idea from RL, if a reasonable number of next states are sampled

for a given state and action, the value function computation can be approximated

very well. Furthermore, if this number is made constant (independent of |S|), the

complexity of backing up for a state can be done with complexity O(1). This

leads to the following backward sparse sampling formula for the problem given in

Formula (5.12),

Ṽ ∗
H(s)) = C(s)

Ṽ ∗
t (s) = mina∈A

[
C(s, a) + 1

B

∑B
b=1 Ṽ ∗

t+1(s′)
]

(5.25)

t = 0, 1, · · · ,H − 1

where s′ is generated according to T a
ss′ for parameters s and a; and B is the sampling

size.

Note that Formula (5.25) is still DP problem, but with reduced complexity. It

is different from Q-learning in that there is no problem of selecting policy while

learning value functions. But (compared to Q-learning) it learns approximate value

functions for states for which visiting probability from starting state is zero.

5.11.3 Forward Sparse Sampling

A variant of the backward sparse sampling is forward sparse sampling. The approx-

imate value function computation is not needed for states other than current state

s for decision making. This is because at any time t, the decision is based solely on

function Qt(s, ·). Forward sparse sampling just exploits this fact.

Now, assume that the number of samplings for each state is fixed as B for each
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action. So, given a state s, the number of next states generated can be at most |A|B.

If the sampling is repeated for each state generated from the previous iteration,

the number of total states generated becomes O((|A|B)H) at the H’th step. Note

that the number of states sampled do not depend on the number of states, but

it grows exponentially with H. Here, my argument is that for a reasonable H,

the approximate value function for sampled states can be computed by depth-first

traversal of the tree. The advantage of depth-first traversal is its use of less memory

space; it is linear in H, and independent of |S|.

Algorithm 10 Interleaving Acting and Planning
Require: H, B, s(0), T , C(·, ·), C(·) given

s = s(0)
for t = 0 to H − 1 do

a ← Plan(T, s,H − t)
s′ ← Execute(s, a)
s = s′

end for

Since the value function is computed only for the current state, the planning

and acting should be interleaved. In other words, the acting process presented in

Algorithm 5 can not be used; but the one in Algorithm 10 can be used.

The function Plan(T, s, h) (see Algorithm (11)) returns h step best action based

on estimates. I adapted the Sparse Sampling Algorithm described in [50]; it is given

in Algorithm 11. The Plan has complexity O((|A|B)h); so the complexity of the

algorithm is O((|A|B)H) for H steps value backup.

Clearly there is a tradeoff between the quality of estimation and run-time. Specif-

ically, large values for B favor for better estimation, but longer run-time.

Like H, the source of B can be biological knowledge provided by biologists. Al-

ternatively, the selection of B can be automated by analyzing the transition matrices

for all actions. The method can be based on finding the maximum number of next

states possessing the minimum probability selected (e.g., 90%) simultaneously for

all (or most, e.g., 90%) states for all actions.

The method can be infeasible for moderate values of H because the complexity

is exponential in terms of H. On the other hand, we can reduce the horizon to

half or one-third (or so) by considering action sequences as meta actions. Consider

action sequences pairs, say (a1, a2), and assume that all the actions are considered

in pairs, the runtime complexity becomes O(CH/2|A|H)). Although the complexity

is still exponential in H, the runtime greatly diminishes for moderate values of

H. In such case, the cost of applying action sequences (a1, a2) from state s is
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Algorithm 11 Planning
Function: EstimateV (h, B, T, s)

Let (Q̂∗
h(s, a1), Q̂∗

h(s, a2), . . . , Q̂∗
h(s, a|A|)) = EstimateQ(h,B, T, s)

Return arg mina∈A{Q̂∗
h(s, a)}

——————————————

Function: EstimateQ (h, B, T, s)

if h = 0 then
Return (C(s), C(s), . . . , C(s))

end if
for all a ∈ A do

Sa = Sample (T (s, a), B) {Sample B next states from T at s for a}
Q̂∗

h(s, a) = C(s, a) + 1
B

∑
s′∈Sa

EstimateV (h− 1, B, T, s′)
end for
Return (Q̂∗

h(s, a1), Q̂∗
h(s, a2), . . . , Q̂∗

h(s, a|A|))
——————————————

Function: Plan(T, s0, h)

Let (Q̂∗
h(s0, a1), Q̂∗

h(s0, a2), . . . , Q̂∗
h(s0, a|A|)) = EstimateQ(h, B, T, s0)

Return arg mina∈A{Q̂∗
h(s0, a)}

C(s, a1) +
∑

s′ T
a1
ss′C(s′, a2). This is easily computable given models M and K. Its

approximation for implicit models is C(s, a1) + 1
B

∑B
j=1 C(s′, a2), where s′ is drawn

according to T a1
ss′ . Similar to state-action costs, state cost is just C(s)+

∑
s′ T

a1
ss′C(s′).

And transition probabilities are computed as: T
(a1,a2)
ss′′ = T a1

ss′T
a2
s′s′′ .

For discounted MDP problems where the initial state is given, the forward sparse

sampling approach can be used. But, the problem is that there is no finite hori-

zon. But, as it is already discussed, the value function computed by Algorithm 7

approximates the true value function as the iteration count increases. Fortunately,

Kearns et al [50] developed a formula for estimating values of B and H simultane-

ously within a maximum allowed error ε for state values, i.e., |V ∗− V̂ ∗
Ĥ,B̂

| ≤ ε where

V̂ ∗
Ĥ,B̂

is the result of the discounted Sparse Sampling Algorithm with horizon Ĥ and

branching factor B̂.

The estimate for H is obtained similar to the one presented in Formula 5.20. B

is estimated using Chernoff bounds 2; it is given as follows (for the proof see [50]);

2bounds for random variables for which wrong estimation probability decreases exponentially
with the difference between estimates and the true mean
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Ĥ = dlogγ
λ(1−γ)
Cmax

e
B̂ = C2

max
λ2(1−λ)2

(
2H log |A|HC2

max
λ2(1−λ)2 + log Cmax

λ

)

(5.26)

where λ = ε(1− γ)2/4.

5.11.4 Parametric Function Approximation

The main drawback of the method presented in Section 5.11.3 is that the run time

increases exponentially with H; and planning and acting should be interleaved; the

other approaches presented so far depend on |S|. On the other hand, if the features

can be generated from the state information, parametric function approximation

methods can be utilized. In our case, fortunately, the state space is defined in terms

of features (expression states of genes). To ease notation, s is used for both the

state itself and its representation in terms of features.

Assume that the optimal state-action value function for time step t is approx-

imated by Q̃∗
t . Then, the approximation to the optimal state value function for t

is Ṽ ∗
t (·) = mina Q̃∗

t (·, a). Assume Q̃∗
t is given, then Q̃∗

t−1 can be computed; so, (by

induction) given Q̃∗
H−1, Q̃∗

0 can be computed. In other words Ṽ ∗
t (·) serves as a neg-

ative reinforcement for learning the value function at time step t− 1. Consequently,

the optimal action at time step t ∈ {0, 1, . . . ,H−1} is just arg mina Q̃∗
t (s, a) for any

state s ∈ S.

Now consider the case presented in Section 5.4.2; and assume that B samples

from model M are drawn for each state s and action a. Then, the following can be

defined for the base case:

Q̃∗
H−1(s, a) = C(s, a) +

1
B

B∑

i=1

VH(si) (5.27)

where si is drawn according to T a
ssi

and VH(si) = C(si).

