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1. Abstract 

 

Syngas and biochar are two main products from biomass gasification. To facilitate the 

optimization of the energy efficiency and economic viability of gasification systems, a 

comprehensive fixed-bed gasification model has been developed to predict the product rate 

and quality of both biochar and syngas. A coupled transient representative particle and fix-

bed model was developed to describe the entire fixed-bed in the flow direction of primary air. 

A three-region approach has been incorporated into the model, which divided the reactor into 

three regions in terms of different fluid velocity profiles, i.e. natural convection region, mixed 

convection region, and forced convection region, respectively. The model could provide 

accurate predictions against experimental data with a deviation generally smaller than 10%. 

The model is applicable for efficient analysis of fixed-bed biomass gasification under 

variable operating conditions, such as equivalence ratio, moisture content of feedstock, and 

air inlet location. The optimal equivalence ratio was found to be 0.25 for maximizing the 

economic benefits of the gasification process.  

 

 

Keywords: biochar; biomass gasification; energy efficiency; economics, syngas. 
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2. Introduction 

The shortage of fossil fuel reserves and global warming sparked an eruption of research and 

development for renewable energy [1]. Among the plethora of renewable energy sources and 

technologies, thermochemical conversion of biomass is regarded to be one of feasible routes 

to realize a sustainable future since biomass is a carbon neutral energy source and can reduce 

our dependence on fossil fuels [2]. Downdraft gasification has been proved as a standout 

choice for small to medium size throughputs [3, 4] due to its higher efficiency as compared to 

other thermochemical processes such as pyrolysis, direct combustion and liquefaction [5-7]. 

Recently, significant attention has been paid to the numerical modelling of the gasification 

process which plays an important role in understanding the various physiochemical aspects of 

interaction within the reactor of gasification. In addition, the model could be used as a cost 

effective tool to predict and optimize the energy performance of gasification systems. The 

theoretical characterization of the four different zones in a fixed-bed gasifier and relevant 

reactions have been explored extensively since the early 1930s [6]. Di Blasi first proposed a 

complex network of reaction equations that were classified into four different gasification 

stages: (i) drying, (ii) pyrolysis, (iii) combustion, and (iv) reduction, with outputs being time-

based axial gas composition and temperature profiles [8]. Later on, several researchers 

developed similar models to predict syngas composition, considering either single one stage 

(only reduction zone) or multi-stages of the process [9-12]. These models vary in several 

aspects, such as reactor configurations and reaction kinetics [13].  

 

However, most existing models focus only on the prediction of temperature profile and 

syngas composition without considering biochar production[7, 11, 14-16]. Besides syngas, 

biochar is another valuable product from the gasification process due to its potential ability of 
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improving soil quality and sequestering carbon [17-19]. To predict biochar production, the 

heat and mass transfer on a particle level needs to be considered. Some models do consider 

the particle-level heat and mass transfer but they treat both solid phase and gas phase as 

continuous phases (which is also referred as Euler–Euler approach). This approach is 

appropriate only if the influential parameters (e.g., particle size, and temperature and species 

concentration gradient inside the particle) of a single particle on gasification performance are 

negligible [20]. However, it has been suggested that considering the single particle 

parameters and-intra-particle phenomenon can significantly improve the accuracy of 

gasification models in predicting important design parameters of reactor [8][21]. In this case, 

biomass gasification modelling should be considered as a multi-scale problem [22]; that is, 

the molecular level, single particle level and reactor level should all be considered. One 

method to solve the multi-scale problem is the Discrete Phase Model (DPM). This modelling 

approach treats the gas phase as quasi-continuous while each particle is tracked in a Lagrange 

approach. The governing equations of each particle are solved simultaneously with gas-phase 

balances in each time step. Several works have applied this approach to simulate the 

thermochemical conversion of biomass [23-25]. However, this approach is only suitable for 

lab-scale gasifiers with a limited number of particles due to the high computational power 

required [20]. An alternative method to solve solid phase with reasonable computational time 

is Representative Particle Model (RPM). In each cell, balance equations are solved for one 

representative particle and all the particles in the same cell are assumed to have the same 

characteristics. There are mainly two types of single particle models which could be easily 

coupled with the fluid phase: shrinking sphere model and shrinking core model [26, 27]. In 

the shrinking sphere model, the size of biomass particles reduces while their density 

remaining constant. The particle is assumed to be impervious with all the reaction details 

lumped at the gas-solid interface. As for the shrinking core model, both the size and density 
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of biomass particles vary. Wurzenberger coupled RPM with entire fixed-bed fluid model to 

simulate pyrolysis and combustion processes [28, 29]. In his work, the reactor was discretized 

in in the axial direction and the particle domain were discretized in the radial direction so the 

model was also described as 1D + 1D. Later on several research works have been conducted 

on multi-scale modelling of combustion and pyrolysis reactors using coupled 1D+1D model 

[20, 30].  

