
This is a repository copy of Compatibility in multiparameter quantum metrology.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/108836/

Version: Published Version

Article:

Ragy, Sammy Hany, Jarzyna, Marcin and Demkowicz-Dobrzański, Rafał (2016) 
Compatibility in multiparameter quantum metrology. Physical Review A. 052108. pp. 1-11. 
ISSN 1094-1622 

https://doi.org/10.1103/PhysRevA.94.052108

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Other licence. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



PHYSICAL REVIEW A 94, 052108 (2016)

Compatibility in multiparameter quantum metrology

Sammy Ragy,1,* Marcin Jarzyna,2 and Rafał Demkowicz-Dobrzański2
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Simultaneous estimation of multiple parameters in quantum metrological models is complicated by factors

relating to the (i) existence of a single probe state allowing for optimal sensitivity for all parameters of interest,

(ii) existence of a single measurement optimally extracting information from the probe state on all the parameters,

and (iii) statistical independence of the estimated parameters. We consider the situation when these concerns

present no obstacle, and for every estimated parameter the variance obtained in the multiparameter scheme is

equal to that of an optimal scheme for that parameter alone, assuming all other parameters are perfectly known.

We call such models compatible. In establishing a rigorous theoretical framework for investigating compatibility,

we clarify some ambiguities and inconsistencies present in the literature and discuss several examples to highlight

interesting features of unitary and nonunitary parameter estimation, as well as deriving new bounds for physical

problems of interest, such as the simultaneous estimation of phase and local dephasing.

DOI: 10.1103/PhysRevA.94.052108

I. INTRODUCTION

The foundations of quantum estimation theory were laid

in the sixties and seventies, with the two most significant

contributions from Holevo [1] and Helstrom [2]. Since then

the topic has captured the attention of both the physical

and mathematical communities. Most of the activity in the

physical community focused on single-parameter estimation

with particular focus on estimating a unitary parameter, such

as phase [3–6]. In recent years, however, building on existing

results on multiple-parameter estimation in the mathematical

literature [7–9], there have been a number of theoretical

and experimental papers by physicists also addressing the

multiple-parameter case. These include estimating multiple-

parameter unitary operators [10–19], estimating both unitary

and decoherence parameters [20–22], or two decoherence

parameters simultaneously [23]; see Ref. [24] for a short

review on the topic.

Typically, when estimating multiple parameters simultane-

ously, there is a trade-off in how well different parameters may

be estimated. When the estimation protocol is optimized from

the point of view of one parameter, the precision of estimating

the remaining ones deteriorates. In such cases, to define a

meaningful concept of an optimal multiparameter-estimation

protocol, one, e.g., needs to assign weights to different

parameters and ask for a protocol minimizing the weighted

sum of variances of different parameters.

In this paper, we consider finite-dimensional quantum sys-

tems and investigate the conditions when the above-mentioned

trade-off is not present and there exists a jointly optimal

multiparameter-estimation protocol, meaning its performance

for each of the parameters matches that of a protocol optimally

designed to estimate that parameter assuming all the remaining

ones are perfectly known. This essentially results in the max-

imal advantage over having such separate schemes for each

parameter. We choose to call such protocols compatible, owing

to the fact that a particularly quantum feature of this trade-off

*sammy.ragy@york.ac.uk

occurs in the measurement stage, where it is possible that

the optimal measurements for different parameters correspond

to incompatible (noncommuting) observables. However, mea-

surement compatibility is but one of several conditions we

require for metrological compatibility in general.

To get a “like-for-like” comparison of performance, it

is necessary to consider some concept of the resources

utilized in a metrological scheme; after all, the variance of an

estimation can be made arbitrarily small by simply repeating

an experiment to gather more data. For our purposes, we

count the number of channel applications. Usually, since we

consider single-qubit channels acting in parallel, this will

also correspond to the number of qubits in the probe state.

This manner of thinking also makes clear the motivation for

multiparameter metrology. Should we wish to consume the

fewest resources (as might be the case for a channel consisting

of a sample fragile to exposure to too many photons), then

it may be that we wish to extract the information about all

relevant parameters of interest in the same experiment.

The paper is organized as follows: In Sec. II we formulate

the framework of multiparameter quantum metrology and

discuss the requirements for compatible multiparameter es-

timation. We also discuss variants of the protocols depending

on the use of entanglement at the input as well as at the

measurement stages. In Sec. III we review the multiparameter

classical Cramér-Rao (CR) bound, as well as two of its

quantum generalizations: the quantum Fisher information

(QFI) CR bound and the Holevo CR bound. In Sec. IV we

provide a simple proof for a necessary and sufficient condition

for the equivalence of the QFI CR bound with the Holevo

CR bound and hence asymptotic saturability of the QFI

multiparameter CR bound. In Sec. V we consider a general

scheme of multiparameter unitary estimation and provide an

explicit structure of generating Hamiltonians that is necessary

and sufficient to satisfy the compatibility requirements. In

particular, we prove that, when considering simultaneous

estimation of angles of rotations of a spin j particle around

different axes, the only nontrivial case satisfying the compat-

ibility conditions is the j = 1 case with the axes of rotation

being orthogonal. In Sec. VI, we turn our attention to the
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FIG. 1. (a) Simultaneous estimation of multiple parameters

(ϕ1, . . . ,ϕp) based on results of a single measurement performed

on the output of a quantum channel �ϕ1,...,ϕp
acting on a single input

probe ρ. (b) p separate schemes where one estimates each parameter

individually using dedicated probe states and measurements, treating

in every run the remaining parameters as perfectly known. We say that

the parameters (ϕ1, . . . ,ϕp) of the quantum channel estimation model

are compatible if there exists a simultaneous estimation scheme where

each parameter is estimated equally well as in a set of p optimal

schemes for the individual parameters, thus leading to a factor p

reduction in resources used.

compatible estimation of unitary and decoherence parameters,

discussing some sufficient conditions for when this is possible.

As an illustration, we analyze in more detail phase estimation

in the presence of loss and local dephasing. While symmetric

lossy interferometry is an example of a compatible estimation

problem, the local dephasing case manifests incompatibility

due to the lack of a single optimal probe even though all other

conditions for simultaneous measurability as well as statistical

independence are satisfied.

Finally, in Sec. VII, we conclude the paper.