Clearly, Q̃∗
H−1(s, a) = Q∗

H−1(s, a), ∀s ∈ S, a ∈ A as limB→∞. At the same time,

for a finite B the formula approximates Q∗
H−1. It is easy to compute Ṽ ∗

H−1(·) after

Q̃∗
H−1(·, a) is computed for all actions. This way, both Q̃∗

t (·, a) and Ṽ ∗
t (·) can be

computed for all t, t ∈ {0, 1, . . . , H − 1}.
The supervised learning techniques can be used to learn approximate value func-

tions. Particularly, Neural Networks are considered among the best approximation
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function techniques and the back propagation algorithm suits the need here.

For learning Q̃∗
t (·, a), the desired output for state s is Ṽ ∗

t+1(s′), if s′ is drawn by

model M for the input (s, a). This should be repeated for the same input (s, a) for

stochastic next state s′. Clearly for learning Q̃∗
t (·, a), draws must be made for a for

a large set of states.

Note that the scenario here is very similar to the tabulated Q-learning already

presented above. The only difference is instead of tabulating Q(·, ·), we need to rep-

resent it by function approximators, which are successfully applied to reinforcement

learning problems (Sutton et al [84] presents a good overview). Rummery [72] de-

velops connectionist (neural network) learning algorithms for reinforcement learning

problems. Particularly, connectionist Q(λ) algorithm can be used for the purpose

here.
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CHAPTER 6

CASE STUDY: SACCHAROMYCES

CEREVISIAE

This chapter presents a case study to show how the proposed control methods can be

applied to real gene expression data. Saccharomyces Cerevisiae (budding yeast) is

selected as a case study. The control methods are applied to two kinds of regulatory

networks, namely, Markov chain and dynamic Bayesian.

Since every control requires an objective, first of all an objective is set. Next, for

this objective, relevant features (genes) are selected to be modeled and a Markov

chain model (termed as large) is constructed for the selected genes. Then, control

actions and their effects on the model are determined using DEGs analysis. Finally,

appropriate control methods are applied.

The original gene set is reduced down and two networks termed as medium and

small are obtained. The same procedures are applied to these networks and ap-

propriate control methods are experimented. Also using prior biological knowledge

and microarray data, a dynamic Bayesian network is learned. The exact (i.e., find-

ing optimal policy) and approximate (i.e., finding near-optimal policy) methods are

experimented and compared on this network.

6.1 Genomics of S.Cerevisiae

Saccharomyces Cerevisiae (S.cerevisiae, a.k.a budding yeast, or yeast for short) is

a microscopic unicellular eukaryotic organism with 16 chromosomes. It is one of

the first organism completely sequenced, in 1997. Its genetic material consists of

12,052,000 base pairs of nucleotides hosting ≈ 6200 Open Reading Frames (ORFs).

An ORF is either a gene or a putative gene. The organism is a model organism
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for most of the experiments (microarray, biochemical, etc) for several reasons in-

cluding easy manipulation, rapid-growth, being viable for large set of mutations,

commercially cheap, both haploid and diploid states, being non-pathogenic, and

easy adaptation to varying conditions.

The diploid cell cycle contains four stages, G1, S, G2 and M (see Figure 6.1).

The new-born cell starts growing (G1) and almost ends with bud emergence. After

G1 stage, DNA synthesis stage (S) and DNA migration stage (G2) follow. Then,

chromosome segregation happens in the mitosis (M) stage. Stage M ends with a

new-born daughter cell and cell cycle completes and restarts. Most of the time, the

only thing that prevents the exponential rapid growth of yeast culture is lack of

nutrients. The cell cycle usually completes in 60-140 minutes depending on external

(kind of nutrients, etc) and internal (mutations, etc) conditions. The mother cell

dies usually after 20-30 bud formations. The diploid cell cycle is also known as

mitotic cell cycle. Haploid cell cycle (a.k.a, meiotic cell cycle) is similar and requires

two cells with opposite sex (a and α) for mating, and produces two new daughters.

Figure 6.1: Cell cycle stages (from Chen et al [12])

Yeast cells are very adaptive. For example, diploid cells undergo sporulation

(happens during meiosis) in case of nutrient deficiency, and resulting in four encap-

sulated haploid spores. When exposed to nutrient conditions spores can germinate

and mate to diploid cells. Yeast can grow in glucose and galactose mediums. In

glucose medium, the organism grows faster and so cell cycle time is shorter. In

case of galactose medium, the organism converts first galactose into glucose. The
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glucose is fermented to ethanol. If the glucose runs out, the diauxic shift happens,

i.e., growth continues aerobically. This suggests that the organism can grow both

aerobically and anaerobically.

6.2 Dynamic Modeling of Yeast Cell Cycle

The Stanford Microarray Database (SMD, http://genome-www5.stanford.edu/ Mi-

croArray/SMD/) [77] contains microarray experiments for large number of organ-

isms in various conditions. In general, experimenters publish their data (and their

analysis results) in SMD for public use. The database is accessible by web browsers

and provides interfaces for data download and analysis. There are several other

databases (Whitehead Institute, NCBI, etc.) known worldwide to satisfy same pur-

pose and with similar functionality. In SMD, there are over 40 experiment sets (as of

September 2004) present for S.cerevisiae. Each experiment set is done for a specific

objective and contains from few to hundreds of experiments.

Spellman et al [83] published their yeast cell cycle dataset in SMD. The dataset

contains 4 different time series experiments, namely cdc15, cdc28, elutriation and

α-factor. These names also represent different synchronization methods employed in

the process. Among them, cdc15 dataset contains 24 samples, and it is the largest.

In cdc15 dataset, the samples are taken non-uniformly at following time steps (unit

is in minutes): 10, 30, 50, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190,

200, 210, 220, 230, 240, 250, 270, 290. Recalling that yeast cell cycle takes about

100 minutes, the dataset contains 2-3 cell cycles. The dataset being synchronous

makes dynamic modeling possible.

6.2.1 Data Pre-processing

After downloading cdc15 datasets from SMD, the following pre-processing steps have

been applied in order to get a complete continuous dataset. Complete continuous

dataset is needed as the methods (discretization) employed here requires complete

dataset. Recall that although the gene expression data is continuous it might have

missing values, so needs imputation to get complete dataset.

1. For each of the 24 samples, within slide intensity dependent normalization is

applied using non-missing values as explained in Section 2.4.1.

2. Samples with more than 20% of missing features are considered bad and are

eliminated.

106



3. Genes with missing value ratio of more than 50% across samples are eliminated.

4. The missing values are imputed using all the experiments in the set using

KNNImpute as explained in Section 2.4.2.

In the second step, no samples are eliminated; and in the third step, among the

6389 genes, 501 genes are eliminated. So, the pre-processed complete dataset can

be considered as 5888 × 24 matrix, where rows are gene profiles and columns are

samples.

The selection of 20% for missing samples and 50% for missing genes are arbitrary

among reasonable values. That is, any rates less than these work, but may cause

unnecessary exclusion. On the other hand, rates larger than them are problematic.

For instance, 70% for missing samples does not make sense as this suggests that the

respective experiment can not be trusted, likewise 80% for missing genes does not

make sense, as this shows that there is a systematic problem for the respective gene.

