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Abstract—Wind energy has become one of the most 
important forms of renewable energy. Wind energy 
conversion systems are more sophisticated and new 
approaches are required based on advance analytics. This 
paper presents an exhaustive review of artificial neural 
networks used in wind energy systems, identifying the 
methods most employed for different applications and 
demonstrating that Artificial Neural Networks can be an 
alternative to conventional methods in many cases. More 
than 85% of the 190 references employed in this paper 
have been published in the last 5 years. The methods are 
classified and analysed into four groups according to the 
application: forecasting and predictions; design 
optimization; fault detection and diagnosis; and optimal 
control. A statistical analysis of the current state and 
future trends in this field is carried out. An analysis of 
each application group about the strengths and 
weaknesses of each ANN structure is carried out. A 
quantitative analysis of the main references is carried out 
showing new statistical results of the current state and 
future trends of the topic. The paper describes the main 
challenges and technological gaps concerning the 
application of ANN to wind turbines, according to the 
literature review. An overall table is provided to 
summarize the most important references according to 
the application groups and case studies.  

Index Terms— Artificial neural networks, wind 
turbines, wind energy conversion systems. 

I.    INTRODUCTION AND MOTIVATION 

wind energy is one of the most important 
renewable energy sources. In 2016, wind energy 

systems (WES) provided more than 420 GW, and this is 
expected to rise to more than 1000 GW in the 2030s [1]. 
WES are undergoing a modernization process where the 
number of requirements has increased to ensure efficient 
energy production [2, 3]. There has been an increase in 
WES and their complexity, as well as the demand for new 
techniques and methods to improve reliability [4], 
maintenance [5] and investments [6], leading to greater 
competitiveness in the energy market.

The wind energy market, as one of the most 
exploitable and growing markets, requires both 
technical and economic advances.  Regarding the 
technical aspects, efforts are oriented towards 
harnessing the wind to a maximum level. There are 
many issues addressed in the literature, such as the 
aerodynamic optimization of wind turbines (WT) [7], 
the optimization of blade shapes [8], the study of power 

curve under different circumstances [9], the 
optimization of WT position in a wind farm [10], etc. 
With respect to the economic issues, the main objective 
is to maximize profits obtained from the available 
resources. For this purpose, the literature covers topics 
such as wind speed modelling [11], strategies based on 
energy price forecasting [12], the study of the 
interactions between wind energy and the power market 
[13], wind turbine life cycle analysis [14], etc. This 
paper shows an exhaustive review of the current 
techniques and methods concerning these issues 
employing artificial neural networks (ANN) 

WTs are equipped with a large number of devices to 
evaluate the humidity, temperature, vibration, etc. [15]. 
Data acquisition systems measure all the variables in 
order to determine the system condition [16]. Data 
processing requires robust algorithms [17] that enable 
as much information as possible to be gathered from the 
available data [18]. Machine learning algorithms are 
widely employed due to their ability to process a large 
amount of data, ANNs being one of the most employed 
methods [19]. 

ANNs are complex structures based on biological 
neurons. These structures provide a good solution to 
problems that cannot be analytically defined. An ANN 
consists of neurons which are simple processing units, 
and weighted connections between those neurons. A 
typical structure corresponds to the multilayer 
perceptron (MLP), shown in Fig.1 [20]. 

 

Fig. 1. Structure of an Artificial Neural Network  
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The ANN receives a dataset and starts a training 
process to adjust the weights of the interconnections 
between neurons. The training will be supervised if the 
output is known, otherwise it will be named 
unsupervised training [21].   

There are four basic variables that characterize an 
ANN: the topology; the training method; the type of 
association between input and output data, and; the 
presentation of the information. More than 50 types of 
ANN can be distinguished, for example: MLP; radial 
basis function neural network (RBFNN); 
backpropagation networks (BPNN); Wavelet neural 
network (Wavelet NN); self-organized-map NN (SOM 
NN); Recurrent NN; time delay NN; Hopfield network; 
auto-associative NN; convolutional NN; learning 
vector quantization networks; adaptive resonance 
theory (ART) NN; neuro-fuzzy networks; dynamic 
NN. 

ANNs are employed in fields due to their numerous 
advantages, e.g. medicine, chemistry, robotics, 
geospatial analysis, etc. ANNs can be used to generate 
functions to explain a certain phenomenon when the 
data does not allow such functions to be created by 
hand [22]. The main advantages are [23]: 

- Adaptive learning: They can learn to perform 
tasks through a training process.  

- Self-organization: ANNs can create their own 
structure to represent the information through a 
training process 

- Fault tolerance: The ANN can still operate when 
its structure is damaged (tolerance to 
degradation), and distorted or incomplete when 
the data are noisy (tolerance to data).  

- On-line operation: They can be implemented in 
parallel and work fast. Consequently, they are 
specially programmed to carry out on-line 
processes.  

- Easy implementation into the systems: There are 
specialized chips that can facilitate the integration 
of ANNs into the systems.  

The originality and contribution of this paper are 
summarized as:The main motivation of this paper is to 
generate an uploaded compilation of research works, 
models, methods and algorithms, where researchers 
and professionals in the wind energy field can find the 
current state (and ideas of the future trends) of the use 
of ANNs in WES. This paper can also be useful for 
finding novel research lines that can improve the 
operation of the existing methods. It shows the benefits 
of each type of ANN for different purposes.    

II.     ANN APPLICATIONS IN WIND ENERGY 

This paper presents an exhaustive state-of-the-art 
ANN applied to the wind energy field. The objective of 
this section is to classify the ANN methods regarding 
the problem to be addressed. The NNs are useful for 
solving a wide range of problems from seven 
categories  [24]: 

- Pattern classification: The ANNs can detect 
patterns in a dataset through supervised learning.  

- Clustering: The data similarities, or 
dissimilarities, are identified via unsupervised 
learning. The network will assign similar data to 
the same group (or cluster).  

- Function approximation: ANNs can be applied to 
problems where a theoretical model cannot be 
applied. They can approximate the input data to a 
function with a certain degree of detail. 

- Forecasting: A NN can be trained by time series 
to obtain a prediction of the future behavior.  

- Optimization: A solution that maximizes, or 
minimizes, a function subject to different 
constraints can be found. 

- Association: An associative network can be 
employed to reconstruct corrupted data by 
developing an associative pattern. 

- Control: It is possible to determine the inputs that 
will cause a desired system behavior. 

This research work considers the following 
classification, focusing on the study of the most 
influential and studied problems. It is shown in Table I.  

The four major categories (forecasting and 
prediction, fault detection and diagnosis (FDD), design 
and control optimization) are related to the nature of the 
problem that will be addressed in this paper. The 
secondary categories represent the specific part of WES 
that will be considered for analysis. FDD will be 
studied in detail in this paper due to the large number 
of studies and methods that have been developed in 
recent years.  

 
 
 

TABLE I. CLASSIFICATION STRUCTURE OF THE APPLICATIONS OF ANN 

IN WIND TURBINES 

ARTIFICIAL 

NEURAL  
NETWORKS 

AND WIND 

ENERGY 

FORECASTING 

AND 

PREDICTIONS 

Wind speed  
Wind power  

Other parameters  

DESIGN 
OPTIMIZATION 

Wind turbine  

Wind farm  

FAULT 
DETECTION 
AND 
DIAGNOSIS 

Gearbox and bearings 
Generator, power 
electronics and electric  
Rotor, blades and 
hydraulic  
False-alarm rate 
reduction 

OPTIMAL 
CONTROL 

Maximum power 
tracking 
Pitch angle  
Speed  
Reactive power  
Converter  

 

III.     FORECASTING AND PREDICTIONS 

The prediction of the wind energy production is a 
complex task, but it is crucial to establish optimal 



planning by energy suppliers, wind energy market 
actors, wind farm owners and operators, maintenance 
teams, etc. For example, energy suppliers can avoid 
overproduction by considering energy storage systems 
or by coordinating the estimated wind energy 
production and the demand [25]; generators can adopt 
strategies for making offers into electricity markets [26, 
27]; the maintenance tasks can be scheduled according 
to predictions [28, 29], etc.  

It has been demonstrated that ANNs are efficient 
when physical processes are not understood or are very 
complex [30]. The main parameters considered for 
predictions are wind speed and wind power. 

