
This is a repository copy of Combining an angle criterion with voxelization and the flying 
voxel method in reconstructing building models from LiDAR data.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79317/

Version: Accepted Version

Article:

Truong-Hong, L, Laefer, DF, Hinks, T et al. (1 more author) (2013) Combining an angle 
criterion with voxelization and the flying voxel method in reconstructing building models 
from LiDAR data. Computer-Aided Civil and Infrastructure Engineering, 28 (2). 112 - 129. 
ISSN 1093-9687 

https://doi.org/10.1111/j.1467-8667.2012.00761.x

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Page 1 
 

COMBINING AN ANGLE CRITERION WITH VOXELIZATION AND THE FLYING 
VOXEL METHOD IN RECONSTRUCTING BUILDING MODELS FROM LiDAR DATA 

Linh Truong-Hong (1), Debra F. Laefer (2)*, Tommy Hinks (3), and Hamish Carr (4) 

(1) PhD, Urban Modelling Group (UMG), School of Civil, Structural, and Environmental Engineering (SCSEE), University 

College Dublin (UCD), Newstead G67, Belfield, Dublin 4, Ireland. Email: linh.truong-hong@ucdconnect.ie 
(2)* Tenured Lecturer, Lead PI, UMG, SCSEE, UCD, Newstead G25, Belfield, Dublin 4, Ireland. Email: debra.laefer@ucd.ie, 

corresponding author 
(3) PhD, School of Computer Science & Informatics, UCD, CSI/A0.09, Belfield, Dublin 4, Ireland. Email: 

tommy.hinks@gmail.com 
(4) Senior Lecturer, School of Computing, Faculty of Engineering, University of Leeds, E C Stoner Building 6.06, UK. Email: 

h.carr@leeds.ac.uk 

Abstract: Traditional documentation capabilities of laser 
scanning technology can be further exploited for urban 
modelling through the transformation of resulting point 
clouds into solid models compatible for computational ana-
lysis. This paper introduces such a technique through the 
combination of an angle criterion and voxelization. As part 
of that, a k-nearest neighbor (kNN) searching algorithm is 
implemented using a predefined number of kNN points 
combined with a maximum radius of the neighborhood, 
something not previously implemented. From this sample 
points are categorized as boundary or interior points. 
Façade features are determined based on underlying 
vertical and horizontal grid voxels of the feature boun-
daries by a grid clustering technique. The complete buil-
ding model involving all full voxels is generated by em-
ploying the Flying Voxel method in order to relabel voxels 
inside openings or outside the facade as empty voxels. Ex-
perimental results on 3 different buildings, using 4 distinct 
sampling densities show successful detection of all open-
ings, reconstruction of all building façades, and automatic 
filling of all improper holes. The maximum nodal displace-
ment divergence was 1.6% compared to manually genera-
ted meshes from measured drawings. This fully automated 
approach rivals processing times of other techniques with 
the distinct advantage of extracting more boundary points, 
especially in less dense data sets (<175pts/m2), which may 
enable its more rapid exploitation of aerial laser scanning 
data and ultimately preclude needing a priori knowledge. 

1 INTRODUCTION 

Point clouds from laser scanning technology, known as 
Light Detection and Ranging (LiDAR), can collect object 
surface data quickly and accurately. These pointclouds have 
been used for reconstructing object surfaces in applications 
from medicine (Weyrich et al., 2004) to product design 
(Várady et al., 2007). LiDAR is being used in Civil Engi-
neering applications most significantly in transportation for 
road modelling (Cai and Rasdorf, 2008; Tsai, et al. 2009), 
sign inventorying (Wang et al. 2010), road defect identify-
cation (Zhang and Elaksher, 2011), and disaster planning 
(Laefer and Pradhan 2006). Increasingly, it is also being ap-
plied for structural health monitoring (Park et al. 2006 and 

Lee and Park, 2011), texture mapping (Zalama et al. 2010), 
historic documentation (Böhm et al. 2007) and Building In-
formation Model generation (Huber et al., 2011). Most re-
cently, pointclouds are employed for populating complex 
computational models for climate modelling (Wenisch et 
al., 2007) and subsidence prediction (Laefer et al., 2010), 
for which highly accurate geometries are needed. 

Many methods have been developed to extract geometries 
from LIDAR data [both airborne and terrestrial] and photo-
grammetry, but most concentrate on reconstructing models 
for visualization. To date, the conversion of these models 
for computational analysis has required significant manual 
intervention to obtain high geometric accuracy (Laefer et 
al., 2011a). With Aerial Laser Scanning (ALS) data, city-
scale, polyhedral building models are typically generated 
from boundaries of roof segments (Dorninger & Pfeifer, 
2008; Elberink, 2009; Zhou & Neumann, 2009). In such 
cases, resulting building outlines are of low accuracy, as 
roof outlines are normally slightly larger than the buildings. 
Also, ALS’s traditionally low sampling density (<100 
pts/m2 horizontally projected and <35 pts/m2 vertically pro-
jected) creates difficulties in generating detailed vertical 
surfaces. Greater success has been achieved using the sub-
stantially denser Terrestrial Laser Scanning (TLS) datasets. 
A good approach proposed by Pu and Vosselman (2009) in-
volves segmenting potential façade features (e.g. windows, 
doors) and the subsequent fitting of polygons. Many alter-
native approaches are based on façade grammars (Becker & 
Haala, 2007 and 2009; Hohmann et al., 2009; Wonka et al., 
2003); see Laefer et al. (2011a,b) for an extensive review of 
related literature and commercial applications for terrestrial 
and aerial options, respectively. 

As most existing approaches have concentrated on visuali-
zation, significant problems tend to arise in either mesh 
convergence or geometric accuracy when the resulting mo-
dels are used as the basis for computational modelling. 
Solid models of existing buildings generated through such 
means have had several drawbacks:  (1) re-quire significant 
user experience; (2) are of relatively low geometric accura-
cy of the façade and its openings; (3) cannot overcome un-
realistic openings caused by sparse or missing data; and/or 
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(4) may produce degenerate shapes causing difficulty in 
generating Finite Element Method (FEM) meshes. To sur-
mount these shortcomings, a feature detection approach en-
titled the FacadeAngle (FA) algorithm is proposed to create 
highly accurate boundaries of façade features through the 
combination of an angle criterion, voxelization, and a re-
cently introduced voxel location detection approach entitled 
the Flying Voxel method (Truong-Hong et al. 2012). 