6.2.2 Selecting the Gene Set

Spellman et al [83] identified that about 800 genes are cell cycle regulated. This

means that 800 genes show varying expression levels during the cell cycle, and

about the remaining 5400 genes are not cell cycle regulated, i.e., their expression

patterns do not depend on cell cycle. A correct cell cycle model requires all 800

genes are selected for modeling. This is because 5400 remaining genes are considered

irrelevant features. But, 800 is too large to be modeled efficiently because the state

space is 2800, even in the binary case. In 800 genes, most of the genes exhibit similar

expression patterns, i.e., adding all of them makes the model only clumsy. So, these

genes must be found and a representative gene should be included in the model. This

is because retaining only one of the genes showing almost same expression increases

the power of the model as the redundant features are eliminated, i.e., elimination

of these genes do not cause loss of information besides helps in simplification of the

model.

This way, the number of genes can be reduced down incredibly. Actually, dif-

ferential equations model of Chen et al [12] includes about 40 variables (genes and

protein complexes) to model yeast cell cycle. For example, in their model two genes

Clb5 and Clb6 are combined and represented as Clb5.

Lee et al [60] identifies 106 transcription factors (TFs) for the yeast. They
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group these TFs based on their function such as, metabolism, environmental re-

sponse, cell cycle, etc. Among the 106 TFs, they report 11 TFs are cell cycle re-

lated. These are Ace2, Swi5, Swi4, Swi6, Stb1,Mbp1, Skn7, Ndd1, Fkh1, Fkh2 and

Mcm1. Combining these TFs with the genes modeled in [12], 27 genes are obtained.

However, 4 of the 27 genes are eliminated by the pre-processing because of missing

values. These eliminated genes are Cdc14, Pds1, Skn7 and Fkh2. The remaining

23 genes (given in Table 6.1) are included in the model. Indexing the 23 genes from

1 to 23, an expression matrix of 23× 24 is obtained.

6.2.3 Markov Chain Modeling of the Selected Gene Set

As it is already pointed out, the cdc15 dataset is not uniformly sampled. To get uni-

formly sampled data, the dataset is interpolated. The interpolation technique used

in this thesis is cubic splines, since they are smooth fitters and provide continuity.

D’haesseleer [17] uses a similar interpolation method for model fitting.

The other benefit of interpolation is overcoming the less number of samples

problem, since any number of samples can be collected by adjusting the sampling

interval. But, very frequent sampling is not useful and may mislead as the current

and next states become almost identical. On the other hand, very rare sampling

has the danger of missing some state changes. That is, cell may change state more

than once but it is treated as one. For these reasons, in this study it is kept to be

arbitrary but reasonable one, particularly 5 minutes. The exact decision is based on

keeping in mind that cell cycle is 100-200 minutes and temporal patterns of key cell

cycle genes in the cdc15 dataset. The uniform samples are collected at 5 minutes

intervals starting from time 0 to time 290. So, 59 samples are obtained this way for

every gene included in the model. As a result, 23×59 expression matrix is obtained.

Interpolated dataset is continuous, but for discrete MC modeling it needs to

be discretized. First, the level of discretization should be decided. This is 2 for

standard boolean and probabilistic boolean networks. But, this is not a constraint

and they can accommodate to any level larger than 2. For discrete network model-

ing, usually 2 or 3 is used. In this study, ternary discretization is used to express

under/over expression and the baseline. Under expression, baseline, and over ex-

pression are represented using -1, 0, and 1, respectively. The method used is one

standard deviation of mean standard deviations across all original samples (not the

interpolated ones). Let, the grand mean be µ, and the average standard deviation

be σ, then the following equation is used to determine discretization level of gene g

(i.e., xg).
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Table 6.1: Genes selected for modeling

Gene ORF Name Gene Function/Description
Cln2 YPL256C Role in cell cycle START G1 cyclin
Clb2 YPR119W Involved in mitotic induction; B-type cyclin
Clb5 YPR120C Role in DNA replication during S phase B-type cyclin
Sic1 YLR079W Inhibitor of Cdc28p-Clb5 protein kinase complex
Cdc6 YJL194W Essential ATP-binding protein required for DNA replication
Swi5 YDR146C Transcription factor that activates transcription of genes

expressed in G1 phase and at the G1/M boundary
Cdc20 YGL116W Cell-cycle regulated activator of anaphase-promoting

complex/cyclosome ; directs ubiquitination of mitotic cyclins
Cdh1 YGL003C Required for Clb2 and Ase1 degradation
Net1 YJL076W Nucleolar protein involved in exit from mitosis
Tem1 YML064C Gtp-binding protein of the ras superfamily involved in

termination of M-phase GTP-binding protein
Cdc15 YAR019C Protein kinase of the Mitotic Exit Network that is localized

to the spindle pole bodies at late anaphase
Lte1 YAL024C Gdp/GTP exchange factor required for growth

at low temperatures
Bub2 YMR055C Protein required for cell cycle arrest in response to loss of
Esp1 YGR098C microtubule function; Shows disrupted cell cycle control
Cln3 YAL040C Role in cell cycle START; involved in G(sub)1 size control;

G1 cyclin
Swi4 YER111C Involved in cell cycle dependent gene expression;

transcription factor
Mbp1 YDL056W Transcription factor
Swi6 YLR182W Forms complexes with DNA-binding proteins Swi4p and

Mbp1p to regulate transcription at the G1/S transition;
Transcription cofactor

Stb1 YNL309W Protein with a role in regulation of MBF-specific transcription
at Start; phosphorylated by Cln-Cdc28p kinases in vitro

Ace2 YLR131C Transcription factor that activates expression of early
G1-specific genes

Ndd1 YOR372C Nuclear Division Defective 1; arrests prior to nuclear division
but after DNA replication

Fkh1 YIL131C Transcription factor of the forkhead family that regulates the
cell cycle and pseudohyphal growth

Mcm1 YMR043W Involved in cell-type-specific transcription and pheromone
response; Transcription factor
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Figure 6.2: Interpolation and Discretization of gene Cln2

level(xg) =





1, xg > µ + σ;

−1, xg < µ− σ;

0, otherwise.

Interpolation and discretization for gene Cln2 are presented in Figure 6.2. After

interpolation and discretization, we get two data matrices, one for interpolated and

another for discretized; let them be Di and Dd, respectively. Note that both Di and

Dd have the same dimension of 23× 59.

Determining Predictors

Matrices Di and Dd are continuous and discrete gene profiles for 23 genes over 59

time points, respectively. Before constructing the MCs, the best predictor genes

for every gene should be determined. Using only these genes, we can formulate the

dynamic model of the target gene. Let the target gene (the gene we are trying to

find its predictors) be g. We can determine the predictors of g using either Di or

Dd.

Kim et al [54] proposes using coefficient of determination (CoD) analysis method

over Dd. The method is described in [53]. In their method, a perceptron is trained

for every gene g for a given predictor set. The values of predictors at time t are used

to determine the value of g at time t + 1. The error rate of the learned perceptron

is used to determine the CoD value. To compare possible predictors, error rates of

respective perceptrons are used. That is, the one giving the smallest error rate is
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termed as the best predictor.

The method devised by the authors can be used in case Di is missing, i.e., if

only Dd is available. In our case, both matrices are available. For this reason, Di

can be used for determining best predictors; it has been decided to use Di because

it contains much more information than Dd.

Both targets and predictors are continuous valued in Di. So, to predict the value

of gene g at time t+1, we can use the values of selected possible predictors at time t.

Here, the selection of possible set of predictors matter because there are 223 possible

sets. Fortunately, it has been found in biological systems that genes are found only

depend on very few number of genes (1, 2, or 3) [61, 8, 16, 54, 12]. For this reason,

I only consider the triples of genes as candidate predictors to cover the one and two

predictors cases as well.

