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Prediction of 3D High Frequency Eddy Current Loss in Rotor Magnets 
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Abstract -- This paper proposes a computationally efficient method, for accurate prediction of 3-dimensional (3D) high frequency 
eddy current loss in the rotor magnets of surface mounted permanent magnet machines employing the imaging method.  2D finite element 
analysis (FEA) is used to generate the information on radial and tangential 2D magnetic field variations (eddy current sources) within 
the magnet. The diffusion of eddy current sources along the axial plane of the magnet computed analytically is incorporated in the 
imaging method to establish the 3D eddy current source variations within the magnet. The modified method is validated with results 
from 3D time-stepped finite element analysis (FEA) for an 8-pole, 18-slot permanent magnet machine, evaluating its magnet loss 
considering axial and circumferential segmentation. 
 

Index Terms—Eddy current, finite element, permanent magnet machines. 

I. INTRODUCTION 

Most of the SPM machines employed in high power density 
applications [1], [2] are fed by 3- phase inverter drives with 
pulse width modulation which can produce high frequency 
harmonics in the armature currents. The dominant switching 
harmonics usually occur at the integer multiple of the 
switching frequencies ranging from a few kHz to a few tens 
kHz and may also have magnitudes up to a few percent of 
fundamental depending on the switching frequency and the 
control strategy employed in these machines [3],[4]. These 
harmonics not only cause ripples in the generated 
electromagnetic torque but also can result in eddy current loss 
in magnets. As the eddy current losses are proportional to the 
square of the frequency of the field variations, the losses 
attributed to these switching harmonics may go higher than 
that produced by the lower order space and time harmonics. 
Hence its evaluation is necessary to prevent the worst ever 
operating conditions, which may lead to an excessive 
temperature rise in the magnets and cause a possible partial 
demagnetization. 

In general, evaluation of rotor eddy current losses at high 
frequencies requires simultaneous solutions for the governing 
equations of the magnetic and eddy current fields. The 
computationally efficient 2D numerical methods such as 
transient finite element analysis (FEA) to calculate the eddy 
current losses [5], [6] can yield good results but provides less 
physical insight on the mechanism of eddy current loss. Hence 
a few 2D analytical methods are developed to predict the 
magnet eddy current loss at high frequencies with varying 
degree of accuracy [7-11].  The reduction in magnet loss with 
circumferential segmentation can be successfully predicted 
employing these methods.  

While 2D estimation of eddy current loss in PM machines 
can be performed numerically or analytically, its accuracy is 
compromised if the axial length of magnets is comparable to 
their other dimensions since the eddy current flow in the 
magnets may become predominantly 3D. Also the possibility 
of increase rather than decrease in magnet loss with increase 
in axial segmentation [12] cannot be evaluated in 2D. In order 

to overcome the enormous computation time in magnet loss 
estimation encountered in 3D FEA, a few computationally 
efficient methods are reported in literature in evaluating 
magnet loss at high frequencies [12-17].  Most of these 
methods reported for SPMs, ignores slotting effect and the 
radial variation of flux density along the magnets. They also 
discard the field produced by the permanent magnets and are 
incapable of assessing the loss contribution by the tangential 
component of the magnetic field. Moreover, these methods 
also neglect the variation of loss among different magnet 
segments in computing the total eddy current loss. Inaccurate 
eddy current loss calculation may cause underestimate of rotor 
temperatures, which in turn increases the demagnetization 
risk. Therefore, an accurate and computationally-efficient 
solution for quantifying the eddy current losses at high 
frequencies is necessary. 

The method of generalized imaging has been proposed in 
[18] to evaluate the resistance limited 3D eddy current 
distribution in rotor permanent magnets of a surface mounted 
permanent magnet machine. The method establishes the 
distribution of eddy current sources in the form of 3D Fourier 
series in ݔǡ ǡݕ  directions, and evaluates eddy current loss ݖ
components based on Fourier expansion in three dimensions. 
However, the 3D eddy current source distribution applied does 
not include the eddy current reaction effect, and hence it 
cannot be used to predict the eddy current loss at high 
frequencies. 