II. FORMULATION OF THE PROBLEM

Let �ϕ be a quantum channel depending on a set of param-

eters ϕ = (ϕ1, . . . ,ϕp) that we want to estimate by sending an

input quantum probe ρ and measuring the output ρϕ = �ϕ(ρ)

with a general measurement {�x}. Measurement results are

distributed according to a probability distribution p(x|ϕ) =
Tr(ρϕ�x) and, based on their values, parameters are estimated

by using an estimator function ϕ̃(x) = (ϕ̃1, . . . ,ϕ̃p)(x); see

Fig. 1(a). Clearly, estimating multiple-channel parameters

simultaneously in a single estimation scheme is in general

more challenging than estimating each of the parameters

separately using dedicated schemes as in Fig. 1(b). When

estimating each parameter separately one is entitled to choose

a probe state and a measurement which are optimal for

enhancing the sensitivity of the scheme with respect to this

particular parameter.

Still, a simultaneous metrology scheme may sometimes

match the performance of the separate schemes (while using

only the resources of one of them) provided the three following

conditions are satisfied: (i) there is a single probe state ρ

with which one can replace all input states ρi in the separate

schemes preserving the maximal sensitivity of the output

probe with respect to all the parameters, (ii) there is a single

measurement {�x} (where x will generally be a vector of

data) that can replace all measurements {�xi
} in the separate

FIG. 2. Three scenarios of utilizing n = Nν quantum probes

in metrology: (a) “classical” scheme, where both input probes

and measurements are uncorrelated, resulting in n independently

and identically distributed random variables xi ; (b) entangled-probe

scheme, where ρN represents an arbitrary state on a Hilbert space

H⊗N , where H is the space upon which the channel �ϕ acts, and

measurements occur on the level of individual ρN ; (c) collective mea-

surement scheme, where input probes may be arbitrarily entangled

and collective measurements over arbitrarily many ρN are allowed.

schemes and yield optimal precision for each parameter,

and finally (iii) under the requirement of preserving optimal

precision for estimating each individual parameter separately

it should be possible to achieve the independence of the

estimated parameters, in the sense of vanishing off-diagonal

elements of the covariance matrix, so that imperfect knowledge

of one of them does not deteriorate the precision of estimating

the others. If these three conditions are satisfied, the optimal

scheme for any of the parameters individually is no more

powerful than the scheme in which they are all estimated

together and we say that the channel parameters to be estimated

are compatible.

In the above, we have not yet discussed the role of

entanglement in the state preparation and measurement stages.

We represent three relevant scenarios relating to this in Fig. 2,

which can be regarded as more detailed illustrations of possible

estimation schemes in Fig. 1; for example, by letting the input

state of Fig. 1(a) be ρ⊗Nν and the channel �⊗Nν , we get

the same picture as in Fig. 2(a). In all of them we have the

same number n of channel applications, but in Figs. 2(b)

and 2(c) subdivide the states into ν identical and independent

blocks of N arbitrarily entangled systems. In single-parameter

metrology, only Figs. 2(a) and 2(b) are relevant; that is, the

scheme of Fig. 2(c) holds no advantage over that of Fig. 2(b).

It is then known that, for the QFI CR bound to be saturable [25],

it is necessary to have many experimental repetitions, i.e., the

bound is saturated as ν → ∞. For estimating single-parameter

unitary operations, the scheme of Fig. 2(b) allows the so-called

Heisenberg limit of 1
νN2 scaling of variance to be attained,

whereas that of Fig. 2(a) represents a shot-noise-limited

experiment with scaling 1
νN

.

In multiparameter metrology, the scenario of Fig. 2(c)

gains relevance, because allowing for collective measurement

potentially provides an advantage. It remains important for

our purposes that ν be large, because we use a result from

the theory of quantum local asymptotic normality, which

relies upon measurement of a large collection of identical and

independent states. We discuss this further in the following.
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III. MULTIPARAMETER CRAMÉR-RAO BOUNDS

In this section we review the main tools of multiparameter

quantum metrology based on variants of CR bounds that

are used further on in this paper. In particular we stress

the difference between single- and multiparameter cases as

well discussing reasons why metrological incompatibility may

appear in different settings.

A. Classical multiparameter Cramér-Rao bound

First we consider a classical multiparameter-estimation

scheme. The central objects here are probability distributions

p(x|ϕ) of data x dependent upon the parameters. This can be

thought of as a quantum estimation problem where we’ve fixed

a measurement {�x} and state, thereby obtaining p(x|ϕ) =
Trρϕ�x . We can define the Fisher information (FI) matrix for

m parameters as the m × m matrix with entries given by

Fij (ϕ) =
∑

x

p(x|ϕ)

(

∂lnp(x|ϕ)

∂ϕi

)(

∂lnp(x|ϕ)

∂ϕj

)

. (1)

Crucially, this matrix allows us to define the multiparameter

CR bound:

Cov(ϕ̃) � F−1(ϕ), (2)

where Cov(ϕ̃) refers to the covariance matrix for a locally un-

biased estimator ϕ̃(x), Cov(ϕ̃)ij = 〈(ϕ̃i − ϕi)(ϕ̃j − ϕj )〉 and

〈·〉 represents the average with respect to the probability distri-

bution p(x|ϕ). The above inequality should be understood as

a matrix inequality. In general, we can write Tr[G Cov(ϕ̃)] �

Tr[GF−1(ϕ)] where G is some positive cost matrix, which

allows us to asymmetrically prioritise the uncertainty cost

of different parameters. As in the single-parameter case, the

bound is saturable in the limit of an infinite number of

repetitions of an experiment using the maximum likelihood

estimator [26].

The first substantial difference of multiparameter metrology

from the single-parameter case can already be discussed at the

classical level. Assuming we have already chosen a probe

state and a measurement, it may happen that the resulting

FI matrix is nondiagonal. This means that the estimators for

the parameters will not be independent. Considering now the

separate schemes of Fig. 1(b) and assuming all parameters

except the ith parameter are perfectly known, the single-

parameter CR bound implies that the uncertainty of estimating

the ith parameter is lower-bounded by Var(ϕ̃) � 1/Fii . On the

other hand, in the simultaneous scenario of Fig. 1(b) according

to Eq. (2) we have Var(ϕ̃) � (F−1)ii . From basic algebra

of positive-definite matrices, we have that (F−1)ii � 1/Fii ,

with equality holding only in the case when all off-diagonal

elements Fij = 0, j �= i. Since asymptotically the CR bound

is saturable, it implies that equal performance between the

simultaneous and p separate schemes in the limit of a large

number of experiment repetitions can only hold if F is a

diagonal matrix, and hence there are no statistical correlations

between the estimators [27]. Otherwise condition (iii) for

parameter compatibility is violated.

Clearly, for any real positive definite matrix one can perform

an orthogonal rotation to a new basis in which the matrix

is diagonal. This simply means that there are always linear

combinations of the parameters for which the diagonality

conditions hold. Often, however, the choice of the parameters

we are interested in arise as a result of physical considerations

and in this sense there is a preferred basis in which the question

of parameter compatibility has clear physical implications.