 

A. Wind speed forecasting 

Wind speed is an essential parameter for the WES 
operation. The most important models for wind speed 
forecasting are [31]: the physical methods, such as the 
numerical weather prediction (NWP); the statistical 
methods [32], where the most popular is the ARIMA 
model; the intelligent models, where the most popular 
are based on ANNs; and the hybrid forecasting models, 
that combine different types of algorithms. Physical 
methods are better for predicting wind speed in the 
long-term. Statistical methods and artificial intelligence 
models are efficient for short-term wind speed 
prediction.  

To quantify potential uncertainties associated with 
forecasts, Quan et al. implemented a NN-based method 
for the construction of prediction intervals [33]. These 
uncertainties associated with forecasts were also 
quantified by Ak et al. using a MLP [34]. 

Table II shows a classification of the predictions 
according to the time-horizon. 

TABLE II.  WIND SPEED PREDICTION VS TIME HORIZON [35] 

TIME HORIZON RANGE 

Very-short term Seconds - 30 minutes 

Short-term 30 minutes - 6 hours 

Medium-term 6 hours - 1 day 
Long-term 1 day-1 week ahead 

Most of the research studies and methods for wind 
speed forecasting are focused on very-short-term or 
short-term forecasting.  

Very short-term predictions are useful for turbine 
control applications in the range of seconds. Therefore, 
computational cost is an essential factor to the models 
to be used in online applications.  

Safavieh et al. employed wavelet-based networks 
and particle swarm optimization, obtaining more 
accurate results compared with a MLP, but it requires  
high computational costs [36]. 

Kani and Ardehali suggested a combination of a 
MLP and Markov chains [37]. This method reduces the 
predicted errors and the uncertainties with a moderate 
computational cost. Therefore, the model is practical 
for use in online applications.  

Gao et al. proposed an hybrid model based on chaos 
phase space reconstruction and NWP-General 
regression NN [38]. This method reduces the impact of 
inaccurate meteorological information. The 
abovementioned models concluded that the 
hybridization of ANNs provides better results than 
single ANN methods for very short-term wind speed 
predictions.  

Regarding short-term forecasting, Li  et al. employed 
three different ANNs (linear element network, BPNN 
and RBFNN) for 1 hour ahead predictions [39]. This 
study concludes that there is not a unique ANN that 
provides the best results in all the cases. 

The BPNN developed by Palomares et al. can also 
be employed for 1 hour ahead predictions [40]. This 
method improved the results of the persistence model, 
and demonstrated that data obtained from traditional 
agricultural measurements can be useful in predicting 
wind speed with acceptable results. 

Philippopoulos and Deligiorgi proposed a feed-
forward ANN method for a coastal region with a very 
complex topography [41]. They demonstrated that this 
model is accurate due to the ability of the ANNs to 
incorporate the unstable characteristics of the wind due 
to the topography.  

Salcedo-Sanz et al. developed a MLP-based method 
for predicting wind speed at different points of a wind 
farm [42]. They proved that this model in a real wind 
farm obtains small mean absolute error values.  

Several research works on short-term wind speed 
forecasting consider different models, e.g. two-layers 
ANN [43], RBFNN [44], IRBFNN [45], ensemble of 
mixture density ANN [46], non-linear adaptive model 
[47], deep ANN [48], adaptive boosting (adaboosting) 
ANN [49], etc. All these studies demonstrate that most 
of the ANN based models are more accurate than 
methods without artificial intelligence. The best model 
for each case depends on the type of data and the 
criteria for the estimation.  

The ANNs are also employed to develop algorithms 
for medium term wind speed forecasting. The increase 
in the time-horizon causes less accurate forecasting. 
Wang et al. combined an Elman recurrent ANN with 
machine learning techniques for a medium-term wind 
speed prediction [50]. The authors concluded that the 
hybrid methods provide more accuracy for this 
prediction horizon than other models.  

Some authors have developed hybrid models: Zhang 
et al. employed ANNs in two different hybrid models 
that combine empirical model decomposition and 
support vector machine [51], obtaining better results 
than those provided by the traditional decomposition 
forecasting aggregation models. 

Meng et al. showed a wind speed forecasting by a 
hybrid model that comprises wavelet decomposition 
and ANN [52]. This method improved the forecasting 
performance compared to empirical mode 
decomposition methods. An adaptive wavelet ANN is 
employed by Doucoure et al. for a multi-resolution 



analysis for predicting wind speed time series [53]. This 
model allows the complexity (order) of the prediction 
system to be optimized. Ak et al. trained a MLP trained 
with a multi-objective genetic algorithm [54], obtaining 
a reliable estimation of the prediction intervals.  

Li  and Shi made a comparison between adaptive 
linear element, BPNN and RBFNN [55]. They realized 
that factors such as the inputs of the model and the 
learning rates affect the accuracy of the estimation. Liu 
et al. proposed a novel multi-stage hybrid approach for 
high accuracy predictions based on the secondary 
decomposition algorithm and Elman NNs [31].  

The literature for long-term wind speed predictions 
is not very extensive due to low accuracy. For example, 
Malik [56] proposed a BPNN trained with data from 22 
cities. This paper optimizes the number of hidden 
neurons in order to reach a maximum accuracy. 

Finamore et al. presented a method for the medium-
long term prediction based on a MLP and the 
spatiotemporal evolution of weather [57]. The model 
gave interesting results, being able to reduce the effects 
of weather anomalies.   

Moustris et al. proposed a 24-h ahead wind speed 
prediction with an ANN model that is analyzed together 
with the wind and air pressure historical data [58]. The 
results of this model provide an adequate forecast that 
can be useful in supporting maintenance tasks. A long-
term prediction model was also developed by Azad et 
al., using a feed-forward BPNN for predicting the trend 
of the incoming year [59]. The proposed method 
provided the best results for monthly mean wind speed, 
30 days ahead and 1 year ahead, compared with other 
ANN models (Time Delay, Nonlinear Autoregressive, 
Feed-Forward and Layer-Recurrent). Additional long-
term wind speed forecasting models can be found in 
[60] and [61]. 

 

B. Wind power forecasting 

Many forecasting studies for wind power in the 
short, medium and long term have been found in the 
literature.  

Regarding the short-term forecasting, Zameer et al. 
[62] proposed an ANN-Genetic programming based 
model. It employs a combination of Feed-forward 
BPNN, RBFNN and Broyden Fletcher Goldfarb 
Shanno NN. The model was applied to several wind 
farms providing estimations results with a high level of 
accuracy. 

Ma et al. proposed a hybrid method that involves a 
generalized dynamic fuzzy NN [63]. The accuracy of 
the method presents results that are 5.33% more 
accurate than results obtained with BPNN. 

Dong et al. suggested a hybrid model combining an 
integrated processing strategy and a linear neuro-fuzzy 
function to forecast wind power [64]. Other hybrid 
models are based on neuro-fuzzy [65], GA-BP NN[66], 
wavelet ANN [67] or Adaptive Wavelet ANN [68]. 
Short-term wind power prediction methods are based 

on BPNN [69], Elman ANN [70], convolutional and 
recurrent ANNs [71], Boltzmann machine [72], 
artificial bee colony ANN [73], ANN combined with 
PSO [74] or with PSO-FCM [33], or recurrent 
ANN [75].  

ANN methods are mainly employed for short-term 
wind power predictions because the accuracy decreases  
when the time horizon is long [76]. Wang et al. 
designed a network structure for long term predictions, 
based on the combination of matrix time series with 
Bernstein polynomial, with an accurate estimation up 
to 24 hours [77].  

Bhaskar et al. employed a two-stage model, 
composed of a wavelet ANN and a feed-forward NN, 
to predict wind power up to 30 hours with acceptable 
accuracy [78]. The proposed model is compared with 
persistence, and new reference benchmark models 
individually confirm the effectiveness of the model.  

Wan et al. generated prediction intervals of wind 
power through an hybrid ANN approach [79]. The 
results demonstrated that the proposed approach can be 
used in practical applications.  

An estimation of the annual energy output of a WT 
was developed by Jafarian and Ranjbar, performing a 
RBFNN and generalized regression network model by 
three inputs: average of wind speed, standard deviation 
of wind speed and the air density [80].  

Li  et al. compared GNN, SGNN, RBFNN, and 
Extreme Learning Machine regarding the 
computational cost, time horizon and accuracy [81]. 
They concluded that the best method is different 
according to the time-horizon.  

