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NF-kB pathways in the development and progression of Colorectal Cancer 

M Patel, PG Horgan, DC McMillian and J Edwards 

Abstract 

NF-κB has been widely implicated in the development and progression of cancer. In colorectal 

cancer, NF-κB has a key role in cancer-related processes such as cell proliferation, apoptosis, 

angiogenesis and metastasis. The role of NF-κB in CRC is complex, owed to the crosstalk with other 

signalling pathways. Whilst there is sufficient evidence gained from cell lines and animal models that 

NF-κB is involved in cancer related processes, due to a lack of studies in human tissue, the clinical 

evidence of its importance is limited in patients with CRC. This review will summarise evidence 

relating to how NF-κB is involved in the development and progression of CRC and comment on 

future work to be carried out.  

Introduction 

Worldwide, colorectal cancer (CRC) is the third most common cause of cancer-related death (1). The 

majority of CRC cases are sporadic with a smaller proportion resulting as a consequence of 

inflammatory bowel disease (IBD) or inherited germ line mutations. The relationship between the NF-

κB pathway, inflammation and cancer has been widely reviewed (2–4). Much of the initial research 

linking NF-κB and CRC focused on chronic inflammation, was performed in mouse models of colitis 

and importantly demonstrated NF-κB functions are cell-type and tumour-type specific (5,6). Few 

reviews to date have evaluated the clinical significance of studies investigating NF-κB in CRC. NF-

κB activation supports tumourigenesis by enhancing cell proliferation and angiogenesis, inhibiting 

apoptosis and promoting cell invasion and metastasis (4). There are two distinct but interacting arms 

of the NF-κB pathway: canonical (activated by TNF-α, Toll-like receptor ligands e.g. 

lipopolysaccharide (LPS), and IL-1) and non-canonical (activated by TNF superfamily members 

BAFF, CD40, receptor-activated NF-κB ligand (RANKL) and lymphotoxin β) (7–12). NF-κB is a 

surrogate for a family of five related Rel proteins: RelA/p65, c-Rel, RelB, NF-κB1 (p50, p105 or 

p50/p105) or NF-κB 2 (p52, p100 or p52/100). p50 and p52 are produced by processing of precursors 

p105 and p100 respectively. These proteins have a common 300 amino acid Rel homology domain 

(RHD) (4) therefore once activated, their structural similarities allow formation of homo- and 

heterodimers, nuclear localisation, DNA binding and association with IκB inhibitors. In the latent cell 

IκB inhibitory proteins (IκBα, IκBβ, IκBε, IκBγ, IκBζ, p100 and p105) remain bound to the DD 

(dimerization domain) and NLS (nuclear localisation signal) of NF-κB proteins which are 

consequently rendered inactive within the cytoplasm (5–9). IκBs contain multiple copies of a 30-33 

amino acid sequence called ankyrin repeats which mediate their interaction with the RHD of NF-κB 

proteins, masking their NLS and thereby holding them bound inactive within the cytoplasm. Key 

steps in both arms of the pathway include activation by IκB kinase (IKK) complex resulting in the 
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phosphorylation-induced proteasomal degradation of IκB proteins, allowing dimers to form, enter the 

nucleus and bind to κB sites in promotor or enhancer regions of target genes (4,10). Each arm of the 

pathway has key roles in innate and adaptive immune responses, cell survival, cell death and 

inflammation (3).  

Sequential genetic mutations give rise to sporadic CRC through the adenoma-carcinoma sequence.  

Mutation of the adenomatous polyposis coli (APC) gene (and subsequent WNT activation and 

stabilisation of β-catenin) is recognised as one of the primary steps in colorectal adenoma formation. 

No activating mutations of NF-κB in CRC have been reported (3) however, constitutive activation of 

NF-κB has been observed (13–16) and is associated with higher tumour stage (15,17), treatment 

resistance (14,18–21) and poor survival outcomes (22).  As activation of NF-κB pathways have been 

associated with poor prognosis it is possible that members of the NF-κB pathways could be employed 

as prognostic markers or indeed novel therapeutic targets for CRC.   Importantly, the role of NF-κB in 

the transition of pre-malignant polyp to invasive carcinoma is unclear.  

The role of inflammation in CRC is undisputed and has been studied at the local tumour and systemic 

level. Within the field of CRC research there have been significant developments in understanding the 

role of the tumour microenvironment; stromal invasion and the local immune response are well 

recognised as important prognostic features (23,24). Consensus Molecular Subtypes and phenotypic 

subtypes of CRC have identified distinct groups of patients with strong immune activation, this has 

been associated with improved prognosis (25,26). Specifically, understanding the immune cell 

varieties and signalling pathways regulating them have resulted in development of prognostic 

biomarkers and subsequent introduction of immunotherapies in patients with metastatic disease. The 

addition of targeted immune therapies against EGFR (epidermal growth factor receptor), VEGFR 

