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Optical quantum states based on entangled photons are essential towards solving questions 

in fundamental physics and are at the heart of quantum information science1. Specifically, 

the realization of high-dimensional states (D-level quantum systems, i.e. quDits, with D > 2) 

and their control are central for fundamental investigations of quantum mechanics2, for 

increasing the sensitivity of quantum imaging schemes3, for improving the robustness and 

key-rate of quantum communication protocols4, for enabling a richer variety of quantum 

simulations5 and for more efficient and error-tolerant quantum computation6. Integrated 

photonics has recently become a leading platform for the compact, cost-efficient, and stable 

generation and processing of non-classical optical states7. However, to date, integrated 

entangled quantum sources have been limited to qubits (D = 2)8–11. Here, we demonstrate on-
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chip generation of entangled quDit states, where the photons are created in a coherent 

superposition of multiple high-purity frequency modes. In particular, we confirm the 

realization of a quantum system with at least one hundred dimensions, formed by two 

entangled quDits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf 

telecommunications components, we introduce a coherent manipulation platform to control 

frequency entangled states, capable of performing deterministic high-dimensional gate 

operations. We validate this platform by measuring Bell inequality violations and 

performing quantum state tomography. Our work enables the generation and processing of 

high-dimensional quantum states in a single spatial mode. 

 

Integrated photonics makes use of the well-developed semiconductor industry to fabricate optical 

waveguides and functional devices on compact and mass-producible chips12, which are 

increasingly being used to realize stable, low-cost, and practical components for optical quantum 

systems7. Among the large variety of on-chip optical quantum sources that have been demonstrated 

are devices emitting single photons13, as well as entangled two-photon states making use of the 

polarization8,9, spatial10,14, or temporal11,15 degree of freedom. Large scale quantum states, 

necessary for, e.g., meaningful quantum information processing, can be achieved by increasing the 

amount of entangled photons and/or their dimensionality16. Recently the on-chip generation of 

two-dimensional four-photon entangled states was demonstrated17. However, this approach is 

limited in that the detection rate of multi-photon states fundamentally diminishes with an 

increasing number of photons, in turn reducing the information processing performance16. 

Remarkably, the use of higher-dimensional states enables increasing the amount of quantum 

information without reducing the detection rate16. Making use of spatial modes in free-space 

experiments, high-dimensional Bell inequality violations18 and Einstein-Podolsky-Rosen 
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experiments19 have, e.g. , been achieved. In contrast, no integrated source has managed to produce 

such desired high-dimensional quDit states of D > 2. This is because current approaches for on-

chip entanglement require, for the generation and processing of high-dimensional states, a drastic 

increase in quantum circuit complexity, ultimately being ill-suited for this task. In particular, path-

entanglement quDit schemes necessitate D coherently-excited identical sources and a complex 

concatenation of beam splitters20, while high-dimensional temporal entanglement demands 

complicated stabilized multi-arm interferometers21.   

Here we show that the frequency domain22–24 offers a unique framework to generate high-

dimensional states on a photonic chip and to manipulate them in a single spatial mode. Our method 

exploits spontaneous four-wave mixing (SFWM) in an integrated nonlinear microring resonator17 

as schematized in Fig. 1.  In particular, we used a spectrally-filtered mode-locked laser to excite a 

single resonance of the microring at ~1550 nm wavelength, in turn producing pairs of correlated 

signal and idler photons spectrally-symmetric to the excitation field and which cover multiple 

resonances, see Fig. 1. The individual photons were intrinsically generated in a superposition of 

multiple frequency modes and owing the energy conservation of SFWM, this approach leads to 

the realization of a two-photon high-dimensional frequency-entangled state. 

We performed two experiments to characterize the dimensionality of the generated state. The large 

free spectral range (FSR) of the ring cavity (~200 GHz), i.e. the spectral separation between 

adjacent resonance modes, enabled us to use a commercially available telecommunications 

programmable filter (see Methods) for individually selecting and manipulating the states in these 

modes (given the filter’s operational bandwidth of 1527.4 to 1567.5 nm, we were able to access 

10 signal and 10 idler resonances). We measured the joint spectral intensity, describing the two-

photon state’s frequency distribution, see Methods. Specifically, we routed different frequency 
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modes of the signal and idler photons to two single photon detectors and counted photon 

coincidences for all sets of mode combinations. As shown in Fig. 2a, photon coincidences were 

measured only for mode combinations spectrally-symmetric to the excitation, a characteristic of 

frequency-entangled states. In addition, we evaluate the Schmidt number of our source. This 

parameter describes the lowest number of significant orthogonal modes in a bipartite system, and 

therefore describes its effective dimension. Through a Schmidt mode decomposition of the 

correlation matrix (see Methods), we extracted the lower bound for the Schmidt number to be 9.4, 

see Fig. 2b. 