B. Quantum Fisher information Cramér-Rao bound

While the fundamental objects for calculating the classical

FI are probability distributions of the data conditioned on the

parameters to be estimated, the fundamental objects in the

quantum problem are the density matrices ρϕ dependent on

these parameters. Note that here we assume that a probe state

has already been selected and subjected to evolution and hence

for the time being we ignore the issue of optimization over

input probes.

In the quantum scenario we therefore face an additional

challenge of determining the optimal measurement for extract-

ing most of the information on the parameters of interest from

the quantum states. In the single-parameter case the situation

is relatively simple. Maximization of the classical FI over all

quantum measurements yields the quantity referred to as the

QFI which can be calculated by using the following formula:

FQ(ϕ) = tr(ρϕL2), (3)

where L is a Hermitian matrix, the so-called symmetric

logarithmic derivative (SLD), defined implicitly by 1
2
(Lρϕ +

ρϕL) = ∂ϕρϕ , where for simplicity of notation we do not

explicitly write the dependence of L on ϕ. Moreover, one can

always choose the projective measurement in the eigenbasis

of the SLD which yields FI equal to the QFI. Hence, the QFI

determines the ultimate achievable precision of estimating the

parameter on density matrices ρϕ in the asymptotic limit of an

infinite number of experiment repetitions. Moreover, the fact

that the QFI is additive on tensor product density matrices,

in particular FQ(ρ⊗N
ϕ ) = NFQ(ρϕ), and achievable via indi-

vidual measurements, implies that there is no asymptotic gain

in performing collective measurements over individual ones;

hence the scenarios of Figs 2(b) and 2(c) are equivalent in the

single-parameter-estimation case.

We now move on to a multiparameter scenario. A direct

generalization of single-parameter CR bound leads to the

multiparameter QFI CR bound [1,2], which reads

Cov(ϕ̃) � FQ(ϕ)−1, FQij (ϕ) = 1

2
tr(ρϕ{Li,Lj }), (4)

where the braces refer to the anticommutator, whereas Li is

the SLD related to parameter i, defined analogously to the

single-parameter case as 1
2
(Liρϕ + ρϕLi) = ∂ϕi

ρϕ . As a result,

given any cost matrix G, the estimation cost is bounded by

Tr[GCov(ϕ̃)] � Tr
(

GF−1
Q

)

. (5)

Unlike in the single-parameter case, the above bound is not

always saturable. The intuitive reason for this is incompati-

bility of the optimal measurements for different parameters.

Under what conditions may we nevertheless hope to saturate

the bound? Given that the optimal measurement for a given

parameter is formed from projectors corresponding to the

eigenbasis of the SLD, we may immediately identify that if

[Li,Lj ] = 0 then there is a single eigenbasis for both SLDs
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and thus a common measurement optimal from the point of

view of extracting information on ϕi as well as ϕj . However,

this is only a sufficient but not a necessary condition. We

discuss a necessary and sufficient condition in Sec. IV but,

in preparation for this, we need to introduce a more powerful

version of the multiparameter CR bound.

C. Holevo Cramér-Rao bound

The problem with saturability of the multiparameter QFI

CR bound was realized early in the development of quantum

estimation theory by Holevo [1]. He proposed a stronger

multiparameter bound which we refer to as the Holevo

CR bound. Its original formulation is not very explicit and

therefore we prefer to use its equivalent formulation put

forward in Ref. [28]. Given a cost matrix G the achievable

estimation uncertainty is lower-bounded by

Tr[GCov(ϕ̃)] � min
{Xi }

{Tr(GReV ) + ‖GImV ‖1}, (6)

where ‖ · ‖1 is the operator trace norm, Vij = Tr(XiXjρϕ),

and the minimization is performed over Hermitian matrices

Xi , satisfying 1
2
Tr({Xi,Lj }ρϕ) = δij , where Li are SLDs as

defined before. The last constraint plays the role of the local

unbiasedness condition.

This bound is indeed stronger than the QFI CR bound which

may be appreciated by rewriting the right-hand side (r.h.s.) of

the QFI bound, Eq. (5), in the following form [28]:

Tr
(

GF−1
Q

)

= min
{Xi }

Tr(GReV ), (7)

with the same constraints on the Xi matrices as in the definition

of the Holevo CR bound. Clearly, since the second term

in Eq. (6) is positive, it implies that the QFI bound is in

general weaker. As the above formula for the QFI CR bound

is not widely recognized, for the sake of completeness and

anticipating further discussion of the saturability issue, we

provide a proof of it below.

Let us write the solution to the minimization problem of

the r.h.s. of Eq. (7) explicitly by using the Lagrange multiplier

method. Introducing Lagrange multipliers λij we need to

minimize

1

2

∑

ij

Gij Tr(ρϕ{Xi,Xj }) − λij

[

δij − 1

2
Tr(ρϕ{Xi,Lj })

]

(8)

over Hermitian Xi . Each n-dimensional Hermitian matrix

Xi may be parametrized by n2 real parameters. Taking the

derivatives over each of these produces a set of matrix

equations,

∀i

∑

j

Gij {ρϕ,Xj } − λij {ρϕ,Lj } = 0. (9)

Taking

Xi =
∑

j

(G−1�)ijLj , (10)

where by � we denote the matrix of Lagrange multipliers

(�)ij = λij it is clear that Eq. (9) is satisfied. Moreover, the

constraint condition 1
2
Tr({Xi,Lj }ρϕ) = δij reads

1
2
(G−1�)ikTr({Lk,Lj }ρϕ) = δij . (11)

This implies that the Lagrange multiplier matrix must be

chosen so that

G−1�FQ = 1. (12)

As a result the solution to the minimization problem reads

Xi =
∑

j

(

F−1
Q

)

ij
Lj , (13)

and utilizing the fact that QFI matrix is symmetric we get

Tr(GReV ) = Tr
(

GF−1
Q FQF−1

Q

)

= Tr
(

GF−1
Q

)

, (14)

which ends the proof.

Even though the Holevo CR bound is tighter than the

QFI one, it is still not always saturable with separable mea-

surements. However, it is saturable for Gaussian-state-shift

models where the parameters are encoded in the first-moment

displacements [1]. Even more interestingly, thanks to the

theory of quantum local asymptotic normality (QLAN) [29–

31] which asymptotically maps any quantum estimation

problem performed on a large number of copies of a quantum

state to a corresponding Gaussian shift model, the Holevo

CR bound is asymptotically achievable in this case as well.