2 RELATED WORKS 

To identify relevant sample points for detecting building 
features various algorithms and criteria have been 
proposed, many of which employ (1) an angle criterion or a 
half-disc criterion (Becker & Haala, 2007), (2) a Delaunay 
triangulation [e.g. (Pu & Vosselman, 2007)] and/or (3) 
proximity-based alternatives. 

2.1 Angle and Half-disk Criteria 

The general idea of boundary point detection by an angle 
criterion has been described by several researchers (Bendels 
et al., 2006; Gumhold et al., 2001; Linsen, & Prautzsch, 
2001, 2002). The criterion is based on the distribution of 
neighboring points consisting of the k-nearest neighbor 
points (kNNs) to a given point in Euclidean space (Samet, 
2008) around a given point. To select appropriate kNNs for 
a small portion of an object’s surface, Linsen and Prautzsch 
(2001) implemented an angle criterion to establish the 
neighborhood of a given point, where the maximum angular 
gap between two consecutive points within the k-neighbors 
projected onto a fitting plane was less than a threshold 
angle (e.g. ʌ/2). Subsequent work allowed rapid generation 
of locally triangulated meshes suited for object representa-
tion and real-time rendering of three-dimensional (3D) 
scenes (Linsen, & Prautzsch, 2002). Similarly, an angle 
criterion was used to enhance a standard kNN during sele-
ction of a given point’s neighborhood, where no angles be-
tween two consecutive neighboring points were larger than 
a pre-specified threshold (Moenning & Dodgson, 2004). 
The given point was classified either as a boundary point or 
as one lying in an under-sampled region, if no points were 
detected within a spherical neighborhood (as defined by a 
user-controlled radius). 

Elsewhere, Gumhold et al. (2001) applied an angle criterion 
to raw point data to extract the points on an object’s sur-
face. There, sample points were classified as surface, 
crease, corner, or border points based on a penalty function 
dependent upon the maximum angle between neighboring 
points on a tangent-fitting plane (Hope et al., 1992). In rela-
ted work, Bendels et al. (2006) presented a boundary proba-
bility by combining various criteria for automatic hole 
detection. In this, boundary probability was computed from 
the maximum gap between two consecutive projected 
neighbor points for an angle criterion. The distance between 
a given point and the average of its neighbors for the shape 
criterion was calculated. Then the eigenvector of the given 
points calculated from its neighbors were compared to the 
eigenvector of a sample point belonging to standard objects.  

2.2 Delaunay Triangulation and Related Approaches 

In FEM meshing, Delaunay triangulation is a common 
approach, in which a circumcircle of any triangle may not 
contain any sample points of the set (Berg et al., 2000). For 
feature detection this is useful, as there are no sample points 
inside openings. The resulting triangles in those areas have 
longer sides. Using Delaunay triangulation meshes, sample 
points on the boundaries of a façade and its openings can be 
identified. These are the end points of the triangle sides that 
are longer than a predefined length threshold (Boulaassal et 
al., 2009; Pu & Vosselman 2007). Those points have been 
used for generating polygons as representations of complete 
building models by a least-squares fitting approach (Pu & 
Vosselman 2009) or by transforming them into parametric 
models (Boulaassal et al., 2010). Some drawbacks involve 
incomplete window generation, low accuracy of wall 
outlines, and dependence upon a predefined length 
threshold (Tang et al., 2009). In related work, Ali et al. 
(2008) introduced adaptive thresholds to detect contours of 
a rectangular, bounding window. This was based on the 
high variability of absolute differences of adjacent laser 
measured distances that occur in window regions where 
part of the laser beam falling on a window surface is 
reflected back when it hits an internal object’s surface. In 
such cases, windows were segmented by implementing 
closing morphological operations, from which window 
positions and global shapes were detected and subsequently 
retrieved by using contour analysis.  

2.3 Proximity-based Alternatives 

Based on the observation that glass reflectivity is low for 
normal light incidence, Wang et al. (2011) proposed detect-
ing boundary points by examining neighboring spaces to 
low intensity ones; defined as voxels along vertical and 
horizontal directions. A voxel contains boundary points, if 
at least one empty voxel appears in an interval width of the 
considered voxel. The methods can efficiently detect win-
dows but with relatively low geometric accuracy and can-
not distinguish windows from occlusions. Similarly, in 
2008, Hinks et al. (2008) proposed a point-based voxeliza-
tion method to generate solid models of building façades 
from LiDAR data for simulation. In this, a voxel grid divi-
des a bounded 3D region (containing whole point clouds of 
the façade) into a set of cells along vertical and horizontal 
grids parallel to axial directions of a Cartesian coordinate 
system. The voxel is assigned a value of 0 or 1 correspond-
ing to the voxel containing a number of sample points less 
than a user-specified threshold value or vice versa, of which 
the voxel is called “active” or “inactive”. While the result-
ing building models are fully compatible with FEM mesh 
generation, they require a fairly dense data set for accurate 
feature detection, thereby precluding applicability to aerial 
data. The long range processing of city wide data also must 
address the challenges of working with very large data sets, 
so although the current TLS data capture capability is near-
ly limitless, further data density may not be the optimal so-
lution, although more recently available mobile mapping 
may be an alternative (Alshawa et al. 2009). 
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Furthermore, to date these approaches have not provided 
sufficiently reliable and accurate boundary and feature de-
tection for solid model reconstruction for computational 
modeling for Civil Engineering. The next section describes 
a new approach towards integration of these technologies 
for improved boundary and feature detection. 