Due to the narrow spectral linewidth of the photons (~800 MHz) and the related long coherence 

time (~0.6 ns), the effective time resolution of our full detection system (~100 ps) was sufficient 

to perform time-domain measurements and extract the maximal dimensionality of the state, see 

Methods. Specifically, we measured the second-order coherence of the signal and idler fields using 

a Hanbury Brown and Twiss setup comprised of a 50:50 beam splitter and a photon coincidence 

detection system. The maximum of the second-order coherence function is directly related to the 

number of effective modes Neff, i.e. 𝑔s,s
(2)(𝑡 = 0) = 1 + 1

𝑁eff 
 , see Methods. By individually 

selecting 10 signal and 10 idler resonances, we confirmed that the photons from each single 

resonance are in a pure quantum state (one effective mode per resonance, measured within the 

detection uncertainty), see Fig. 2b (inset). In turn, the two-photon state defined over a pair of single 

resonances (one signal and one idler) symmetric to the excitation frequency is separable and has a 

Schmidt number of one, i.e. it does not contain any frequency entanglement. Consequently, a two-

photon entangled quantum state comprised of multiple such pure frequency mode pairs has a 

Schmidt number with an upper bound given by the sum of the individual Schmidt numbers, which 

was measured to be 10.45±0.53 for the 10 considered resonance pairs, see Fig 2b.  As the lower 
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and upper bound practically coincide, we conclude that the number of significant orthogonal 

modes is indeed 10.  

These measurements confirmed that one photon pair simultaneously spans multiple frequency 

modes, forming a high-dimensional entangled state of the form 

|Ψ⟩ = ∑ 𝑐𝑘|𝑘⟩s|𝑘⟩i
𝐷
𝑘=1  , with ∑|𝑐𝑘|2 = 1  (Eq. 1). 

Here |𝑘⟩s and |𝑘⟩i are pure, single-frequency quantum states of the signal (s) and idler (i) photons, 

and k=1,2,…,D is the mode number, as indicated in Fig. 3 i). Such a state (Eq. 1) is of particular 

importance for quantum information processing25. In particular, only pure states show efficient 

Hong-Ou-Mandel interference for gate implementation, which is at the basis of linear optical 

quantum computation (LOQC)1 . Furthermore, this entangled state can be turned under a single-

photon unitary transformation into a linear cluster state26, required for the measurement-based 

quantum computation concept27. 

In general, the exploitation of quDit states for quantum information processing motivates the need 

for high-dimensional operations that enable access to multiple modes with a minimum number of 

components. While the individual elements (phase shifters and beam splitters) employed in the 

framework of spatial-mode quantum information processing usually operate on only one or two 

modes at a time1, the frequency domain is ideally suited for global operations, i.e. acting on all 

system modes simultaneously. Through the merging of the fields of quantum state manipulation 

and ultrafast optical signal processing, state-of-the-art, yet established radio-frequency (RF) and 

telecommunications technologies28 can be used to simultaneously address multiple frequency 

modes and enact high-dimensional coherent control and fundamental optical gate operations, 

achieving a scalable and practical quantum platform29. In particular, optical phase gates for 

manipulating high-dimensional quDits can be directly implemented using programmable phase 
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filters. The coherent mixing of multiple modes (a high-dimensional ‘beam splitting’ in the 

frequency domain) can be achieved through deterministic frequency conversion in electro-optic 

modulators. More importantly, as these two components are electronically-tunable, versatile 

operations can be performed in real-time without modifying the experimental setup (or the device), 

by simply adjusting the filter control and electrical modulation signal. By combining these 

elements, basic high-dimensional photon operations can be implemented in a single and robust 

spatial mode.  

To implement this concept, we realized a setup to perform basic gate operations for coherent state 

control using a configuration composed of two programmable filters and one electro-optic phase 

modulator, as schematized in Fig. 1 and explained in more detail in Fig. 3. The first programmable 

filter was used to impose an arbitrary spectral amplitude and phase mask on the high-dimensional 

state, see Fig. 3 ii). This manipulated state was then sent to an electro-optic phase modulator, which 

was driven by an RF frequency synthesizer (see Methods). The imposed phase modulation 

generated coherent sidebands from the input frequency modes, see inset in Fig. 1. When the 

sideband frequency shift was chosen to match the spectral mode separation of the quantum state, 

i.e. the FSR, these input frequency modes were coherently mixed, see Methods and Fig. 3 iii). 

Then, a second programmable filter (Fig. 3 iv) was used to select different, individual frequency 

components of the manipulated state through the application of a second amplitude mask. Finally, 

each of the two photons was routed to a separate single photon detector for coincidence counting 

(Fig. 3 v).  