This paper proposes a computationally efficient technique 
for the prediction of 3D eddy current loss in rotor magnets due 
to high frequency current harmonics in the armature current. 
The rest of the paper is organized as follows. Section II 
outlines the magnet loss evaluation using the imaging method 
for permanent magnets in SPM machines. Section II I 
describes the direct application of the imaging technique for 
predicting 3D eddy current loss at high frequency based on 
magnetic field results from 2D time stepped transient FEA and 
compare the results with those obtained from 3D FEA. In 
section IV, a new method which combines the imaging 
technique and an analytical solution for the eddy current 
diffusion in axial direction is proposed for evaluating the 
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magnet loss at high frequencies. The eddy current source field 
is obtained from the 2D time-stepped finite element analysis 
with due account of eddy current reaction and its variation 
along the axial plane is established from the solution to the 
diffusion equation before application of the imaging 
technique. Section V validates the proposed method on the 8-
pole, 18-slot SPM machine by predicting the eddy current loss 
in magnets at high frequencies with increase in axial and 
circumferential segmentations and comparing the results 
obtained with 3D FEA. Section VI discusses the cause of the 
increase in magnet loss with initial increase in number of axial 
segmentations. Section VI I summarizes the findings in 
conclusion. 

II. SOLUTION TO SOURCE DISTRIBUTION IN 3D  FROM 

IMAGING METHOD AND  EVALUATION OF MAGNET LOSS 

It is assumed that the magnetic field which induces eddy 
currents in rotor magnets is two dimensional with its radial and 
tangential components are denoted by ܤ  and ܤ௧, respectively. 
From the imaging method [18] the source distribution within 
the magnets can be expressed periodically in 3D space by 
neglecting the curvature effect within the volume given 
by ʹܮ௫ ǡ ௫ǡܮ ௭, whereܮʹ ௬ andܮʹ ௬ܮ  and ܮ௭ are the magnet 
dimensions in the tangential, radial and axial directions, 
respectively. Hence at a given rotor position, the eddy current 
source distributions S ሺܵ௫ ൌ ௧ܤ߲ Τݐ߲  ǡ ܵ௬ ൌ ܤ߲ Τݐ߲ ሻ   in a 
rotor magnet are known and can be expanded into 3D space 
by 3D Fourier series of the following form: 
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where ݉ ǡ ݊ǡ ݇  are the harmonic orders in  ݔǡ ǡݕ  directions ݖ
respectively. ܽሺǡǡሻ and ܾ ሺǡǡሻ are Fourier coefficients which 
can be calculated by the expressions given in [17]. (1) and (2) 
allows to compute the source frequency components within 
the magnets by applying FFT in the magnet volume. The 
solutions of the current vector potential ሺܣ ൌ ሺܣ௫, ܣ௬ሻሻ which 
satisfy Poisson’s equation, ଶܣ ൌ െ(3) ܵߪ 

after applying Coulomb gauge  ή ܣ ൌ Ͳ ǡwith the source 
distribution  ሺ  ܵ௫ , ܵ ௬ሻ in (1) and (2) are given by: 
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where  ܿሺǡǡሻ and ݀ ሺǡǡሻ are the coefficients associated with 
(n, m, k)th harmonic given in [18]. Consequently the eddy 
current density ሺܬ ൌ ௫ǡܬ ௬ܬ ǡ  ௭ሻ can be derived fromܬ

 ൈ ܣ ൌ  (6) ܬ

  as 
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where, ݁ሺǡǡሻ, ݄ሺǡǡሻ, ݍଵሺǡǡሻǡ and ݍଶሺǡǡሻ are the 

coefficients associated with (n, m, k)th harmonic for the eddy 
current densities which are derived from ܽሺǡǡሻ and ܾ ሺǡǡሻ 
after the operations defined in (3) and (6). 
Once the eddy current distribution is known the total eddy 
current loss at a given time instant is the sum of the losses 
associated with each harmonic component: 
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The evaluation of coefficients for the current vector potential 
and hence the eddy current densities from  ܽሺǡǡሻ and ܾ ሺǡǡሻ 
is described in[18]. 

III.  IMPLEMENTATION OF IMAGING  METHOD AT HIGH 

FREQUENCIES AND VALIDATION OF RESULTS 

A. Machine Topology and Design Parameters 

The imaging method is implemented to a 5kW 8-pole, 18-
slot SPM machine as shown in Fig.1, for evaluation of the 
eddy current loss at high frequencies considering eddy current 
reaction in the rotor permanent magnets. The machine 
employs winding design features [19] to reduce space 
harmonics and hence rotor eddy current loss, while retaining 
the merits of fractional slot per pole machine topology. The 
key geometrical and physical parameters are listed in Table 1. 