Let a candidate predictor for gene g be < g1, g2, g3 >; and their expression at

time t be xt
g, < xt

g1
, xt

g2
, xt

g3
>, respectively. Assuming linear model (to avoid over-

fitting and the fact that most relations for S.cerevisiae are reported to be linear [41]),

the problem turns into solving the following algebraic equation.

x1
g = a1 · x0

g1
+ a2 · x0

g2
+ a3 · x0

g3
+ b

· · · · · ·
xt+1

g = a1 · xt
g1

+ a2 · xt
g2

+ a3 · xt
g3

+ b

· · · · · ·
x59

g = a1 · x58
g1

+ a2 · x58
g2

+ a3 · x58
g3

+ b

Since this is an over-determined system, the multiple linear regression method is

employed to find the coefficients. I use R-square statistics as a measure of CoD.

The R-square statistics (CoD) is computed as follows;

CoD =

∑
i(x

i
g − x̄g)2

∑
i(x̂

i
g − x̄g)2

The high values (close to 1) for CoD indicate good fit, while low values (close to 0)

indicate poor fit.

For each gene, CoD values are computed for all the 1771 triples (genes are allowed

to be within predictors of themselves). Two of them having the highest CoDs are

selected as candidate predictors. The results are presented in Table 6.2.

Constructing Markov Chain

Given the predictor sets for every gene, the actual regulation function must be

determined. In other words, depending on the value of the predictors, the probability
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Table 6.2: Predictor Genes for 23 Genes

Target Predictor1 CoD1 Predictor CoD2
Cln2 Cln2 Sic1 Ace2 0.9572 Cln2 Sic1 Swi6 0.9563
Clb2 Clb2 Sic1 Lte1 0.7747 Clb2 Esp1 Cln3 0.7740
Clb5 Cln2 Clb5 Swi5 0.8767 Clb5 Swi5 Cln3 0.8666
Sic1 Cln2 Sic1 Ace2 0.8506 Sic1 Swi6 Ndd1 0.8379
Cdc6 Cln2 Cdc6 Esp1 0.8352 Clb5 Cdc6 Esp1 0.8237
Swi5 Sic1 Swi5 Mcm1 0.8716 Swi5 Bub2 Stb1 0.8691

Cdc20 Cdc20 Lte1 Swi6 0.7397 Cln2 Cdc20 Lte1 0.7327
Cdh1 Cdh1 Cdc15 Mbp1 0.5093 Cdh1 Lte1 Mbp1 0.5084
Net1 Clb2 Net1 Swi6 0.7616 Clb2 Net1 Fkh1 0.7347
Tem1 Cdc6 Tem1 Cd15 0.6065 Tem1 Cdc15 Cln3 0.6051
Cdc15 Cdc15 Cln3 Fkh1 0.7335 Cdc15 Swi6 Fkh1 0.7236
Esp1 Cdc15 Esp1 Bub2 0.8357 Cdc15 Esp1 Swi6 0.8352
Lte1 Esp1 Lte1 Swi4 0.6699 Cdh1 Esp1 Lte1 0.6531
Bub2 Swi5 Tem1 Bub2 0.7111 Cln2 Tem1 Bub2 0.7003
Cln3 Cdc6 Esp1 Cln3 0.8133 Tem1 Esp1 Cln3 0.8090
Swi4 Esp1 Lte1 Swi4 0.6110 Swi5 Cdc20 Swi4 0.5896
Mbp1 Lte1 Bub2 Mbp1 0.6985 Cdc15 Mbp1 Ndd1 0.6981
Swi6 Clb5 Swi4 Swi6 0.6056 Clb2 Cdh1 Swi6 0.6051
Stb1 Bub2 Swi6 Stb1 0.8529 Clb5 Swi6 Stb1 0.8490
Ace2 Clb2 Ace2 Fkh1 0.8040 Clb2 Sic1 Ace2 0.7858
Ndd1 Cdc20 Esp1 Ndd1 0.5856 Cdc20 Net1 Ndd1 0.5853
Fkh1 Ndd1 Fkh1 Mcm1 0.5304 Swi6 Ndd1 Fkh1 0.5268
Mcm1 Swi5 Swi6 Mcm1 0.6059 Cdc15 Swi6 Mcm1 0.5852
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of values (-1, 0, and 1) of the target gene should be determined for stochastic

modeling. In this section, such context dependent probabilities are computed.

The model has 323 states. Trying to construct and tabulate a MC over this

state space is prohibitive. But, the MC over all the state space can be constructed

and stored implicitly by exploiting the knowledge that states can be segregated into

components of 23 ternary values.

Here, the approach by [54] reviewed in Section 4.6 is adopted. But, here we

have two predictors for every gene. So, the key issue is how to fix the conditional

probability for a specific gene g given state S. Similar to PBNs, first, one of the

predictors is selected probabilistically, and the selected predictor determines the

next state based on its own conditional probability. For the cases where Dd does not

contain the projected values for both of the predictors in S, another predictor Prior

is used. So, there are 3 predictors sets. Prior just gives a probability irrespective

of S, i.e., only using the frequency of values of gene g in Dd. Formally, four cases

are distinguished:





Prob(P1) = CoD1/(CoD1 + CoD2), S(P1) ∈ Dd(P1) and S(P2) ∈ Dd(P2) ;

Prob(P2) = 1− Prob(P1), P rob(Prior) = 0,

P rob(P1) = 1, P rob(P2) = 0, P rob(Prior) = 0, only S(P1) ∈ Dd(P1);

Prob(P2) = 1, P rob(P1) = 0, P rob(Prior) = 0, only S(P2) ∈ Dd(P2);

Prob(Prior) = 1, P rob(P1) = 0, P rob(P2) = 0, otherwise.

where S(P1) and Dd(P1) are projected values of predictor1. Except the first case,

all other cases are trivial, i.e., the respective predictor determines the next state

exclusively. In the first case, however, Prob(P1) and Prob(P2) are treated as weights

for respective predictors. That is, predictors are not selected randomly.

The considered MC model is very compact. It has 5 components; 2 predictors,

2 conditional next state functions and 1 prior for every gene. For n genes with k-set

predictors, the model size is O(2 · n · k + 2 · n · 3 · 3k + 3 · n), i.e., linear with n for a

constant k.

6.3 Controlling Cell Dynamics

Controlling cell dynamics requires a model (the model M) be constructed and a

biological objective set (the model L). The objective defines the cost of being in

a given state. Also needed is the number of actions and their associated costs

(model K). How to construct model M is shown in the previous section, and how
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to construct models L and K is to be shown in this section.

After setting the objective and determining available actions, the solution to

the control problem is addressed. First, I start from the large network having 23

genes. Next, I reduce the number of genes to 9 to get a medium size network, and

finally to 6 genes to get a small size network. This way, it becomes possible to apply

respective algorithms and solve accordingly.

6.3.1 Setting the Objective

Every control requires an objective to be set. In this study, I set the objective to

be extending G1 cycle length. This effectively extends the cell cycle period. The

pre-requisite to extending G1 stage or the entire cell cycle period is delaying bud

formation. Actually, the objective effectively is reducing the number of cells grown

in a fixed time.

The expression level of gene Cln2 and the size of the bud are shown in Figure 6.3.