Since the mapping does not respect separation into single-

copy subsystems, collective measurement may in general be

required to saturate the Holevo CR bound. Hence, for all

schemes depicted in Fig. 2(c) the Holevo CR bound pro-

vides an ultimate asymptotically saturable multiparameter CR

bound.

IV. MULTIPARAMETER COMPATIBILITY

A. Saturability of multiparameter quantum Fisher

information Cramér-Rao bound

As we mentioned before, if the SLDs Li corresponding

to the different parameters commute, there is no additional

difficulty in extracting optimal information from a state

on all parameters simultaneously. If they do not commute,

however, this does not immediately imply that it is impossi-

ble to simultaneously extract information on all parameters

with precision matching that of the separate scenario for

each.

A weaker condition has appeared in a number of pa-

pers [7,13,21,22,32] which states that the multiparameter QFI

CR bound can be saturated provided

Tr(ρϕ[Li,Lj ]) = 0, (15)

where not the commutator itself but only its expectation

value on the probe state is required to vanish. Henceforth

we shall refer to this as the commutation condition. This

condition was first identified as necessary and sufficient by

Matsumoto [7] for the case when ρϕ is a pure state, upon

which the criterion is equivalent to the existence of some

pair of SLDs which commute, given that SLDs are not

unique on pure states. It is then possible to find an optimal

measurement as the common eigenbasis of these SLDs. This

implies that, for unitary evolution on pure states, satisfaction

of the commutation condition coincides with the existence

of commuting Hamiltonians which could have generated the

evolution on the given probe.
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For mixed states, this criterion has been identified in a

comprehensive characterization of the behavior of the Holevo

bound for two-parameter estimation on separable qubits [32].

Elsewhere, it has been used in more general settings but

without a readily available proof which we are aware of and has

met some small inconsistencies in its usage, being variously

identified as sufficient [13] or necessary and sufficient [22]

in different papers. To clear up this confusion we present a

derivation of this criterion, which to the best of our knowledge

has not been provided before in such a simple, direct, and

general manner.

First of all, we consider a scenario where estimation is

performed on multiple independent copies of the output state

ρϕ and allow for collective measurements as in Fig. 2(c). We

know already from the discussion in Sec. III C that, in this

case, the Holevo CR bound is asymptotically achievable thanks

to QLAN theory. Hence, to prove asymptotic saturability of

the multiparameter QFI CR bound it is enough to prove that

it is equivalent to the Holevo CR bound if and only if the

commutation condition (15) holds.

Proof. For the sake of the proof we assume that both the

cost matrix G and QFI matrix FQ are strictly positive. These

are natural assumptions since otherwise if some eigenvalues

of G were zero, uncertainty in some parameter combinations

would not be penalized whereas if some eigenvalues of FQ

were zero, it would be impossible to estimate some of the

parameters with finite precision.

Let us first prove sufficiency of Eq. (15) and assume that

Tr([Li,Lj ]ρϕ) = 0. We have seen that, when calculating the

minimum in the formula for the QFI bound using Eq. (7)

we have found that the optimal Xi = ∑

j (F−1
Q )ijLj are linear

combinations of Li . Since Tr([Li,Lj ]ρϕ) = 0 for all i,j it

implies that the the same holds for all their linear combinations

and hence Tr([Xi,Xj ]ρϕ) = 0 for all i,j . This, however,

implies that the same set of Xi minimizes the formula for

the Holevo bound because it makes the second term in Eq. (6)

equal to zero.

To prove the necessity we assume that the Holevo bound

coincides with the QFI bound and hence for the Xi that

minimize both Eqs. (6) and (7) the second term in Eq. (6) must

be equal to zero. Since G is strictly positive, this implies that

the matrix ImV must be zero and hence Tr([Xi,Xj ]ρϕ) = 0

for all i,j . On the other hand, we know that the Xi minimizing

Eq. (7) have the form Xi = ∑

j (F−1
Q )ijLj . Inverting this

formula we get Li = ∑

j (FQ)ijXj and hence Tr([Li,Lj ]ρϕ) =
0 for all i,j . �

It is worth stressing the different implications of the

commutation condition on pure states and on mixed states.

In the case of pure states, as already mentioned above,

the commutation relation implies that there is an individual

measurement that allows saturation of the QFI CR bound as

in Fig. 2(b). On the other hand, for mixed states, collective

measurements on multiple copies may be necessary in general

to achieve the bound as in Fig. 2(c). This is due to the fact that

the Holevo CR bound is guaranteed to be saturable provided

one takes the asymptotic limit of many independent copies of

a state, while the correspondence to Gaussian states via QLAN

theory implicitly does not invoke limitations on the allowed

set of measurements.

B. Conditions for multiparameter compatibility

Combining the commutation condition with the parameter-

independence condition discussed in Sec. III A which requires

off-diagonal QFI matrix entries to be zero, we arrive at a

necessary requirement for multiparameter compatibility which

reads

∀i �=j Tr(LiLjρϕ) = 0. (16)

Plugging in an explicit form for the SLDs,

Li = 2
∑

m,n

〈ψm|
(

∂ϕi
ρϕ

)

|ψn〉
pm + pn

|ψm〉〈ψn|, (17)

where pm,n and |ψm,n〉 are the eigenvalues and eigenvectors

of the state ρϕ = ∑

k pk|ψk〉〈ψk| from which parameters are

to be estimated. The compatibility condition (16) can now be

written as

∀i �=j

∑

m,n

pm

(pm + pn)2
〈ψm|∂ϕi

ρϕ|ψn〉〈ψn|∂ϕj
ρϕ|ψm〉 = 0.

(18)

On top of this we must not forget the final condition which

demands the existence of a single probe state that provides

maximum QFIs for all the parameters.

In summary, we may decompose the demands of simultane-

ous estimation into several layers of stringency. The first is the

existence of a single probe state yielding maximum possible

values of QFIs for all parameters of interest. Second is the

requirement of the existence of compatible measurements on

the output states which ensures the saturability of the QFI

CR bound, and the last one is the requirement that the QFI

matrix is diagonal which enables independent estimation of

the parameters.

If all these conditions hold, the optimal metrological

strategy will not depend on the choice of the cost matrix G

and the ultimate bounds on estimation precision are found in

the same way as in the case of single-parameter estimation.