 
 

Fig.1.Cross-sectional schematic of 18-slot 8-pole SPM machine. 
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TABLE I 

KEY DIMENSIONS OF THE 8 POLE-18SLOT SPM MACHINE 
Parameter Unit Value  

Stator outer radius mm 70.59 

Motor stack length mm 118 

Rotor radius mm 32.5 

Magnet thickness mm 3.0 

Magnet pole arc elec.deg 175 

Slot opening mm 2.03 

Slot opening depth mm 2.38 

Slot depth mm 26.79 

Shaft radius mm 20.0 

No of turns per coil No. 6 

Magnet resistivity ȍ.m ͳǤͺxͳͲି 

B. Method of Implementation 

  To predict 3D eddy current loss by the proposed imaging 
method, the flux density values from 2D FEA need to be 
captured to form the source distribution matrix. The values in 
each matrix should correspond to the source at a given rotor 
position in the ሺݎǡ  ሻ coordinates attached to the center of theߠ
machine. Hence the magnetic flux density values from the 2D 
FEA are extracted from the mesh grids constructed over the 
magnets as shown in Fig.2. Considering the machine 
symmetry, only one half of the machine needs to be modelled 
in loss evaluation and hence mesh grids are constructed only 
over the four magnets. Every point of intersection on these 
mesh forms the ݎ and ș coordinates of the field information. 
For the machine under consideration without any 
circumferential segmentation, each magnet as shown in Fig.2 
(a) is discretized into sixty four divisions along the ș direction 
and eight divisions along the ݎ  direction. The number of 
divisions within a magnet segment may be modified according 
to the number of circumferential segmentations. For example, 
the mesh is modified as shown in Fig.2 (b) with thirty-two 
divisions along the ș direction in the analysis for the case with 
two circumferential segmentations. 

The eddy current sources ሺܵ௫ǡ ܵ௬ሻ are evaluated from flux 
density values obtained from two consecutive time intervals 
of time stepped 2D FEA. The source values are discretized in 
three dimensions in a volume bounded by (2ܮ௫ǡ ௬ܮʹ ǡ  ௭ሻ. Theܮʹ
number of discretization in the z- direction should be 
sufficiently large to ensure high accuracy. For the machine 
under consideration 32 divisions are considered for the 
unsegmented magnet length (ܮ௭) along the axial direction. 3D 
FFT is performed to evaluate the source coefficients described 
in (1) and (2) and hence the current density coefficients 
described in (7), (8) and (9). The eddy current loss in every 
magnet is calculated at each time step employing (10). To 
consider the effect of slotting, this analysis needed to be 
repeated for 1/6th cycle of the fundamental current. 

To evaluate the magnet loss variations with axial and 
circumferential segmentations, the losses are evaluated for 
each circumferential segment separately and the total magnet 

loss is computed as the sum of these losses multiplied with 
number of axial segmentations for the SPM machine. The loss 
in each axial segment is considered identical as the source field 
is treated essentially 2D and hence no variation along the axial 
direction.  

 

 
             (a)    (b)  
Fig.2. Mesh grids constructed over the magnet for extracting flux density 
information. (a) Magnet with circumferential segments. = 1; (b) Magnet with 
circumferential segments = 2. 
 

Since the calculations are performed in 3-dimensional space 
for each harmonic, matrix operations are used to facilitate 
efficient calculations. The entire process is implemented in 
Matlab, and it takes around 5 hours to generate the flux density 
harmonics from 2D FEA and less than 30 seconds to compute 
the total 3D eddy current loss for all the magnets in a typical 
PC. Hence on an average for evaluating the loss variation with 
increase in axial number of segmentation up to 20, it takes 
around 15 minutes for each case. In contrast it takes more than 
6 days for one 3D FEA with no axial segmentation. 