Here note that Figure 6.3(a) is for a normal cell (a.k.a. known as Wild Type or WT

for short) culture. The cell cycle period is about 100 minutes and bud formation

time is about 33 minutes. If the Bud level is larger than 1, it is said that the cell

is budded. Figure 6.3(b) shows WT culture response grown in galactose medium

(a kind of control). The respective quantities are 180 minutes and 100 minutes. In

Figure 6.3(c), the behavior of Bud for the expression level of gene Cln2 fixed at 0.06

during the entire cell cycle in glucose medium is simulated. The result show that

bud formation time is about 110 minutes and cell cycle period is about 160 minutes.

Actually, expression level of 0.06 corresponds to repression of Cln2, which extends

the bud formation time because its main role is in bud formation. These data are

obtained by simulating the Ordinary Differential Equation model for S.cerevisiae of

Chen et al [12]. So, I set the objective as down-regulate gene Cln2 using external

controls available.

The following state cost function is used to match the biological objective spec-

ified above:

Cost(S) =





0, expression level of Cln2 in state S is -1;

1, expression level of Cln2 in state S is 0;

2, expression level of Cln2 in state S is 1.
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(a) In glucose medium (b) In galactose medium

(c) Constant Cln2 level

Figure 6.3: Bud and Cln2 levels in three different settings

6.3.2 Selecting External Control Actions

The effects of internal control actions are obvious; they define how the particular

gene set values are going to be changed. This approach is taken by Datta et al [16]

as explained in Chapter 5. On the other hand, following the method proposed in

Chapter 4, the internal effects of the external control actions can be determined.

Gasch et al [71] conducted a series of experiments for the yeast under vary-

ing external conditions, including heat shock, menadione exposure, diamide treat-

ment, DTT exposure, hypo-osmotic shock, nitrogen depletion, amino acid starva-

tion, steady-state growth on alternative carbon sources, etc. The total number

of samples in this dataset is 156. This dataset is pre-processed exactly as cdc15

dataset as explained in Section 6.2.1. Due to missing values, 7 of the samples and

47 of the 6418 genes are eliminated. So, the pre-processed matrix has dimensions

of 6371 × 149. This matrix is further normalized so as to match the variance to

that of cdc15 dataset; otherwise comparison of samples across two experiments may

mislead.

Since DEG analysis requires samples got over the same genes, the common set
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Table 6.3: DEGs result for selected conditions

Condition # up genes # down genes DEGs from the model
amino 384 336 Cln3(D), Mbp1(U)

diamide 592 867 Mbp1(U)
heat 496 1 none

hypo-osmotic 133 373 Sic1(D), Mbp1(U), Cln3(D)
menadione 237 1290 Cdc6(D), Cln2(D),

Cln3(D), Stb1(D), Mcm1(D)
nitrogen 927 683 none
steady 46 161 Cdc6(D), Cln3(D)

of genes are selected across these two datasets. This gives 5865 genes.

For DEG analysis, first 9 points of cdc15 dataset are selected as reference so as to

get samples across the whole cell-cycle. For treatment conditions, the following ex-

perimental conditions are selected (abbreviated); amino (5), diamide (8), heat (12),

hypo-osmotic (5), menadione (9), nitrogen (9) and steady (8). The number inside

parentheses indicate the number of samples of that kind in the dataset. Table 6.3

gives the explored external control conditions and their DEG analysis results. The

”U” (”D”) next to gene names mean that the gene in such condition is up-regulated

(down-regulated). The results are obtained with the minimum confidence of 0.8.

From Table 6.3, some heat and nitrogen conditions have no effect on the selected

23 genes. Other 5 conditions have different effects on the selected genes. The number

of affected genes vary across conditions, e.g., 5 for menadione and 1 for diamide.

The overall effect of having a condition applied to the model is forcing the respective

genes to -1 (1) if it is down (up) regulated. For instance, application of control amino

means forcing Cln3 = −1, Mbp1 = 1 simultaneously, and leaving other genes intact.

Since the heat and nitrogen do not have any effect on the genes in the model,

these control actions are eliminated, so leaving 5 actions.

In all of the experiments, what is meant of applying an action is assumed as

follows: first forcibly set the values of DEGs genes to respective values and do not

alter the other gene values, then make a normal transition under the action Do

Nothing.

In all of the experiments, the state being in is assumed immaterial for state-

action cost. In other words, state-action costs only depend on the action. This is a

reasonable assumption since all the actions we consider are external.
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6.3.3 Controlling the Large Network

The network with 23 genes is termed as large since it is not efficient to tabulate

neither the state-action values nor the state transition probabilities. The former

requires O(323) and the latter O(323 · 323) = O(346) storage space. So, the tran-

sition probabilities should be kept implicitly and the near-optimal policy must be

computed on line.

The forward sparse sampling algorithm presented in Section 5.11.3 can be used

to find near-optimal policies for a given initial state using the given cost functions

and implicit transition probabilities. The algorithm is implemented and tested on

the large network with 5 control actions together with the action Do Nothing. The

model suggests a control action for a given initial state and horizon.

As it is already considered, the runtime of the algorithm depends on horizon,

branching factor and action set size. The horizon and branching factor can be

selected by the experimenter. But the utility of every action should be estimated.

There are three alternatives for any action on the control objective, 1) not relevant

, 2) relevant with adverse effects, 3) relevant with positive effects. Clearly, if a

particular action is not relevant with positive effects, then it should be eliminated

both biologically and computationally. To illustrate this, assume only one of the

actions has positive effects among 5 control actions, and assume branching factor

is 10. The runtime with elimination is O((10 · 2)H); and it is O((10 · 6)H) without

elimination.

To understand the biological relevance, all the state-actions costs should be zero

(equivalently, the state-action cost function is ignored). This way, the relevance

to goal can be tested. With all action costs set to 0 and with horizon 3, I have

evaluated the biological utility of every individual action. The method works as

follows, except Cln2 the other genes are randomly initialized and Cln2 is set to -1,

0, and 1 deterministically. From random initial states, the network is simulated and

values of Cln2 are tested after H steps. The test is repeated 500 times for each

value of Cln2 set to -1, 0, and 1. The results (in percents) are shown in Table 6.4

(the controls are shown with initials and Mo stands for monitoring).

The results show that only Menadione and Hyper-osmotic shock can provide

relevant and desired effect because the other actions are not better than the moni-

toring. For this reason, they can be eliminated from the alternatives. But, this does

not mean that the eliminated actions can not be beneficial at all. That is, there still

might be a small fraction of states that can be beneficial.
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Table 6.4: Results of Controlling with individual actions

M D H A S Mo
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

-1 43 42 15 25 48 27 50 33 17 31 42 27 27 42 31 33 40 27
0 40 44 16 17 60 23 38 44 18 20 54 26 16 52 32 16 52 32
1 40 41 19 17 33 50 39 36 25 20 33 47 14 34 52 19 35 46

Table 6.5: Results of considering Menadione and Hyper-osmotic shock together

-1 0 1
-1 57 30 13
0 55 33 12
1 55 36 09

Shown in Table 6.5 are the results of considering actions Menadione and Hyper-

osmotic shock together. The results indicate success over individual considerations.

6.3.4 Controlling the Medium Network

Based on being good predictor for other genes and being predicted by others with

high CoD, the number of genes are reduced down to 9. Table 6.6 gives the selected

genes and their predictors with CoDs. Markov Chain model is constructed for this

set of genes following the same procedure as in the case of large network. The state

space size is 39 = 19683, i.e., not too high. So, the state value function can be

tabulated. On the other hand, tabulating associated Markov Chain is not efficient

since it requires O(318) space 1. The run time has at least this complexity since

all table entries must be filled. That is, even without tabulating, the run time

is prohibitive. So, this means that complete dynamic programming backups are

not efficient, but the sample backups. This suggests the use of Backward Sparse

sampling algorithm presented in Section 5.11.2.