3 PROPOSED FACADEANGLE ALGORITHMS 

While the point-based voxelization technique patented by 
Hinks et al. (2008) can by itself generate a solid model 
quickly, it insufficiently defines boundaries of a façade and 
its openings for computational purposes. Furthermore, other 
attempts to exploit that technique such as the 
FacadeDelaunay (FD) algorithm recently proposed by the 
same research group (Truong-Hong et al. 2012) require data 
densities that will not be available through aerial LiDAR 
capture for many years as they are two orders of magnitude 
greater than current data capture abilities (Hinks et al. 
2009). Therefore, the FacadeAngle (FA) algorithm is pro-
posed for detection of façade and building features with less 
dense data sets, as it harvests greater numbers of boundary 
points for facades and building features, which provide a 
wider range of subsequent processing opportunities. Herein, 
the FA algorithm is applied to TLS data of various 
densities, as these are not yet achievable with ALS.  

The proposed workflow can be divided (Figure 1): (i) initial 
feature detection, in which sample points (called boundary 

points) lying on the façade and its openings are extracted by 
using the angle criterion and then unrealistic holes are 
eliminated by comparing characteristics of detected holes to 
standard building openings and (ii) geometric model 
reconstruction, in which a geometric model is produced. 

Since the solid models herein are used for structural analy-
sis, some non-structural elements (e.g. balconies and win-
dow ledges) are not included. Further, this work assumes 
that buildings are quadrilateral in shape, with structural ele-
ments residing within a planar façade, with openings com-
prised of primarily rectangular windows and glass-plated 
doors, and currently only reconstructs two-dimensional 
(2D) façades but could be extended to 3D models. 

3.1 Boundary detection (Step 1) 

As mentioned above, a pre-processing step classifies input 
sample points into boundary and interior classifications and 
discards unrealistic holes (Figure 2). There, each sample 
point is examined as to whether or not it lies on a boundary 
using an angle criterion. A boundary coherence technique 
(as will be discussed subsequently) is then applied to im-
prove robustness. Holes are then assessed by comparing 
their characteristics to those of standard building openings. 
Their boundary points are finally re-classified as interior 
points, if they fail to meet the criteria (Figure 2). 

 
Figure 1. Building reconstruction process

 

Figure 2. Feature detection processes 

3.1.1 Angle criterion in boundary point detection (step 1.1) 

Point, pi, is an “interior point” if the neighboring points are 
distributed around an entity (Figure 3a), or a “boundary 
point”, if the neighboring points form a partial ball (Figure 
3b). Thus, the maximum angle between two consecutive 

neighbor points is critical for classification. Ideally, sample 
points on boundaries of a façade and its openings would be 
straight lines, for which the maximum angle between con-
secutive neighbors would be equal to  except at interior 
window corners, which should not exceed /2. Thus, the 
critical angle is chosen as /2, so the given point is a 
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boundary point, if the maximum angular gap exceeds an 
angular threshold. Otherwise, it is an interior point. 

  
a) Neighbor points of an 

interior point, pi 
b) Neighbor points of a 

boundary point, pi 

Figure 3. Distribution of the number of nearest neighbor 
points of a given point 

The FA algorithm starts with a randomly selected sample 
point and searches for a set of neighboring points, q 
(discussed below). The neighboring points, q, are projected 
onto a target-fitting plane (Figure 4). Cartesian coordinates 
of neighboring points are then transformed into relative cy-
lindrical coordinates, with the local origin set at a given 
point pi. An angle between two consecutive neighboring 
points, i,i+1 = qiqi+1, is computed as the difference be-
tween their azimuths (Figures 4a). The given point is label-
ed as a boundary one, if the angle (i,i+1) exceeds a given 
threshold (Figure 4b), and an interior point, otherwise. 

  
a) Angle between 2 

consecutive neighbor 
points of a given point pi 

b) Maximum angle between 2 
consecutive points in the neighbor 

points of a given point pi 
Figure 4. Computing a maximum angle between two 

consecutive neighbor points of a given point pi 

For selecting neighboring points of a given point, various 
methods have been used, such as a ball neighborhood (Fig-
ure 5a) and kNN (Figure 5b). Herein, a binary search k-di-
mension (k-d) tree was implemented into the FA algorithm 
for searching kNN points, where each leaf node contains a 
number of predefined target points (Bentley, 1975) – e.g. 
the 20 points (as discussed subsequently) adopted in this k-
d tree. A number of kNNs, q{q1, q2,…,qn}, the nearest 
points of the given point, p, in the Euclidean distance, were 
extracted by the use of a k-d tree; [see Moore (1990) for 
more details of the searching]. 

Selecting am optimal number of kNN points is an important 
task, because this affects the running time and feature de-
tection quality. For example, if the data have a high level of 
noise or are relatively sparse, selecting a small number of 
kNN points will lead to large errors in classification (e.g. a 
sample point in the sparse Figure 6a data set was classified 
as a boundary point instead of an interior one). Similarly, 
boundary points are overlooked with excessively large 

neighborhoods (Figure 6b). Additionally, as point density 
varies within a data set, with low densities normally occur-
ring in boundary areas, a neighborhood with a predefined 
number of kNN points can unintentionally contain sample 
points belonging to surface patches along two boundaries of 
the same opening (Figure 6b), which causes improper clas-
sification. Herein it is proposed, that the problem can be 
minimized by implementing a radius threshold to constrain 
the ball of the neighborhood. In this, the ball’s radius must 
be less than or equal to the selected threshold. This thresh-
old is set to a normal minimum window opening size (i.e. 
0.4m) based on empirical work by (Pu & Vosselman 2007). 
The kNN searching algorithm implemented in this study is 
defined by an input number of kNN points combined with 
the neighborhood’s maximum radius (something not pre-
viously done). Results with and without a radius threshold 
are illustrated in Figures 7a and 7b, respectively. 

  
a) Ball searching algorithm 

with a pre-defined radius 0.5m 

b) k-nearest neighbor 
searching for 10 kNNs 

Figure 5. Searching nearest neighbor point algorithm 

  
a) 8 kNNs causing 

misclassification of point 
pi in a sparse dataset 

b) 22 kNNs causing 
misclassification of point pi due 
to overly large neighborhood 

Figure 6. Misclassification of sample points due to either an 
overly sparse data or an excessively large neighborhood. 

  
a) 15 kNNs with an upper 

bound searching radius leads 
to only 13 kNNs selected 

b) 15 kNNs without an 
upper bound searching 

radius 
Figure 7. Selecting 15 kNNs of the given point pi with and 

without an upper bound searching radius 

To improve robustness of boundary point detection, the 
boundary coherence technique proposed by Bendels et al. 
(2006) was implemented to eliminate incorrect boundary 
points due to noisy data. The technique defines a point as 
being on a boundary, if and only if, two neighbor points of 
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the given point forming the maximum angle are also boun-
dary points. Otherwise, the point is classified as an interior 
one. In this study, the process is used to check through all 
boundary points detected in the previous step.  