To predict 3D eddy current loss due to high frequency 
current harmonics by the imaging techniques, it is intuitive to 
form the eddy current source matrix by 2D FEA which 
accounts the eddy current reaction in NdFeB magnets. The 2D 
FEA is carried out in CEDRAT FLUX 2D software by 
injecting 20 kHz sinusoidal currents having a magnitude of 5% 
of the fundamental peak current of 50A when the machine 
operates at 4500rpm. The analysis is then repeated with a 
higher magnet resistivity (increased by a factor of 1000) to 
evaluate the magnetic field in them when the reaction effect is 
not accounted for comparison purposes. 

C. Evaluation of Magnet Loss and Comparison with 3D FEA 

The 3D time-stepped transient FEA is also carried out for 
the 8-pole,18-slot machine under consideration with 20 kHz 
frequency harmonic current employing the machine model 
shown in Fig.3. Considering the symmetry over 180 
mechanical degrees, a quarter of the machine has to be 
modelled in the 3D FEAs. Tangential magnetic field boundary 
condition is imposed on the two end surfaces perpendicular to 
the axial direction. The meshed coils are extended in the axial 
direction to consider the winding end effect.  In addition, 
perfect insulation boundaries are applied to the end surfaces of 
the magnets. 3D FEA is performed on a 12 core, 64 GB RAM 
computer.Fig.4 compares the magnet loss variations with the 
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number of axial segments predicted from the imaging 
technique employing the 2D FEA sources with and without 
considering eddy current reaction along with the magnet loss 
obtained from the 3D FEA. 

 

 
Fig.3. 3D FE model based on symmetry 

 
Fig.4. Comparison of magnet loss variations predicted by direct application 
of 3D imaging technique and 3D FEA with increase in axial number of 
segmentations (20 kHz). 

 
It is clear from Fig.4 that the results from the direct 3D 

imaging method which accounts eddy current reaction in only 
2D plane overestimates the eddy current reaction and hence 
underestimates the magnet loss. It deviates from the actual 3D 
FEA predicted magnet loss as the number of axial segments 
increases. In contrast, the results obtained from the imaging 
method which employs 2D field without account of eddy 
current reaction are much higher than the 3D FEA predicted 
losses when the segmentation number is lower. However, they 
become closer to the 3D FE results at very high segmentation 
numbers. 

D. Cause of Discrepancy in the Magnet Loss Predictions 

To examine the discrepancy in the loss predictions obtained 
from the direct applications of the imaging method by 
employing the 2D FE predicted source fields, ߲ܤ Τݐ߲  
obtained from 2D FEA with and without considering eddy 
current reaction is compared with ߲ܤ Τ ݐ߲ obtained from 3D 
FEA, at different axial positions of the magnet when no axial 
segmentation is made. Fig.5 compares 3D FE predicted ߲ܤ Τݐ߲  variations with x at t = 40 in the middle of magnet 
‘1’(defined by ݖ ൌ ௭ ܮ ʹΤ ݕ , ൌ ௬ ܮ ʹΤ ,  and Ͳ ൏ ݔ ൏  ௫ ) and ܮ

also on its  top edge (defined by ݖ ൌ ݕ  ,௭ ܮ ൌ ௬ ܮ ʹΤ  and Ͳ ൏ݔ ൏ ܤ߲ ௫  ) with respect to the ܮ Τݐ߲  values obtained from 2D 
FEA with and without considering eddy current reaction. 

It is clear from the figure that ߲ܤ Τݐ߲  along the middle of 
the magnet obtained from the 3D FEA matches with those 
obtained from the 2D FEA which accounts eddy reaction. 
Whereas the 3D predicted ߲ܤ Τݐ߲   values at the top edge of 
the magnet are very close to the 2D FEA predictions without 
considering reaction effect. This is because the eddy current 
reaction is more significant towards the middle of the magnet 
and it is reduced along the outer edges of the magnet due to 
skin effect. Thus, ߲ܤ Τݐ߲   predicted by 2D FE without eddy 
current reaction matches closely with the 3D FE prediction at 
the axial edges. This illustrates the necessity to obtain the field 
variation along the axial direction in a magnet segment when 
evaluating the magnet loss at high frequencies. 