Since the set of genes has changed, the effects of the DEGs analysis change on

the model as well. For example, action Diamide has no effect on the model as gene

Mbp1 is not included in the model. The effects of other actions change appropriately.

Table 6.7 compares the number of actions selected over all states for different

horizons. In the column where Cost = 0, all the costs associated to actions are zero;

while for the column Cost = 1, the following state-action cost function is used.

1Construction of MC of 7-gene network from ternary data takes about 1 hour under Matlab on
a Pentium IV 2.0GHz PC running Windows XP with 512Mb of physical memory

118



Table 6.6: Predictor genes for medium network of 9 genes

Target Predictor1 CoD1 Predictor CoD2
Cln2 Cln2 Sic1 Ace2 0.9572 Cln2 Sic1 Cln3 0.9552
Clb5 Cln2 Clb5 Swi5 0.8767 Clb5 Swi5 Cln3 0.8666
Sic1 Cln2 Sic1 Ace2 0.8506 Cln2 Sic1 Swi5 0.8201
Cdc6 Cln2 Cdc6 Esp1 0.8352 Clb5 Cdc6 Esp1 0.8237
Swi5 Sic1 Swi5 Cln3 0.8593 Clb5 Sic1 Swi5 0.8588
Esp1 Clb5 Sic1 Esp1 0.8015 Sic1 Esp1 Stb1 0.8013
Cln3 Cdc6 Esp1 Cln3 0.8133 Cln2 Cln3 Stb1 0.8025
Stb1 Esp1 Cln3 Stb1 0.8253 Cln3 Stb1 Ace2 0.8240
Ace2 Sic1 Cln3 Ace2 0.7791 Clb5 Sic1 Ace2 0.7786

Table 6.7: Profile of actions selected for action costs=0 and action costs=1

Cost=0 Cost=1
H=1 H=2 H=3 H=1 H=2 H=3

Do Nothing 5572 3972 3660 17822 19483 19681
Menadione 6733 4609 4269 1155 65 1

Hypo-osmotic 4062 6152 6209 447 115 1
Amino 1784 2573 2857 128 10 0
Steady 1532 2377 2688 131 10 0

C(s, a) =

{
0, a = Do nothing;

1, a = Amino,Diamide,Hypo-osmotic,Menadione or Steady.

Table 6.7 shows the importance of adjusting state costs and state-action costs.

For example, for Cost = 1, horizons with larger than 2 only select actions based

on state-actions costs, i.e., state costs are effectively ignored. This suggests design

of a good balance. It also shows that the addition of these two cost functions may

mislead if not designed properly, as it has been already claimed. Furthermore, the

multi-objective control method given in Section 5.9 can be considered for such cases

by formulating the two objectives separately as given in Formulas 5.22 and 5.23.

Recall that for large networks, the actions Amino and Steady have been identified

as not relevant. But, they become relevant when all the states (i.e., not a random

subset) are considered. There seems to be a contradiction, but the following two

observations should be noted: 1) For Amino, Mbp1 is not within the selected 9

genes, so its effect changes; 2) Occurrence counts of Amino and Steady is less than

half compared to Menadione and Hypo-osmotic. Also note that occurrence count
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Table 6.8: Predictor genes for small network of 6 genes

Target Predictor1 CoD1 Predictor CoD2
Cln2 Cln2 Sic1 Cln3 0.9552 Cln2 Sic1 Swi5 0.9507
Clb5 Cln2 Clb5 Swi5 0.8767 Clb5 Swi5 Cln3 0.8666
Sic1 Cln2 Sic1 Swi5 0.8201 Cln2 Sic1 Cln3 0.7974
Swi5 Sic1 Swi5 Cln3 0.8593 Clb5 Sic1 Swi5 0.8588
Esp1 Clb5 Sic1 Esp1 0.8015 Cln2 Sic1 Esp1 0.8009
Cln3 Cln2 Esp1 Cln3 0.7993 Clb5 Esp1 Cln3 0.7916

of both Amino and Steady is less than do nothing, while that of Menadione and

Hypo-osmotic is larger. Actually, this also validates the importance of Menadione

and Hypo-osmotic towards the goal as it is already claimed for the large network.

6.3.5 Controlling the Small Network

The medium network is further reduced down to 6 genes (Table 6.8), again based on

good predictability. This makes tabulation of associated Markov Chains for every

action possible. Full dynamic programming backups are possible as well. That is,

both time and space complexity become O(312). Since the gene set changes, effects

of the actions found by DEGs analysis changes too. Particularly, for example the

effects of actions Amino and Steady become the same.

The effects of applying optimal control policy under the state-action costs un-

available condition for FC, IC, FCIM, and FCFM cases are explored. For all of the

experiments, the parameter values are H = 3, G = 2, γ = 0.7, and the infinite case

is simulated at time t = 7 and control starts from t = 0. The results given are

averaged over 50 runs and in percents. As initial states, all the states are used in

equal proportion. The column ”Mo” indicates no control case.

For the FC problem (see Section 5.10 for what is meant with FC, IC, FCIM, and

FCFM problems), the following results are obtained.

Cln2 FC IC FCIM FCFM Mo

-1 47 45 44 46 20

0 40 40 41 40 45

1 13 15 15 14 35

The results indicate that all the control methods score far better than no control.

FC seems to score slightly better than other control methods. This easily justify

that the problem is FC too.
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For the IC problem, the following results are obtained.

Cln2 FC IC FCIM FCFM Mo

-1 20 45 21 20 19

0 44 40 45 45 47

1 36 15 34 35 34

The results indicate that other than IC, all the methods score like not controlling.

This clearly means that the MC corresponding to Do-nothing is ergodic. In other

words, after 5 monitoring steps, all the value functions become almost equal. So,

control methods other than IC do not help for this case. This also shows the need

for designing control methods for the IC case.

For the FCIM problem, the following results are obtained.

Cln2 FC IC FCIM FCFM Mo

-1 20 20 21 20 19

0 44 45 45 45 47

1 36 35 34 35 34

The results are almost the same, and control strategies do not help here due to

ergodicity. From this, for ergodic chains, long step monitoring should be avoided as

the effect of initial controls are forgotten.

For the FCFM problem, the following results are obtained.

Cln2 FC IC FCIM FCFM Mo

-1 23 22 24 25 20

0 47 48 45 45 46

1 30 30 31 30 34

The results indicate that all the control methods score slightly better than no

control. This is because the MC of do-nothing has not reached a steady-state yet,

but started to blur values of states.

Like Table 6.7, Table 6.9 shows the importance of balancing the two cost func-

tions. Table 6.9 shows that selection ratios of Menadione and Hypo-osmotic reduce

compared to medium-size network. This shows that the power of the model dimin-

ishes for small-size networks. Because some interactions can be missed by omitting

some of the genes even though the model induction method is perfect. This neces-

sitates developing models capable of handling medium and large size networks.
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Table 6.9: Profile of actions selected for action costs=0 and action costs=1

Cost=0 Cost=1
H=1 H=2 H=3 H=1 H=2 H=3

Do Nothing 296 290 311 675 729 729
Menadione 110 170 185 0 0 0

Hypo-osmotic 285 189 146 54 0 0
Amino&Steady 38 80 87 0 0 0

6.4 Controlling Bayesian Network

This section addresses how to control the Bayesian networks using the proposed

methods. On a learned Bayesian network, performance of the scaling methods is

examined and compared to exact optimal solution.