Models for both wind speed and wind power 
forecasting have also been developed. Olaofe 
employed a BPNN to predict wind speed and power up 
to 5 days ahead [30]. One drawback of this model is 
that the ANN requires many input samples to provide 
good confidence outputs. Barbourins and Theocharis 
employ locally recurrent multilayer networks for long-
term wind speed and power forecasting [82]. Multilayer 
networks are also employed by Jung and Kwon to 
predict annual energy production of WT [83]. The work 
presented by Petković et al. consists of an adaptive 
neuro-fuzzy inference system to predict the wind power 
form, wind speed and speed direction [84]. 

C. Other parameters forecasting 

Additional important parameters can be predicted 
through ANN models. Ouyang et al. [85] proposes a 
comparison between four data-mining algorithms 
applied to control the yaw position of a WT. The 
algorithms are based on support vector machine 
(SVM), MLP, random forest algorithm (RFA) and 
gradient boosted regression trees (GRBT). The 
prediction of the wind direction is represented by its 
sine and cosine components. The results are compared 
with the real dataset. The mean absolute error (MAE), 
the root mean squared error (RMSE) and the correlation 



coefficient (CC) are shown in Table III. The MLP 
model is considered the best model for predicting the 
cosine direction of wind. It has been shown that these 
methods present better results than traditional 
approaches. 

 
TABLE III.  COMPARISON OF ERRORS OF DIFFERENT ALGORITHMS 

Sine predict error Cosine predict error 

MAE RMSE CC MAE RMSE CC 

SVM 0.1079 0.1632 0.9719 0.1268 0.1815 0.9650 

MLP 0.0935 0.1603 0.9703 0.0803 0.1468 0.9766 

RFA 0.0820 0.1468 0.9771 0.0869 0.1525 0.9749 

GRBT 0.0993 0.1652 0.9704 0.1026 0.1672 0.9701 

Sargolzaei and Kianifar proposed a RBFNN for 
predicting the torque and the power factor in a 
Savonious WT [86]. The predicted values by the model 
are compared with the measured parameters. This study 
demonstrated that the ANN techniques can be applied 
as an effective method for predicting and assessing the 
performance of WTs.  

Shamshirband et al. predicted the noise annoyance 
caused by WTs [87]. This is an emerging problem due 
to the large increase in the number of WTs. A model to 
simulate the WT noise levels is proposed using an 
adaptive neuro-fuzzy inference system (ANFIS). The 
model can predict the noise level with higher accuracy 
and lower computational costs than conventional 
ANNs.  

Statistical criteria are commonly employed to 
evaluate the prediction accuracy of the different 
models. The MAE and the mean absolute percentage 
error (MAPE) are commonly used, defined by: 

ܧܣܯ  ൌ ͳܶ หݕ௧ െ ݂ǡห௧்ୀଵ  

ܧܲܣܯ  ൌ ͳͲͲܶ  ฬݕ௧ െ ݂ǡݕ௧ ฬ௧்ୀଵ  

 
where ܶ  is the number of data used for comparison; ݕ௧ 
is the real value and ݂ǡ the estimated values.  

The accuracy of forecasting will vary according to 
the time horizon. Madhiarasan and Deepa compared the 
minimum square error (MSE) of an ensemble ANN for 
different time scale predictions [88]. Fig. 2 shows that 
the accuracy of the estimation has a strong dependence 
on the time horizon.  

 

 
Fig. 2. Evolution of MSE versus time horizon 

 
A comparison between the main models is presented in 
Table IV. The MAE and MAPE (if they are provided) 
of the mentioned models are indicated. This table also 
shows the type of ANN based model and the 
forecasting time horizon. The blank cells correspond to 
unknown values. 
 

TABLE IV.  WIND SPEED PREDICTION VS TIME HORIZON 

REFERENCE TYPE MAPE MAE 
TIME 

HORIZON 

WIND SPEED FORECASTING 

Safavieh MLP 3.57  Seconds 

Kani  ANN–MC 3.14  7.5s 

Liu 
WPD-FEEMD-

Elman 
8.68 1.05 30min 

Li  BPNN  1.13 1h 

C.Palomare BPNN  0.18 1h 

GongLi RBF 18.90 1.11 1h 

GongLi BPNN 19.4 1.15 1h 

GongLi ADALINE 19.4 1.15 1h 

Hu SHL DNN  1.79 2h 

Noorollahi ANFIS 27.83 0.89 3h 

Noorollahi BPNN 28.22 0.89 3h 

Noorollahi RBF 30.68 0.95 3h 

Meng WPD–CSO-NN 54.08 0.36 5h 

Boubacar MRA-AWNN  12.4 5h 

Wang PMERNN 20.03 1.44 6h 

Azad BPNN  0.80 24h 

Salcedo MLP  1.45 48h 

Chang IRBFNN-EF 3.86  72h 

Zhongxian MDN  1.66 72h 

 Malik FF 22.8 0.48 
12 

Months  

WIND POWER FORECASTING 

Zameer GPeANN  0.0643 1h 

Wang 
GA-BP with 

EEMD 
6.82  1h 

Aghajani 
RBF + HNN + W

T + ICA 
1.84  1h 

Wu CNN + LSTM 5.62  1h 

 Peng MRBM  0.123 1h 
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Liu PNN 11.20 7.874 1h 

Dong DSNP-oLLNF  0.639 2h 

 Wang PDSTA + BNN  3.21 24h 

Kanna  MRA- AWNN  0.867 30h 

Liu BRSA 7.63 2.19 48h 

Barbounis OF-MLN  1.5 72h 

Chitsaz ICSA  9.7 1 week 

     

 
In conclusion, ANNs are widely employed for 

forecasting wind speed and wind power. All the models 
and methods presented are more efficient when the 
time-horizon is short. This is the reason why most of 
the ANN models are employed for short-term 
predictions. ANN is employed for forecasting, e.g. 
RBFNN, neuro-fuzzy function, feed-forward, BPNN, 
conjugated gradient, recurrent ANN or Elman NNs. 
However, most of the approaches use hybrid methods, 
being more accurate, but they need a lot of input 
samples when the forecast horizon is long to provide a 
good result. The MAE and the MAPE present a 
dependence on the forecasting time horizon as 
indicated in Table IV. However, it is very difficult to 
determine whether the ANN based method provides the 
best results, since forecasting is usually constrained by 
the nature of the data, the time horizon and the 
computational cost.  

IV.     DESIGN OPTIMIZATION 

The aerodynamic design of WTs is essential for 
achieving good efficiency and, consequently, for 
obtaining more efficient WES. ANNs are also applied 
with design purposes due to their ability to consider a 
high number of aerodynamic variables, e.g. lift 
coefficient, drag coefficient, Reynolds number, angle 
of attack, viscosity, etc. [89]. There are many studies 
where airfoils, wing sections and the wing tips are 
optimized through ANN. However, this paper is only 
focused on those studies that are specifically aimed at 
WT design. This section distinguishes between two 
different aspects, the design of WTs and the design of 
wind farms. 

 

A. Wind turbine design 

Regarding the design of WT, the main fields where 
the ANNs play an essential role is in the design of the 
airfoils and the selection of the tip speed ratio.  

Chen and Agarwal proposed the optimization of 
flatback airfoils for WTs using a genetic algorithm with 
an ANN [90]. The computational efficiency of the 
genetic algorithm is improved significantly due to the 
ANN. It has been demonstrated that the method can 
find the global optimal flatback airfoils.  

The design of the airfoil sections for the blades of a 
horizontal axis WT was carried out by Mortazavi et al. 

[91]. The ANN are trained using computational fluids 
dynamics to obtain a Pareto optimal set of solutions. 
The airfoil design was also considered by Ribiero et al., 
where the use of ANN results reduced the 
computational time around 50% [92]. 

A MLP was employed by Díaz et al. [93] to perform 
a correction of the lift coefficient for the design of the 
angles of attack of WT airfoils. This model allows 
accuracy solutions to be found without using 
complicated and costly non-linear models.  

The design of tip speed ratio affects the power 
generated and, consequently, the efficiency of the 
energy conversion process. Ata and Kocyigit [94] 
proposed an ANFIS approach in order to predict the tip 
speed ratio and the power factor of a WT. The model 
demonstrated that ANFIS improves the performance of 
conventional methods with a maximum mean percent 
error of ±4.32%. 