V. UNITARY PARAMETER ESTIMATION

Let us first treat the case of multiple unitary parameter

estimation, which has been considered in a number of

papers [10–19] and ask under what conditions we can have

multiparameter compatibility. We consider unitary evolution

acting on the input probe state to be of the form

Uϕ = ei
∑

k Hkϕk . (19)

Thanks to convexity of the QFI we can always assume the input

state to be pure ρ = |ψ〉〈ψ |. Since the evolution is unitary, the

output state will be pure as well |ψϕ〉 = Uϕ|ψ〉. For pure states

the SLDs can be explicitly written as

Li = 2
(∣

∣ψ (i)
ϕ

〉

〈ψϕ| + |ψϕ〉
〈

ψ (i)
ϕ

∣

∣

)

(20)

where |ψ (i)
ϕ 〉 = ∂ϕi

|ψϕ〉. For the moment, for the sake of clarity

we consider the estimation performed around the point where

all ϕk = 0. In this case

Li = 2i(Hi |ψϕ〉〈ψϕ| − |ψϕ〉〈ψϕ|Hi). (21)
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As a result, the compatibility condition (16) takes the form

∀i �=j 〈ψ |(〈Hi〉 − Hi)(〈Hj 〉 − Hj )|ψ〉 = 0, (22)

where 〈Hi〉 = 〈ψ |Hi |ψ〉. Additionally, apart from fulfilling

the above orthogonality conditions we must make sure that

the single input probe yields optimal QFI with respect to all

parameters. The QFI for the i parameter is simply proportional

to the variance of Hi :

(FQ)ii = 〈ψ |(〈Hi〉 − Hi)
2|ψ〉 (23)

and is uniquely maximized by a probe state which is an

equally weighted superposition of eigenstates |−〉i , |+〉i of

Hi corresponding to the minimal and the maximal eigenvalues

λ−
i , λ+

i , respectively [33],

|ψ〉 = 1√
2

(|−〉i + |+〉i). (24)

The above form of |ψ〉 should be valid irrespectively of index

i. Clearly, we have freedom to adjust the relative phases in

the above expression, but we can also assume that they are

incorporated in the definition of the eigenstates themselves.

Without losing generality, let us shift the Hamiltonians Hi →
Hi − λ+

i +λ−
i

2
1 so that λ−

i = −λ+
i = −λi and hence 〈Hi〉 = 0

on the optimal probe state. Plugging the form of the optimal

state (24) into Eq. (22) we get

∀i �=j (〈+|i − 〈−|i)(|+〉j − |−〉j ) = 0. (25)

After some basic algebra this implies that the extremal

eigenvectors of Hi must necessarily be of the form

|+〉i = 1√
2

(|ψ〉 + |ξi〉), (26)

|−〉i = 1√
2

(|ψ〉 − |ξi〉), (27)

where 〈ξi |ξj 〉 = δij and all |ξi〉 are orthogonal to |ψ〉. The

above formulas express the most general requirements on the

eigenvectors of the generating Hamiltonians for compatible

metrology to be achievable in this evolution model. As will

be shown in the example below these are rather stringent

conditions. One might object that, e.g., in the case where

all generators Hi are equal there should be no difficulty

in estimating simultaneously multiple parameters since the

optimal input probe state and the optimal measurements are

identical for all ϕi . Note, however, that such a model provides

us only with the information on the total accumulated phase
∑

i ϕi and therefore the statistical independence condition is

not satisfied and, even worse, the QFI matrix is degenerate.

To end this general discussion, let us go back to the more

general case of ϕi �= 0. In this case all the above discussion is

valid up to replacement of all Hi operators appearing in for-

mulas from Eq. (22) onwards with H S
i = U

†
ϕSi[Hie

i
∑

k Hkϕk ],

where Si represents a symmetrization operation which acts

when encountering any product of Hi with other operators

Hk �=i that do not commute with it. It performs a normal-

ized symmetrization of this product, so, e.g., S1[H1H
2
2 ] =

1
3
(H1H

2
2 + H2H1H2 + H 2

2 H1). The above considerations may

also be easily adapted to the case where different parameter

unitaries act sequentially, i.e. Uϕ = �ke
iHkϕk , by replacing H S

i

with (�i−1
k=1e

iHkϕk )Hi(�
p

k=ie
iHkϕk ).

Two-parameter estimation of a spin rotation

Let us consider a spin-j particle, with associated angular-

momentum operator �S = (Sx,Sy,Sz) and consider unitary two-

parameter evolution of the form

Uϕ1,ϕ2
= eiϕ1 �n1· �S+iϕ2 �n2· �S, (28)

where the Hi generating the unitary transformation now

correspond to different directions of the spin operators Hi =
�ni · �S. For simplicity we focus on estimation around the ϕ1 =
ϕ2 = 0 point, although the discussion remains qualitatively

equivalent when ϕi �= 0. Let |m〉�n, m ∈ −j, . . . ,j denote the

basis constructed from eigenvectors of the �n · �S operator with

projection value m. According to previous discussion the

optimal state needs to have the form

|ψ〉 = 1√
2

(

|−j〉�n1
+ |+j 〉�n1

)

= 1√
2

(

|−j 〉�n2
+ |+j 〉�n2

)

,

(29)

and clearly 〈Hi〉 = 0. Let α be the angle between directions

�n1 and �n2. By using the standard theory of angular momentum

we may expand states |±j 〉�n2
in the basis |m〉�n1

as follows:

|+j〉�n2
=

j
∑

m=−j

(

2j

j + m

)
1
2

sinj+m α

2
cosj−m α

2
|m〉�n1

, (30)

|−j 〉�n2
=

j
∑

m=−j

(−1)j−m

(

2j

j + m

)
1
2

cosj+m α

2
sinj−m α

2
|m〉�n1

,

(31)

where we have neglected any possible relative phases that

might appear in the above decomposition because they are

irrelevant in the following. Rewriting the formula for |+j 〉�n2

as

|+j 〉�n2
= cos2j α

2
|−j 〉�n1

+ sin2j α

2
|j 〉�n1

+
j−1
∑

m=−j+1

· · · (32)

and comparing it with the compatibility conditions (26) we see

that the only possibility of satisfying them is to take α = π/2

and j = 1, in which case we obtain

|+1〉�n2
= 1

2

(

|−1〉�n1
+ |1〉�n1

)

+ 1√
2
|0〉�n1

, (33)

|−1〉�n2
= 1

2

(

|−1〉�n1
+ |1〉�n1

)

− 1√
2
|0〉�n1

, (34)

resulting in estimation precision �2ϕ1 = �2ϕ2 = 1/4. With

this example it is clear how restrictive the multiparameter

compatibility conditions in metrology are. The fact that

for spin j = 1/2 there is no possibility for satisfying the

compatibility conditions is clear from Eq. (26) because at least

three-dimensional space is required to have three orthogonal

states |ψ〉, |ξ1〉, |ξ2〉. It is, however, nontrivial that the only

case where multiparameter compatibility can be satisfied is

j = 1 for rotations around two perpendicular axes. Given that

we are working in the pure-state case, it is always possible

to find a measurement on a single spin that achieves the

quantum CR bound. The following projection measurement
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suffices:

�1 = 1
2

(

|+1〉�n1
+ |−1〉�n1

)(

〈+1|�n1
+ 〈−1|�n1

)

,

�2 = 1
2

(

|+1〉�n1
− |−1〉�n1

)(

〈+1|�n1
− 〈−1|�n1

)

,

�3 = 1 − �1 − �2.