 

In addition, there is a difference in the velocity profile between the region above air inlet and 

the region below air inlet. Inlet air mainly flows towards the bottom of the reactor and within 

this region, heat and mass transfer is dominated by forced convection. In the region above the 

air inlet, hot air tends to go up and the heat and mass transfer within this region is mainly 

controlled by natural convection. In the region near the air inlet, hot air tends to go up but 

pressure gradient forces the air to flow towards the bottom. These two driving forces are in 

the opposite direction and this special case is called mixed convection [31]. A number of 

studies have been conducted to investigate natural convection, forced convection and mixed 

convection in fixed-bed [31-34]. However, to the best of our knowledge, the application of 

this three-region concept (i.e. natural convection region, mixed convection region and forced 

convection region, respectively) on the fixed-bed modelling has not been reported.  

  

As mentioned above, there are few gasification models which take into account both syngas 

and biochar production and the application of three-region modelling concept on fixed-bed 

gasification modelling has not been reported in the literature. In this work, we developed a 

coupled RPM and fixed-bed model to predict the production rate and quality of both syngas 

and biochar. Within each discretized cell of the reactor, one representative particle was 
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chosen and modelled as a shrinking sphere. The reactor was divided into three regions in 

terms of different fluid velocity profiles, i.e. natural convection region, mixed convection 

region and forced convection region, respectively. The boundary of mixed convection region 

was determined by sensitivity analysis. A multi-scale numerical solution procedure was 

adapted to solve the partial differential equations (PDEs) of molecular, particle and reactor 

levels. Economic evaluation was conducted taking into account economic value of syngas 

and biochar. The optimal equivalence ratio was found to be 0.25 for maximizing the 

economic benefits of the gasification process. The model could facilitate the optimization of 

the energy efficiency and economic viability of a gasification system, which is of significant 

importance to its industrial application. 

3. Mathematical model 

A 1-D model was developed to describe the entire fixed-bed in the moving direction z of 

feedstock. It was assumed that all the species were well-mixed and all the variables were 

uniform in the radial direction. In this model, the entire packed bed fluid model was coupled 

with RPM, as shown in Figure 1. The reactor was discretized in the z-direction and in each 

cell one representative particle was chosen and modelled as a shrinking sphere [26]. The 

reactor was divided into three regions in terms of different velocity profiles: natural 

convection region, mixed convection region and forced convection region. A parameter Lm 

was used to determine the boundary of mixed convection region. During the reaction, the 

biomass particle size decreased with its density being constant. The biomass particle was 

impervious with intra-particle diffusion and all the reaction details were lumped at the gas-

solid interface. The presented model considered drying, pyrolysis, homogeneous gas 

reactions, and heterogeneous combustion/gasification reactions, respectively. In the gas phase 

eight species (O2, N2, CO, CO2, H2, H2O, CH4 and tar) were considered. The solid phase was 

woodchips. In the solid phase, all the components obtained from approximate analysis 
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(moisture, volatiles, fixed carbon and ash) and ultimate analysis (C, H, O, N) were treated as 

the dependent variables of time and space. 

The conservation equations for the mass, momentum, and energy were solved for both gas 

phase and solid phase using the forward Euler’s method. The exchange terms of momentum, 

mass and energy between gas phase and solid phase were treated as source terms in the 

conservation equations. To derive these equations, the following assumptions were made:  

 The gasifier reactor is cylindrical and isotropic. The properties in both gas phase and 

solid phase are assumed to vary with time only along the axial direction.   

 Gaseous species are assumed as ideal gases due to the low Mach number involved. 

 Reactor walls are adiabatic. 

 External forces such as gravity are neglected. 

 There is no particle fragmentation. 

 
Figure 1. Modelling concept of fixed-bed down draft reactor. 
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3.1 Governing equations 

3.1.1 Gas phase 

In the gas phase, continuity equation, transient balance equations of mass, energy as well as 

momentum were summarized as below. All these equations were derived from the finite 

control volume approach, which applied balances to a cylindrical finite volume with the same 

radius as the gasifier reactor and an infinitesimal length.  

Continuity equation in the gas phase was derived by considering the convective mass transfer 

and source terms of species produced in heterogeneous reactions between solid phase and gas 

phase: 

      

  
  

         

  
  

 

  
      

   

  
                                               (1) 

The accumulation of species i was determined by the convective mass transfer, diffusive 

mass transfer and source terms of species produced in homogeneous and heterogeneous 

reactions. 

         

  
  

           

  
 

 

  
      

   

  
                                         

(2)            

Similarly, conductive heat transfer was neglected due to the dominance of convective heat 

transfer within the gas phase. In the right hand side of Eq. (2), source terms include 

convective heat transfer within the gas phase, convective heat transfer between the gas phase 

and solid phase, and heat generated from chemical reactions. 

   
      

  
  

          

  
        

   

   
 

                                   

                 
        (3) 

A general form of momentum balance for porous bed, Brinkman-Forchheimer equation, was 

applied in this work [35, 36].  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

9 
 

 

  
        

 

  
     

   
  

  
           

                               (4) 

  

where    is the viscous resistance term,      
      

  

  

  
 ,    is the inertial resistance term, 

       
   

  

  

  
. All the gaseous species were assumed as ideal gases. Heat capacity 

was dependent on temperature only. The ideal gas law was assumed in this model. 