Before comparing the variations of ߲ܤ௧ Τݐ߲   predicted from 
2D FEA along different axial heights with 3D FEA it is 
insightful to assess its significance on the high frequency 
magnet loss. Hence the losses obtained from the imaging 
technique considering only the radial source field ߲ܤ Τݐ߲  is 
plotted against the loss obtained considering both the radial 
and tangential source fields in Fig.6. It is clear from Fig.6 that 
the effect of the tangential field on high frequency eddy 
current loss is negligible. Hence its variation along the axial 
direction can be ignored. 

 
 
Fig.5. Comparison of  ߲ܤ Τݐ߲    from 2D FEA (with and without reaction 
effect) and from 3D FEA along the middle surface of the magnet ‘1’. 
 

 
Fig.6. Comparison of magnet loss variations due to radial field only and due 
to both radial and tangential fields with increase in axial number of 
segmentations (20 kHz). 
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IV.  SOLUTION TO THE DIFFUSION OF EDDY CURRENT 

SOURCES IN THE AXIAL PLANE AND ITS APPLICATION WITH 

IMAGING METHOD 

A. Solution to 2D Diffusion along the Axial Plane. 

To circumvent the discrepancy in magnet loss prediction 
with the direct application of 2D FEA results in the imaging 
method a solution to the diffusion of the eddy current sources 
along the axial ሺݔǡ ǡݕሻ and ሺݖ  ሻ planes is essential. As anݖ
analytical solution to the 3D diffusion equation throughout the 
volume of a magnet is difficult to establish, the following 
assumptions are made to consider the diffusion in 2 
dimensions. The variation of the eddy current sources ܵ௬ along 
the radial direction which has been accounted in 2D FEA is 
neglected. Further, as the contribution towards the loss from 
the tangential source ܵ௫ is much lower than that from ܵ௬ as 
shown in Fig.6, its diffusion can be neglected. These 
assumptions imply that the diffusion takes place 
predominantly in the 2D x-z plane. Assuming that a current 
density ܬ௦ of infinitesimally small thickness is distributed over 
the stator bore radius, the two dimensional eddy current 
problem can be formulated in the form of diffusion equation 
as in [15]: ߲ଶܬ௭߲ݔଶ  ߲ଶܬ௭߲ݖଶ െ ߤ ͳߩ Ǥ ݀݃ Ǥ ݐ௭߲ܬ߲ ൌ ߤ  ͳߩ Ǥ ݀݃ Ǥ ݐ௦߲ܬ߲  (11) 

where d is the magnet thickness along the radial direction, g 
the air gap length and ȡ is the resistivity of the magnet 
material.Fig.7 shows the general model describing d, g and the 
current sheet Js as well as other geometric parameters of the 
machine. 
The source current density Js distributed over the stator bore 
radius defined as, ܬ௦ ൌ Ǥܬ ݁ሺఠ௧ିఏሻ (12) 

where  ܬ ൌ ʹ ௦ܰܫ ௦Τܴߨ Ǥ  ௪ , ܴ௦  is the radius of the statorܭ
inner bore,  ܰ ௦ ǡ ܫ  are the number of series turns per phase 
and the peak current respectively. ܭ௪   is the winding factor. ܬ௦ 
can be expressed as Fourier series in the z direction satisfying 
the boundary conditions at z ൌ േܮ௭ ʹΤ   to create an alternating 
source in the axial direction as shown in Fig.8. 
 

 
Fig.7. Geometry and parameters of 2D eddy current diffusion model. 

 
Fig.8. Periodic expansion of source current in axial (z) direction. 
 
hence, 
ǡߠ௦ሺܬ  ሻൌݖ  Ǥܬ Ͷሺ݊ߨሻ Ǥ sin ቀ݊ʹߨቁ Ǥ cos ൬݈݊ߨெ Ǥ ൰ݖ Ǥ ݁ሺఠ௧ିሻୀଵǡଷǡହǥ    (13) 

 
The solution to the diffusion equation (11) is derived by 

application of  Ǥ ܬ ൌ Ͳ such that, 
ݔ௫߲ܬ߲   ݖ௭߲ܬ߲ ൌ ͲǤ 
 
And also satisfying the boundary conditions for the 

tangential current density ܬ௫ given as, 
௫ܬ  ൬ݔ ൌ െܮ௫ʹ ൰ ൌ ௫ܬ  ൬ݔ ൌ ௫ʹ൰ܮ ൌ ͲǤ 
 

The solution is given in [15] for ܬ௭ and ܬ௫. Now from the Ohms 
Law applied to the magnet volume, the axial field variations 
of ܵ௬ሺݔǡ  ,ሻ  can be evaluated asݖ
ǡݔሺܤ߲  ݐሻ߲ݖ ൌ ܵ௬ሺݔǡ ሻݖ ൌ ߩ݀ Ǥ ൬߲ܬ௭߲ݔ െ ݖ௫߲ܬ߲ ൰Ǥ (14) 