6.4.1 Network Construction

Figure 6.4 shows the cell cycle subnetwork of S.cerevisiae stored in the KEGG

database [1]. This network is also studied by Kim et al [55] from the perspective

of inducing regulatory networks. The meaning of the arrows in the figure is having

direct influence. So, the interpretation is very close to Bayesian networks. Except

Fus3 and Far1, all other genes are included in Table 6.1.

From Figure 6.4, a subset of the genes given in Figure 6.5 are selected for dynamic

Bayesian network construction. I limit the number of genes to be modeled to 7

because a network of 7 genes with ternary data has 37 = 2187 states; it is almost

the maximum size that can be solved efficiently with explicit tabulation of MC.

So, network of 7 genes can be used for studying all the methods considered, from

tabulation of all network components to forward sparse sampling. This way, it

becomes possible to assure how good the considered scaling up methods find near-

optimal policies.

The objective with the control in Figure 6.5 is forcing Clb5 to be down-regulated.

This biologically corresponds to delaying DNA replication [12]. This is because Clb5

is a key gene for starting DNA replication event. The genes in the figure are selected

around this objective. Both Fus3 and Far1 are eliminated based on the fact that

given the levels of Cln1, Cln2, and Cdc28, they do not need to be included because

of conditional independence. Also, Cdc28 is eliminated because it is a key gene

involved throughout the cell cycle. This gene is not included in the differential

equation model of Kim et al [55] under the assumption that it is abundant all the

time. In the authors’ model, Cln2 is included but Cln1 is excluded as expression
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Figure 6.4: KEGG cell cycle network of S.cerevisiae

patterns of Cln1 and Cln2 are already known to be similar (similar argument applies

to Clb5 and Clb6). So, Cln2, Clb5 are included and Cln1, Clb6 are excluded. Cdc6

is excluded as it has no influence on Clb5. Swi6 is excluded as well because it needs

to make complexes with Swi4 and Mbp1 to have influence on Cln2 and Clb5.

For the remaining 7 genes, the network structure is assumed as given in Fig-

ure 6.4. But, the self arrows are added, as the temporal expression of genes is

dependent on their expression levels; this is exploited in [55] as well. So, the struc-

ture of the resulting dynamic network is obtained as given in Figure 6.5.

After fixing the structure, the parameters are learned under the multinominal

distribution with Dirichlet priors. The dataset used for learning is the discretized

dataset considered in Section 6.2. After learning the parameters, the transition

probability matrix (MC) is constructed from conditional probability tables. So, this

chain is stochastically equivalent to the learned network. To study the effects of

controls, 2 actions (other than Do-nothing), namely Steady and Hypoosmotic are

selected. The MCs corresponding to these actions are computed as follows. The

transition probability for every state is replaced by the that of the state when the

respective action is taken.
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Figure 6.5: Dynamic Bayesian network studied

Table 6.10: Results of Methods for the Bayesian Network

Clb5= No cont. FC Back SS, B=10 Back SS, B=5 Forw SS Q-learning
-1 25 38 37 36 35 34
0 42 38 38 38 36 31
1 33 24 25 26 29 35

6.4.2 Experiments

Four algorithms, FC, Backward sparse sampling, Forward sparse sampling and Q-

learning (Figure 9) are run on the control problem constructed next. The state

action costs are assumed zero and the cost of a state is 0 when Clb5 = −1, 1 when

Clb5 = 0, and 2 when Clb5 = 1. The horizon of control is set to 3 for all methods.

The sampling size B is set to 10 and 5 for the Backward sparse sampling algorithm.

The branching factor B for Forward sparse sampling is set to 5, and the near optimal

policy is computed by running Algorithm 11 for every state and every horizon (i.e.,

1,2, and 3). For Q-learning, the parameters are as follows α = 0.4, and γ = 0.7.

Table 6.10 gives the results obtained. The results give the percent of states

(according to Clb5 level) up to the end of the control period (i.e., the states after

the third time step). All of the 2187 states are selected as initial state, and the
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results are averaged over 10 runs.

The results clearly show that all the control methods are better than the no

control case. Among the 3 control methods, FC is better as it generates optimal

policy; but Backward sparse sampling and Forward sparse sampling methods find

near-optimal policies. The results also indicate that Backward and Forward sparse

sampling algorithms have close performance to FC. This suggests their applicability

(i.e. their reliability) for large problems where FC is not applicable. Although better

than the no control case, Q-learning exhibits worse performance compared to the

other 3 control methods.

6.5 Discussion

In Chapter 5, I have shown the importance of handling various control and mon-

itoring strategies for different settings (FC, IC, etc) on a running example. Also

the importance of the multi-objective optimization has been demonstrated. On the

other hand, the case study in this chapter shows the importance of a good engi-

neering (i.e., determining the cost and state-cost functions) of the domain before

applying control methods. This is true because when actions are associated with

high costs, the optimal control strategies do not select any control action, but Do

nothing. This clearly shows a good balance should be taken before applying con-

trols for finding policies. This suggests that multi-objective control is really needed

for such cases, as this control method removes all dominated actions and allows

biologists build their preference structure.

The case study also shows the importance of handling FC, IC, FCIM, and FCFM

cases separately; this is shown on the small network. All the results indicate that

control methods are really useful and score far beyond the no controlling.

Also shown is the importance of the number of genes selected for modeling. For

example, the transition from medium to small network shows that effects of some

actions may mislead or may become irrelevant.

For model building, MCs are used instead of PBNs. This is mainly because PBNs

are not context dependent, i.e., selection probabilities of predictors are independent

of the state. PBNs are also experimented for model building, but due to the best-fit

extension it has been found that there are usually many predictors for a gene with

zero error. So selecting predictors becomes problematic. This is why we select the

predictors on continuous dataset. Initially, best linear predictor is decided to be

selected, but it is already given in the text that there are other predictors having
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score very close to the best one. For this reason, two best predictors are selected.

The gene itself is allowed to predict its next state because in real biological systems,

most of the genes auto-regulate themselves. Predictor size is set to 3; which is

usually the rule of thumb and have biological background.

Internal effects of external actions are determined using DEGs analysis instead

of hypothetical interventions. I consider that determining the internal effects of

external controls using DEGs analysis is a progress towards developing true control

strategies over a given model. Given the almost correct model, the effects of different

conditions and treatments can be simulated and used for discoveries. To simulate

models under various conditions, the microarray datasets containing up to several

samples available on the Internet (i.e., not requiring a special purpose large scale

experiments) can be used.

Biological relevance and effects of the control strategies proposed directly de-

pend on the correctness of the model and appropriate engineering. Finally, it must

be noted that the control methods presented can be used together with other dis-

crete modeling methodologies including PBNs and Bayesian. In other words, MC

modeling step can be replaced by these modeling approaches.