                                                              (5) 

An empirical correlation was used to calculate the porosity as a function of particle and bed 

diameter in the cylindrical fixed-bed, as shown below [37]: 

            
  

  
                                                   (6) 

3.1.2 Solid phase 

Biomass particles enter the reactor from the top at velocity     . In the solid phase, a 

representative particle was chosen and modelled as a shrinking sphere. The shapes and aspect 

ratios of biomass particles do not change in the gasifier reactor, though particle sizes change 

dynamically. Mass balance in the solid phase was expressed in the following formula:  

 

  
 
 

 
   

  

 
                     

  

 
                                              (7) 

Initially, wood was represented by the maximum yield of moisture, volatile, fixed carbon and 

ash based on the results of the approximate analysis. Solid compositions were calculated by 

atomic balance equations: 

 

  
 
 

 
   

  

 
                     

  

 
 
 

                                          (8) 

It was assumed that the gas, liquid, and solid phases of a particle had the same local 

temperature. An overall energy equation was expressed as: 
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                         (9) 

The inter-phase heat exchange was assumed to be dependent on the temperature difference 

between the solid phase and gas phase, including convective and radiative heat transfer: 

                    
    

                                                 (10) 

Conductive heat transfer in solid phase was calculated as: 

      
   

  
                                                                 (11) 

The velocity of biomass particle depends on the feeding rate of feedstock: 

   
   

          
                                                                    (12) 

3.2 Reaction models 

3.2.1 Drying  

The drying process was classified into two stages in terms of the particle temperature. When 

the particle temperature is below the boiling temperature of water, the drying is controlled by 

the concentration difference of water between surrounding air and particle. After reaching 

boiling temperature, evaporation occurs at isothermal conditions and all incoming thermal 

flux is consumed for water vaporization
 
[38]. The water content in the biomass is broken 

down into free and bound water. A summary of the mathematical formulation used to 

describe the water mass flux during drying is detailed in Table 1. 

                                                     (13) 
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Table 1. Governing equation for the drying process. 

 Free Water Bound Water 

Tp < 

Tevap 
    
       

          
      

       
        

          
   

   
   

Tp = 

Tevap 

    
          

 
   

   
        

           
 

   

   
   

    
   

 

 

3.2.2 Pyrolysis 

A two-step model was used to simulate pyrolysis process, in which biomass undergoes 

primary pyrolysis followed by tar cracking reactions [12]. 

Primary pyrolysis:                                                   

                                                                        (   ) 

Tar cracking: 

                                                               

                                                               (   ) 

The reaction rates are calculated by: 

                      
          

   
          . 

                   
         

   
             . 

Chemical formula of the primary tar was expressed as                     and the secondary 

tar was assumed to be pure benzene [39]. The compositions of the product gas from the 

primary pyrolysis [40] and tar cracking [41] reactions were estimated on the basis of the 

literature data for wood. 
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3.2.3 Biochar reactions 

To determine the overall reaction rate, both kinetics reaction rate and film mass-transfer 

diffusion were considered at the gas-solid interface [12]. The surface reaction rate was 

calculated by: 

        
 

     
 

  
 

  
 

 

    

                                          (14) 

All the heterogeneous reactions considered in this model were summarized in Table 2. The 

film diffusion rate for the mixed and forced convection region was determined using: [42] 

   
     

       
               and           , respectively. 

Table 2. Heterogeneous biochar reactions. 

 reactions kinetic reaction rate(m/s) reference 

RS1      
   
                               [43] 

RS2      
   
      

   
   

                    
[44] 

RS3      
   
                                   [45] 

RS4      
   
                               [46] 

RS5      

   
         

     

                       

[47] 

 

3.2.4 Homogeneous reactions 

Gaseous species including CO2, CO, H2O, H2, CH4, O2, N2 were considered in this model. All 

the kinetic rates of homogeneous reactions are listed in Table 3. The overall reaction rates are 

equal to the minimum value of turbulent mixing rates and kinetics reaction rates [12].  

                                                                 (15) 

where       was expressed using Eddy Dissipation Model (EDM): 
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                                     (16) 

Table 3. Homogeneous reactions. 

 

3.3 Heat and mass transfer coefficient in each region 

3.3.1 Mixed convection region 

The air inlet locates at the mixed convection region. Uniform plug flow is assumed at the air 

inlet with 79% N2 and 21% O2, temperature T0, and velocity u0. In this region the fluid 

(gaseous mixture) flows in a “turbulent manner”. Due to the complex flow patterns and fluid 

dynamics near the air inlet, this region was modelled as a black box where all the variables 

distribute evenly along the axis direction, which meant all the terms regarding spatial 

variation in the governing equations of gas phase were ignored. To calculate the heat transfer 

coefficient, the Nusselt number was determined by the following formula [31]: 

 reactions kinetic reaction rate (kmol m
-3

s
-1

) reference 

RG1           
   
                    

                          
       [46] 

RG2           
   
                    

                          
       [46] 

RG3    
 

 
  

   
                                      

      
    

[48] 

RG4    
 

 
  

   
                                         

      
    

[49] 

RG5       
   
         

              
    

  
         

 

     
    
  

        

      
  

[45, 50] 

RG6          
   
                                            

      
    [51] 

RG7        
   
                                             [52]  
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                                         (17) 

In addition, the governing equations of this region were solved first and the results were set 

as boundary conditions for the next two regions. 