3.1.2 Adjusting openings 

To distinguish real from apparent openings, any detected 
hole is compared to a standard façade opening. A detected 
hole is presumed false, if its characteristics fail to meet pre-
defined opening criteria (as will be discussed later). To 
make this check, firstly all points on the boundary of a 
single hole are clustered using a clustering technique with a 
predefined searching radius (Guha et al., 1999). The radius 
value must ensure that none of the boundary points of adja-
cent openings are unintentionally included, while still cap-
turing all the relevant boundary points (Figure 8a). In real 
buildings, the distance between adjacent rows or columns 
of openings or an opening and the façade edge is normally 
larger than 0.2m (Ripperda, 2008) [Figure 8b]. Thus, a pre-
defined searching radius equal to 0.2m is adopted. 

  
a) Clustering all boundary 

points of a selected opening 
b) Unintentional selection 

boundary points from 
adjacent openings due to an 
overly large searching radius 

* Black points are respectively boundary points of windows 
1 and 2 

Figure 8. Clustering boundary points of the openings  

Next, characteristics of each detected hole (height, length, 
and height/length ratio) are computed using a histogram a-
long the horizontal and vertical directions (Figure 9), where 
the hole is assumed to be rectangular. The possible hori-
zontal and vertical boundary lines of a hole can be deter-
mined from two peaks of the histogram along the x- and y-
directions, respectively (Figure 9b and c), in which a num-
ber of bins in each direction is adopted equal to 10. How-
ever, for holes (such as doors) at the ground surface, only 
one peak on the upper side appears on the histogram along 
the y-direction. Based on this concept, equivalent dimen-
sions (height and length) of each hole are consequently de-
termined in accordance with equations 1 and 2. 
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where n and m, and k and l are a number of boundary 
points belonging to 2 peaks (“up” and “down”) along the y-
histogram, and to 2 peaks (“left” and “right”) along the x-
histogram. Notably, for a hole along the ground surface, the 
down peak is the lowest bin in the y-histogram. 

   
a) Boundary points of the 

window 
b) X-coordinate histogram of boundary 

points along the x-direction 
c) Y-coordinate histogram of boundary 

points along the y-direction 
Figure 9. Using histograms to determine height and length of a window 

Finally, holes are categorized as occlusions, if their charac-
teristics differ from a predefined minimum opening dimen-
sions greater or equal to 0.4m (as established by Pu & 
Vosselman 2007) and a height (Ho) to length (Lo) ratio 
greater than 0.25 and less than 5.0 (as established by Mayer 
& Reznik 2005; Ripperda 2008) (Equation 3). Thereafter, 

boundary points of occlusions are reclassified as interior 
points. In order to eliminate unrealistic holes, characteris-
tics of detected holes are compared to ones of openings in 
building structures, in which the opening is assumed as rec-
tangular; height and length are used post identification.  
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3. 2 Solid model reconstruction (Step 2) 

The aim of Step 2 (Figure 10) is to reconstruct a solid mo-
del of the building façade from raw data points adding a 

point classification of either “interior” or “boundary” as de-
fined in Step 1. In surface reconstruction from a set of 
sample point, an object’s surface-based triangulation 
consists of curved surfaces, instead of the generally planar 
surface of building façades. Surface-based triangles may 
cause difficulty in generating FEM meshes or result in 
distorted FEM meshes leading to unstable numerical 
solution. For these reasons, voxelization is implemented 
into the FA algorithm to generate a complete building 
model. 

 
Figure 10. Reconstruct geometric model process 

Initially, a bounding box enclosing the building’s entire fa-
çade is established. Often, a bounding box has equal edge 
lengths but is defined herein by equations (4) and (5) there-
by implying the possibility of non-cubic voxels. 

m i nm axBB xxL      (4) 

m im a xBB yyH      (5) 

where xmax, ymax, xmin,  ymin are minimum and maximum 
coordinates of input sample points. 

In the proposed FA algorithm, a voxel’s size along its short 
side (either longitudinal or vertical) of the façade is less 
than half of the minimum feature size (e.g. if the minimum 
opening dimension is 0.4m, voxel size must be less than 
0.2m.). Thus, the required octree depth along x- an y-
directions can be given: 







zeMinVoxelSi
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in which MinVoxelSize = 0.2 m and the sign [] means that 
the value is rounded up toward the nearest integer. As the 
octree depth is unique, the maximum octree depth for 
recursively subdividing in this proposed approach can 
expressed as: 

max_Octree_depth = max(depth_x, depth_y)   (8) 

Subsequently, an initial voxel is subdivided along the x- 
and y-directions into four smaller voxels. Herein, the voxel 
is then categorized as “Empty”, “Full” or ”Partial”. The 
voxel is “Empty”, if it contains no data points, or “Full” if it 
contains exclusively interior points. The last category is 
“Partial”, if the voxel contains interior and boundary points 
or only boundary points. In the three sample buildings to be 
presented in the experimental section a depth of 8 was 
found to be ideal for the smaller structures and a depth of 9 
for the larger. 