We used this manipulation scheme to design well-defined quantum operations, which we exploited 

for Bell-test measurements and quantum state tomography. In particular, we prepared the RF 

driving signal in such a way to enable the mixing of two, three, or four adjacent frequency modes, 
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see Methods. In combination with single photon detection, this allowed us to perform projection 

measurements of the form |ΨProj.⟩ = ∑ 𝛼𝑘𝑒𝑖𝜑𝑘|k̅ + 𝑘⟩𝐷−1
𝑘=0 , for a given frequency mode k̅, where 

the projection amplitudes k, as well as the phases k, can be arbitrarily chosen for each photon. 

Since the state amplitudes ck in Eq. 1 were measured to be very similar, see Fig. 2a, we assumed 

the generation of maximally-entangled states with equal amplitudes, i.e. |Ψ⟩ = ∑ 𝑐𝑘|𝑘⟩s|𝑘⟩i
𝐷
𝑘=1 ≈

1

√𝐷
∑ |𝑘⟩s|𝑘⟩i

𝐷
𝑘=1 . By considering any two, three, and four adjacent frequency modes, we 

characterized the entangled quantum states and compared our measurements to these ideal cases. 

Using the projections for both photons |ΨProj.⟩ =
1

√𝐷
∑ 𝑒𝑖𝑘𝜃|k̅ + 𝑘⟩𝐷−1

𝑘=0 , quantum interference was 

measured in the coincidence counts as a function of the phase 𝜃, see Methods. The quantum 

interference for D = 2, 3 and 4 is shown in Fig. 4 a-c) with raw visibilities of 83.6%, 86.6%, and 

86.4% (without background subtraction). These values violate the respective Bell inequalities2, as 

they exceed the thresholds of 71%, 77%, and 81.7%, respectively, thus confirming entanglement, 

see Methods. Furthermore, a larger set of projection measurements was used to perform quantum 

state tomography, a method that allows the full experimental characterization of an unknown 

quantum state by reconstructing its density matrix, see Methods. We present in Fig. 4 d-f) these 

matrices for D = 2, 3, and 4, showing very good agreement between the maximally-entangled and 

measured quantum states with fidelities of 88.5%, 80.9%, and 76.6%, respectively. 

 

In conclusion, by exploiting a frequency-domain approach, our scheme allows the direct 

generation of high-dimensional entangled two-photon states (composed of a quantum 

superposition of high-purity states) in an integrated platform. We achieved flexible coherent 

control of these states through the manipulation of their frequency components using state-of-the-

art, yet commercially available programmable telecommunications filters and off-the-shelf RF 
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photonics components. This makes possible the simple execution of D-dimensional manipulations 

and mode-mixing operations in a single, robust spatial mode, furthermore enabling their 

combination with other entanglement concepts. Our scheme finds immediate applications, e.g., for 

fundamental investigations of quantum nonlocality and high-dimensional quantum state 

characteristics, as well as for large-alphabet fibre-based quantum communications. By sending the 

entangled states through a 24.2 km long fibre telecommunications system (standard single mode 

and dispersion-compensating fibre elements), and then repeating the Bell inequality test, we 

confirmed that the entanglement was preserved over significant propagation distances, see 

Methods and Extended Data, Fig. 1. Furthermore, the concatenation30 of the basic manipulation 

units shown here, as well as the implementation of arbitrary RF modulation waveforms and phase 

masks, will enable the realization of more complex and efficient gates, thus allowing access to 

high-dimensional quantum computing logic in optical circuits of manageable experimental 

complexity. For this, the quality and detection efficiency of the states can be significantly enhanced 

by reducing insertion losses of the coherent control elements (here 14.5 dB). Using on-chip 

wavelength and phase filters together with integrated phase modulators will significantly reduce 

the losses and enable the implementation of several components in a compact platform12.  

Remarkably, our approach can also easily support the generation and control of even higher 

dimensional states. This can be achieved, e.g., by decreasing the FSR of the resonator and using a 

programmable filter with a higher frequency resolution to access the full dimensionality of the 

generated state. For example, the maximum modulation bandwidth of 600 GHz used here together 

with an FSR of ~6.25 GHz would readily lead to a 96 x 96 dimensional system, corresponding to 

as many as 13 qubits.  
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Our results indicate that microcavity-based high-dimensional frequency-entangled states and their 

spectral-domain manipulation open up new venues for reaching the processing capabilities 

required for meaningful quantum information science in a powerful and practical platform. 
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Figures:  

 

 

Figure 1 | Experimental setup for high-dimensional quantum state generation and control. 