B. Implementation of Source Diffusion along the Axial Plane 
in the Imaging method ܵ௬ሺݔǡ  ሻ evaluated from (14) gives eddy current sourceݖ
variation along the axial direction. However, its diffusion in 
the x and y directions has been accounted in 2D FEA. To 
account the axial variation of ܵ௬ሺݔǡ ǡݕ  ሻ when predicting 3Dݖ
high frequency eddy current loss by employing the imaging 
method, ܵ௬ሺݔǡ  ሻ at given  (x, y) obtained from 2D FEA whichݕ
accounts eddy current reaction is adjusted by the ratio obtained 
from the analytical solution (14).Hence, 

 ൣܵ௬ሺݔǡ ǡݕ ሻ൧ூಾݖ ൌ ൣܵ௬ሺݔǡ ሻ൧ଶிாݕ ൈ  ൣܵ௬ሺݔǡ ǡݔሻ൧௦    ൣܵ௬ሺݖ ݖ ൌ ͲǤͷܮ௭ሻ൧௦        (15) 

where, ൣܵ௬ሺݔǡ ǡݕ  ሻ൧ூಾ is the source values to be used in the  imagingݖ

method, ൣܵ௬ሺݔǡ ሻ൧ଶிாݕ is the source value obtained from 2D 

FE considering eddy current  reaction, ൣܵ௬ሺݔǡ  ሻ൧௦is theݖ

source value from the analytical solution (14) at a given z and  ൣܵ௬ሺݔǡ ݖ ൌ ͲǤͷܮ௭ሻ൧௦ is the source value from the analytical 
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solution (14) at   ݖ ൌ ͲǤͷܮ௭ , where ܮ௭ is the machine axial 
length. 

It is evident  that the analytical adjustment given in equation 
(15) is justified  for the machines having large axial length, as 
the source values  along the middle of  the machine at ݖ ൌͲǤͷܮ௭ is close to source values from 2D FE (  ൣܵ௬ሺݔǡ  (ሻ൧ଶிாݕ

accounting eddy current reaction. This is because the reaction 
effect becomes strongest at the middle of the magnets with 
larger axial lengths and hence source values are reduced to its 
minimum values as shown in Fig.5. However, for the 
machines designed to have lower axial length, the source 
values along the middle of the machine may deviate from the 
source values from 2D FE accounting eddy current reaction 
effect. Hence for such machines the axial length ܮ௭ used to 
calculate the denominator of (15),  ൣܵ௬ሺݔǡ ݖ ൌ ͲǤͷܮ௭ሻ൧௦ 

should  be sufficiently large  such that the values evaluated are 
equivalent to the 2D FE source values accounting reaction 
effect. 

To study the effect of eddy current reaction along the axial 
direction, ܵ ௬ሺݔǡ  ሻ obtained from 2D FEA is adjusted usingݕ
(15) under the same load conditions as described in Section 
III , with one, seven and twenty axial segments and one 
circumferential segments. The results obtained at different 
axial positions (ݖ ൌ ͲǤͻͻL  ǡ ͲǤͻͷL  ǡͲǤͻL  ͲǤͷL ǡ ͲǤͷL ሻ 
within the magnet axial length of magnet ‘1’at  ߱ݐ ൌ Ͷ are 
shown in Figs. 9 -11. 

 

 
Fig.9. Comparison of ܵ௬൫ݔǡ ͲǤͷܮ௬ǡ  ൯ at different axial positions (Number ofݖ
axial segments=1). 
 

 
Fig.10. Comparison of ܵ௬൫ݔǡ ͲǤͷܮ௬ǡ  ൯ at different axial positions (Number ofݖ
axial segments=7). 

 

 
Fig.11. Comparison of ܵ௬൫ݔǡ ͲǤͷܮ௬ǡ  ൯ at different axial positions (Number ofݖ
axial segments=20). 
 