From the above discussion it is also clear that there is

no possibility to estimate three different rotation directions

in a compatible way since the only promising case j = 1

corresponds to a three-dimensional space whereas compati-

bility of three different rotation parameters require at least a

four-dimensional space according to Eq. (26).

The results presented above can be immediately applied to

the case when N qubits experience independent two parameter

rotations according to the following unitary:

Uϕ1,ϕ2
=

(

e
i
2

(ϕ1 �n1·�σ+ϕ2 �n2·�σ )
)⊗N

, (35)

as in this case the optimal input probe state lives in the fully

symmetric subspace which is isomorphic to spin j = N/2

space. It is therefore clear that, while for a single qubit

(N = 1) undergoing simultaneous rotation around two axes

the compatibility conditions cannot be satisfied, they can be

achieved when considering the N = 2 case and an appropri-

ately chosen entangled input; essentially entanglement takes

us from a highly incompatible case to full compatibility with

Heisenberg scaling in two parameters at once (but only for

N = 2). This fact can be confirmed by inspecting results

presented in Ref. [13], where the sum of variances of two

angles of rotations was minimized, and noticing that only in

the case of N = 2 does the obtained result indeed correspond

to the optimal separate scenario. For higher-dimensional N the

Heisenberg bound is no longer achievable in both parameters.

If we choose GHZ-type states, then we can achieve Heisenberg

1/N2 scaling in one parameter, but classical 1/N scaling in

the other. Other states can achieve different trade-offs; for

even-N qubit Dicke states with N
2

excitations (in the direction

mutually orthogonal to �n1 and �n2), both parameters have a

Fisher information of N2

2
+ N , which asymptotically retains

quadratic scaling but with a 1/2 prefactor.

VI. HYBRID UNITARY + NONUNITARY

PARAMETER ESTIMATION

In the previous section we have seen that the compatibility

conditions in the case of multiple unitary parameters are very

demanding and can be satisfied only in very special situations.

In this section we focus on the case when one of the parameters

ϕ is unitary whereas the other one, which we denote by

η, enters via a nonunitary part of the evolution as, e.g., a

decoherence strength parameter.

This scenario has been considered before in several models

such as the estimation of loss and phase in an interferome-

ter [22], as well as the estimation of phase with collective [20]

and independent [21] dephasing. Here we want to investigate

the possibility of satisfying the compatibility conditions in

such situations.

Before considering specific schemes, let us first identify

some general sufficient criteria for the compatibility condition

as expressed by Eq. (16) and ignore for the moment the

FIG. 3. A schematic of a general lossy interferometer with input

state ρ. We model the losses by a beam splitter. In Ref. [22], a

scheme was considered with transmissivity η2 = 1, leading to one

arm containing both the loss and phase parameters. We balance the

interferometer by choosing η1 = η2 = η.

requirement for the existence of common optimal input probe

state. The explicit form of the compatibility condition (18) can

be written as

∑

m,n

pm

(pm + pn)2
〈ψm|∂ϕρϕη|ψn〉〈ψn|∂ηρϕη|ψm〉 = 0, (36)

where pn, |ψn〉 are eigenvalues and eigenvectors of ρϕη.

Let us assume that the decoherence parameter η induces a

“classical” evolution in the sense that

∂ηρϕη =
∑

k

(∂ηpk)|ψi〉〈ψi |, (37)

so that only the eigenvalues of the density matrix depend on

the parameter and the state remains diagonal in its initial

eigenbasis. This makes all off-diagonal terms m �= n in

Eq. (36) zero. However, since the second parameter is unitary,

〈ψn|∂ϕρϕη|ψn〉 = pn∂ϕ〈ψn|ψn〉 = 0, (38)

and hence the diagonal terms are zero as well, guaranteeing

the compatibility condition to hold.

There are more involved cases when the decoherence

parameter η influences not only the eigenvalues but the form

of the eigenvectors of ρϕ,η as well. It might happen that even

though individual terms in Eq. (36) are nonzero they sum up

to zero in the end. Such situations need to be dealt with on a

case-by-case basis.

A. Estimation of phase and loss in an interferometer

Consider an interferometer with equal loss in both arms,

as presented in Fig. 3, where the goal is to estimate both

the relative phase delay ϕ between the arms as well as the

transmission coefficient η. We choose our input states to be

fixed-photon-number states, for which a general bipartite state

is given by

|ψ〉 =
N

∑

k=0

αk|k,N − k〉. (39)

After passing through the interferometer the resultant state is

|ψϕη〉 =
N

∑

k=0

N−k
∑

l2=0

k
∑

l1=0

αke
ikϕ

√

Bk
l1l2

|k,N − k〉 ⊗ |l1,l2〉, (40)
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where the additional two modes represent photons lost from,

respectively, the upper and the lower arm, and

Bk
l1l2

=
(

k

l1

)(

N − k

l2

)

ηN−l1−l2 (1 − η)l1+l2 . (41)

Upon tracing out the auxiliary modes, we obtain a density

matrix

ρϕη =
⊕

l

∑

l1

∣

∣ψl1,l−l1

〉〈

ψl1,l−l1

∣

∣, (42)

where different l = l1 + l2 sectors represent a different total

number of photons lost while

∣

∣ψl1l2

〉

=
N−l2
∑

k=l1

αke
ikϕ

√

Bk
l1l2

|k − l1,N − k − l2〉 (43)

are subnormalized states corresponding to the situation of

losing l1 and l2 photons in the upper and the lower arm,

respectively. Note that states |ψl1,l−l1〉 living in a single l

sector are in general not orthogonal and hence should not

be understood as eigenvectors of ρϕη. Still, owing to the fact

that

∂ηB
k
l1l−l1

= cN,lB
k
l1l−l1

, cN,l = N − l

η
− l

1 − η
, (44)

we eventually arrive at

∂ηρϕη =
⊕

l

cN,l

∑

l1

∣

∣ψl1,l−l1

〉〈

ψl1,l−l1

∣

∣, (45)

implying that, upon differentiation, the whole block corre-

sponding to a fixed l is multiplied by the same constant factor.

This means that only the eigenvalues of the density matrix

are changed with variations of the parameter η and hence we

conclude that variations of η induce the “classical” evolution.

From the general considerations presented in the beginning

of this section this implies that the compatibility criterion is

satisfied.