Yurdusev et al. indicated that selecting the tip speed 
ratio is the first step in a WT blade design [95]. The 
study investigates the optimal speed ratio of the WT 
profiles most used in practice. A three-layer feed 
forward network was considered. The results show that 
the ANN model is very fast and accurate. The algorithm 
can be easily adapted to other WT profiles due to the 
generalization and adaptability capabilities of ANNs.  

Other aspects of the WT design are considered by 
Supeni et al., creating a model for predicting the 
number of wires needed to recover the deflection of a 
smart WT blade [96]. The ANN is trained using 
multiple BPNN and NARX methods. This work 
concludes that, although NNs usually provide a certain 
degree of inaccuracy, the computational cost is low. 
Rubio proposed a hybrid method for modelling the 
dynamic behavior of a WT [97]. This method is based 
on the combination of the analytical and a BPNN 
models. It is an improvement on the analytical model 
because it provides a reduced root mean square error. 

Romanski et al. presented a multi-layer feed-forward 
ANN based model for demonstrating the capability of 
ANNs to correlate the operation parameters of a 
counter-rotation WT. They correlated the generated 
power with the average velocity of the air stream, 
wedge angles of the rotor blades and the distance 
between rotors. They confirmed that the solution was 
valuable in the design and construction decision-
making processes [98].   

Jae-Chul et al. proposed a BPNN to reduce the time 
for performing analysis, minimizing the prediction 
errors [99]. The objective of this study is to solve a 
multi-objective optimization process by giving the 
adequate shape and the best geometry to the system. 

 

B. Wind farm design 

The design of a wind farm is a very complex process 
since it is necessary to consider a great number of 
variables. This section studies the application of ANN 
based models for optimizing some of these variables.  

http://www.sciencedirect.com/science/article/pii/S0925231205000408#!


Ekonomou et al. developed an ANN model in order 
to calculate the optimal number of WTs in a wind farm, 
considering several factors such as the terrain 
morphology, the wind speed and main direction, the 
type of WT, costs, etc. [100].  

Shamshirband et al. established an ANFIS model as 
an alternative to analytical approaches for studying the 
WT wakes and their interactions [101]. This effect is 
important in the design of wind farms, and for 
maximizing the energy output and the lifetime of the 
WTs. The approach presents the following advantages: 
no required knowledge of the internal system 
parameters; multi-variable problem solution, and; fast 
calculation.  

Petkovic et al. [102] developed a process for 
selecting the most influential parameters of a wind farm 
project investment. This model employs an ANFIS 
method to calculate the net present value, which is the 
most important criteria for investment estimating. The 
model considers multiple variables, e.g. price of 
electricity, interest rate, costs, number of turbines, etc... 
This paper conclude that Fuzzy variables can facilitate 
the prediction of those variables. This author also 
employed ANFIS based method to identify the most 
influential factors on the wake effect of WTs [103].  

The design optimization is a crucial stage for 
ensuring the efficiency of the WTs and the wind farms. 
ANNs are commonly employed in this stage to 
determine the value of parameters that must be fixed 
before the implementation of the systems. Some of 
these parameters are the airfoils, the tip speed ratio, 
characteristics of blades, the behavior of a WT, the 
geometry of components, number of WTs, interaction 
between WTs, etc. In this field, ANNs are very useful 
because they can interrelate a multitude of variables to 
simulate scenarios close to reality. For design purposes, 
the computational time is not a determinant factor 
because the main objective is to obtain accurate results. 
The most employed ANNs based methods for design 
purposes are ANFIS and BPNN. The backpropagation 
training has the advantages of accuracy and versatility, 
although it is usually time-consuming and complex. 
ANFIS presents a very high learning ability, i.e. for a 
similar network complexity, ANFIS presents a smaller 
convergence error than a simple MLP [104]. In 
addition, ANFIS requires fewer parameters to be 
adjusted than conventional ANNs.  

 

V.    FAULT DETECTION AND DIAGNOSIS 

There are many methods for detecting failures in 
WTs based on condition monitoring (CM) techniques, 
called FDD when it is also diagnosed. Several reviews 
that focused on these techniques can be found in the 
literature, e.g. FDD through CMS [105], FDD for 
maintenance management[106] or pattern recognition 
for FDD [107]. This section shows an exhaustive study 
of the FDD based on ANN. The main advantage of 

ANNs is their capability to represent complex nonlinear 
relationships through pattern recognition [108]. Most 
of the methods employ ANNs to identify patterns of 
SCADA signals that could indicate the occurrence of a 
fault [109].  

There are models to evaluate the whole system and 
detect anomalies [110]. However, most of the 
algorithms and models are created to evaluate specific 
components. The following categories have been set 
according to the main WT components: gearbox and 
bearings; generator, power electronics and electric 
controls; rotor blades and hydraulic controls; and false-
alarm rate reduction.  

 

A. Gearbox and bearing 

Gearboxes generate a high failure rate in WTs [5]. 
The bearing failures are usually caused by cracks. The 
bearing and gearboxes are critical components because 
their failures cause long downtimes. In this section, the 
ANNs are used as a tool to detect, prevent and/or 
predict some failures of gearboxes and bearings.  

Schlechtingen and Santos made a comparison 
between the regression model, autoregressive ANN and 
full signal reconstruction ANN, to identify two types of 
bearing damage [111]. The feed-forward network type 
was chosen in all models. This work concludes that the 
methods can identify the damage before the bearing 
fails. Table V shows a comparison of the results 
indicating the anticipation of each method to the alarm 
limit violation (ALV). 

 
TABLE V. COMPARISON BETWEEN THE MODELS [111] 

First ALV (days) 
Second ALV 
/trend (days) 

Regression 25 18 
Full sig. reconst. NN 30 25 
Autoregressive NN 50 25 

 
The regression model is simpler than ANN, but the 

ANN models provide better results since they can 
predict the ALV. 

Kusiak and Verma employ high-frequency SCADA 
data from 24 WTs to analyze bearing faults [112]. The 
dataset is employed to feed five ANN algorithms to 
detect bearing faults from over-temperature events. 
Table VI shows the network configurations. 

 
TABLE VI.  CONFIGURATIONS OF THE ANN MODELS [112] 

Net. 
Nam 

Network 
structure 

Training 
algorithm 

Hidden 
activation 

Output 
activation 

NN1 MLP 18-16-1 BFGS 380 Tanh Identity 

NN2 MLP 18-17-1 BFGS 622 Logistic Identity 

NN3 MLP 18-5-1 BFGS 214 Logistic Exponential 

NN4 MLP 18-15-1 BFGS 370 Logistic Logistic 

NN5 MLP 18-16-1 BFGS 377 Logistic Exponential 

The best ANN configuration was the NN2 in that it 
could predict faults with an accuracy of more than 97%. 
This model predicted the faults 1.5 hours before their 
occurrence. 



Zhang and Wang describe a ANN technique for early 
FDD [113]. The technique is applied to the main shaft 
rear bearing using a standard BPNN. This work 
concludes that the ANN can be applied to other WTs 
with the main advantage that it can deal with a large 
amount of SCADA data without omitting information. 

Bangalore and Tjernberg indicated that ANNs are a 
good method for CM applications based on SCADA 
[114]. An ANN is trained with historical SCADA data 
of bearings. This model was able to detect the 
deterioration in a bearing a week before the CM system 
genetated an alarm. Bangalore et al. also proposed a 
condition monitoring approach, where the data are 
filtered and inputted into ANN models that represent 
the normal operation of the WT [115]. The method is 
applied to case studies with failures in gearboxes.  

Fig. 3. Scheme of the crack fault in the experiment gearbox [116] 

Li  et al. proposes a new approach for crack detection 
in a gearbox (see Fig.3) based on discrete wavelet 
transform and an ART ANN [116]. The ANN 
recognizes the changing trend from the normal state to 
detect the cracks. 

Strączkiewicz and Barszcz explained that the CM 
systems are usually designed to provide diagnostics 
based on wideband features, e.g. RMS or Peak to Peak 
[117]. The problem is that the parameters strongly 
fluctuate and miscorrelate to operation parameters. A 
BPNN model is created and applied to detect a ring gear 
fault in a planetary gearbox. The method detected an 
early stage of damage several months before the 
gearbox was replaced. ANNs have been very useful for 
handling highly varying operation parameters because 
of their ability to model nonlinear dependences.  