A passively mode-locked laser was coupled into the integrated microring resonator after being 

spectrally filtered to precisely excite a single resonance. Spontaneous four-wave mixing (SFWM) 

led to the generation of photon pairs (signal and idler) spectrally symmetric to the excitation and 

in a quantum superposition of the frequency modes defined by the resonances. Programmable 

filters and a modulator were used for manipulating the state, before the signal and idler photons 

were detected by two single photon counters.  
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Figure 2 | Characterization of the quantum state dimensionality. (a) Measured joint spectral 

intensity of the high-dimensional quantum state, showing photon coincidences only at symmetric 

mode pairs (i.e. on the diagonal of the matrix) and revealing a frequency correlation. (b) Two-

photon state dimensionality (Schmidt number) as a function of the considered resonance pairs, 

symmetric to the excitation frequency, with the upper bound (blue crosses), obtained from the 

second-order coherence, and lower bound (red circles), calculated from the correlation matrix. 

Inset: Measured second-order coherence of a single photon emitted at one specific resonance with 

a maximum of 1.92±0.03, corresponding to 1.086±0.03 effective modes. The experiment was 
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repeated for each signal and idler resonance, returning comparable values. The error 

bars represent the 95% confidence bounds of the coefficient retrieved from a fit to the second-

order coherence curve. 

 

 

Figure 3 | Experimental implementation of the coherent control of frequency-entangled high-

dimensional quantum states. Individual steps to control, manipulate and characterize the high-

dimensional quantum states are displayed, showing for each one the equipment used and a 

schematic of the modification imposed on the quantum state in the spectral domain. i) The initial 
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states were generated using the operational principle illustrated in Fig. 1. ii) Using a programmable 

filter (PF1) any arbitrary spectral phase and amplitude mask can be imposed on the quantum states 

for manipulation. iii) An electro-optic modulator (Mod), driven by a radio-frequency synthesizer 

was used to coherently mix different frequency components of the high-dimensional states. In 

particular, such an operation can be precisely controlled by using appropriate electronic radio-

frequency signals for, e.g., the mixing of 2, 3, 4 or (in principle) more adjacent frequency modes. 

iv) A second programmable filter (PF2) can impose an amplitude and phase mask and route the 

signal and idler to two different paths. v) The photons were then detected using single photon 

counters and timing electronics. This step, together with the previous adjustable coherent control, 

allows the implementation of adaptable projections, which can then be used, e.g., for Bell 

measurements, or quantum state tomography – shown in Fig. 4. The complete mathematical 

description of all operations (indicated by APF and AMod) can be found in the Methods section. 
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Figure 4 | Bell inequality violation and quantum state tomography of frequency-entangled 

states. To demonstrate the viability of the coherent control scheme described in Fig. 3, we 

performed a set of projection measurements. For the quantum interference characterization of 

quDit with D=2 a), D=3 b), and D=4 c), such states were projected on a superposition of D 

frequency modes with different phases. By changing these phases, a variation in the coincidence 

counts was measured (the flat black curve being the recorded background). Raw visibilities of 

83.6%, 86.6%, and 86.4% for the quantum interference were obtained (without background 

subtraction), exceeding the visibilities of 71%, 77%, and 81.7%, respectively required to violate a 

Bell inequality for the D=2, D=3, and D=4 states. By exploiting the ability to carry out arbitrary 

projection measurements on the signal and idler photon independently, we performed full quantum 
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state tomography to experimentally reconstruct the density matrix of the entangled quDit states. 

We achieved fidelities of 88.5%, 80.9%, and 76.6% for D=2 d) D=3 e), and D=4 f), respectively, 

demonstrating very good agreement between the measured and the expected maximally-entangled 

states. 

 

Methods:  

Experimental quantum state generation and control. We use an on-chip microring resonator 

fabricated from a high refractive index glass17, with a free spectral range of 200 GHz and a Q-

factor of 235,000. The input and output waveguides are featured with mode converters and are 

connected to polarization-maintaining fibres, resulting in coupling losses of <1.6 dB per facet17. 

In addition to the photonic chip, we used the following standard components, where all optical 

parts were connected using polarization-maintaining single-mode optical fibres: Mode-locked 

laser (PriTel), electro-optic phase modulator (EO-Space), radio-frequency (RF) signal generator 

(Agilent Technologies), programmable filter (Finisar Waveshaper), single photon detectors 

(Quantum Opus), timing electronics (PicoQuant).  