3.3.2 Natural convection region 

In the natural convection region, the temperature difference is the main driving force for both 

heat and mass transfer. The heat transfer coefficient between two phases     was dependent 

on Nun, which can be obtained from    : 

    
        

  
                                                     (18) 

                   
   

                                          (19) 

             
      

   

  
 
    

  
                                  (20) 

In the gas phase, the convection term  
       

  
was replaced by  

    

     

  

  
, where the heat 

transfer between two discretized volumes was calculated using the horizontal hot plate 

model:  

    
        

  
                                                   (21) 

             
    

 
                         

             
    

 

                                                (22) 

             
      

 
  

  
 
    

  
                                  (23) 

where    is the characteristic length,    
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In addition, it was assumed that diffusion dominated in this region so that the convection term 

of species balance equation was neglected.  For all the scalar variables, Dirichlet boundary 

conditions were used at       
  

 
, whereas Neumann conditions were used at z = 0.  

3.3.3 Forced convection region 

In the forced convection region, the pressure difference is the main driving force for both heat 

and mass transfer. The heat transfer coefficient     is determined by Nusselt number 

according tothe  convective heat transfer mechanism within the fixed-bed reactor [53].  

                                                              (24) 

In this region, uniform plug flow with velocity       was assumed at       
  

 
,  and 

atmospheric pressure was assumed at the reactor outlet. For all the other scalar variables, 

Dirichlet boundary conditions were used at       
  

 
, whereas Neumann conditions were 

used at z = Lb. 

3.4 Numerical solution procedure 

To solve the governing equations, finite volume scheme was used for discretization. 

Cylindrical grid that has the same radius as the gasifier reactor and length    was used to 

describe the gasifier reactor domain. In each volume, a representative particle was chosen and 

modelled as a shrinking sphere, moving towards the bottom of the reactor. The velocity 

profile was specified at cell edges and the scalar variables were specified at cell centers. 

Usually the unsteady reactive flow problems are solved by fractional step methods or similar 

methods such as PISO (Pressure Implicit with Splitting of Operator) [54-57], because the 

pressure correction equation (in multi-scale reactor models also the particle model) is solved 

just once per time step. The solution algorithm is an extension of the algorithm introduced by 

Jakoben’s group [20, 55, 56]. 
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Figure 2. Structure of simulation procedure. 

The detailed structure of the simulation procedure is shown in Figure 2. The governing 

equations of mixed region were solved first and the results were set as boundary conditions 

for the other regions. After   , all the properties        in gas phase and solid phase were 

updated to          . In addition, to solve energy balance equations, NASA coefficients 

were used to calculate reaction heat [58]. In this study, the simulation program was coded in 

MATLAB R2014a. All the model inputs, number of grids and time steps were summarized in 

Table 4. 
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Table 4 Model inputs and parameters [38] [59]. 

Results of 

ultimate 

analysis 

C 44% 

H 6% 

O 48% 

N 2% 

Results of 

approximate 

analysis 

water 8% 

volatiles 68% 

fixed carbon 17% 

ash 7% 

Characteristics 

of gasifier 

reactor 

L (Total length of gasifier reactor, m) 0.5 

La (Length of the region above 

gasifier reactor, m) 
0.25 

Ac (Cross sectional area of gasifier 

reactor, m
2
) 

0.07 

  (Porosity of fixed-bed) 0.4 

Biomass resident time, min 30 

Physical 

properties of 

biomass particle 

   (specific heat capacity of biomass 

particle, J kg
-1

 K
-1

)  

1350 

   (biomass particle density, kg m
-3

) 830 

   
   

 (enthalpy of vaporization, J kg
-

1
) 

   
   

             
  

      
 
           

  
      

                 
 

 

   
     enthalpy of desorption, J kg

-1
)    

                            

   (heat conductivity of biomass 

particle, W m
-1

K
-1

) 
     

  
    (water mass concentration at the 

surface of the particle in saturated air 

conditions, kg m
-3

) 

  
               

      

  
         

            
   

   (water activity)                   
           

       
       

  

  
   

 (water  mass  concentration  at  

the  surface  of  the particle in non-

saturated conditions (kg m−3) 
 

  
         

    

Physical 

properties of 

gaseous species 

    (specific heat capacity, J kg
-1

K
-1

) 

                          

       
              

 

              
  

  (dynamic viscosity, 10
-5

Pa s
-1

)                              
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   (heat conductivity, W m
-1

K
-1

)                
        

    

  
 
      

  
   

D (diffusivity, m
2 

s
-1

)           

Time step 
   10

-3
s 

  * 2 hours 

Finite volume 

length 
   0.01m 

*Gasification time was set as 2 hours. The model could reach steady state within 2 hours 

gasification running time. 

3.5 Equivalence ratio (ER), higher heating value (HHV) and cold gas efficiency (CGE) 

In order to encapsulate the effects of both air flow and biomass feeding rates, the ER is 

defined as [60]:  

    
    

  
   

    

  
 
              

                            (25) 

where      is the inlet air mass flow rate (kg/s),    is the biomass feeding rate (kg/s). The 

CGE could be used to indicate gasifier efficiency and is defined as the ratio of energy of the 

producer gas to the energy of the consumed biomass [61].     

    
           

         
                                   (26) 

where      is the higher heating value of syngas          ,    is the syngas production 

rate         ,      is the higher heating value of biomass,    is the feedstock feeding rate 

        . 