(vascular endothelial growth factor receptor) and immune check points, to standard chemotherapy 

regimes, have led to improved survival in patients with metastatic CRC cancer, and have rendered 

some patients suitable for metastectomy with the potential for cure. NF-κB has key roles in a range of 

cancer-related processes and clearly presents itself as a potential prognostic biomarker and therapeutic 

target in CRC. This review will summarise evidence between 1995 and 2017 that reports on the 

relationship between NF-κB, colitis-associated however primarily sporadic CRC and how this 

signalling pathway influences the clinical development and progression of CRC.  
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Proliferation and evading apoptosis/antigrowth signalling 

Colorectal polys 

Polyps are recognised as precursors to CRC. They are classified into either adenomas or 

serrated/hyperplastic polyps, both with malignant potential. Vogelstein and colleagues have detailed 

the stepwise accumulation of molecular alterations that accompany the adenoma-carcinoma sequence 

(chromosomal instability pathway) which sees transformation through increasing grades of 

adenomatous dysplasia to the development of invasive carcinoma. (27). The role of NF-κB in 

adenoma formation in the context of colitis-associated cancer has been studied in mouse models that 

suggest NF-κB is implicated in the early stages of adenoma formation. However, there are no known 

studies that have mapped NF-κB expression in human tissue with respect to adenoma-carcinoma 

transformation. Nonetheless, a hybrid mouse model with intestinal epithelial cell-specific allelic 

deletion of APC and constitutive expression of IKKβ, displayed increase colonic adenoma formation 

than their APC allele deleted only counterpart. This study reported the hybrid model expressing IKKβ 

mostly increased adenoma number but did not increase the size of the adenoma suggesting IKKβ is 

implicated in adenoma initiation or early establishment (28). Serrated/hyperplastic polyps are 

considered as developing via distinct mechanism to that described by Vogelstein and it would be of 

interest to study NF-κB in this context.  If  confirmed in human studies NF-κB could be employed 

clinically identify which polyps have malignant potential.  

The anti-apoptotic activity of NF-κB is mediated via Bcl2, Bcl-xL, cFLIP, cIAP2, amongst other 

genes (4). Anti-apoptotic protein BAG-1 (Bcl-2-assocaited athanogene-1) is involved in key processes 

such as proliferation, cell signalling, transcription and apoptosis (29). Overexpression of BAG-1 has 

been reported in colorectal adenomas and carcinomas. The same study reported knockdown of BAG-1 

in colon cancer cell lines inhibited NF-κB transcriptional activity (30). A separate study reported this 

process is regulated by antigrowth protein/tumour suppressor Rb (retinoblastoma) (31). Inhibition of 

NF-κB with BAG-1 siRNA/inhibitor of NF-κB suppressed cell yield and induced apoptosis. This 

study concluded inhibition of NF-κB and therefore suppression of BAG-1 represents a novel 

therapeutic strategy in CRC (30).  

Colitis associated cancer 

The first genetic evidence linking canonical NF-κB activity, inflammation and CRC was from a 

mouse model of colitis-associated cancer where deletion of IKKβ in intestinal epithelial cells (IECs) 

and myeloid cells had distinct outcomes; deletion of IKKβ in IECs showed reduced adenoma 

incidence which was not related to levels of inflammation but had a direct effect on tumour 

promotion, as demonstrated by reduction in anti-apoptotic Bcl-2 protein, Bcl-xL. In contrast, deletion 

of IKKβ in myeloid cells was associated with a less marked reduction in adenoma incidence but was 

associated with reduced adenoma size, with reduced expression of genes encoding pro-inflammatory 
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cytokines such as IL-1β, IL-6 and TNFα, without no effect on apoptosis (5). These results suggest 

IKKβ mediated NF-κB activity has cell-specific roles in the development of colitis-associated cancer. 

Importantly, this study demonstrates the early role of NF-κB in the development of pre-cancerous 

adenomas which could be exploited clinically as a potential target. Therefore it is of interest to 

understand how NF-κB is implicated in the treatment of mouse models of colitis, IKKβ inhibitors 

have been observed to lead to smaller and less frequent tumour formation and may offer a novel mode 

of early intervention (33). 

When reviewed as a whole this evidence supports the hypothesis that there is a relationship between 

inflammation, NF-κB activity and tumourigenesis and indeed that NF-κB has a role in directly 

promoting tumourigenesis in colitis-associated cancer.   

Metastatic CRC 

The relationship between NF-κB and inflammation induced tumourigenesis was investigated in a 

metastatic colon cancer mouse model where it was observed that injection with bacterial LPS resulted 

in metastatic tumour growth via inflammatory mediator TNF-α. Intraperitoneal injection with colon 

cells transfected with mutant IκBα reduced tumour burden and improved murine survival. In vitro, 

this inhibition of NF-κB resulted in a cytocidal effect mediated by TRAIL (TNF-related apoptosis-

inducing ligand) (34). Observations from this study further support the link between NF-κB induced 

inflammation and growth of malignant cells in colon cancer. 