Ali et al. showed an application for automatic 
bearing degradation assessment without human 
intervention [118]. A feature extraction is done from 
the vibration signals of the bearing. A multilayer ANN 
is fed with these feature parameters. The results 
demonstrate that the method is suitable for online 
bearing diagnosis with a reduced computational cost. It 
is also used as a method based on Weibull distribution 
and ANNs for predicting the remaining useful life of 
the bearings. It has been shown that this method is 
effective for decision-making in predictive 
maintenance activities [119].  

Biswal et al. focused on the fault size estimation of 
gear root crack using vibration signals. For this 
purpose, some features are extracted from the signals 
[120]. The features are used to input a feed forward 
back propagating ANN. This study demonstrated that 
this procedure is very efficient in predicting the size of 
these types of faults. 

Guo et al. proposed a recurrent ANN health indicator 
in order to predict the remaining useful life of bearings 
[121]. Recurrent ANNs are useful because they 
introduce a notion of time to the ANN model. The 
health indicator is constructed after a feature extraction 
process. The results showed that the proposed method 
performed better than the commonly used SOM-based 
health indicator. 

Additional models for gearbox and bearing fault 
diagnosis are created through wavelet transform and 
ANN [122]; convolutional ANN models [123, 124]; 
local mean decomposition and ANN [125]; RNFC filter 
and ANN [126]; BP ANN [127] and improved BP ANN 
[128]; ANN trained by particle swarm optimization 
algorithm [129]. 

 

B. Generator, power electronics and electric controls 

A doubly fed induction generator (DFIG) is the most 
used generator in large variable speed WTs [130]. This 
configuration requires two converters to generate 
electricity, see Fig.4. The strong nonlinearities of the 
converter circuits mean that ANN models are a useful 
tool for analyzing them. The ANN can be trained to 
learn the mapping relation between the fault 
information and type [131].  

 

Transmission 
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Wind turbine
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Fig. 4. Circuit of a DFIG wind turbine [131]. 

You and Zhang proposed a SOM ANN to develop a 
fault diagnosis system for converters of WTs. Some 
experiments are presented to allocate the fault position 
within the windfarm and to ensure the fault type [132]. 
A study of SOM networks applied to converters was 
also carried out by Zhang and Zhang [133]. They 
demonstrated that an intelligent fault diagnosis system 
must be able to distinguish types of converter, fault 
diagnosis and locations. They consider that the SOM 
network presents a low computational time.  

Ko et al. presented a fault detection method for 
switch devices of three-parallel power converters 
[134]. This method employs the measure of three-phase 
currents to achieve pattern recognition through an 



ANN. Several experiments are carried out to prove the 
reliability of the method.  

The dynamic recurrent ANN models proposed by 
Teleby et al. can detect faults in the generator’s angular 
velocity sensor by using dynamic NN [135] and 
recurrent NN [136]. These fault diagnosis systems 
employ two ANN models to simulate normal system 
behavior. The networks were placed in parallel with the 
system. The results showed that the proposed models 
operated fast, precisely and accurately, obtaining a very 
low rate of false or missed alarms. 

Islanding is an undesired phenomenon that occurs 
when a part of the electrical system contains both loads 
and distributed generation, being electrically isolated 
from the rest of the system. Islanding needs to be 
prevented due to safety reasons, and to keep a high-
quality power supply to customers. Ghadimi employs a 
hybrid intelligent ANFIS network to detect this 
phenomenon [137]. Islanding is also detected in 
reference [138] by feeding a two-layer feed-forward 
network with the symmetrical components of the 
second harmonic of voltage and current signals. This 
method can detect islanding operation very fast for a 
certain interval of load values.  

C. Rotors, blades and hydraulic controls 

Blades are the WT components with the highest 
failure rate and downtime [3]. The main fault is 
associated with structural failure, e.g. crack, fatigue, 
wear, corrosion, deflection, etc. [5]. The rotor hub can 
suffer clearance loosening at the blade root, unbalance, 
etc. [5].  

Ibrahim et al. employed data from a CM system 
together with an ANN model for fault feature and 
diagnosis [139]. This work aims to make the diagnosis 
of rotor unbalance through current signals. The method 
proposes different networks for ranges of rotational 
speed. The study demonstrates that the rotor unbalance 
and transient and permanent faults can be detected with 
high accuracy. Malik and Mishra use probabilistic NNs 
for imbalance fault identification [140]. The study 
shows four probabilistic ANN models using different 
input variables. A simulation is carried out under six 
different conditions: aerodynamic asymmetry; rotor 
furl imbalance; tail furl imbalance; blade imbalance; 
nacelle-yaw. The simulated results show that the 
probabilistic NNs provide results with more accurate, 
less training/testing time than other ANN methods and 
better diagnosis than conventional methods.  

Fu et al. studied the blade tip deflection 
measurement. Fig.5 shows a scheme of the blade tip 
deflection [141]. This deformation can cause the 
collision of the WT blades with the tower during the 
operation. A three-layer feed-forward ANN is created 
and inputted with 3-dimensional gyroscope data. The 
results show that the gyroscope sensors, together with 
the ANN analysis, is an accurate approach for 
monitoring the tip deflection in real time. Vera-Tudela 
and Kühn created models with two-layer feed-forward 

ANN for blades fatigue loads estimation [142]. A total 
of 48 ANNs are evaluated to predict two fatigue loads 
indicators in six wind farms. The results show high 
accuracy under specific conditions. For example, the 
estimations are better in an edgewise direction than in 
a flap wise direction, but decrease under wake 
conditions. 

 

Fig. 5. Blade tip deflection scheme [141] 

Gantasala et al. proposed a model for detecting ice 
accretion on the blades [143]. The technique employs 
wireless sensors to measure blade vibrations during 
operation. The natural frequencies are achieved with a 
few ice masses on the blade. These frequencies are used 
to train the ANN model. Certain experiments are 
carried out using random scenarios. This work 
concludes that the model can estimate ice masses. It 
works better when the ice mass increases. 

Chen et al. developed a method to detect 
automatically significant blade pitch faults [144]. It 
employs an a-priori knowledge-based ANFIS with the 
ability to interpret unseen conditions. The method can 
be employed with high accuracy and precision for 
obtaining a prognostic warning before the pitch alarm 
is raised.  

Kusiak and Verma use an approach for diagnosis 
blade pitch faults, blade angle asymmetry and 
implausibility [145]. This study employs the following 
machine learning approaches: bagging; ANN; pruning 
rule-based classification tree; K-nearest neighbor, and; 
genetic programming algorithms. The best solution was 
found by the genetic programming algorithms, the 
ANN-based method being the second most accurate 
method.  

Dervilis et al. proposes two models for structural 
health monitoring of WT blades [146]. Sensors are 
installed to collect acoustic signals that will be 
interpreted by MLP and RBFNN. According to the 
results, the MLP has the advantage of limiting the 
number of sensors that are required to cover the entire 
blade. The model can detect a change before the crack 
becomes visible. Dervilis et al. [147] employed Auto-
associative ANN and RBFNN models for failure 
detection of blades. They employ experimental 



measurements obtained through vibration analysis of 
the 9m CX-100 blade type under fatigue loads. 

D. False-alarm rate reduction 

Nowadays, the complexity of the modern WTs and 
their control systems cause an increasing number of 
false alarms. They are one of the major concerns of the 
WT operators, because they can generate important 
costs and downtimes, e.g. from a simple review of the 
supposed damaged system to an emergency shutdown 
of the WT. Maintenance tasks are affected by this 
problem.  

Reference [114] shows a method to reduce the false 
alarm rate. It evaluates the average of the Mahanalobis 
distance over a period of three days. This procedure 
reduces the possibility of erroneous signals from the 
SCADA, or shortcomings of the ANN model, see also 
reference [148]. 

Schlechtingen and Santos aimed to reduce the 
fluctuations in the prediction error [149]. It means that 
the system triggers fewer false alarms. An ANFIS 
model is proposed to evaluate the dataset from the 
SCADA. The model can perform an accurate pattern 
recognition analysis.  

Adouni et al. proposed a fault detection and 
identification procedure to support decisions when a 
severe grid fault occurs [150]. The model includes six 
ANNs that describe the three phases of the grid 
(amplitude and phase). Fig.6 shows the configuration 
of the model. This method is immune to unknown 
inputs and noise and, therefore, it is very sensitive to 
false alarms.  