It can be observed from the figures that for the case with no 
axial segmentation ܵ௬ሺݔǡ  ሻ close to the magnet axial edge (zݖ
= 0.99Lz) is much greater in magnitude than those at other z 
positions. The ܵ௬ሺݔǡ  ሻ values at z = 0.9Lz and 0.75Lz are veryݖ
close to those in the middle (z = 0.5Lz). When the number of 
axial segments is seven, ܵ௬ሺݔǡ  ሻvalues are more evenlyݖ
spread along the axial direction and when the number of axial 
magnet segments reaches twenty ܵ௬ሺݔǡ  ሻ variation along theݖ
axial direction is reduced considerably, and their values at 
different z position are close to those at the magnet axial edge. 
These results are consistent with those obtained from the 3D 
FEA in Fig.4 where it shows with lower axial segments that 
the 3D predicted magnet loss is close to the values obtained 
from the imaging method which employs 2D FEA considering 
eddy current reaction, while the 3D FE results at large number 
of axial segmentations (axial segments above twenty) follows 
the results from the imaging method which employs 2D FE 
ignoring eddy current reaction. 

Since ܵ ௬ሺݔǡ  ሻ  evaluated from the 2D FEA includes eddyݕ
current diffusion in the radial and circumferential directions, 
the values evaluated with (15) account the diffusion 
approximately in 3D. The whole process of predicting 3D high 
frequency eddy current loss by the imaging method which 
accounts for 3D eddy current reaction effect is depicted in 
Fig.12 as a flowchart.  

The proposed method is implemented by considering axial 
variation of eddy current sources and the results are compared 
with 3D FE predictions for both 10 kHz and 20 kHz harmonic 
contents with 5% of 50A peak fundamental current when the 
machine operates at a speed of 4500rpm. Fig.13 compares the 
instantaneous loss computed for the first four magnets and 
their total when the machine is having seven axial segments 
and no circumferential segments when excited by 20 kHz 
harmonic current. The magnet loss is observed to be repeating 
at every 1/6th fundamental frequency[18], and hence the losses 
evaluation is repeated  over this time span and averaged to 
predict the magnet loss. 
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Fig.12. Flowchart illustrating 3D eddy current loss computation at high 
frequency accounting eddy current reaction effect using image method. 
 

 
 
Fig.13. Instantaneous magnet loss variations for the magnets 1 to 4 and their 
total with rotor position predicted from the proposed method. 
 

The predicted loss variations with axial and circumferential 
number of segments at 20 kHz and 10 kHz are compared with 
3D FEA results in Fig.14 and Fig.15 respectively. It is 
observed from the results that predicted losses by the proposed 
method agree well with the 3D FE results. 

Fig.16 and Fig.17 compares z-component eddy current 
density distributions evaluated from the proposed method and 
the 3D FEA at t = 40 on the surface of magnet 1 defined by ݕ ൌ ͲǤͷL ୷ǡ Ͳ ൏ ݔ ൏ L ୶ ǡͲǤͷ L   ൏ ݖ ൏ L , when the 
machine operates at the maximum speed of 4500 rpm and 
excited by 20 kHz  harmonic current. The machine is having 

seven axial segments and one circumferential segment. 
Similar comparison is given in Fig.18 and Fig.19 for the x-
component eddy current density distributions.  

Fig.20 compares the proposed method and 3D FE predicted 
variations of z and x components of the current density with x 
in magnet 1 ሺͲ ൏ ݔ ൏  ௬  when magnet per pole is segmented into 7 pieces ܮ ௭ and y ൌͲǤͷ ܮ ௫ሻ at rt = 40, z = ͲǤͷ ܮ
axially and with no circumferential under the same load 
conditions. The results show that the current density 
distribution predicted by the proposed method follows the 3D 
FEA predictions at most points in the magnet. The mismatches 
may be attributed to the curvature effect which is neglected 
and also the assumptions made in evaluating the axial field 
variations. 

 
Fig.14. Comparison of loss variations with axial number of segments. 

 
Fig.15. Comparison of loss variations with circum. number of segments. 
 

 
Fig.16. Eddy current density (z component) distribution predicted by the 
proposed method on the middle surface of magnet 1 at r=31mm.  
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Fig.17. Eddy current density (z component) distribution predicted by 3D FEA 
on the middle surface of magnet 1at r=31mm. 