Human colon cancer stem cells have been identified (35,36) and can promote tumour formation and 

metastases in vivo (37,38). Signalling pathways implicated in this process include IL-6/STAT3 

(Signal Transduction Activator of Transcription-3) (37), activation of  AMPK/mTOR and NF-κB 

(38). In a genetic model with restricted WNT-activation, ablation of NF-κB (p65) restricted intestinal 

crypt stem cell expansion. Moreover, enhanced NF-κB activity increased Wnt activation and induced 

dedifferentiation of non-stem cells that acquire tumour-initiating capacity (39). Altogether, these 

studies support the role of NF-κB and indeed other closely linked signalling pathways such as STAT3 

in colon cancer stem cells implicated in tumourigenesis. Moreover, they highlight the need for further 

studies to investigate the effect of inhibiting NF-κB/STAT3 on tumour growth in the context of cancer 

stem cells to fully understand how these pathways could be exploited clinically as therapeutic targets.  

Evasion of apoptosis is a hallmark of a cancer. When proliferating cancer cells encounter hostile 

conditions e.g. hypoxia or insufficiency in nutrients, there are regulatory mechanisms which kick in. 

These include cell cycle arrest, apoptosis and autophagy. These processes are under the influence of 

tumour suppressor genes such as p53 (40). The p53 gene is mutated in 40-60% of CRCs (41). Whilst 

mutation of p53 is considered an important step in colorectal pathogenesis, studies investigating its 

prognostic and predictive capacity have reported conflicting results (42). However, the relationship 

between NF-κB and p53 and its importance in the development and progression of cancer is well 
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documented (43). A drug- and cytokine-induced p53/NF-κB crosstalk has been reported in colorectal 

cancer cells. Furthermore, TNF-α induced NF-κB target genes in colorectal cancer cells are dependent 

on this p53/NF-κB interaction (44). NF-κB is essential in p53-mediated cell death (45,46), mutant p53 

prolonged activation of NF-κB in cultured cells and was associated with increased susceptibility to 

colitis-associated CRC in vivo (47). 

Fibronectin is an extracellular glycoprotein which plays a role in cell adhesion, growth, migration, 

differentiation, inflammatory cell activity and tumour angiogenesis (48–51) and is highly expressed in 

CRC cell lines. Silencing of fibronectin increased apoptosis-related gene products caspase-3, p53, 

PARP, Bax and cytochrome c in vivo but decreased levels of NF-κB suggesting a relationship 

between fibronectin and the NF-κB/p53 signalling pathway (52), again providing evidence that NF-

κB plays a central role in regulating cell death in development and progression of CRC. Altogether, 

there is substantial evidence which shows NF-κB plays a diverse role in processes relating to 

proliferation, apoptosis and antigrowth signalling at all stages of CRC development i.e. from adenoma 

through to metastatic carcinoma and therefore offer exciting opportunities that could be exploited 

clinically. 

Angiogenesis 

Angiogenesis is a hallmark of cancer driven by VEGF (vascular endothelial growth factor). In 

addition to VEGF, CXCL1, CXCL8, IL-8 and COX-2 are also angiogenic regulators under the 

influence of NF-κB (53). Monoclonal antibodies against VEGF have been used to treat metastatic 

CRC for some time. VEGF is also inducible under hypoxic conditions by hypoxia-inducible factor 

(HIF). There are three HIF-α proteins: HIF-1α, HIF-2α and HIF-3α (regulator).The HIF pathway 

regulates cellular responses to hypoxia and also has a role in regulating inflammation and immune 

responses via cross-talk with NF-κB (54). The importance of this crosstalk was demonstrated by a 

group who confirmed HIF-1α inhibition by NF-κB inhibitor parthenolide which lead to 

downregulation of hypoxia-dependent angiogenesis in HUVECs (human umbilical vein endothelial 

cells), reduction in HIF-1α target gene proteins and inhibition of hypoxia induced epithelial-

mesenchymal transition (EMT). Furthermore, parthenolide treatment inhibited tumour growth, 

angiogenesis and progression in CRC xenograft models (55). Knock down of NEMO in CRC cell 

lines resulted in greater TNFα induced apoptosis and reduced expression of angiogenic factors IL-8, 

growth-regulated alpha protein (Groα) and monocyte chemoattractant protein 1 (MCP-1). In vivo, this 

knockdown resulted in reduced angiogenesis, tumour volumes, serum and tumour IL-8 expression and 

improved tumour regression when treated with fluorouracil (13,56). In CRC tissue, expression of NF-

κB (p65) associates directly with expression of HIF-1α, VEGF and histological evidence of vascular 

invasion (16,57). 
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These studies support the role of NF-κB, angiogenesis and tumour progression in CRC and highlight 

the importance of understanding crosstalk with other pathways to develop targeted therapies, 

particularly in those patients who may not respond to or experience toxicity with the available anti-

VEGF therapy. 

Metastasis and self-sufficiency in growth signals 

Unsurprisingly, NF-κB is involved in EMT of tumour cells. EMT results in epithelial cells acquiring 

the invasive and metastatic properties of mesenchymal cells and thus important in promoting cancer 

metastasis (58).  

Chemokines have been implicated in tumour metastases. Colon cells transfected with chemokine 

CXCL8 DNA displayed higher migration rate and EMT-like phenotype with increased expression of 

EMT markers N-cadherin, Vimentin and α-SMA as well as activation of PI3/Akt/NF-κB pathway. 

CXCL8 transfected mice displayed more rapid tumour growth compared to controls (59).   