Boundary lines of the building façade and its openings are 
determined based on boundary points underlying partial 
voxels. To achieve this, a group of empty voxels is assumed 
to be inside an opening, and then the partial voxels around 
the opening are clustered using a flood-filling algorithm 
(Agoston, 2005), in which 8 voxels connected to the se-
lected voxel are checked.  

The assumed quadrilateral shape of the façade and its open-
ings implies that boundary points of each side can be ex-
tracted from vertical and horizontal grids of partial voxels 
by using a grid clustering technique. A new grid cluster is 
generated, if the boundary points within the partial voxel of 
the grid satisfy the following conditions:  (1) a maximum 
distance between two boundary points in the grid is not less 
than the minimum opening size, and (2) a minimum dis-
tance between two boundary points belonging to two adja-
cent partial voxels is not greater than half of the opening 
size, in which an opening size of 0.4 m is adopted. By im-
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plementing a constrained condition in the grid clustering 
technique, incorrect boundary points due to noise in the 
data can be eliminated, because those boundary points may 
be stored as partial voxels on fragment girds. Often, the 
boundary points for reconstructing boundary lines lie in the 
same grid voxels, which implies a low noise level for these 
points. 

Furthermore, these grid clusters are classified as sub-cluster 
voxels containing boundary points representing boundary 
lines for each opening’s side by comparing coordinates of 
the grid cluster voxels to coordinates of the opening’s 
centre (Figure 11a). For example, a window has four sub-
cluster voxels corresponding to the four boundary lines 
(two vertical, one bottom, and one top), whereas a ground-
floor door normally includes only three representing to 
three boundary lines (no bottom boundary lines). For gene-
rating two vertical lines and a bottom boundary line, these 
line segments were determined based on coordinates of all 
boundary points contained within the sub-cluster’s voxels 
by using a least median of squares approach  (Pighin & 
Lewis, 2007, Fleishman et al., 2005). To obtain realistic 
vertical and horizontal boundary lines, fitting lines were de-
termined from a set of boundary points in each sub-cluster 
S = {pi = (xi, yi, zi)| 1≤ i≤n} as shown in equation 9 and 10. 

x = a for vertical lines    (9) 

y = b for horizontal line   (10) 

where the parameters a and b were determined by 
minimizing the median of the residuals: 

i
ia

xamedi anmi narg   for vertical lines  (11) 

i
ib

ybmed ianminarg   for horizontal lines  (12) 

  
a) Clustered vertical and 

horizontal clusters 
b) Determined boundary 

lines of the opening 
 

Figure 11. A modified grid clustering technique is 
employed to cluster vertical and horizontal voxels and to 

determine boundary lines of the opening 

For the detailed process for parameter determination see 
Pighin & Lewis (2007) and Fleishman et al. (2005). This 
technique can eliminate 50% of all outlier points 
(Fleishman et al., 2005). Additionally, as the top boundary 
lines of real openings may be straight (as in rectangular 
openings,) bi-linear (as in wedge openings) or curved (as in 
arched openings), the y-coordinates of the end points of the 
top line were determined from average y-coordinates of 
these boundary points, while x-coordinates of the end 
points were set equal to two outlier boundary points along 
horizontal direction. A similar process was applied for 
determining the façade’s boundary lines. 

The full voxels were then stored in a database to describe 
the geometric model of the solid wall for computational 
modeling. Thus, the properties of the voxels must be re-
classified based on their positions. Namely, the empty 
voxels are either “inside” openings (interior to a set of an 
opening’s boundary lines) or outside the façade (exterior to 
a set of the façade’s boundary lines). To achieve this, a fur-
ther voxelization is created by dividing the initial voxeli-
zation model (Figure 12a) by the boundary lines (Figure 
12b). For this, the number of child voxels depends on the 
number of boundary lines intersecting a parent voxel. For 
example, four child voxels would be created, if two boun-
dary lines intersected the parent voxel. Conversely, no sub-
division would occur, if no boundary line intersected the 
parent voxel, or if boundary lines(s) coincided with surface 
plane(s) of the parent voxel.  

In re-voxelization (Figure 12c), voxels inside of openings 
or outside of the façade are now labeled as empty and all 
others as full. For that, the “Flying Voxel” method (Truong-
Hong et al., 2012) is employed to quickly determine one of 
three possible positions with respect to various boundary 
lines:  Case 1 - voxel outside of the façade; Case 2 - voxel 
inside the façade and inside an opening; or Case 3 - voxel 
in-side the façade but not inside any opening. This 
approach is summarized in Truong-Hong et al. (2012). 

Finally, all full voxels in the final voxelization model are 
converted into a neutral file for computational modeling 
into the commercial FEM code such as ANSYS Mechanical 
APDL Product (ANSYS Academic Research Release 13.0). 
Topology and geometry of the full voxels are converted to a 
Boundary Representation (B-Rep) scheme that defines a 
solid model, similar to that done by Hinks (2011) but with 
the voxel criteria described herein. 
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a) Initial Voxelization 

model   
b) Boundary lines c) New voxelization 

model with 1 further 
subdivision (8 vs. 7) 

d) New voxelization model by 
using the “Flying Voxel” 

method 
Figure 12. Determined façade boundaries and its openings’ boundaries 

4 EXPERIMENTAL RESULTS AND DISCUSSION 

To validate the algorithms, four datasets were created for 
each of three brick buildings in Dublin, Ireland (Figures 
13a-15a), which were selected for their proximity to an up-
coming metro project and the availability of independent 
survey measurements. TLS point cloud data were collected 
using a Trimble GS200 device. Point clouds of each build-
ing acquired from multiple scanner stations because of traf-
fic, terrain limitations, and footpath space were registered 
by using RealWork Survey (RWS) V6.3, proprietary soft-
ware associated with the Trimble GS200 scanner. In this 
survey, two scanner stations were set up for each building. 
A minimum of three reference regions for each scanner sta-
tion was acquired at 2 mm resolutions in order to merge 
pointclouds of the façade, in which the reference regions 
were chosen at well-defined positions such as window cor-
ners or window ledges. A trial and error merge process was 
manually undertaken by selecting a pair of points from the 
source and target stations until the average error of each tar-
get point expressed in term of distance errors was less than 
5mm. Additionally, sampling point clouds were obtained by 
using a random sampling function built on RWS, in which a 
required distance between two adjacent sample points was 
defined.    