More specifically, a brief calculation shows that the SLD Lη

decomposes into a weighted sum of projectors onto the blocks

of the density matrix and thus an optimal measurement for loss

is simply the set of projectors onto each block of constant l.

The resultant Fisher information reads
∑

L c2
NlP (l|η) where,

most importantly, P (l|η) = Trρϕη�l = (
N

l )ηN−l(1 − η)l does

not depend on the input state. As a result we simply get a

binomial distribution of total numbers of photons lost, and

sampling this is the most informative thing we can do to learn

η. The corresponding QFI reads (FQ)ηη = N
η(1−η)

.

Since ∂ϕρϕη does not mix blocks of different total photon

number (because phase shifts do not alter photon number),

we find that Lϕ can be decomposed into the same blocks

as Lη, and since Lη simply acts as a multiple of the identity

block-wise, they properly commute, not just under expectation

value. Hence no collective measurements on multiple copies

of the quantum state are necessary to saturate the QFI CR

bound, even though we are in the mixed-state case.

Finally, we do not face the problem of determining a

common optimal input probe. Since the precision of estimating

η is state independent we simply take the optimal state

maximizing QFI for phase estimation [25,34,35]. Taking the

asymptotic analytical formula for optimal QFI in the limit

of large N [35–38] and assuming η < 1 we summarize this

section by providing the achievable precision of compatible

simultaneous phase and loss estimation: �2ϕ = 1−η

ηN
, �2η =

η(1−η)

N
.

B. Estimation of phase and dephasing

Let us now consider N qubits undergoing evolution com-

posed of unitary phase combined with individual dephasing

processes. Each qubit is affected independently and the output

N -qubit density matrix reads

ρϕη = �⊗N
ϕη (ρ), (46)

where

�ϕη(X) = Uϕ

(

1
∑

i=0

KiXK
†
i

)

U †
ϕ, (47)

Uϕ = exp(iϕσz/2), while the two Kraus operators read K0 =√
(1 + η)/21 and K1 = √

(1 − η)/2σz.

In the case of N = 1, any state on the equator of the Bloch

sphere is known to be optimal both from the point of view of

estimating phase as well as the dephasing coefficient [39].

Taking ρ = |+〉〈+|, with |+〉 = 1√
2
(|0〉 + |1〉) we find the

output state

ρϕη = η|ϕ〉〈ϕ| + (1 − η)1/2, (48)

where |ϕ〉 = 1√
2
(|0〉 + eiϕ |1〉). This is clearly the case where

η induces “classical” evolution, changing the eigenvalues

without changing the eigenvectors and hence the compatibility

condition is immediately satisfied.

Still, as discussed in detail in Ref. [21], saturating the

QFI CR bound in this case requires application of collective

measurement on multiple copies of the state, unlike in the

example of estimating phase and loss. Discussion in Ref. [21]

was restricted to probes being products of single-qubit states.

Here we want to investigate the problem of simultaneous esti-

mation in case of arbitrary entangled input states of N qubits,

since utilizing entangled input probes is indispensable to reach

the optimal phase-estimation performance in the presence

of dephasing [37,40,41]. It is known that the optimal input

states are highly symmetric, exhibiting both permutational

symmetry of the qubits, and also a parity symmetry under

bit flips, i.e., they are invariant under σ⊗N
x where N refers

to the number of qubits. We will thus investigate the class of

N -qubit states defined by these two kinds of symmetries. This

assumption is further justified by the fact the states optimized

from the point of view of estimating the dephasing coefficient

satisfy these symmetries as they are simply the product

states |+〉⊗N [42,43] yielding the optimal estimation precision

�2η = (1 − η2)/N Let us also note here, that in the limit of

large N , simple classes of one- and two-axis spin-squeezed

states reaches the optimal phase-estimation-precision limit

given by �2ϕ = (1 − η2)/(η2N ) [37,41].

Due to the high degree of symmetry, it is convenient to shift

to angular-momentum notation. In general, we write |j,m〉 to

denote a general angular-momentum eigenstate where for N

qubits 0 � j � N
2

and j goes between these limits in integer

steps (with a lower bound of 1
2

for odd N ) and similarly
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−j � m � j , where m also increases in integer steps. We

can then write the permutationally symmetric pure input states

as |ψ〉 = ∑

m αm|N
2
,m〉, where

∑

m |αm|2 = 1.

After experiencing local dephasing the state will no longer

be supported on the fully symmetric subspace j = N/2 but

will preserve permutational invariance on the level of the

density matrix. A particularly useful construction for the

decomposition of the output state of this evolution is found

in Ref. [44]:

ρϕη =
∑

j

∑

m,m′

h(N,j,m,m′,η)eiϕ(m′−m)|j,m〉〈j,m′|, (49)

where the actual form of h(N,j,m,m′,η) coefficients is quite

involved and we refer the interested reader to Ref. [44] because

it has no relevance for further discussion here. In the above ex-

pression it is implicitly assumed that the state has the

same form on all multiplicity subspaces corresponding to the

same j and we write the state by using a simplified notation

as if there were no multiplicity of spaces with given j .

Let us consider state ρη, which is an output state before

implementing the phase evolution—this is permitted because

the actions of phase and dephasing commute. We first

discuss a further simplification on the structure of ρη. The

parity symmetry implies that, within each of the blocks

of constant j , there exists a further splitting according to

the irreducible representations of the parity operator. The

parity operator only has one-dimensional irreducible repre-

sentations corresponding to the trivial and to the alternating

representation. The eigenvectors of ρη can then be chosen

to have either even or odd parity. Given the block-diagonal

structure, the ith even-parity vector in the j subspace can

be expressed as |ψ ′
even,i〉 = ∑

m e
j

i,m(|j,m〉 + |j,−m〉)/
√

2,

where
∑

m |ej

i,m|2 = 1. Similarly, all odd-parity eigenvectors

have the structure |ψ ′
odd,i〉 = ∑

m o
j

i,m(|j,m〉 − |j,−m〉)/
√

2,

where
∑

m |oj

i,m|2 = 1.

Now consider the decomposition of the density ma-

trix in terms of such eigenvectors ρη = ∑

i pi |ψ ′
i 〉〈ψ ′

i |.
The unitary phase only serves to alter the eigenstates.

Thus, after the phase unitary the density matrix is

ρηϕ = ∑

i pi |ψi〉〈ψi |, where |ψi〉 = U (ϕ)|ψ ′
i 〉. Due to this

〈ψi |∂ηψk〉 = 〈ψi |U †(ϕ)∂η[U (ϕ)|ψk〉] = 〈ψ ′
i |∂ηψ

′
k〉. This sim-

plifies the calculation of 〈ψi |∂ηρηϕ|ψk〉 terms when i �= k.