Olfactomedins are a family of proteins which mediate development of the nervous system and 

haematopoiesis. Olfactomedin 4 (OLFM4) is an intestinal stem cell marker and a target of the Wnt/β-

catenin pathway. A recent study reported OLFM4 as a negative regulator of Wnt/β-catenin and NF-

κB pathways with inhibition of colon cancer development in APC mutated mice (60). Olfactomedin 1 

(OLFM1) also has a tumour suppressive role and is able to suppress growth, migration and invasion 

of CRC cells in vitro; Additionally, OLFM1 negatively regulated non-canonical NF-κB activity of 

NIK. Knockdown of OLFM1 promoted growth and metastasis of CRC cells in vivo; Low expression 

of OLFM1 in CRC tissue was associated with lymph node involvement, distant metastases and poor 

overall survival (61).  

Matrix Metalloproteinases (MMPs) are a family of proteolytic enzymes which have a physiological 

role of tissue remodelling and as such are able to degrade the extracellular matrix and facilitate 

tumour invasion. Overexpression of MMP 1, 2, 3, 7, 9 and 13 has been observed in human CRC (62) 

and were associated with poor prognosis and metastasis (63). The expression of MMP-9 is regulated 

by several transcription factors including NF-κB (64,65). The mechanistic link between NF-κB and 

MMP-9 was studied in CRC cells lacking the β subunit of the IKK complex and this showed NF-κB 

(IKK activity and p65) is required for TNF-α induced MMP-9 gene expression (66).  

NIK- and IKK-β-binding protein (NIBP) have been implicated in the regulation of cytokine-induced 

canonical NF-κB signalling. NIBP is over expressed in CRC tissue and is associated with metastasis 

(67,68). Nude mice injected with NIBP knockdown cells demonstrated less tumour formation, with no 

detectable tumour at 3 months (69). Expression of NIBP in 114 patient tissue samples of CRC was 

associated with tumour metastasis. The same study demonstrated NIBP overexpression induces 

activation of the canonical NF-κB pathway in vitro. Additionally, xenografts of NIBP-overexpressing 
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cells generated liver metastases with increased expression of p65, MMP-2 and MMP-9 suggesting 

NIBP may increase CRC metastases via canonical NF-κB activity and upregulation MMP-2 and 

MMP-9 (70). 

Cytoskeletal proteins Fascin and Ezrin have also been implicated in EMT and metastasis via NF-κB 

activity (71,72).  

Whilst the benefits of an adaptive immune response in the CRC tumour microenvironment has been 

widely demonstrated and now underpins therapeutic manipulation, the innate immune response is less 

understood. Specifically, the role of tumour-associated macrophages (TAMs) in CRC is controversial 

and the mechanisms behind phenotypical skewing towards either M1-like (pro-inflammatory/anti-

tumour Th1 response) or M2-like (anti-inflammatory/pro-tumour Th2 response) in CRC is 

incompletely understood (73).  In a study of knock in mice expressing a dominant negative form of 

IKK-α, treatment with carcinogen resulted in markedly reduced adenoma formation at 20 weeks, with 

smaller tumours and slower proliferation rates. This was associated with increased recruitment of M1 

(tumouricidal) -like myeloid cells into the tumour, which was not cell-autonomous but depended on 

interaction between mutant IKK-α epithelial and immune cells (74). In an interesting study using a 

model of peritoneal metastasis in immune-competent mice, intraperitoneal injection with IκBα-

suppressed colon cells induced an M1-like macrophage phenotype, with reduced liver and peritoneal 

metastases in vivo. This was associated with increased intratumoural activated CD4+ and CD8+ T cells 

and reduced angiogenesis (75). This study suggests targeting NF-κB could induce a phenotypic switch 

from M2-like immunosuppressive to an M1-anti-tumour macrophage in CRC. 

Activin A is a member of the TGFβ superfamily and has been reported to have a role in inflammatory 

responses (76). Activin A is overexpressed in human colorectal tumours, especially in stage IV 

disease suggesting activin A may have a role in advanced colorectal cancer (77). Signalling pathways 

for activin and TGFβ are frequently disrupted in CRC (78). Activin down regulates p21 and increases 

migration and invasion of colon cancer cells (79). The link between NF-κB signalling and activin 

ligand expression was investigated by the same group who reported activin, but not TGFβ, induced 

NF-κB activation with subsequent increased MDM2 ubiquitin ligase and degradation of p21 via PI3K 

dependent mechanism. Further to this, a functional role for NF-κB in activin-induced colon cancer 

cell migration was reported (80). 

Altogether, these findings further implicate NF-κB in important cancer processes such as EMT, 

autonomous growth signalling and regulation of the tumour microenvironment and how this might be 

manipulated as a therapeutic strategy. 
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NF-κB crosstalk with other signalling pathways  

There is evidence of cross talk between canonical and non-canonical NF-κB pathways (81,82), NF-κB 

and a number of other pathways, as well as studies demonstrating the ability of IKK kinases to 

directly target substrates in an NF-κB independent manner. The IKKs are regulated via their 

phosphorylation sites. Once phosphorylated, conformational change of the kinase results in activation. 