HHV of feedstock and biochar was calculated based on the empirical correlation developed 

by Channiwala SA et.al [62]. 

                                                         (27) 
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where                 represent carbon, hydrogen, sulphur, oxygen, nitrogen, and ash 

content of material, respectively, expressed in mass percentage on dry basis.  

3.6 Economic value of biochar and syngas 

Syngas and biochar are two main products from the gasification process and both of them 

have considerable economic values. However, there are still limited studies that evaluate the 

overall economic benefit in terms of both syngas and biochar production.. The total economic 

value Vof the gasification products is expressed as the following: 

                                                      (28) 

Where    is the unit price of biochar, $/kg;    is the production rate of biochar kg/kg 

feedstock;    is the unit price of syngas, $/Nm
3
;    is the production rate of syngas Nm

3
/kg 

feedstock. The unit prices of produced biochar and syngas were obtained from literatures, 

which are expressed as the following 

                                                           (29) 

                                                           (30) 

Where    is the price of biochar per mega joule [63],                  .      is the 

higher heating value of biochar, MJ/kg,    is the price of syngas per mega joule [64], 

                 .      is the higher heating value of syngas, MJ/Nm
3
.  

4 Results and Discussion 

4.1 Model validation 

Experimental results were obtained from our group’s previous gasification experiments[11]. 

The experiments were conducted using a GEK fixed-bed downdraft gasifier manufactured by 

All Power Labs. The gasifier has a capacity of 10kg/h and its geometrical parameters are 

listed in Table 4.  
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Sensitivity analysis was performed by varying the length of mixed convection region Lm. The 

results are shown in Table 5. The standard deviation (SD) between the experimental and 

simulation results was defined as:     
          

   
, where    and    represent simulation 

results and experimental results, respectively. From the table we can see that the SDs across 

different gaseous species was 3.1, 3.04, 3.02, 3.01, 3.03, and 4.17 at Lm/Lb ratio equalling 

0.02, 0.04, 0.06, 0.08 and 0.1, respectively. The length of mixed convection region had a 

relatively small influence on the model prediction within the range from 0.02 to 0.1, while 

there was an obvious increase of SD from 3.03 to 4.17 with the length ratio further increasing 

from 0.1 to 0.2. The SD reached its minimum when the length ratio equals 0.08. The 

minimum average SD was 3.01 at Lm/Lb = 0.08 and length ratio was chosen as one of the 

model inputs for further analysis. The results show this three-region modelling concept is 

appropriate to describe the fixed-bed downdraft gasification process.  

Table 5 Comparison of predicted syngas composition under different length of mixed 

convection region. 

   Lm/Lb 

   0.02 0.04 0.06 0.08 0.1 0.2 

Syngas 

composition 

(vol%) 

N2 45.62 48.47 48.47 48.63 48.63 48.8 50.42 

CO 15.91 16.94 16.94 16.92 16.92 16.90 16.65 

H2 17.78 15.25 15.24 15.14 15.12 14.98 13.49 

CH4 2.01 2.54 2.54 2.54 2.54 2.53 2.50 

CO2 12.62 16.79 16.81 16.78 16.79 16.77 16.94 

O2 2.12 0 0 0 0 0 0 

CnHm 3.94 0 0 0 0 0 0 

Biochar 

composition 

C 85.77 79.63 79.64 79.66 79.67 79.69 77.35 

H 1.52 1.04 1.64 2.12 2.45 2.45 2.60 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

21 
 

(vol%) O 12.21 15.61 15.6 15.59 15.58 15.56 18.77 

N 0.5 3.58 2.94 2.42 2.06 2.02 0.80 

S 0 0.14 0.18 0.21 0.24 0.28 0.48 

SD  3.10 3.04 3.02 3.01 3.03 4.17 

 

The temperature and particle mass distributions along the axis direction of the gasifier were 

predicted with the fixed length (Lm/Lb) of 0.08 for the mixed convection region, as shown in 

Figure 3. The temperature distribution inside the gasifier was affected by the ER. It was 

found that the temperature at all locations of the gasifier increased with the increase of ER. 

This is due to the fact that the higher air flow rate promotes the exothermic combustion 

reactions. More reaction heat is generated and hence the temperature inside the gasifier 

increases. Moreover, the temperature reached its peak in the mixed convection region near 

the air inlet. The highest temperature was 1030, 1069, 1235
o
C based on the model prediction 

and 920, 998, 1131
o
C based on the experimental data under the condition of ER=0.35, 0.6, 

0.85, respectively. This is because energy is generated by exothermic combustion reactions in 

this region. After oxygen was depleted, pyrolysis and endothermic reduction reactions 

dominate. Correspondingly, the mass reduction rate of biomass particle is closely related to 

the gaseous species concentration and the temperature distribution profile inside the reactor. 

In the natural convection region, there is a fast mass loss for biomass particles since volatiles 

are released by pyrolysis reactions. In the mixed convection region, which is near the air inlet, 

the heterogeneous reactions between carbon and gaseous species take place quickly leading 

to higher temperature and higher oxygen concentration. In addition, it was noted that there 

was a similar trend for the particle mass change across the different ER conditions and the 

particle mass decreased with the increase of ER. 
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Air inlet location 
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Figure 3a Temperature distribution along the axis direction under different ER. 