Fig. 6. Configuration of the six ANN-based model [150] 

The advantages of ANN are employed to detect 
faults and perform diagnostics of WTs are shown as 
follows. Most of the ANN based methods are created to 
detect failures in gearbox and bearings. The fault 
detection does not require a fast computation process 
and therefore, the main factor is the accuracy of the 
method. Consequently, BPNNs are commonly 
employed in this field because they usually provide 
accurate results although the computational cost is 
high. Recurrent ANNs are also employed because they 
allow recent failures to be incorporated to the structure 
through feedback processes. In this case, the feedback 
leads to an increase in the adaptation of the ANN to the 
different symptoms of failure. ANNs in unsupervised 

learning are also employed, such as SOM and ART 
networks, because they can detect anomalies without 
using historical failure data. This is an important 
advantage since, on many occasions, the historical data 
does not show the status of the WT for all the possible 
failures. 

 

VI.     OPTIMAL CONTROL 

It has been demonstrated that ANNs are very robust 
in control tasks. For this reason, they are widely 
employed in a multitude of systems. For instance, ANN 
controllers have been designed for flight control, robot 
manipulators, maritime dynamic positioning system, 
induction motors, product storage, etc. In this section, 
several studies are discussed in which the benefits of 
ANN are employed to control diverse parameters of 
WTs.  

 

A. Maximum power point tracking  

Maximum Power Point Tracking (MPPT) is an 
essential requirement for maximizing the energy 
extraction from natural wind energy and, consequently, 
for increasing the efficiency and rentability of the WES.   

Ganjefar et al. propose a quantum ANN as a 
controller to improve the efficiency of the MPPT 
methods [151]. These networks are equipped in 
adaptive control structures of tip-speed ratio and 
optimum torque MPPT methods. The technique was 
efficient in both methods, better than conventional 
ANN and PID (proportional integral derivative) 
controllers. A similar study was carried out by 
Karakaya and Karakaş, who made a comparison 
between ANN, lookup-table (LUT) and curve-fitting 
(CF) controllers [152]. The ANN controller was based 
on a two-hidden layer configuration. The results of this 
study are shown in Table VII . 

 
TABLE VII. COMPARISON BETWEEN MPPT CONTROLLERS [152] 

Controllers 
Percentage error 
according to 10 

test data 

Percentage error 
according to 20 

test data 
ANN 0.35 0.17 
LUT 2.81 1.4 
CF 8.34 6.2 

ANN controllers produce better results than the other 
ones, e.g. 274.05 better than CF and 244.27% better 
than LUT (see Table V).  

Medjber et al. proposed a new control strategy based 
on ANN and fuzzy logic controllers to regulate the 
power transfer between the WT and the grid [153]. The 
objective was to ensure the MPPT for a DFIG. This 
study compares active and reactive power, currents and 
voltages, using both a single layer hidden ANN and a 
fuzzy logic controller. The response time obtained by 
the first controller was considerably reduced.  



Hong et al. introduced a feed-forward general 
regression ANN controller to drive the turbine speed 
extracting the maximum power [154]. The approach 
combines the ANN with ant colony optimization. The 
controller allows the system stability to be maintained 
and the desired performance to be reached even under 
uncertainties.  

Petković proposes a method based on ANFIS to 
estimate the power coefficient [155]. This parameter 
can be used to find the optimal operating points and 
design a controller to optimize the power generated. 
The study concludes that ANFIS is efficient at 
estimating Weibull parameters for WES.  

Mehta et al. modelled an ANN based predictive 
controller to maximize the power capture of a mid-
sized hydrostatic WT [156]. The fluid power 
transmission is technology with a high research 
interest. It employs a pressurized fluid flow to transmit 
the torque of the rotor blades. The ANN controller is 
more effective than a conventional PI controller.  

Brekken et al. focused on the control and 
coordination of energy storage systems [157]. These 
systems are essential for mitigating the output 
uncertainty of a large wind farm. This work 
demonstrated that ANN control strategies prove 
effective for this purpose. 

Other methods for MPPT control have been 
developed employing BPNN [158], RBFNN [159, 
160], neuro-fuzzy [161],  hybrid particle swarm 
optimization-ANN [162], growing neural gas network 
[163] or Elman NN [164]. 

 

B. Pitch angle control 

The pitch control is performed to reduce the 
mechanical stresses and the variations of the generator 
torque. The conventional control strategy is the 
proportional and integral (PI) controller. Some 
advanced control strategies include fuzzy based 
controllers, multivariable control strategies or ANN 
based strategies.   

The control systems allow the WTs to operate in 
different scenarios because they can adapt the operation 
mode to specific conditions. Bagheri and Sun propose 
an adaptive RBFNN to design controllers for variable-
speed and variable-pitch WTs [165]. It means that the 
power using a nonlinear control can be maximized.

Other studies aim to maximize the power generation 
by controlling the pitch angle [166]. It has been 
demonstrated that these control tools are efficient, 
providing good robustness and low computational 
costs. Perng et al. suggested a RBFNN in order to build 
a proportional-integral-derivate controller for the pitch 
system [167].  

Jafarnejadsani et al. [168] developed a RBFNN 
based strategy in order to control the pitch angle of the 
blades, and to modify the speed of the rotor. This paper 
demonstrated that the ANN control is very robust to 
uncertainty. 

Ahmet and Özer [169] proposed an ANN based pitch 
angle controller, where MLP and RBFNN are 
employed. This model enables the power output to be 
successfully regulated and overloading during high 
wind speeds to be avoided.  

Mjabber et al. [170] investigated an RBFNN based 
controller for pitch angle of variable speed WT. The 
controller indicated better results than the PI controller, 
demonstrating more stable energy extraction from wind 
power.  

Han et al. [171] developed an individual pitch 
controller based on a LIDAR+ RBFNN model for 
optimizing the pitch angle and the electromagnetic 
torque. Some simulations demonstrated that this 
controller can improve wind energy efficiency and 
reduce fatigue loads. Another individual pitch 
controller was developed by Liu et al. [172]. They used 
a RBFNN with online training to mitigate the loads of 
blades, hub and yaw bearings.  

 

C. Speed and torque control 

The control of the speed and torque of the WT rotor 
is one of the most common aspects for ensuring the 
proper behavior of the WTs at variable and unstable 
wind speeds. This control allows maximum power to 
be extracted without risking the integrity of the WT.  

Hong created a sliding mode speed controller by a 
feed forward ANN torque compensation, providing 
robustness to the wind driven induction generator 
system [173].  

Assareh et al. [174] presented a hybrid method for 
controlling the torque in WTs. A RBFNN, trained with 
a gravitational search algorithm, is employed to tune 
gains of a proportional and integral controller. A good 
performance of the method is demonstrated by a 
simulation in a 5 MW WT.  

Jaramillo-Lopez et al. [175] showed a ANN based 
identifier designed in order to approximate the 
mechanical torque of the WTS. A RBFNN is employed 
for this purpose. The proposed scheme provides high 
robustness according to the simulations carried out. 

Petković et al. proposed a system where an ANFIS 
regulator adjusts the speed of a variable-speed 
generator [176]. The method can extract more power 
when the turbine is operating at variable-speed mode. 
The work concludes that the ANFIS scheme is easily 
adaptable with optimization techniques with low 
computational costs.  

Wang et al. [177] focused on the torque control for 
offshore WT on Spar floating platform. They 
developed an advanced RBFNN for operating at speeds 
lower than rated wind speeds. The proposed controller 
results are robust against complex wind and wave 
disturbances and very adaptive to unstable system 
parameters. 

Mjabber et al. [178] presented a RBFNN based 
controller for approximating the nonlinear dynamics of 
the WT that ensures the optimal tip-speed ratio at 



different wind speeds. This controller improved the 
efficiency by 2% in comparison with NDSFCK 
(Nonlinear Dynamic State Feed-Back Control with 
Kalman estimation) controller.   

 

D. Reactive power control 

Tang et al. used a ANN based controller for the 
reactive power control of DFIG [179], where a reactive 
power controller based on adaptive dynamic 
programming (ADP) is developed. The ADP control 
comprises both an action and a critic network. Two 
three-layer NNs have been used to implement both 
parts. The results show that the sag and overshot of the 
active power can be reduced, and the stability and 
damping characteristics can be improved. These 
authors also developed a goal representation heuristic 
dynamic programming to investigate the reactive 
power control of a wind farm. In this model, an ANN 
is employed to adjust the parameters [180] . 