IKK-β is phosphorylated at serines 177 and 181(83,84). Crosstalk of IKK-β with Src kinase family is 

demonstrated by the c-Src dependent phosphorylation of Tyr188 and Tyr199 near the activation loop of 

IKK-β (85). IKK-α is phosphorylated at serines 176 and 180, autophosphorylation occurs at these 

sites when part of the IKK-β/NEMO complex. With respect to the non-canonical NF-κB pathway, 

NIK phosphorylates IKKα at serine 176 (86). Other proteins are also regulated via IKKα activation. 

For example, one mechanism of crosstalk between PI3K-Akt and NF-κB pathways is via 

phosphorylation of Thr23 on IKK-α (87). Both IKK-α and IKKβ have an NLS which renders them 

able to directly phosphorylate proteins at the nuclear level (12). For example, IKK-α has been 

implicated in the induction of NF-κB gene expression via phosphorylation of Ser 10 in Histone 3 (88). 

It would be of interest to study the role/expression of IKK phosphorylation sites in CRC. There has 

been little success in the development of IKK inhibitors and focused targeting of phosphorylation 

sites may offer an alternative therapeutic strategy.    

IL-1 can stimulate PI3K/Akt-dependent activation of NF-κB (p65), independent of the classical NF-

κB pathway (89,90). In non-colon cells, oncogenic Ras required P13K and Akt to stimulate NF-κB-

dependent transcription by targeting the transactivation domain of p65 rather than via classical 

degradation of IκB and subsequent translocation of p65 to the nucleus, with resulting reduced 

apoptosis (91). Loss of APC function and derangement of Wnt/β-catenin signalling have been firmly 

implicated in the development of CRC (92). It has been reported that IKK-α and IKKβ interacted with 

and were able to phosphorylate β-catenin, with IKK-α specifically able to increase β-catenin-

dependent gene expression in colon cancer cell lines (93). A separate study reported constitutive IKK-

β expression in mouse IEC induced spontaneous tumour formation, enhanced chemical- and APC 

mutation-mediated carcinogenesis and contrary to previous reports was associated with increased 

expression of β-catenin (94).  Furthermore, in human CRC tissue, it has been reported that 

PI3K/Akt/IKK-α pathway regulates NF-κB and β-catenin with the ability to influence transcription of 

genes implicated in angiogenesis and metastasis (95). When this evidence is considered as a whole it 

strongly supports the hypothesis that there is an interaction between the β-catenin, PI3/AKT and NF-

κB pathways in CRC development and progression. However, it is unclear whether IKKβ interacts 

with Wnt/B-catenin signalling in an NF-κB-dependent or independent fashion (96). 

The NF-κB and STAT3 interaction is important in orchestrating the immune and inflammatory 

response within the tumour microenvironment and each has distinct functions in immune and cancer 

cells (97). NF-κB and STAT3 regulate common processes and share regulatory binding sites of anti-
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apoptotic, cell cycle and proliferation, tissue resistance and repair genes, in addition to genes 

regulating angiogenesis/responses to hypoxia, chemokine and cytokine expression (98). As well as 

having distinct and overlapping target genes, as demonstrated by the pattern of their respective gene 

binding sites (99,100), NF-κB and STAT3 have been shown to physically interact (99,101) with 

STAT3 causing the nuclear retention of NF-κB; STAT3 can prolong nuclear retention of 

phosphorylated p65 (102). Co-localisation of STAT3 and NF-κB has been observed in CRC cell lines 

(103). MicroRNAs (miRNAs) function to suppress gene expression and have been reported to 

regulate NF-κB activity (104,105). In CRC cell lines transfected with microRNA mimics/inhibitors, 

miRNA-221 and miRNA-222 activated NF-κB (p65) and STAT3 with associated increase in miRNA-

221 and miRNA-222 suggesting these mRNAs function in a positive feedback regulatory loop to 

increase NF-κB and STAT3 activity. STAT3 activation is mediated by the tyrosine kinase JAK1 as a 

results of cytokine activity e.g. Interluekin-6 (IL-6). IL-6 is produced in an NF-κB dependent manner 

within myeloid cells in a model of colitis-associated cancer. The pro-tumourigenic effects of IL-6 

were mediated by STAT3 (106). STAT3 activity is found in epithelial and lymphocytic cells; 

inhibition of STAT3 in colon cancer cells curbs tumour cell proliferation in xenograft models of CRC 

(107). In CRC tissue, expression of STAT3 is associated with downregulation of the local adaptive 

immune response and decreased cancer-specific survival (108). No activating mutations in NF-κB or 

STAT3 have been detected in CRC suggesting they are secreted in a paracrine or autocrine fashion 

(109). 

Adaptive immunity is important in cancer immunosurveillance (110) and in CRC, the presence of 

tumour infiltrating immune cells (Th1 derivatives) have shown prognostic value independent of the 

widely used UICC-TNM classification (23). In contrast, high expression of T helper cell 17 (Th17)  

cells in CRC is associated with poor prognosis (111). There are a number of studies based on 

inflammation-associated colon cancer models that implicate inflammatory cell-derived cytokines (IL-

17A, IL-22, IL-6) to tumourigenesis (106,112,113). A study investigating the immune/inflammatory 

infiltrate and cytokine response in sporadic CRC found no differences in immune cell composition 

between uninvolved mucosa and tumour but did observe that this transition is marked by a functional 

switch in T cells leading to the accumulation of Th17-related cytokines, TNF-α and IL-6. 