The first set was the original scans (NS00) after being co-
registered and having points +/-20 cm behind the expected 
building façade removed. The other three were subsets 
using random re-samplings with expected distances 
between sampling points of 20mm (S20-2500pts/m2), 
50mm (S50-400pts/m2) and 75mm (S75-175pts/m2) [Table 
1]. The densities were selected to test algorithm sensitivity.  

For extracting only sample points of considered facades, a 
MATLAB subroutine incorporated with MATLAB libraries 

was developed. Point clouds of adjoining building were re-
moved. Similar to work of Adan and Huber (2011), the fa-
çade surface was determined from a histogram peak along 
depth direction. For that, points ±20 cm from the facade 
were considered as sample points of objects behind the fa-
çade (e.g. floors, internal walls and objects) or non-func-
tional structures in front of the façades and were manually 
removed. Finally, the ground level was also determined as a 
peak of a histogram along vertical direction.  

Table 1.  Dataset Sizes 

Building 
 

Sampling dataset  

NS00 S20 S50 S75 

 B1:  2 Anne St. South 264,931 51,171 9,909 4,643 

 B2:  5 Anne St. South 190,865 51,884 11,119 5,366 

 B3:  2 Westmoreland St. 650,306 353,848 71,155 35,468 

The FA algorithm was implemented in MatLab program 
(MathWorks, 2007), using TLS data in ASCII format for 
point cloud coordinates. Experimental tests were run on a 
Dell Precision Workstation T5400 with Intel (R) Pentium 
(R) Xeon (8CPU) CPU speed 2GHz with 24 Gb RAM. For 
the boundary point detection, 20 kNN points and 0.4 m of a 
radius threshold were preselected for searching kNN, and 
an angle threshold of /2 was preselected for the angle cri-
terion. Each building had four geometric models:  
B1FANS00 describes the geometric models of Building 1 
(B1) reconstructed by using the FacadeAngle algorithm on 
the original dataset (NS00), while B2FAS20 describes the 
same applied to the sampling point S20 (distance of 20mm 
between points) dataset for Building 2 (B2). Due to space 
limitations, only one set of solid models is graphically 
presented herein for each building. 
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a) Photo Building 1 

(4.95m w x12.16m h) 
b) Scanning data in the 

RealWorks Survey program 
c) Point cloud after 

cleaning and resampling  
d) Boundary points in red 

    
e) Initial voxel 
representation 

f) Voxel representation 
subdivided by boundary lines 

g) Solid model 
representation 

h) CAD drawing from 
physical survey(*)  

(*) values in [] are derived from the FA algorithms, while others are the independently measured survey values 
Figure 13. Facade reconstruction for Building 1 based on dataset of 2500pts/m2 (S20-distance between adjacent sample points 

no less than 20mm)   

    
a) Photo Building 2 

(4.90m l x 13.28m h) 
b) Scanning data in the 

RealWorks Survey program 
c) Point cloud after 

cleaning and resampling 
d) Boundary points in red 

    
e) Initial voxel 
representation 

f) Voxel representation 
subdivided by boundary lines 

g) Solid model 
representation 

h) CAD drawing from 
physical survey(*)  

(*) values in [] are derived from the FA algorithms, while others are the independently measured survey values. 
Figure 14. Facade reconstruction for Building 2 based on a dataset of 400 pts/m2 (S50-distance between adjacent sample points 

no less than 50mm) 
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a) Photo Building 3: 
(19.36m l x 17.0m h) 

b) Scanning data in RealWorks 
Survey program 

c) Point cloud after 
cleaning and resampling 

d) Boundary points in red 

    
e) Initial voxel 
representation 

f) Voxel representation 
subdivided by boundary lines 

g) Solid model 
representation 

h) CAD drawing from 
physical survey(*)  

(*) values in [] are derived from the FA algorithms, while others are the independently measured survey values 
Figure 15. Facade reconstruction for Building 3 based on a dataset of 175 pts/m2  

(S75-distance between adjacent sample points no less than 75mm) 

5 GEOMETRIC VALIDATION 

Geometric accuracy of building façades in figures 13a, 14a, 
and 15a derived from the FA approach was compared to 
those processed in the commercial program, Kubit (1999). 
In this comparison, the building facades from on-site survey 

are considered for benchmarking quantities. In Kubit, the 
solid models were created within an AutoCAD program by 
manually indentifying openings and building boundaries 
based on a building’s photograph. Building façades 
generated from the Kubit program based on input datasets 
in Figure 13c, 14c and 15c are shown in Figure 16. 

   
a) Building 1 b) Building 2 c) Building 3 
Figure 16. Building façades created by Kubit program based on input datasets in Figure 13c, 14c and 15c 

To evaluate accuracy, the geometries of the derived 
building models were compared to measured drawings from 
independently produced on-site surveys (Figure 13h, 14h 
and 15h). In general, length of building models derived 
from the FA algorithm were slightly underestimated while 

ones from the Kubit algorithm were overestimated and to a 
greater extent, when compared to the real buildings 
underlying CAD drawings (Figure 17a). The maximum 
relative error in length by the FA algorithm underestimated 
Building 2 by 1%, while the maximum relative error by the 
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Kubit program overestimated Building 1 by 3% (Figue 
17a). Similarly, the FA algorithm also tended to 
underestimate the building height, whereas the Kubit 
program tended to overestimate it. While, the relative errors 
of the building height from the FA algorithm were slightly 

higher than ones from the Kubit program, the maximum 
relative errors were no more than 1.2% (Building 3) for the 
FA-based models versus 0.6% for the Kubit-based models 
(Figure 17b), with the benefit of the FA algorithm being 
fully automated.  

   
a) Lengths b) Heights c) Opening area 

Figure 17. Relative errors of building facades reconstructed by FA algorithm and Kubit program compared to independently 
measured drawings 

In terms of opening areas, for the small buildings (Building 
1 and 2), the FA algorithm was more accurate (maximum 
relative error of 3.7% for Building 2) than the Kubit 
program generated ones (maximum relative error of -7.2% 
for Building 2), as shown in Figure 17c. However, for the 
larger Building 3, the opposite trend was found with the FA 
algorithm overestimating the opening area by 3% and the 
Kubit program underestimating by 1% (Figure 17c). As the 
resulting geometry of the building components (e.g. 
openings) may or may not affect building response 
depending upon the application, the geometric accuracy of 
the components was also evaluated.   