 
Fig.18. Eddy current density (x component) distribution predicted by the 
proposed method on the middle surface of magnet 1 at r=31mm. 

 
Fig.19.  Eddy current density (x component) distribution predicted by 3D FEA 
on the middle surface of magnet 1at r=31mm. 
 

 
Fig.20. Proposed method and 3D FE predicted variations of   z and x-
components of eddy current density along the magnet at rt = 4o, y = 0.5Ly 
and ܮ௭  ൌ  ͲǤͷ ܮ௭Ǥ  

V. DISCUSSION 

The variation of 3D eddy current loss with increase in axial 
number of segmentations [12],[20] can be explained from the 
combination of the  eddy current reaction effect and the 
increase in 3D end effects with axial segmentation. Without 
any axial segmentation, the eddy current reaction effect is 
strong and consequently a large reduction in the magnetic field 
inside the magnets, and hence the ܵ௬ሺݔǡ ǡݕ  ሻ is reducedݖ
considerably as seen in Fig.9. A smaller number of 
segmentations would reduce the eddy current reaction field 
and spreads the ܵ௬ሺݔǡ ǡݕ  ሻ  more evenly in the axial segmentsݖ
as seen in Fig.10. This may lead to increase in eddy current 
loss. However, when the number of segments continues to 
increase, the eddy currents are forced to return via axial or 
circumferential ends. This increases the length of the eddy 
current flow path, and escalates the resistance to the eddy 
current flow, and hence reduces the eddy current loss. Under 
such circumstances, the eddy current density is lower, and 
hence its reaction field becomes weaker. This results in  ܵ௬ሺݔǡ ǡݕ  ሻ more or less uniform in the different axial segmentsݖ

as seen in Fig.11. The eddy current density distributions at t 
= 40  on the middle surface of magnet segment ‘1’ at r = 31mm  
for one, three, seven, fourteen and twenty one axial 
segmentations when the machine is excited with 20 kHz 
armature harmonic and operates under the same condition as 
previously described are shown in Figs.21-25. It can be 
observed from the figures that the high current density regions 
are increased when the segmentation number reaches seven as 
seen from Fig.23, resulting in the maximum loss.  With large 
number of segmentations, eddy current density distribution 
becomes more 3-dimentional causing significant reduction in 
its magnitude as seen in Figs.24 and 25. Thus, in the resultant 
magnet loss is quite low.  

VI.  CONCLUSION 

A computationally efficient technique for predicting 3D 
high frequency eddy current loss in rotor magnets of SPM 
machines has been described. It has been shown that the 
predicted magnet losses from direct application of the imaging 
method which employs 2D FE predicted sources deviate from 
3D FE predicated values. This problem is circumvented by 
accounting the eddy current diffusion in the axial direction. 
The modified imaging technique which accounts 3D eddy 
current diffusion yields more accurate results for magnet loss 
in the SPM machine. The developed method considers the 
variation of the magnetic field inside the magnet, slotting 
effect and also the field produced by the permanent magnet. 
Moreover, the source components from the 2D FEA accounts 
the effect of magnetic saturation of the lamination material in 
the eddy current loss evaluation. It is observed that the 
contribution of the tangential component of flux density to at 
high frequency magnet loss is negligible. The proposed 
method is computationally efficient as it takes about an 
average of 15 minutes per case in contrast to about 6 days in 
3D FE analysis with no axial segmentation. 
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Fig.21. Eddy current density distribution (magnitude) predicted by proposed 
method on the middle surface of magnet 1, number of axial segments =1. 
 

 
Fig.22. Eddy current density distribution (magnitude) predicted by proposed 
method on the middle surface of magnet 1, number of axial segments =3. 
 

 
 
Fig.23. Eddy current density distribution (magnitude) predicted by proposed 
method on the middle surface of magnet 1, number of axial segments =7. 
 

 
Fig.24. Eddy current density distribution (magnitude) predicted by proposed 
method on the middle surface of magnet ‘1’, number of axial segments =14. 

 
Fig.25. Eddy current density distribution (magnitude) predicted by proposed 
method on the middle surface of magnet 1, number of axial segments = 21. 
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