Wei Qiao et al. [181] proposed a novel interface 
neurocontroller designed with a RBFNN. This model is 
employed for steady-state and transient reactive power 
compensation. It is demonstrated that the controller 
improves the postfault power oscillation damping of the 
system.  

Barani and Abdi [182] employed a NARX NN that 
can be used for controlling the stator reactive power 
level. This paper compares a conventional PI controller 
with the ANN based controller. The proposed method 
provided better results than the conventional one.  

 

E. Converter control 

The modern WTs with DFIG configurations are 
equipped with back to back power converters for 
controlling the speed and torque of generator. A failure 
of the power converter will affect the WT operation and 
cause disturbance to the grid. This section discusses 
some ANN based models that control the operation of 
the converters.    

Wai et al. designed a model including an adaptive 
control scheme and a fuzzy ANN for controlling a 
single-stage boost inverter [183]. The proposed fuzzy 
ANN control system was verified by experimental 
results. The controller provided significant 
improvements compared to the conventional double-
loop PI control. 

Li et al [184] investigated how to mitigate some 
limitations of the control mechanisms of conventional 
grid-connected rectifier/inverters. They implemented a 
BPNN that showed strong ability in tracing changing 
reference commands and satisfying control 
requirements.  

Fu et al. [185] trained recurrent ANNs for optimal 
control of grid-connected converter obtaining a 
reduction of the computing time.  

Kanellos et al. [186] proposed a novel neuro-control 
scheme for the generator side converter. This scheme 

contains two multilayer ANNs. The back-propagation 
method is employed for training both ANNs. The 
proposed scheme is applied to a simulated process 
presenting operational characteristics, as indicated by 
the reported simulations. 

 
This section shows the application of ANN based 

methods for controllers. These methods are aimed at 
controlling different parameters that are intended to 
extract the maximum energy from the wind. These 
controllers are sometimes employed for ensuring the 
safety and the integrity of the WTs when they are under 
extreme environmental conditions. In this case, the 
controllers require low computational costs because 
immediate responses to sudden changes in the system’s 
condition are needed. For this purpose, ANFIS and 
RBFNN are the most employed methods. ANFIS 
controllers are demonstrated to be the best controllers 
compared with the conventional PID controllers. 
RBFNN based controllers are demonstrated to have 
very strong tolerance of input noise and online learning 
ability. In addition, RBFNN controllers are very 
efficient in the transient stability performance of power 
systems. These abilities are very attractive for 
controllers. 

 

VII.     DISCUSSION OF NNS APPLIED IN WIND ENERGY 

SYSTEMS AND SOME TRENDS 

A general analysis of ANN in wind energy 
conversion systems has been carried out considering 
the exhaustive state of the art presented in this paper. 
This paper classifies the ANN in WT into four 
categories: forecasting; fault diagnosis; design, and 
control. The selection of the most adequate ANN 
depends on factors that can be classified as: 

- Endogenous factors of the problem: These factors 
are related to the nature of the problem, i.e. those 
characteristics that are imposed by the problem.  

- Exogenous factors of the problem: those 
parameters that are selected for the person who 
addresses the problem. For example, the time-
horizon of predictions, the robustness of the 
method, the accuracy of the analysis or the 
computational cost. 

- Limitations: there are several characteristics that 
limit the accuracy of ANNs. The main drawbacks 
are the amount of inputs required, overtraining of 
the networks, the extrapolation errors and the 
difficulties of optimizing the network [187]. 

 
Considering the mentioned factors, an analysis of the 

literature identifies some challenges and technological 
gaps related to ANN application with respect to the 
tools and methodologies for WTs. They can be 
summarized as follows: 

- The ANNs have been demonstrated to be effective 
for forecasting and predicting wind speed and 
wind power. The results shown in section III 



determine that ANNs usually generate results with 
more accuracy than other conventional methods, 
e.g. physical or statistical methods. However, the 
accuracy of the ANN based methods decreases 
significantly for long term predictions. In 
addition, the number of historical data required by 
ANN for long term prediction is high. A challenge 
in this field is to develop flexible ANN based 
methods adapted to the input data and the desired 
time horizon.  

- In section IV, it is demonstrated that ANNs are 
employed for design optimization of WT 
components because they can simulate realistic 
scenarios through the interrelation of a large 
number of variables. The use of ANN in design 
optimization is limited to the aerodynamic parts 
of the WTs, e.g. airfoil sections of the blades. 
However, the capacity of these tools allows to 
other components to be optimized in the design 
stage. The optimization of thermal, hydraulic, 
electric or mechanical components is a current 
challenge where ANNs can be essential.  

- ANNs can manage and analyse different dataset, 
being useful for the simulation of the behaviour of 
wind farms. Section IV. B shows that most of the 
simulation models based on ANNs enable several 
engineering aspects of the wind farm to be 
optimized, e.g. the location of the wind farm, the 
interaction between the different WTs. Future 
ANN based simulation models should be able to 
combine engineering, economic, environmental, 
and social aspects.   

- Section V shows that ANNs are robust in that they 
can analyse data collected from monitoring 
systems, allowing faults detections and 
diagnostics. There is a multitude of analysis 
methods to detect faults in gearboxes, generators, 
rotors, blades, hydraulics. Most of these methods 
employ different ANN structures, depending on 
the requirements. However, the diagnostics can be 
wrong and then false alarms occur. The detection 
of false alarms is an important technological 
challenge, where ANN based methods could be 
applied to tackle it.  

- Section VI demonstrates that ANNs are employed 
in control tasks due to their robustness. The ANN 
based controllers are usually adaptive to 
uncertainties and instabilities of systems. They 
have been demonstrated to be more efficient than 
PID or NDSFCK controllers. The study of 
optimization of ANN controllers are good at 
achieving faster responses to sudden changes of 
the WT condition without compromising 
accuracy and robustness. 

Table VII I organizes the references considered in 
this paper according to the most employed ANN types 
and the specific application in WTs. It is important to 
note that the categories are not mutually exclusive, i.e. 
a model can belong to the ANN type according to its 
configuration, training algorithm, etc.  

 
 According to Table VIII : 
- The ANN based methods in WES are mainly 

employed for forecasting, fault detection, control 
and design applications. Regarding the references 
of this paper, Figure 7 shows the frequency of use 
of the ANN based method in each application. 

 

 
Fig. 7. Distribution of the applications of ANNs in WTs 

 
- The forecasting and prediction applications 

employ a great variety of ANN types. However, 
the fault detection and the control are mainly 
performed by BPNN, ANFIS and RBFNN.  

- In general, the BPNN is the most employed ANN 
type. However, it is mainly employed in 
applications that do not require a rapid response, 
such as fault detection, design optimization and 
not very short-term forecasting. This is because it 
provides very accurate results, but it also involves 
high complexity and high computational cost.  

- RBFNN is the second most employed 
configuration. This configuration has a very good 
generalization ability, tolerance to input noise and 
fast online learning. These properties are very 
appropriate for addressing problems that require 
rapid response such as speed and torque control, 
pitch angle control and short time forecasting 
problems.  

- The ANFIS is the third most employed ANN 
based method. This configuration is the most 
versatile and it is used for almost all the 
applications. It is detachable the use of ANFIS 
controllers because they are demonstrated to be 
more efficient than conventional PID controllers. 

- Other configurations are used in more specific 
approaches. It is important to note that the 
requirements and constraints of the problem and 
the available data are crucial factors for 
determining the more adequate ANN based 
method.  
 

Besides the qualitative analysis of the literature, 
some quantitative conclusions are extracted to describe 
the current state and the future trends in this field. For 
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this purpose, Fig.8 and Fig. 9 show the evolution of the 
most employed ANNs configurations over the last ten 
years. They have been created using “Google-Scholar”. 
The results obtained do not represent the exact number 
of models developed, but they can give an approximate 
idea of the trends and the evolution of each ANN type 
in WTs.   

 
Fig. 8. Cummulative number of research studies  

 
Over the last ten years, the most employed models 

are the BPNN and RBFNN based models; however, the 
ANFIS system presents the highest growth rate in the 
last years. One of the reasons that the ANFIS use is 
rising exponentially is because the volume of available 
data is increasing. These systems have the self-
adjusting ability, which allows massive data to be 
processed, global errors to be minimized and 
computational costs to be reduced.  
 