Additionally, tumour-infiltrating lymphocyte-derived supernatant induced proliferation of colon 

cancer cell lines with activation and co-localisation of NF-κB and STAT3. These findings were 

confirmed in a mouse model of CRC. Interestingly, this study also observed that administration of a 

compound targeting STAT3/NF-κB activation and crosstalk, reduced levels of STAT3/NF-κB-

activating cytokines and tumour growth (103). This study highlights the importance of understanding 

the relationship between immune cell subtypes and cytokines and their influence on intracellular 

signalling pathways in sporadic CRC as well as highlighting STAT3/NF-κB crosstalk as a novel 
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therapeutic target in CRC. Moreover, it highlights a deficiency in studies of NF-κB in models of 

sporadic CRC.  

ERK5 and MEK5 overexpression has been reported in human adenomas and carcinomas and ERK5 

expression correlated with NF-κB. Colon cells with over activated ERK5 displayed increased NF-κB 

nuclear translocation and transcriptional activity; orthoptically implanted tumours with over activated 

MEK5/ERK5 had greater lymph node metastasis, altogether suggesting MEK5/ERK/NF-κB 

signalling is implicated in tumourigenesis and metastasis (114). 

As previously discussed the HIF pathway regulates cellular response to hypoxia and also have a role 

in regulating inflammation and immune responses via crosstalk with NF-κB. HIF and NF-κB share 

common activating stimuli, regulators and targets (54,115); Both HIF and NF-κB are activated in a 

TAK1-dependent manner (116) and IKK-β deficient mice demonstrate defective HIF expression and 

induction of target genes including vascular endothelial growth factor (VEGF) (115). High expression 

of HIF-2α in CRC tissue is associated with increasing tumour stage, poor tumour differentiation, 

lymphovascular invasion, COX-2 expression and worse overall survival (117).  

NF-κB independent roles of IKK-α  

The study of IKK-α in CRC has provided insights into its NF-κB independent functions and 

highlights it as an important player in colorectal carcinogenesis. Constitutive activation of IKK-α 

resulted in phosphorylation of SMRT at serine 2410 in CRC tissue. Furthermore, IKK-α binds to 

Notch-dependent gene promotors with resultant release of chromatin-bound SMRT and up-regulation 

of Notch-dependent gene and anti-apoptotic cIAP2 upregulation (118). Inhibition of IKK-α restored 

SMRT chromatin binding with inhibition of Notch-dependent gene transcription and subsequent 

reduction in tumour size in a CRC xenograft model (118). The same group have reported a truncated 

isoform of IKK-α with the predicted molecular weight of 45kda was generated by cathepsin mediated 

cleavage of full length IKK-α (FL-IKK-α) within early endosomes. Nuclear truncated IKK-α (p45-

IKK-α) forms a complex with full length IKK-α and NEMO and is responsible for regulating 

phosphorylation of SMRT and histone H3. This study provides evidence that p45-IKK-α results in 

diminished apoptosis in vitro and is required for CRC tumour growth in vivo (119). More recently, 

the same group demonstrated that KRAS and BRAF mutant (BRAFV600E) cells are different; whilst 

KRAS was able to induce canonical NF-κB signalling, BRAFV600E did not have the same effect. 

BRAFV600E is required for p45-IKK-α phosphorylation in a TAK1 dependent but NF-κB independent 

fashion. Additionally, endosomal inhibition reduced proliferation of BRAFV600E cells in culture as 

well as tumour growth and metastasis in xenograft models of CRC. The addition of an endosomal 

inhibitor appeared to potentiate the effect of Irinotecan in this model. FL-IKK-α, NEMO, TAK1 and 

BRAF were associated with the endosomal compartment however the nature of this association is 

unclear (120). 
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Whilst there is sufficient evidence gained from cell line and animal work relating to crosstalk between 

IKK-α and other signalling pathways in the development and progression of CRC, there is limited 

evidence that this is clinically important due to lack of studies investigating NF-κB in patient 

specimens and how this may relate to phenotypic tumour characteristics and patient outcomes.  

NF-κB and therapeutics 

In 2005, Gilmore and Hersovitch reported over 750 inhibitors of the NF-κB pathway including a 

variety of natural and synthetic molecules (121). 

COX-2 is a target gene of NF-κB (122) and is responsible for prostaglandin synthesis during 

inflammation. COX-2 is overexpressed in CRC (123), has been directly linked to colorectal 

tumourigenesis (124,125) and underpins the basis of numerous studies investigating the 

chemoprophylactic role of non-steroidal anti-inflammatory (NSAIDs) drugs such as aspirin and 

selective COX-2 inhibitors (126). The mechanism of COX-2 induction is not fully understood 

however it has been reported that in vitro inhibition of NF-κB can reduce COX-2 expression in 

colorectal cancer cells (127–129). Additionally, it has been reported that upregulation of COX-2 is 

associated with increased expression of p65, p50 and IKK-α in human colorectal cancer tissue, 

altogether suggesting a relationship between NF-κB signalling and COX-2 expression. 