Most significantly, one can observe that for ψ ′
i and ψ ′

k from

subspaces corresponding to different parities, 〈ψi |∂ηψk〉 = 0.

This is because the subspaces as a whole do not change with

η. Considering the almost-trivial example of the decomposi-

tion of two qubits into triplets and singlets, the singlet space

always remains completely separate from the triplet space and

will not overlap with any combination of triplets regardless of

η. The parity subspaces behave similarly.

This eliminates approximately half of the terms of Eq. (18).

We turn our focus to the remaining terms which include

|ψi〉 and |ψj 〉 from the same parity subspace. We will

treat the even-parity case, but the proof for odd parity

is identical. After the phase unitary, the eigenstates be-

come |ψeven,i〉 = ∑

m e
j

i,m(e−i
ϕ

2
m|j,m〉 + ei

ϕ

2
m|j,−m〉). Dif-

ferentiating this state with respect to ϕ induces a sign

difference between the two terms sharing the coeffi-

FIG. 4. Average ξ of normalized uncertainties of estimating the

phase and the dephasing parameter in the optimal simultaneous

scheme (upper red line) and the optimal separate schemes (lower

black line) as a function of the number of atoms used and the

dephasing parameter set to η = 0.9. For the separate schemes the

considered average asymptotically saturates to 1, which is represented

by black dashed line. The inset indicates the ratio of the precision

achieved in both schemes indicating that the discrepancy is relatively

small and decreases with increasing N which indicates the possibility

of satisfying the compatibility requirement in the asymptotic regime

of large N .

cient e
j

i,m. Using the orthonormality of |j,m〉 gives us

〈ψeven,i |∂φψeven,k〉 = ∑

m e
j,∗
i,me

j

k,m(m − m) = 0. Thus every

numerator term, 〈ψi |∂ηρ|ψj 〉〈ψj |∂φρ|ψi〉, of Tr(ρη,φLϕLη) is

equal to 0 and we can simultaneously estimate the parameters.

There still remains the issue of existence of a common

input state optimal both for ϕ and η simultaneously. This

fact is obvious for the single-qubit case, N = 1, because any

equatorial qubit state is an optimal probe from the point of

view of both parameters. For N � 2, however, this is no

longer true. We have performed a numerical search which

showed that, when optimizing probe states from the point

of view of estimating two parameters simultaneously, we

face a trade-off and the optimal state for joint estimation

depends on the weighting of importance between dephasing

and phase estimation. Still, the observed trade-off is relatively

small and shrinks with increasing N . We conjecture that, for

asymptotically large N , the discrepancy is vanishing and the

simultaneous scheme performs as well as the separate one.

This is presented in Fig. 4 where the average of estimation

uncertainties of ϕ and η achievable when utilizing two-

axis spin-squeezed states [45] normalized according to the

asymptotic optimal performance of the separate schemes

ξ = 1

2

(

�2ϕ

(1 − η2)/(η2N )
+ �2η

(1 − η2)/N

)

(50)

is plotted. When the above quantity is calculated for sep-

arate and simultaneous schemes for η = 0.9 the resulting

discrepancy is maximal for N = 4 when it achieves about

7.6% and decreases with increasing N going below 4.8%

for N = 60 (see the inset). For smaller η the discrepancy

is even smaller although its maximum is attained for larger

N . This numerics strongly suggests that asymptotically
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simultaneous scheme can perform as well as the separate

one. The two-axis spin squeezed states used as an input probe

here are parametrized by using the squeezing parameter θ as

|ψθ 〉 = e−iθ(J 2
+−J 2

−)|j,j 〉 where J+, J− are standard angular-

momentum ladder operators and the dependence of optimal

squeezing parameter as a function of N is approximately

θ ∼ N−0.9 when η = 0.9. We have also checked the behavior

of one-axis spin-squeezed states, recently used in quantum

enhanced magnetometry [46,47], which are defined as |ψθ 〉 =
USSS

φ e−iθJ 2
x |j,j 〉, where Jx is the x component of the angular

momentum, USSS
φ = eiHφ denotes a unitary transformation

generated by the operator H = eiθJ 2
x Jze

−iθJ 2
x and

φ = 1

4
arctan

[

4 sin θ (cos θ )N−2

1 − [cos(2θ )]N−2

]

.

Surprisingly, we have found that such states give significantly

worse results and do not allow us to saturate the performance

of the separate schemes.

These conclusions are therefore similar to those obtained in

Ref. [20] where a different model assuming collective instead

of uncorrelated dephasing was analyzed and again asymptotic

possibility of performing optimal simultaneous estimation of

phase and the dephasing parameter has been demonstrated.

VII. CONCLUSIONS

We have presented a complete analysis of the compatibility

problem in multiparameter quantum metrology, pointing out

three main obstacles to estimating parameters simultaneously

with the same accuracy as in the separate scenario. We

have provided several examples which illustrate how these

obstructions come into force, as well as being interesting in

their own right.

We would like to stress, however, that multiparameter

metrology is not all about trying to avoid an overwhelming

array of pitfalls. In this paper we have taken the specific ap-

proach in which we were asking for a multiparameter protocol

to meet the performance of the separate schemes where each

of the parameters is estimated independently with the highest

precision possible. Clearly, even if a multiparameter scheme

cannot meet this condition, it does not mean that there is no ad-

vantage in estimating multiple parameters simultaneously. In

general, there will be an advantage coming from simultaneous

estimation even if the compatibility conditions are not satisfied.

This has indeed been the line of research of many other papers

dealing with multiparameter metrology. From this point of

view, one can view this paper as providing a systematic view

on the situation when multiparameter estimation manifests its

maximal advantage over separate schemes by meeting their

performance while consuming a factor of p fewer resources.

It is also interesting to comment on the issue of sequential vs

parallel schemes in quantum metrology in the multiparameter

case. It is known that, in decoherence-free single unitary pa-

rameter estimation, a scheme where unitaries act sequentially

on a single probe provides the same maximal QFI as the

parallel scheme where one allows arbitrary input entangled

state of N particles to be sent through N parallel unitaries [33]

and only the presence of decoherence makes the schemes

inequivalent [48]. We have shown that the use of two-qubit

entangled input states allows one to optimally estimate two

rotation angles around perpendicular axes with precision equal

to that which could be obtained in the separate scheme.

Clearly, this could not be achieved by acting sequentially

with two unitaries on a single qubit, because in this case

we have proven that the compatibility condition cannot be

satisfied when two parameters are to be estimated. This breaks

the equivalence between entangled and sequential unitary

parameter estimation in the multiparameter case.
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