 
Fig.9. Annual number of research studies  

 
Fig. 9 shows that, over the last ten years, the number 

of recurrent ANNs based models is increasing slowly, 
with some negative growth rates, e.g. 2008 and 2015. 
The number of RBFNN based models is increasing 
faster than recurrent models, but there are also some 
negative rates, e.g. 2015. The number of BPNN and 
ANFIS systems has increased without negative growth 
rates. The ANFIS models present an exponential 
growth over the last ten years.  

 

VIII.     CONCLUSIONS 

The paper presents state-of-the-art artificial neural 
networks (ANN) applied to wind energy systems. The 
complexity of these systems is rising, and the methods 
and algorithms to ensure their efficiency are becoming 
more robust due to the volume of data and diversity of 
variables. The main ANN based models applied in wind 
energy systems and their characteristics have been 
explained in this paper. An extensive compilation of 
methods, algorithms and models has been developed. 
These methods have been grouped into four major 
categories. Some conclusions have been extracted 
concerning each category:  

- Forecasting and predictions: Besides the list of 
the main references, a comparison of the errors in 
different forecasting models has been carried out. 
Neural networks are proved to be more efficient 
for short-term wind speed prediction, and the 
hybrid ANN based method provides better results 
for short term predictions than other conventional 
techniques.  

- Design optimization: ANN based models for 
design optimization have been discussed. These 
models not only focus on wind turbines, but also 
on wind farms characteristics. In this field, the 
most employed methods are adaptive neuro-fuzzy 
inference systems and Back-propagation neural 
networks, since high accuracy is required and the 
computational time is not a determinant factor.   

- Fault detection and diagnosis: The main ANN 
based techniques to detect faults and perform 
diagnostics of wind turbines have been discussed 
in this paper. Most of the ANN based methods are 
created to detect failures in gearbox and bearings. 
The fault detection does not require a fast 
computation process and, therefore, the main 
factor is the accuracy of the method. In this field, 
Back-propagation neural networks are commonly 
employed in this field because they usually 
provide accurate results. Recurrent ANNs are 
employed because they allow recent failures to be 
incorporated into the structure through feedback 
processes. ANNs in unsupervised learning (self-
organized-map and adaptive resonance theory) 
are also employed because they can detect 
anomalies without using historical failure data.  

- Control optimization: The most important and 
recent ANN based methods for controllers have 
been discussed in this paper. The controllers 
require low computational costs because 
immediate responses to sudden changes of the 
system condition are needed. For this purpose, 
neuro-fuzzy inference systems and radial basis 
function neural networks are the most employed 
methods.  

This paper also provides an illustrative statistical 
analysis of the literature. These results describe the 
evolution over the last 10 years, the current state and 
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the future trends of the ANN applications in wind 
turbines. A set of challenges and technological gaps 
regarding these applications has also been discussed.  
Finally, an overall table to summarize and to classify 
the main methods is provided.   

The results of this paper can be used by researchers 
to discover the opportunities of new research lines by 
detecting those fields where improvements are 
required. Some of them are suggested in the set of 
challenges. These results allow developers and wind 
turbine components designers to select the most 
adequate structure for each case according to the 
response of different ANN type to certain requirements. 
ANN have been demonstrated to be useful for different 
applications and they can be combined with other tools 
to maximize their contribution through hybrid systems.  
In general, this paper can be used as reference guide for 

those who want to learn about the use of advanced 
techniques in the growing sector of wind energy.  

 
  
 
 
 
 
 
 
 
 

 
 

 
 
 
 

TABLE VIII.  SUMMARY OF MAIN METHODS  
 
ANN 

TYPE 
FORECASTING AND 

PREDICTION 
DESIGN 

OPTIMIZATION  
FAULT DETECTION AND DIAGNOSIS OPTIMAL CONTROL 

 Wind 
Speed 

Wind 
power 

Others 
WT 

design 

Wind 
farm 

design 

Gearbox 
and 

bearings 

Generator, 
electronics 

Rotor, 
Blades, 

hydraulics 

False 
alarms 

MPPT Pitch 
Speed 
Torque 

React. 
power 

Conv
erter 

Neuro-
Fuzzy  [44] 

[63], [64] 
[65], [84] 

[87] [94] 
[101], 
[102], [103] 

[119] [137] [144] [149] 

[152] 
[153] 
[155] 
[176] 
[161] 

  [157] [183] 

RBFNN 
[39], [55] 

[62], [45] 
[74],[80] 

[86]     [146] [147]  
[159] 
[160] 

[165], [167] 
[168], [169] 
[170] ,[171, 

172] 

[174], [175] 
[177], [178] 

[181] 
 
 

 

MLP 
[37],[43], 
[47], [54], 
[57], [58] 

[76], [83] [85] 
[91], 
[95], 
[93] 

[100],  
[111], [112] 
[115], [118] 

[138] 
[140] [141] 
[142] [145] 

[148] 
[150] 

 [166], [169] [173] [179]  

BPNN [39], [40], 
[44] [47] 
[55], [59] 

[62],[66], 
[69] 

 
[99], 
[97], 
[96] 

 

[113], [114] 
[117], [120] 
[126], [127] 
[129] 

 [139] [143] [114] 
[158, 
188] 

   
[184]
, 
[186] 

Recurrent [50] 
[71],[75], 
[82] 

   [121] [135, 136].       [185] 

Wavelet [36],[53] 
[67, 68, 
189] [78] 

   [122, 128];         

Elman [50], [31] [70]        [164]     

Feed-
Forward 

[41], [56], 
[59] 

[62], [76], 
[78] 

 
[95], 
[98] 

      [171] [173]   

SOM NN       [132], [133]        

ART [55]     [116], [119]         

Convolution
al NN 

 [71]     [123, 124]        

 



IX.     ABBREVIATIONS 

ADALINE Adaptive Linear Element 
ADP Adaptive Dynamic Programming 
ANFIS Adaptive Neuro-Fuzzy Inference Systems 
ANN Artificial Neural Network  
ART Adaptive Resonance Theory 
AWNN Adaptive Wavelet Neural Network 
BNN Bernstein Neural Network  
BPNN Back-Propagation Neural Network 
BRSA Hybrid model combining based on Pearson correlation coefficient 
CC Correlation Coefficient 
CNN Convolutional Neural Network 
CSO Crisscross Optimization 
DFIG Double Fed Induction Generator 
DNN Deep Neural Network 
DSNP-oLLNF Hybrid model combining Discrete Wavelet Transform/ Singular Spectrum Analysis/ 

No Negative Constraint Combination Theory/Phase Space Reconstruction 
EF Error Feedback Scheme 
FEEMD Fast Ensemble Empirical Mode Decomposition  
FDD Fault Detection and Diagnosis 
FF Feed-Forward 
GA Genetic Algorithm 
GNN  Gradient Neural Network 
GPeANN Genetic Programming based ensemble of Artificial Neural Networks 
GRBT gradient boosted regression trees 
SGNN Steepest Gradient Neural Network 
HNN Hybrid Neural Network 
ICA Imperialist Competitive Algorithm 
ICSA Improved Clonal Selection Algorithm 
IRBFNN Improved Radial Basis Function Neural Network 
LF-MLN Local Feedback Multilayer Networks 
LUT Lookup-Table 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MC Markov Chain 
MDN Mixture Density Network 
MLP  Multilayer Perceptron 
MPPT Maximum Power Point Tracking 
MRA Multi-Resolution Analysis 
MRBM Multilayer Restricted Boltzmann Machine 
MSE Minimum Square Error 
NN Neural Network 
NWP Numerical weather prediction 
PDSTA Primal Dual State Transition Algorithm  
PMERNN Hybrid method using Elman recurrent neural network 
PNN Probabilistic neural network 
PSO 
PSO-FCM 

Particle Swarm Optimization 
Particle Swarm Optimization based Fuzzy C Means 

RBF Radial Basis Function 
RBFNN Radial Basis Function Neural Network  
RFA Random Forest Algorithm  
SCADA Supervisory Control and Data Acquisition  
SHL Shared-hidden-layer 
SOM Self-organized-map 
SVM Support Vector Machine 
WES Wind Energy System 
WPD Wavelet Packet Decomposition  
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