Epidemiological data has demonstrated the protection conferred by Aspirin against CRC cancer (130). 

NF-κB plays a central role in anti-apoptotic NSAID activity in CRC cells in vitro (131–133). Both 

Aspirin and Sulindac inhibit IKK-β (131,134) and Aspirin, specifically, is able to induce 

phosphorylation and proteosomal-mediated degradation of IκBα and nuclear translocation of p65 

(133). Although Aspirin is known as an inhibitor of NF-κB, in xenograft models of human CRC, 

Aspirin increased levels of phosphorylated IκBα and nuclear p65 with associated apoptotic effect 

(135). These apoptotic effects were also reported in colon cells in vitro, independent of p53 or MMR 

status (136). It is evident that part of the chemoprophylactic nature of Aspirin in CRC can be 

attributed to NF-κB activity. 

Curcumin is a polyphenol derived from the spice turmeric and is active against a number of cell 

signalling pathways including NF-κB. In TNF stimulated cells treated with curcumin, onc study 

reported absence of NF-κB activity by inhibition of IκBα phosphorylation and translocation of p65 to 

the nucleus (137). In vitro, curcumin inhibited COX-2 by inhibition of NIK/IKK signalling and thus 

prevented phosphorylation of IκB in human colon cells (127). Curcumin has been and continues to be 

studied extensively. It has been reported to reduced colonic tumourigenesis in animal models 

(138,139) and to favour polarisation of macrophages toward an anti-tumour MI-like phenotype in 

xenograft models of colon cancer (139). NF-κB activity has been implicated in chemo- and radio-

resistance (18,19) and curcumin has been reported to overcome this by blocking NF-κB activity (20).  

The combination of curcumin and chemotherapeutic agent capecitabine effectively reduced tumour 
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volume, proliferation and microvessel density in vivo when compared to controls, with associated 

suppression of NF-κB-regulated gene products (21). In a separate study, curcumin was able to 

overcome oxaliplatin resistance via inhibition of NF-κB, in vitro (127). Later, the efficacious 

combination of curcumin and oxaliplatin was observed in xenograft models of CRC (140). The same 

group are currently investigating the combination of curcumin with FOLFOX chemotherapy within a 

phase II clinical trial of patients with metastatic CRC (141). 

For classical NF-κB activity, the proteasome plays an important role in degradation of IκB inhibitory 

protein. Proteosome inhibitor Bortezomib which is used to treat multiple myeloma has been 

investigated in CRC. Leucovorin is often given in combination with 5-fluorouracil (5-FU) to treat 

metastatic CRC. Treatment of CRC cells with leucovorin and Bortezomib enhanced caspase activity 

and apoptosis more effectively than either agent alone; these findings were confirmed in mouse CRC 

xenografts (142). Bortezomib has demonstrated limited efficacy in combination with standard 

treatment in clinical trials of patients with metastatic CRC (143,144). (See Table 1 for a summary of 

drugs targeting NF-κB that have clinical application in CRC). 

NF-κB activity interferes with the efficacy of chemotherapeutic agents through induction of anti-

apoptotic genes. There is no doubt that inhibiting IKK kinases suppresses CRC tumour growth in vivo 

as well as enhancing sensitivity to 5-FU (33,145,146). A number of IKK inhibitors have been reported 

in the literature but none have made it into clinical practice. Until now tools to unpick that exact 

nature of NF-κB inhibition have been limited due to the broad spectrum and non-specific nature of 

inhibitors.  However, it has now been reported that first in class IKK-α specific inhibitors are 

available (147). This should enable IKK-α as a novel therapeutic target to be explored and if validated 

might lead to translation into patients.  

NF-κB as a biomarker in CRC 

Activation of NF-κB has been observed in response to chemo- and radiotherapy (148–150). Much of 

the data relating to NF-κB as a predictor of treatment resistance in CRC is preclinical (151–156). In 

these studies aberrant NF-κB activity has been implicated in resistance to drugs used in the treatment 

of CRC such as 5-FU, oxaliplatin and irinotecan. Irinotecan is used in the treatment of metastatic 

CRC, many patients will develop eventual treatment resistance and disease progression which has 

been attributed to irinotecan-mediated NF-κB activation (155). The addition of an inhibitor of IKK-α 

to mouse xenograft models of colon cancer potentiated the antitumoural effect of irinotecan and 

increased the sensitivity of colon cells to 5-FU in vitro (146). Within a clinical trial of patients with 

irinotecan-refractory metastatic CRC treated with cetuximab and irinotecan, patients whose tumours 

expressed NF-κB (p65) had inferior response rates and overall survival compared to those patients 

whose tumours did not express NF-κB (18). This is one of the only clinical studies which has aimed to 

evaluate NF-κB in a predictive capacity.  
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Overexpression of p65 in CRC tissue was associated with increasing tumour stage (15,17) and poor 

overall survival (157). A study investigating the prognostic significance of NF-κB, HIF-1α and VEGF 

expression in 148 patients who had undergone potentially curative resection for stage III CRC found 

that NF-κB expression was an independent predictor of overall survival. Additionally, the 56 patients 

who relapsed had inferior response rates (and overall survival) to palliative chemotherapy.  