Figure 3b Particle size distribution along the axis direction under different ER. 

 

4.2 Effects of ER on syngas production rate and its quality 

The effects of ER on syngas production rate and CGE are shown in Figure 4. The CO2 

content and H2 content in the producer gas decreased from 27.78% to 8.10% and 25.02% to 

9.00%, respectively as ER increased from 0.1 to 0.6. Since biochar gasification reactions with 

CO2 and steam are endothermic, they are favored at relatively high temperatures [65]. 

Increasing ER leads to the increase in temperature, which promotes the reverse water-gas 

shift reaction and decreasesH2 and CO2 concentrations. This finding is also in a good 

agreement with the literature [66]. The HHV of the producer gas decreased from 6.15 to 3.60 

a 

b 
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MJ/Nm
3
 as ER increased from 0.1 to 0.6. This is because 1) the significant decrease in H2 and 

CH4 concentrations in the producer gas; 2) the inert N2 did not contribute to the HHV of 

syngas and its fraction increased with increasing ER. This result is consistent with the 

previous works done by Sheth and Babu [9] and Seggiani et al [67], who observed the 

decrease of HHV when the ER increased. Both HHV of syngas and its production rate 

contribute to the CGE and their combined effects on the CGE were evaluated by plotting 

CGE against ER. It was found that the CGE first increased with increasing ER from 0.1 to 

0.25 and then dropped to 61.25% at ER of 0.6. The maximum CGE was 72.75% at ER= 0.25. 

The numerical values of the optimum ERs and maximum CGE are presented below in Table 

6, together with data procured from experiments conducted in other studies. 

 Table 6. Comparison of simulation with literature. 

Source Biomass Type Optimum Equivalence 

Ratio 

CGE 

Dogru et al. [68]  Hazelnut Shells 0.28 80.91 

Zainal et al. [69] Furniture wood and 

charcoal 

0.39 33.72 

Sheth & Babu [9] Furniture waste 0.20 56.87 

This work 100% Wood Chips 0.25 72.75 

 

In this work, for a biomass sample of 100% wood chips, the optimum ER was 0.25 which led 

to a CGE of 72.75%. In Dogru et al.’s [68] study, an extremely high CGE of 80.91% was 

found for a relatively small equivalence ratio. On the other hand, Zainal et al. only manages 

to achieve a CGE of 33.72% with a relatively high equivalence ratio of 0.39. Two main 

reasons could account for this difference. Firstly, it could be hypothesized that hazelnuts offer 

a better alternative to furniture wood and charcoal as a biomass gasification choice due to its 

favourable elemental compositions. Another possible explanation could stem from the use of 
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b 

different gasifiers. Dogru et al. made use of a pilot scale fixed-bed downdraft gasifier with a 

diameter ranging from 135mm to 450mm and a total height of 0.81m [68], Zainal et al. 

utilized a blow-type downdraft gasifier with a cone structure with a main body diameter of 

600mm and total height of 2.5m [69].  
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Figure 4a: Effects of ER on producer gas flow rate, producer gas HHV, and CGE;  

         Figure 4b: Effects of ER on producer gas composition 

 

4.3 Effects of ER on biochar production rate and its quality 

In an industrial gasification plant, biochar could be sold as barbecue materials and fertilizer 

after treatment [71, 72]. The quality of produced biochar is closely related to its carbon 

content [73]. However, to the authors’ best knowledge, most models focus only on the 

prediction of syngas composition without considering biochar production. In this model 

biochar is defined as a mixture of bottom biochar and ash produced from a fixed-bed 

downdraft gasification system. Figure 5 shows the effects of ER on the production rate and 

the quality of biochar. With increasing ER, more oxygen is fed into the reactor, speeding up 

a 
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a 

b 

the heterogeneous reactions to convert more carbon from solid phase into gaseous species. 

Henceforth, the carbon content of the produced biochar decreased from 88.17% to 71.16% as 

ER increased from 0.1 to 0.6. The similar trend was observed in the biochar production rate, 

which decreased from 0.22 kg/kg biomass to 0.14 kg/kg biomass as ER increased from 0.1 to 

0.6. The trend of both carbon content of biochar and its production rate indicate that the total 

amount of carbon in biochar decreased with increasing ER, which means the increase of ER 

has negative effects on the quality and production rate of biochar. The results agree with the 

work by Meyer S et al [71], which reported that the biochar production rate from gasification 

is around 10%. 
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Figure 5a: Effects of ER on carbon content, biochar production rate, and total amount of carbon;  

Figure 5b: Effects of ER on biochar composition 

4.4 Evaluation of economic benefits 

Figure 6 shows the overall economic benefits based on the production rate and quality of 

both syngas and biochar predicted by the model. As ER increased from 0.1 to 0.6, the carbon 
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content in biochar decreased due to the speed up of heterogeneous reactions with the 

existence of more oxygen, which further led to the decrease of biochar prices from 0.017$/kg 

feedstock to 0.009$/kg feedstock. However, with increasing ER the syngas price showed 

similar trend with its CGE. It first increased from 0.057$/kg feedstock to 0.091$/kg feedstock 

as ER increased from 0.1 to 0.25 and then dropped to 0.077 $/kg feedstock at ER=0.6. By 

considering the contributions of both syngas and biochar, the optimum ER was found to be 