During our measurements, we ensured that the microring excitation was stable, i.e. showing less 

than 3% power fluctuations. Furthermore, the electro-optical modulation (frequency shift and 

intensity distribution) and programmable optical filtering (applied spectral phase and attenuation) 

presented no measurable fluctuations. The optimization of our experimental implementation can 

be pursued through the following: First, the losses can be reduced, which will increase the 

measured coincidence-to-accidental ratio and thus the visibility of the quantum interference and 

the fidelity of the tomography measurements. Second, the quantum states themselves can be 

purified, i.e. through quantum state distillation.  
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The total transmission loss of the coherent control setup amounted to 14.5 dB (1 dB for the notch 

filter, 4.5 dB for the first programmable filter, 3.5 dB for the modulator, and 5.5 dB for the second 

programmable filter). These losses can be reduced through the use of integrated devices12 (optical 

modulators, filters and phase controllers) and/or specially-designed programmable filters, e.g. 

based on combinations of fibre Bragg gratings and fibre-based phase shifters. 

Due to the nature of the SFWM process, the generated states do not have equal amplitudes over 

all frequency modes. This slight imbalance reduces the measured quantum interference visibility 

and state fidelity, as their determination is based on the assumption of maximally-entangled states. 

By performing quantum state distillation31, these amplitudes can be made equal to maximize the 

entanglement.  

 

Frequency mixing using electro-optic phase modulation. The frequency mixing of the single-

photon modes was performed by means of electro-optic phase modulation, driven by a single 

radio-frequency tone32,33. For the case of a single optical frequency mode input, phase modulation 

creates side-bands, the amplitudes and spectral spacing of which can be controlled via the 

modulation voltage and RF frequency, respectively. If an integer multiple of this side-band spacing 

matches the FSR of the ring resonator, the mixing of optical signals in neighbouring resonances 

takes place.  

This process is governed by a linear, unitary, and time-dependent operator, which has the following 

form in the time domain: 

𝐻𝑡 = 𝑒i𝑉m𝜅 sin(2𝜋𝜈m𝑡+𝜙m). 
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Here, i is the imaginary unit, t represents time, Vm is the voltage amplitude of the RF tone, is the 

electro-optical coefficient of the phase modulator, m is the RF frequency, and m is the initial 

phase. 

Due to its intrinsic time-periodicity, this operator can be expressed in the form of an infinite 

trigonometric series, 

𝐻𝑡 = 𝑒i𝑉m𝜅 sin(2𝜋𝜈m𝑡+𝜙m) = ∑ 𝑎𝑛𝑒i2𝑛𝜋𝜈m𝑡∞
𝑛=−∞ .  

The side-band coefficient 𝑎𝑛 is determined by the Jacobi-Anger expansion: 

𝑎𝑛 = 𝐽𝑛(𝑉m𝜅)𝑒i𝑛𝜙m  

where 𝐽𝑛(𝑉m𝜅) is the Bessel function of the first kind and of order n, evaluated at Vm. The Bessel 

coefficients determine the side-band amplitudes, and thus for a given input optical signal, the 

phase-modulated output is described by a series of harmonic functions weighted by these 

coefficients. Each frequency mode is split into a series of modulation products (frequency modes), 

spectrally spaced by multiples of the driving frequency m.  

The advantage of this method is that the achievable modulation bandwidth is not only dependent 

on the driving frequency (as is the case for amplitude modulation), but also on the voltage 𝑉m. This 

means that a low-frequency RF tone (low m) can generate modulation products at high 

frequencies, provided that a sufficiently high value of Vm is supplied. 

In our experiments, FSR = 200 GHz and 𝜈m ≈ 33.3 GHz. Using a sine-wave RF signal, we 

achieved, for the D=2 and D=3 case, 11% power transfer to each of the ±200 GHz modes, while 

8% of the power remained (unmodulated) in the fundamental frequency, leading to the mixing of 

a resonance mode with its two first-neighbours. For D=4, we achieved a 4% power transfer to the 

±100 GHz as well as ±300 GHz modulation sidebands, leading to a mixing of four resonance 

modes in a vacuum mode, see Extended Fig. 2. The rest of the power was lost to other modulation 
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sidebands, not required for the targeted mixing process. This loss and slight unbalance in the power 

distribution can be mitigated by using more complex modulation functions, e.g. those produced by 

arbitrary waveform generators. Furthermore, by using higher bandwidth electro-optic modulation 

schemes34 or/and decreasing the microring FSR35,45, it is possible to mix a larger number of 

frequency modes, which can also enable the direct interference of signal and idler photons.   

Quantum mechanically, an operator that describes this process and which transforms the input into 

the output state is defined as36,37: 

 𝐴Mod
{s,i}

= ∑ ∑ 𝑐{s,i},𝑘̅−𝑙̅
Mod𝐷

𝑙=̅1
𝐷
𝑘̅=1 |𝑙⟩̅⟨𝑘̅|, 

for the signal (s) and idler (i) photons. The mixing coefficients are related to the side-band 

modulation terms by 𝑐{s,i},𝑥
Mod = 𝑎𝑥⋅𝑝 where p is a natural number such that pm matches the FSR of 

the ring resonator.  