By considering the most important building components in 
masonry buildings (e.g. openings), the approach was also 
shown to be comparable. The average absolute errors of the 
opening dimensions in the FA-based solid models were 
generally less than the Kubit-based ones (Table 2), in which 
the average error was 12.7mm [Standard deviation 
(SD)=121.1mm] in Building 2or the FA-based models, 
while 75.6mm (SD=102.7mm) for the Kubit-based ones. 
However, for the larger Building 3, opening dimensions in 
the Kubit-based model were more accurate than those from 
the FA-based models. For that, the average errors were -
30.3mm (SD=54.1mm) and 4.5mm (SD=58.6mm) for the 
FA- and Kubit-based models. In conclusion, the FA 
algorithm more commonly automatically generated 
building models of superior accuracy than those created by 
the operator-assisted Kubit ones. This was likely caused by 
the fact that the Kubit program depends on visual 
interpolation by the user, while the FA algorithm generates 
the boundaries of the façade and its openings strictly from 

sample points. 

Table 2. Geometric differences between CAD drawings 
against the FA and Kubit-based solid models 

Aspects 
(mm) 

Building 1 Building 2 Building 3 
FA-S20 Kubit FA-S50 Kubit FA-S75 Kubit 

Average  8.6 28.8 12.7 75.6 -30.3 4.5 
Min. error -109.0 -110.0 -165.0 -40.0 -177.0 -140.0 
Max. error 179.0 250.0 359.0 370.0 45.0 70.0 
Stand. dev. 111.4 110.0 121.1 102.7 54.1 58.6 

5.1 Quality of boundary point detection 

The proposed FA algorithm consistently detected all 
openings for each of the three building facades (Figure 13-
15). Using 20 kNNs, sufficient boundary points were found 
on the façade boundaries and its openings to reconstruct 
realistic boundary lines (Figure 13c, 14c and 15c), with 
improved detection for denser datasets (Figures 18a-b vs. 
Figures 18c-d). Notably, the FA algorithm can detect all 
boundary points around openings corners, a shortcoming 
that occurs in the Delaunay triangulation based FD 
algorithm (Truong-Hong et. al, 2011) [Figure 19] or with 
use of a shape criterion (Becker & Haala, 2007). 
Additionally, the FA algorithm also detected approximately 
twice the number of boundary points on building’s features 
than the FD algorithm (Figure 18 vs. Figure 19), even in the 
presence of occlusions (Figure 18a black circle). This opens 
the way for further processing options or further density 
reductions, which may soon enable use of existing ALS 
data for solid model generation of building facades.  

    
a) For NS00 – 230 
boundary points 

b) For S20 – 187 
boundary points 

c) For S50 – 86 
boundary points 

d) For S75 – 56 
boundary points 

Figure 18. Boundary points of a top left window of Building 2 with various sampling density of datasets to show parameter 
sensitivity 



Page 12 
 

    
a) For NS00 – 71 
boundary points 

b) For S20 – 61 
boundary points 

c) For S50 – 42 
boundary points 

d) For S75 – 32 
boundary points 

Figure 19. Boundary points of a top left window of Building 2 with various sampling density of datasets from the FD 
algorithm (adapted from Truong-Hong et al. 2012) 

5.2 Processing time 

The majority of the total processing time was devoted to 
feature detection (Figure 20). With a dataset of 190,865 
points [as shown as 5.28 (log190,865) on x-axis of Figure 
20], the feature detection took 102.3 minutes while 
voxelization required only 1.8 minutes (Figure 20). This is 
because the feature detection algorithm must pass through 
the entire dataset, whereas the voxelization process is 
mainly searching through partial voxels to reconstruct 
boundary lines of building’s features. The voxelization 
process depends on not only depth of octree representation 
but also the number of openings needing to be 
reconstructed. For example, the process took 0.8 minutes 
for Building 2 (51,884 sample points, 8 openings and depth 
of octree representation by 8) but 6.28 minutes for Building 
3 (71,155 sample points, 28 openings and depth of octree 
representation by 9; the greater size of Building 3 required 
an additional level of division). 

While, the FA and FD algorithms (Truong-Hong et al., 
2012) were nearly equivalent in speed, particularly for 
datasets less than 350k sample points, the FA algorithm 
may be further optimized, by having the feature detection 
portion of the algorithm search only on the sample points 
around openings instead through all sample points, as 
currently reflects its implementation.   

 
a) Feature detection 

 
b) Voxelization process 

Figure 20. Running time of the algorithms. 

To investigate efficiency of the proposed FA algorithm and 
Kubit program in reconstructing building models, the 
dataset of S75 was selected and the results of the building 
models was illustrated in Figure 13-16. Processing time for 
manual cleaning irrelevant points with the RealWork 
Survey is 5 minutes for all datasets while ones for 
reconstructing the building models is shown in Figure 21 
(below). In general, the FA algorithm is faster than the 
Kubit program, particularly for small buildings (Building 1 
and 2) having less number of openings. 