0.25 in terms of economic benefits of the gasification process. The maximum economic 

benefit could reach 0.11 $/kg feedstock based on the model prediction. The results could 

facilitate the optimization of the energy efficiency and economic viability of a gasification 

system, which is of significant importance to its industrial application. 
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Figure 6 Evaluation of overall economic benefits.  
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4.5 Effects of moisture content on syngas composition and reaction temperature 

To investigate the effects of moisture content on producer gas quality, the simulation was 

conducted at the optimal ER of 0.25 under different moisture contents (0-30%) of the 

feedstock. The results are shown in Figure 7. From the figure we can see that when the 

moisture content increased from 0 to 0.3 the volume fraction of CO2, H2, and HHV of syngas 

increased from 20.45%, 18.09%, and 5.39 MJ/Nm
3
 to 27.12%, 23.99%, and 5.48 MJ/Nm

3
, 

respectively. Conversely, the volume fraction of CO decreased from 18.67% to 13.49%. In 

addition, produced syngas temperature decreased from 992.3K to 834.6K as the moisture 

content increased from 0 to 0.3, due to the fact that the increase of moisture content causes 

more energy consumption for evaporation. 

The volume fractions of H2 and CO2 increased as the increase of moisture content because 

the increasing moisture content favours reactions RS3 (Table 2) and RG5 (Table 3) to 

produce more H2 and CO2. Reaction RS1 (Table 2) is a heterogeneous reaction between gas 

phase and solid phase, but reaction RG4 (Table 3) and RG5 (Table 3) are homogeneous 

reactions in the gas phase. Henceforth, the consumption rate of CO in homogeneous reactions 

is higher than the production rate in the heterogeneous reaction. This would lead to a decrease 

in CO concentration with the increasing moisture content. Although the CO concentration 

decreased with increasing moisture content of feedstock, the HHV of syngas still increased 

due to the increasing concentrations of CH4 and H2. The same trends were observed in the 

experiments conducted by Xie and colleagues [74]. 
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Figure 7a; Effects of moisture content on syngas temperature and syngas HHV; 

           Figure 7b: Effects of moisture content on syngas composition. 

 

4.6 Effects of air inlet location on the gasification performance 

This model could facilitate the design of gasifier reactor by providing an insight into the 

effects of air inlet location on the temperature profile, syngas production, and biochar 

production. The results are shown in Figure 8. In this session, La/L is the ratio of the length 

of the region above air inlet to the total length of the reactor. Figure 8a shows the effects of 

air inlet location on syngas composition and its HHV. There was no significant variation of 

CO and CH4 within the range of La/L from 0.2 to 0.8. However, the volume concentration of 

H2 increased from 8.19% to 20.41% as La/L increased from 0.2 to 0.5, and then dropped to 

14.51% at La/L=0.8. The similar trend of HHV of syngas was observed, which increased 

from 4.07 to 5.52 MJ/Nm
3
 as La/L increased from 0.2 to 0.5, and then dropped to 4.64 

MJ/Nm
3
 at La/L=0.8. The results indicate that to achieve highest HHV of syngas, the air inlet 

should be located at the middle of the fixed-bed gasifier. To the best of authors’ knowledge, 
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there is no detailed experimental data being reported to show how the air inlet location affects 

the syngas composition. However, a rough guideline about the geometry design was provided 

by Albrecht Kaupp [75], who concluded that downdraft gasifiers with middle air inlet are 

preferred and this type of gasifier has been most extensively studied.  

 

The effects of air inlet location on biochar production is shown in Figure 8b. The production 

rate of biochar and its carbon content decreased from 21.19% to 19.26% kg/kg feedstock and 

from 87.13% to 84.32% as La/L increased from 0.2 to 0.5, respectively. As La/L increased 

from 0.5 to 0.8, the production rate of biochar and its carbon content increased from 19.26% 

to 19.37% kg/kg feedstock and from 84.32% to 84.51%, respectively. Since the residence 

time and ER remain constant, the biochar production is only affected by the temperature 

profile inside the reactor, which is shown in Figure 8c. Biomass particles enter the reactor 

with room temperature and it will undergo heterogeneous reactions and be preheated before 

reaching the mixed convection region. In the cases of La/L=0.2, La/L=0.3, and La/L=0.4, 

biomass particles reach the mixed convection region (where the air inlets locate) without 

being fully preheated, thus peak temperatures were lowered down, which would further lead 

to the lower temperature profiles in other regions. Heterogeneous reactions are slowed down 

due to lower temperature. That’s why the production rate of biochar and its carbon content 

decreased as La/L increased from 0.2 to 0.5. As La/L increased from 0.5 to 0.8, peak 

temperature remains constant, while biomass particles stay longer time in the lower 

temperature region. This leads to the increases of the production rate of biochar and its 

carbon content as La/L increased from 0.5 to 0.8.  
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        Figure 8a; Effects of air inlet location on syngas composition;  

 Figure 8b: Effects of air inlet location on biochar production and its carbon content;  

        Figure 8c: Temperature profile under different air inlet locations. 
 