A dynamic Bayesian network is also provided to show that the control methods

can be applied on these networks as well. And, the other objective is to show that

scaling methods find near-optimal policies close to exact solutions (i.e., optimal

policies). The results show that approximate methods proposed for large state

spaces can be applied to problems for which exact methods are inapplicable.
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CHAPTER 7

SUMMARY, CONCLUSIONS & FUTURE

RESEARCH DIRECTIONS

Within the scope of this thesis work, the problems of identifying differentially ex-

pressed genes from gene expression data have been studied. In this context, two

sophisticated methods (PaGE and q-values) are considered. The focal point in these

considerations is to improve the power. To increase the power of PaGE, a method

based on estimating proportion of differentially expressed genes is proposed. The

lower and upper cutoffs are computed separately and independently in PaGE, it is

considered that simultaneous and dependent computation of these cutoffs are also

possible. This has the advantage of non-symmetric rejection regions with explo-

rative data analysis notion. A dynamic programming algorithm is presented for

efficient computation of confidences. Also, the q-values are extended to single-sided

tests where the interpretation becomes more clear, i.e., up-regulation and down-

regulation are considered separately.

Improving the power is particularly important for cases where the confidence

in differentially expressed genes is desired to be very high (say > 0.8), the number

of differentially expressed genes obtained may be very low. This may mislead that

some treatments or environmental conditions do not make any difference on the

model. To alleviate this problem, methods for improving DEGs analysis within the

same confidence level are proposed. This way, effects of treatments on the model

will not be missed with higher probability. The proposed methods are applied to

synthetic and real gene expression data successfully.

For standard boolean networks, necessary number of experiments for time series

expression data for constant in-degree is proven to be Ω(
√

n · log(n)). This number

is Ω(log(n)) for random (non-time series) experiments. It is considered that this is

important as time series experiments are not random, but dependent as the name
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imply; it is the normal case that actually occur in the real life. The argument used

in the proof is information theoretic lower bound.

For inducing MCs directly from expression data, using multiple predictors has

been proposed and experimented in the selected case study. It is shown that multiple

predictors are really needed as the predictive powers of the best two predictors are

shown to be very close to each other. This approach is identified as akin to transition

from boolean networks to probabilistic boolean networks.

To control the regulatory networks, the effects of actions on the model should

be determined. In the literature, the effects of certain interventions on the genetic

networks are studied. They are either random or explorative, i.e., what happens if

a particular gene is forced to be over-expressed. In this work, I have suggested a

novel connection between differentially expressed gene analysis and effects of inter-

ventions. Particularly, effects of certain environmental conditions and treatments on

the model are automatically extracted using DEGs analysis results. The approach

is particularly important as it is automatic, cheaper and makes general purpose and

publicly available datasets considerable for control purposes.

A principled approach for controlling discrete genetic networks are developed.

Controlling genetic networks is crucial as inducing models only helps to get insight

into the mechanism in the cells. On the other hand, the state can be forcibly

changed externally. Since not all the states of the network are equally desirable, the

controlling becomes a central issue. So, controlling genetic networks in the direction

of specific purpose is a challenging task. This challenge is taken in this work and

control methods for various cases are developed. It must be emphasized here that

the work presented in this thesis is one of the pioneering in this direction.

The control methods presented here are general that they can be used together

with MCs, boolean networks, probabilistic boolean networks, and discrete bayesian

networks. The control scenarios are identified as follows: FC, IC, FCFM, and FCIM.

The control methods for each case are developed. From this point of view, the

control methods presented are general as well. The multi-objective control method

presented here is a novel one and I argue and have already demonstrated that it can

be used when the domain is not engineered very well. The utility of the methods,

their effectiveness, and need for handling different control scenarios are illustrated

on a running example. The other direction is generality of the methods, scaling

from small to large networks. It is also shown that the framework for finite control

cases is complete for sequential application of finite control schemes.

A case study is given to show all the steps of the analysis starting from raw
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expression data and following the sequence: model building, setting the objective,

exploring the effects of the treatments and environmental stresses, and ending with

evaluation of the results. On the case study, the control methods proposed for

medium and large networks (small networks as well) are applied and their effec-

tiveness are shown. Also, the control problem is shown to be best solved with the

matching approach.

A dynamic Bayesian network is constructed from a prior biological knowledge

and microarray dataset. The control problem is formulated and solved under exact

and approximate solutions. The experimental results show that the proposed scaling

up methods can be applied to large scale problems.

7.1 Future Research Directions

The work presented in this thesis may be expanded in several directions as outlined

next.

Clustering Using DEGs patterns

Although differentially expressed genes exhibit significant changes between two con-

ditions, their significance levels are not the same. That is, significance level of genes

change within the same set of significant genes. The pattern generation problem

further clusters significant genes based on ordered significance levels.

In this work, generating patterns is not studied (patterns quantize to what ex-

tent genes show differential expression). This clearly suggests a way of discretizing

replicated measurements. Given a number of conditions (say 10), we can easily

find their pairwise differential expression patterns. In total this gives discrete and

relatively high number of dataset size (for 45 for 10 genes). To date, usually the

average values of replicated experiments are computed and clustering algorithms are

applied on this dataset (10 for 10 conditions). Finding pairwise expression patterns

and collecting them together for clustering may help as the sample number is in-

creased; and by quantization original noise in the data may be avoided. Also, the

determined dataset can be used for discrete regulation network induction.

Here, it is assumed that data for k, (k > 2) number of conditions are available.

For any ordering (but fixed) of these conditions pairwise pattern matrix is generated,

where each row corresponds to a gene and each column corresponds to a condition

pair. I define similarity between any two genes based on that pattern profile. The
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possible similarity metrics are Pearson correlation, manhattan, euclidean and ma-

halanobis distance measures. With these metrics, some known clustering algorithms

(e.g., k-means, hierarchical, etc) can be explored. If k is very large (meaning the

cell state is under many conditions) the generated matrix contains information from

almost every condition possible. So, clustering gene behaviors under all conditions

is our motivation here. I believe that this method is more realistic than clustering

under a particular condition.

Data Mining from Model

To date, most of the modeling research is concentrated on building an interaction

models of genes. As it is already shown the induced model can be used for control-

ling. But, I believe that the induced model can be used for other purposes as well.

For instance, consider given utmost correct model, any cardinality of data can be

sampled from the model. So, the generated data (in large volume) can be used for a

number of analyses. One such analysis is association rule mining. I propose to use

association rule mining to generate association rules over the data simulated from

the model.

The motivation is that since the original dataset (the dataset used to induce

model) is scarce, we cannot apply association rule mining. But, after getting the

large volume of simulated data, it can be applied. The potential benefit of this

approach is, uncovering some dependencies that can not be found by inference or

eye-examination of the (particularly large size) model.

Controlling Continuous Models

The presented controlling approach is for discrete state-space networks. This is

mainly because of using discrete MCs and MDPs. It seems that the approach

can be extended for continuous state-space networks. In this case, for representing

state values and state-action values, parametric function approximators can be used.

Since the model assumes that state costs and state-action costs are user-defined, any

function defined can be used. The functions can range from very simple (such as

if expression level of a particular gene is below some threshold use this cost and

otherwise use another cost, etc) to very complex functions.

Note that the discrete time is assumed to continue. So, continuous bayesian

networks can be used this way for control purposes. Also recall that, since our

control methods do not impose any form (like look-up table) on state values and

state-action values, they can be used with parametric approximators without change
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in the formulas.

Using Eigen-genes to Scale up for Controlling

One of the principled way of dimension reduction is using principal components,

since this effectively corresponds to reducing the number of variables to be used with

the extent that all the variables become orthogonal. To date, principles components

are used for clustering and other analysis. For dimension reduction, usually subsets

of genes are selected as shown in the case study. The principle components can

not be directly used here as the objective can not be defined in terms of eigen-

genes (principal components of genes). If a method capable of transforming original

objective into eigen-gene space can be developed, the methods for small network

can be used.
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