 

Schmidt mode decomposition. A frequency-entangled two-photon state can be described using 

its joint spectral amplitude38 (JSA) 𝐹(𝜔s, 𝜔i). The dimensionality of such an entangled state can 

be estimated by performing a Schmidt mode decomposition. In particular, the Schmidt number K 

represents the lowest amount of significant orthogonal modes in the system39 (defined as 𝐾 =

(∑ 𝜆𝑛
2)

−1
, where 𝜆𝑛 are the Schmidt eigenvalues with ∑ 𝜆𝑛 = 1). However, it is experimentally 

challenging to extract the JSA as the measurement requires the reconstruction of the state’s full 

phase information. Instead, a lower bound for the Schmidt number can be experimentally 

determined by measuring the joint spectral intensity (JSI) |𝐹(𝜔s, 𝜔i)|2 of the two-photon state. 

The JSI can be for example measured by performing spectrally-resolved coincidence 

measurements, as shown in Fig. 2a. Even without the full phase information, the JSI can be used 
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to approximate the JSA as 𝐹(𝜔s, 𝜔i) ≈ √|𝐹(𝜔s, 𝜔i)|2. This assumption can in turn be used to 

determine the lower bound for the Schmidt number, by extracting the Schmidt eigenvalues 𝜆𝑛 

using a singular value decomposition of √|𝐹(𝜔s, 𝜔i)|2, and calculating 𝐾 = (∑ 𝜆𝑛
2)

−1
. 

 

Time-domain mode measurements. The time-domain second-order coherence function of a state 

is directly correlated to the number of effective modes (Neff) in the system40. Assuming that the 

amplitudes of these modes are equal, the maximum of the second-order coherence function is given 

by40 𝑔s,s
(2)(𝑡 = 0) = 1 + 1

𝑁eff
 . If a state is measured to only have a single mode (𝑔s,s

(2)= 2), the state 

is pure41. If both signal and idler are measured to be single mode, the joint two-photon state is fully 

separable and no entanglement is present41. The generation of pure states is intimately linked to 

the pump configuration used to excite the photon pairs42. In particular, if the excitation bandwidth 

is equal to the bandwidth of the signal and idler photons, such a desirable high-purity frequency 

state can be generated42. This condition can be achieved if the microring resonator is pumped by 

means of a broadband pulsed laser, which is spectrally filtered to excite only a single resonance. 

Such a resonance acts as an additional spectral filter, ensuring that the input pulse matches the full 

resonance bandwidth, so that the effective frequency mode per signal/idler resonance is expected 

to approach one.  

 

Quantum interference measurement. We performed Bell tests, i.e. measurements that show the 

violation of classical inequalities. In the experiments presented here, we considered states with D 

= 2, D = 3 and D = 4. For a D-dimensional bipartite system, a Bell parameter 𝐼𝐷 can be defined, 

where ID > 2 denotes entanglement2. The value of ID can be extracted from the visibility associated 
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to the quantum interference measurements, which can be obtained by projecting the states onto the 

vectors: 

|ΨProj.⟩ =
1

𝐷
(∑ 𝑒𝑖𝑘𝜃|k + k̅̅ ̅̅ ̅̅ ̅⟩

s
𝐷−1
𝑘=0 ) (∑ 𝑒𝑖𝑘𝜃|𝑘 + 𝑘̅̅ ̅̅ ̅̅ ̅⟩

i
𝐷−1
𝑘=0 )  

for D=2, D=3 and D=4. We implemented these projections by adjusting the first programmable 

filter and choosing the modulation frequency in such a way that the modes |𝑘⟩,   |𝑘 +

1⟩, |𝑘 + 2⟩, and |𝑘 + 3⟩  were mixed. This allowed us to measure: 

|⟨ΨProj.,𝐷=2(𝜃)|ψ𝐷=2⟩|2,  

|⟨ψProj.,𝐷=3(𝜃)|ψ𝐷=3⟩|2, and  

|⟨ψProj.,𝐷=4(𝜃)|ψ𝐷=4⟩|2. 

The expected quantum interference signal takes the form: 

𝐶𝐷=2(𝜃) = 1 + 𝜀2 ⋅ cos(2𝜃), 

𝐶𝐷=3(𝜃) = 3 + 2𝜀3 ⋅ [2 cos(2𝜃) + cos (4𝜃)], 

𝐶𝐷=4(𝜃) = 4 + 2𝜀4 ⋅ [3 cos(2𝜃) + 2 cos(4𝜃) + 𝑐𝑜𝑠(6𝜃)], 

where D (D = 2, 3 or 4) emerges from a symmetric noise model2, and describes the deviation from 

a pure, maximally-entangled quantum state. This coefficient is related to the visibility through the 

expressions:  

𝑉2 = 𝜀2, 

𝑉3 =
3𝜀3

2+𝜀3
, and 

𝑉4 =
4𝜀4

2+2 𝜀4
. 