 
Figure 21. Comparing processing time between FA 

algorithm and Kubit program based on dataset of S75 

5.3 Influence of critical input parameters 

In the angle criterion, the vital parameters were identifying 
the critical angle and selecting a suitable neighborhood. In 
this study, the critical angle was set equal to /2, which 
worked well, even in the corners, because the data points 
were fairly regularly distributed. False results occur, if the 
number of kNNs is set either too low or too high. As such, 
as discussed previously, for cases of 8 or 22 kNNs selected, 
detection of either interior or boundary points would be 
incomplete (Figure 6). By assuming a perfectly distributed 
rectangular data set, 8 kNN points would be sufficient for 
boundary point detection (Figure 22 with sample points in 
circles), but real data are not distributed as such. Thus, 20 
kNN points were selected for all datasets, corresponding to 
0.2m of the ball’s radius of the kNN points for 75mm 
sampling dataset. This selection provides rapid boundary 
point detection while avoiding accidental sample point 
collection on adjacent openings. Additionally, the 0.2m 
radius enabled robust clustering of all boundary points on 
the boundaries of the façade’s features for each of the 12 
datasets. 
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Note: 
* Dark gray points: sample points 
* Black gray points: given points 
* Unfilled circle points: boundary points 
* Black points:  neighbor points 
* Circles: selecting 8 kNN points 
* Dash lines: an expected window boundary lines 

Figure 22. Selecting neighboring points in rectangular 
distribution of sample points  

6 NUMERICAL ASSESSMENT 

As the main goal of the FA algorithm was to reconstruct 
solid models of existing building façades for computational 
modeling, compatibility of the solid models and the impact 
of the aforementioned geometric discrepancies on 
numerical results must be discussed. To evaluate the 
usability of these models for a relevant case, the responses 
of the FEM models derived solid models from the FA 
algorithm were compared to ones based on CAD drawings 
from on-site drawings submitted for planning permission. 
In this section, the solid models of Building 1 respectively 
shown in Figure 13g and 13h for the FA algorithm and the 

CAD drawing were selected for further investigation.  

Non-linear analysis was adopted for analyzing the solid 
model of Building 1 by using ANSYS Mechanical APDL 
product (ANSYS Academic Research Release 13.0), where 
a macro modeling strategy was employed to model the 
building facade by using a SOLID65 element. Additionally, 
a William Warnke (WW) failure criterion and Drucker-
Prager (DP) yield criterion built into the ANSYS program 
are respectively to model masonry behavior in tension and 
compression. Thus, the WW failure criterion provides a 
tension cut-off for the DP yield criterion (Truong-Hong and 
Laefer, 2008). Material properties were selected from 
existing experimental reports and the peer-reviewed 
literature to represent medium-strength masonry properties 
used for this analysis. These were as follows: for elastic 
behavior Young’s modulus of 3,480 MPa and Poisson’s 
ratio 0.16 and for plastic behavior for 26.15/1.15 MPa of 
compressive/tensile strength, 6.81 MPa internal cohesion, 
350 internal friction angle and 100 dilatancy angle. The 
analysis was conducted under self-weight and imposed 
displacements due to excavation-induced foundation 
settlements (Truong-Hong 2011), in which an element size 
of 0.15 m was predefined for FEM mesh generation, and 
displacements were directly applied to nodes on the bottom 
of the model (Figure 23a and b). As discrepancy of building 
length (Figure 17a) and the building edge is set at 2 m 
behind excavation face (Truong-Hong, 2011), there are 
small different displacements imposed on FEM models 
based on CAD drawing and the FA algorithm, where the 
minimum displacements were respectively 24.764 mm and 
24.905 mm (Figure 23a and b). 

 

 

 

 

  

a) FEM mesh & imposed 
displacement – CAD based 

b) FEM mesh & imposed 
displacement – FA based 

c) Displacements of FEM 
model – CAD based 

d) Displacements of FEM model – 
FA based 

Figure 23. Finite element models and numerical results from CAD and FA based models 

Graphically, the numerical analysis showed a consistency 
of nodal displacements between the FEM models based on 
two sources of the solid models (Figure 23c and d). The 
maximum nodal displacement differed by no more 1.6%, 
with an absolute difference of only 1.6 mm (Figure 23). In 
terms of an engineering perspective, this difference in FEM 

results was well below accepted uncertainty levels within 
structural design [e.g. the Load and Resistance Factor 
Design specification allows a nominal force effect increase 
of 5% to consider ductility, redundancy, and operational 
importance (Hoffman et al., 1996)]. Thus, the algorithm 
proposed herein can be used for auto-generating 
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computational models from TLS data.    

7 CONCLUSIONS AND FUTURE WORK 

The newly proposed FacadeAngle algorithm combines an 
angle criterion, voxelization, and the positional determining 
Flying Voxel method to automatically extract building 
façades and their major features from LiDAR point cloud 
data for further computational modeling. By use of an angle 
threshold combined with a pre-specified searching radius 
and a pre-selected number of nearest neighbor candidates, 
the algorithm performed within acceptable limits in a wide 
variety of tests against a semi-automatic, commercial 
alternative on three urban buildings at 4 data densities. 
Favorable results were also obtained for geometric variance 
of the overall form and individual elements compared to 
solid models derived from measured drawings, as well as 
for resulting displacements and stresses in an adjacent 
excavation scenario (within 1.6% or 1.6 mm). Furthermore, 
even without full optimization, the processing time was 
comparable to another voxel-based automated approach and 
was also able to automatically overcome holes caused by 
data occlusions. In addition to these favorable aspects, the 
strategic advantages that the FacadeAngle potentially 
possesses over other approaches are as follows:   

1. Ability to precisely detect all boundary points 
around the corners of openings, except where 
occlusions exist 

2. Capability to harvest twice the number of 
boundary points over other automated methods 

3. Item 2 offers the potential for further processing 
for more exact results and/or for the abandonment 
of any a priori knowledge (e.g. general window 
sizes); something not yet obtainable in any 
approach 

4. Item 2 also offer the potential use of less dense 
data sets, such as aerial ones in the near term as 
there is a difference of two orders of magnitude 
between current high level aerial data when 
vertically projected and the typical terrestrial scan. 

However, the proposed algorithm needs to be extended to 
non-rectangular forms, optimized for use with large and 
sparse datasets, and needs to be freed from reliance on prior 
knowledge. Finally, increasing automation and applicability 
of this method will require its extension to fully 3D models 
and its integration with a procedure appropriate to eliminate 
irrelevant sample points prior to the initial processing.  
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