5 Conclusions 

In this study, a coupled transient single particle and fix-bed model is developed to describe 

the entire packed bed in the flow direction of primary air. In this model, a three-region 

approach is applied to simulate heat and mass transfer inside the reactor based on different 

gas velocity profiles. The model has the capacity to predict the production rate and quality of 

both syngas and biochar produced from the gasification process. The results predicted by the 

model agree well with experimental results and the SDs between the numerical and 

experimental results obtained in this study are lower than 10%. The model is applicable for 

analysis of fixed-bed biomass gasification process under different operating conditions in 

terms of ER, the moisture content of feedstock, and air inlet location. By considering the 

a b 

c 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

31 
 

contributions of both syngas and biochar, the optimum ER was found to be 0.25 in terms of 

economic benefits of the gasification process. The maximum economic benefit could reach 

0.11 $/kg feedstock based on the model prediction.  
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Nomenclature 

A Cross sectional area of the bed m
2
 

   specific surface area m
-1

 

   specific heat capacity J kg
-1

K
-1

 

D diffusivity m
2 

s
-1

 

d diameter m 

F mass flow rate  kg s
-1

 

   first frictional factor kg m
-3

s
-1

 

   second frictional factor kg m
-4

 

G gas mass flux kg m
-2

s
-1

 

   enthalpy change J mol
-1

 

h heat transfer coefficient W m
-2

K
-1

 

k mass transfer coefficient m s
-1

 

L reactor length in axial direction m 

   characteristic length m 

M molecular weight kg mol
-1
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Nu Nusselt number - 

q heat flux  W m
-2

 

R gas constant 8.314 J mol
-1 

K
-1

 

RM removing rate kg s
-1

 

Re Reynolds number - 

     volume reaction rate mol m
-3

s
-1

 

     surface reaction rate mol m
-2

s
-1

 

Sc Schmidt number - 

Sh Sherwood number - 

   film diffusion rate m
 
s

-1
 

T temperature K 

t time s 

u velocity m s
-1

 

Y mass fraction - 

   

Greek letters   

  porosity - 

  density kg m
-3

 

υ stoichiometric number - 

  effective viscosity kg m
-1

s
-1

 

  fluid coefficient of thermal expansion K
-1

 

  dynamic viscosity Pa s
-1

 

   turbulent dissipation rate  m
2
 s

-3
 

  particle emissivity  - 

  Stefan–Boltzmann constant 5.67×10
-8 

W m
-2

K
-4

 

  thermal conductivity W m
-1

K
-1

 

   

Subscripts   

a The region above air inlet location  
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b fixed bed  

des desorption  

f forced convection region  

g pertains to gas phase  

gs heat or mass transfer between gas phase and solid 

phase 

 

in air inlet  

i pertains to specie or component in gas phase with 

index i 

 

j pertains to specie or component in solid phase 

with index j 

 

k pertains to reaction number with index k  

m mixed convection  

n natural convection  

s pertains to solid phase  

sat saturation  

ss heat or mass transfer in solid phase  

suf surface   

tm turbulent mixing  

vap vaporization  

vol volume   

w water  

A Cross sectional area of the bed m
2
 

   specific surface area m
-1

 

   specific heat capacity J kg
-1

K
-1

 

D diffusivity m
2 

s
-1

 

d diameter m 

F mass flow rate  kg s
-1

 

   first frictional factor kg m
-3

s
-1

 

   second frictional factor kg m
-4
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G gas mass flux kg m
-2

s
-1

 

   enthalpy change J mol
-1

 

h heat transfer coefficient W m
-2

K
-1

 

k mass transfer coefficient m s
-1

 

L reactor length in axial direction m 

   characteristic length m 

M molecular weight kg mol
-1

 

Nu Nusselt number - 

q heat flux  W m
-2

 

R reaction rate mol m
-3

s
-1

 

RM removing rate kg s
-1

 

Re Reynolds number - 

     volume reaction rate mol m
-3

s
-1

 

     surface reaction rate mol m
-2

s
-1

 

Sc Schmidt number - 

Sh Sherwood number - 

   film diffusion rate kg m
-2

s
-1

 

T temperature K 

t time s 

u velocity m s
-1

 

Y mass fraction - 

   

Greek letters   

  porosity - 

  density kg m
-3

 

υ stoichiometric number - 

  effective viscosity kg m
-1

s
-1

 

  fluid coefficient of thermal expansion K
-1

 

  dynamic viscosity Pa s
-1
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   turbulent dissipation rate  m
2
 s

-3
 

  particle emissivity  - 

  Stefan–Boltzmann constant W m
-2

K
-4

 

  thermal conductivity W m
-1

K
-1

 

   

Subscripts   

a The region above air inlet location  

b fixed bed  

des desorption  

f forced convection region  

g pertains to gas phase  

gs heat or mass transfer between gas phase and solid phase  

in air inlet  

i pertains to specie or component in gas phase with index i  

j pertains to specie or component in solid phase with index 

j 

 

k pertains to reaction number with index k  

m mixed convection  

n natural convection  

s pertains to solid phase  

sat saturation  

ss heat or mass transfer in solid phase  

suf pertains to surface reactions  

tm turbulent mixing  

vap vaporization  

vol volume to volume reactions  

w water  
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