Patients with metastatic CRC undergo testing to determine KRAS status; this practice is widely 

established and harbouring the KRAS mutation precludes treatment with anti-epidermal growth factor 

(EGFR) receptor monoclonal antibody. NF-κB can be activated through RAS-RAF signalling 

pathway. Expression of oncogenic KRAS has been reported to result in NF-κB activation (158–160). 

Knockdown of KRAS reduces expression of p65 and phosphorylated-IκBα in CRC cell lines (161). 

Studies have reported higher expression of NF-κB (p65) in CRC tissue of patients with KRAS 

mutation than those without.  NF-κB activation in the presence of KRAS mutation was associated 

with inferior overall survival in stage I-IV disease and reduced response to chemotherapy in patients 

with metastatic disease (162). However, in a study of patients with KRAS wild-type metastatic CRC 

treated with irinotecan and cetuximab, 65% had tumours expressing p65 and this was associated with 

poorer progression-free and overall survival than those patients with NF-κB negative tumours, 

suggesting NF-κB expression is prognostic irrespective of KRAS mutational status. 

A study of 22 patients investigating the relationship between radiotherapy for rectal cancer, NF-κB 

activation and treatment response reported that NF-κB target genes are upregulated in response to a 

single fraction of radiotherapy however, whilst expression of NF-κB subunit p50 was prognostic for 

overall survival, it was not predictive of pathological response to radiotherapy.  

  

Concluding remarks 

This review summarises evidence from pre-clinical, translational and clinical studies that have 

reported on NF-κB with respect to the development and progression of CRC. There is substantial 

evidence implicating NF-κB in all stages of CRC development, from early adenoma to invasive 

cancer and metastasis. The role of NF-κB in CRC is undoubtedly complex and this complexity is 

enhanced by the crosstalk of NF-κB with a multitude of signalling pathways and regulators. 

Therefore, together with its essential role in normal cellular physiology it is unsurprising that 

inhibitors of NF-κB have yet to successfully emerge into clinical practice. 

There is a growing body of evidence from studies in cell lines and animals implicating NF-κB activity 

in the development, progression and treatment resistance of CRC. Many studies focus on the 

measurement of p65 activity/expression as a measure of NF-κB activity which largely reflects the 

canonical pathway. Future studies should pursue investigation of non-canonical NF-κB activity which 



14 

 

appears to be underexplored. Importantly, there is a lack of studies in human tissue and therefore in 

understanding the relationship between NF-κB and phenotypic tumour characteristics. It would also 

be prudent to understand the role of NF-κB activity in the development of pre-malignant polyps and 

their transformation into invasive cancers. Finally, molecular and phenotypic subtypes of CRC have 

been proposed (25,26) and the study of NF-κB in the context of these subtypes would help to further 

decipher the biology of CRC.  
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Name of 

drug/molecule 

Type of 

molecule i.e. 

natural 

product, 

synthetic, 

protein 

Point of activity References Stage of 

development/Clinical 

application 

Aspirin, sodium 

salicylate 

Synthetic  IκBα 

phosphorylation, 

IKKβ inhibition 

Kopp & Ghosh, 

1994 [1]; 

Yin et al. 1998 [2] 

Stark et al. 2005 

[3] 

Epidemiological evidence 

of reduced rick of 

colorectal adenomas with 

regular aspirin use[4–7]. 

Use of daily aspirin was 

associated with reduction 

in incidence of colorectal 

adenomas in patients with 

history of adenomas or 

previous colorectal cancer 

[8].   

There are a number of 

active clinical trials aimed 

at determining the risk-

benefit profile of Aspirin 

as a chemopreventive 

agent. 

Selective COX-2 

inhibitors e.g. 

Celecoxib, Rofecoxib 

Synthetic COX- dependent and 

independent activity  

Grösch et al., 2006 

[9] 

Three large double blind 

randomised controlled 

trials showed COX-2 

inhibitors prevent 

recurrence of sporadic 

adenomas with an 

increased cardiovascular 

risk [10–12]. Currently not 

routinely used as a 

preventative or therapeutic 

option in CRC. 

Curcumin 

(Diferulolylmethane) 

Natural 

antioxidant 

NIK/IKK signalling 

 

IκBα 

phosphorylation, 

translocation of p65 

Plummer et al., 

1999 [13] 

Singh and 

Aggarwal, 1995 

[14] 

Phase I/II clinical trial of 

combination FOLFOX and 

curcumin in patients with 

metastatic colorectal 

cancer with inoperable 

liver metastases has 

completed recruitment 

phase – results awaited 

[15]. 

Bortezomib Synthetic Proteasome Adams & Limited efficacy of 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8052854
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Kauffman, 2004 

[16] 

Bortezomib in 

combination with standard 

treatment in phase I/II 

clinical trials of patients 

with metastatic CRC 

[17,18]. 

     

 

 

    

 

 

 