To achieve a violation of the Bell inequality, here expressed in terms of visibilities, the following 

relations must be fulfilled2: 

1

√2
≈ 0.7071 < 𝑉2, 
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3(6√3−9)

6√3−5
≈ 0.7746 < 𝑉3, and 

6

3+√2+√10−√2
≈ 0.8170 < 𝑉4. 

 

Density matrix reconstruction. A very detailed and instructive summary of how to perform 

quantum state tomography on qubits has been presented by D.F.V. James et al.43, which was then 

extended to quDits by R.T Thew et al.44. In short, quantum state tomography is an experimental 

method that allows to extract the density matrix of a quantum state. For a given |Ψ⟩ the density 

matrix is defined as 𝜌 = |Ψ⟩⟨Ψ|. 

It is possible to reconstruct 𝜌 by performing a series of measurements described via projection 

wave vectors |Ψ𝑣⟩. The coincidence counts collected for each projection are given by: 

𝑛𝑣 = 𝐶⟨Ψ𝑣| 𝜌|Ψ𝑣⟩ 

where C is a constant depending on the integration time. The measured density matrix can then be 

reconstructed using the relations: 

𝜌 = 𝐶−1 ∑ 𝑀𝑣𝑛𝑣𝑣 , 

𝑀𝑣 = ∑ Γ𝑥(𝐵−1)𝑥,𝑣𝑥 , 

𝐵𝑥,𝑦 = ⟨Ψ𝑥| Γ𝑦|Ψ𝑥⟩, and 

𝐶 = ∑ 𝑛𝑘

𝑘

, for  𝑇𝑟{𝑀𝑘} = 1 . 

In order to deduce 𝜌 from the measured values, a set of linearly independent and normalized 

matrices Γ is required. Any set of such matrices can be used as long as they fulfill the requirement43 

𝑇𝑟{Γ𝑥Γ𝑦} =  𝛿𝑥,𝑦. The density matrix can then be extracted from any set of projection 

measurements that results in an invertible matrix B. 
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For the reconstruction of qubits (D = 2), we chose the following projections for each photon: 

|k̅⟩, |k̅ + 1⟩, 
1

√2
(|k̅⟩ + |k̅ + 1⟩), and 

1

√2
(|k̅⟩ + 𝑖|k̅ + 1⟩), resulting in 16 different two-photon 

projection measurements. For the D = 3 case, each photon has to be projected onto 9 different 

vectors, and all 81 combinations have to be measured. We chose the following single photon 

projections:  
1

√2
(|k̅⟩ + |k̅ + 1⟩), 

1

√2
(|k̅⟩ + |k̅ + 2⟩), 

1

√2
(|k̅ + 1⟩ + |k̅ + 2⟩), 

1

√2
(𝑒

2𝜋

3
𝑖|k̅⟩ + 𝑒−

2𝜋

3
𝑖|k̅ + 1⟩), 

1

√2
(𝑒−

2𝜋

3
𝑖|k̅⟩ + 𝑒

2𝜋

3
𝑖|k̅ + 1⟩),  

1

√2
(𝑒

2𝜋

3
𝑖|k̅⟩ + 𝑒−

2𝜋

3
𝑖|k̅ + 2⟩),  

1

√2
(𝑒−

2𝜋

3
𝑖|k̅⟩ + 𝑒

2𝜋

3
𝑖|k̅ + 2⟩), 

1

√2
(𝑒

2𝜋

3
𝑖|k̅ + 1⟩ + 𝑒−

2𝜋

3
𝑖|k̅ + 2⟩), 

1

√2
(𝑒−

2𝜋

3
𝑖|k̅ + 1⟩ + 𝑒

2𝜋

3
𝑖|k̅ + 2⟩). 

Finally, for the D=4 case, we chose the following: 
1

√3
(|k̅ + 1⟩ + |k̅ + 2⟩ + |𝑘̅ + 3⟩),

1

√3
(|𝑘̅ + 1⟩ + 𝑒

2𝜋

3
𝑖|𝑘̅ + 2⟩ + 𝑒−

2𝜋

3
𝑖|𝑘̅ + 3⟩) ,

1

√3
(|𝑘̅ + 1⟩ + 𝑒−

2𝜋

3
𝑖|𝑘̅ + 2⟩ + 𝑒

2𝜋

3
𝑖|𝑘̅ +

3⟩) ,
1

√3
(𝑒

2𝜋

3
𝑖|𝑘̅ + 1⟩ + |𝑘̅ + 2⟩ + |𝑘̅ + 3⟩) ,

1

√3
(|𝑘̅⟩ + |𝑘̅ + 2⟩ + |𝑘̅ + 3⟩),

1

√3
(|𝑘̅⟩ + 𝑒

2𝜋

3
𝑖|𝑘̅ +

2⟩ + 𝑒−
2𝜋

3
𝑖|𝑘̅ + 3⟩) ,

1

√3
(|𝑘̅⟩ + 𝑒−

2𝜋

3
𝑖|𝑘̅ + 2⟩ + 𝑒

2𝜋

3
𝑖|𝑘̅ + 3⟩) ,

1

√3
(|𝑘̅⟩ + 𝑒

2𝜋

3
𝑖|𝑘̅ + 2⟩ + |𝑘̅ +

3⟩) ,
1

√3
(|𝑘̅⟩ + |𝑘̅ + 1⟩ + |𝑘̅ + 3⟩),

1

√3
(|𝑘̅⟩ + 𝑒

2𝜋

3
𝑖|𝑘̅ + 1⟩ + 𝑒−

2𝜋

3
𝑖|𝑘̅ + 3⟩) ,

1

√3
(|𝑘̅⟩ + 𝑒−

2𝜋

3
𝑖|𝑘̅ +

1⟩ + 𝑒
2𝜋

3
𝑖|𝑘̅ + 3⟩) ,

1

√3
(|𝑘̅⟩ + |𝑘̅ + 1⟩ + 𝑒

2𝜋

3
𝑖|𝑘̅ + 3⟩) ,

1

√3
(|𝑘̅⟩ + |𝑘̅ + 1⟩ + |𝑘̅ + 2⟩),

1

√3
(|𝑘̅⟩ +

𝑒
2𝜋

3
𝑖|𝑘̅ + 1⟩ + 𝑒−

2𝜋

3
𝑖|𝑘̅ + 2⟩) ,

1

√3
(|𝑘̅⟩ + 𝑒−

2𝜋

3
𝑖|𝑘̅ + 1⟩ + 𝑒

2𝜋

3
𝑖|𝑘̅ + 2⟩) ,

1

√3
(𝑒

2𝜋

3
𝑖|𝑘̅⟩ + |𝑘̅ + 1⟩ +

|𝑘̅ + 2⟩). 

A density matrix associated to a physical system has to be Hermitian and positive-definite, 

however the matrix extracted from measurements usually does not comply with these 

requirements. To retrieve a meaningful , we performed a maximum-likelihood estimation, which 

is a method used to find the physically-realistic density matrix closest to the measured one43.  
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The fidelity is a useful metric that can be extracted from the reconstructed density matrix, defined 

as the overlap between the ideal theoretical and measured , and given by 𝐹 =

Tr([√𝜌th 𝜌exp√ 𝜌th]1/2)2. A fidelity of one describes a perfect overlap with the ideal entangled 

state. 

 

Frequency-entangled quantum state transmission over long fibre distances. To demonstrate 

that our approach is suitable for quantum communication, we sent the frequency-entangled states 

through 20 km of standard single mode fibre (approximately 4.5 dB loss) before being analyzed 

by our coherent control setup. The chromatic fibre dispersion caused a temporal walk-off of the 

frequency components (349 ps/nm over the 20 km propagation), as well as a constant phase shift 

among them. This shift does not degrade the quantum state, and can be compensated through phase 

modification by the first programmable filter. To achieve efficient frequency mixing, the temporal 

walk-off was corrected by adding 4.2 km of dispersion compensating fibre (3.6 dB loss, -350 ps/nm 

at 1550 nm). 
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Extended Data: 

 

 

Extended Data Figure 1 | Bell inequality violation for frequency entangled states after 24.2 

km fibre propagation. To show that frequency-entangled states can be used towards quantum 

communication schemes, we sent the signal and idler photon each through 20 km of standard 

telecommunications followed by 4.2 km long dispersion-compensating fibre. For D=2, we 

measured quantum interference with a visibility of 79.8% (violating a Bell inequality for D=2), 

thus demonstrating that entanglement was maintained over this distance.  
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Extended Data Figure 2 | Coherent mixing of multiple frequency modes. D modes (here, D=2, 

3 or 4) are spectrally selected (solid black line) and mixed (red arrows) by means of an electro-

optic phase modulator. The frequency mode where all components overlap (red dashed line) is 

then selected via a narrow spectral filter (blue dashed window). For D=2 and 3, a frequency shift 

of 200 GHz (equal to the FSR) is implemented, whereas for D=4 two different frequency shifts of 

100 GHz (equal to 1/2 FSR) and 300 GHz (equal to 3/2 FSR) are enforced. In all cases, this is 

achieved through sideband generation. Note that for D=4, and in contrast to D=2 and 3, the final 

frequency mode does not overlap with any microcavity resonance. 


