

Pereira-Caro, G., Ludwig, I. A., Polyviou, T., Malkova, D., Garcia, A., Moreno-Rojas, J. M., and Crozier, A. (2016) Identification of plasma and urinary metabolites and catabolites derived from orange juice (poly)phenols: analysis by high-performance liquid chromatography–high-resolution mass spectrometry. Journal of Agricultural and Food Chemistry, 64(28), pp. 5724-5735. (doi:10.1021/acs.jafc.6b02088)

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/123141/

Deposited on: 09 September 2016

Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk

Identification of Plasma and Urinary Metabolites and Catabolites Derived from Orange Juice (Poly)phenols: Analysis by High Performance Liquid Chromatography-High Resolution-Mass Spectrometry

Gema Pereira-Caro[§], Iziar A. Ludwig^{\$}, Thelma Polyviou[¶], Dalia Malkova[¶], Ada García[¶], José Manuel Moreno-Rojas[§], and Alan Crozier^{#*}

[§]Postharvest Technology and Agrifood Industry Area, Andalusian Institute of Agricultural and Fishery Research and Training (IFAPA) Alameda del Obispo, Córdoba. Spain.
[§]Department of Food Technology, Universitat de Lleida, Lleida, Spain
[¶] School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Science, School of Medicine, University of Glasgow, Glasgow, UK
[#]Department of Nutrition, University of California, Davis, California, USA

Corresponding Author

*Department of Nutrition, University of California, Davis, CA 95616.

E-mail: alan.crozier44@gmail.com. Tel:+1 530 754 0450

1	ABSTRACT: Orange juice is a rich source of (poly)phenols, in particular the flavanones
2	hesperetin-7-0-rutinoside and naringenin-7-0-rutinoside. Following the acute consumption
3	of 500 mL of orange juice containing 398 μmol of (poly)phenols by 12 volunteers, 0-24 h
4	plasma and urine samples were analysed by targeted high-performance liquid
5	chromatography-high resolution-mass spectrometry in order to identify flavanone
6	metabolites and phenolic acid and aromatic catabolites. A total of 19 flavanone metabolites
7	which comprised di-O-glucuronide, O-glucuronide, O-glucuronyl-sulfate, and sulfate
8	derivatives of hesperetin, naringenin and eriodictyol, and 65 microbial-derived phenolic
9	catabolites, such as phenylpropanoid, phenylpropionic, phenylacetic, benzoic and
10	hydroxycarboxylic acids and benzenetriol and benzoylglycine derivatives, including free
11	phenolics and phase II sulfate, glucuronide and methyl metabolites, were identified or
12	partially identified in plasma and/or urine samples. The data obtained provide a detailed
13	evaluation of the fate of orange juice (poly)phenols as they pass through the gastrointestinal
14	tract, and are absorbed into circulatory systems prior to renal excretion. Potential pathways
15	for these conversions are proposed.
16	

17 KEYWORDS: orange juice, flavanones, HPLC-HR-MS identification, urinary and plasma

18 *metabolites; colon-derived phenolic catabolites, bioavailability, humans*

19

20 ■INTRODUCTION

Human intervention trials have provided evidence for the protective effects against chronic 21 22 diseases of a fruit and vegetable (poly)phenol-rich diet.^{1,2} Fruit juices represent a further option for consumers to increase their intake of (poly)phenols. In particular, orange juice (0]) 23 24 is of interest due to its widespread consumption and high flavanone content, predominantly in 25 the form of hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside³. Epidemiological prospective studies have shown consistent associations between the intake of flavanone-26 containing citrus fruit and prevention of various types of cancer,^{4,5,6} and regular consumption 27 of OI has been linked to improved vascular function.⁷ 28

29 Among the factors necessary to elucidate the mode of action underlying the potential protective effects of flavanones in humans, is an understanding of the absorption, disposition, 30 metabolism and excretion (aka bioavailability) of flavanones in vivo. Following ingestion, OI 31 flavanones were, until recently, considered to be poorly bioavailable with only relatively small 32 amounts of the ingested dose entering the systemic circulation, not as the parent compounds 33 but as phase II metabolites, mainly glucuronide and sulfate derivatives, with studies reporting 34 35 peak plasma concentration ranging from 63 to 1500 nM^{8,9} and urinary recoveries <5-16% of intake.¹⁰⁻¹³ Research with ileostomists has shown that \sim 70% of ingested flavanones pass to 36 the colon¹⁴ where they are degraded by the action of the microbiota giving rise, principally to 37 small phenolic and aromatic acid catabolites¹⁰⁻¹¹ which are absorbed into the circulatory 38 system. When urinary excretion of the phase II flavanone metabolites and the colonic 39 catabolites are taken into account the bioavailability of OJ flavanones increases markedly.¹⁰ 40

41 To date, a number of studies have investigated the absorption, metabolism and excretion of OJ (poly)phenols in humans^{8-13,15,16} and most have focused on the analysis of 42 43 flavanone metabolites in plasma and/or urine, without taking in consideration the major transformations mediated principally by the colonic microbiota. The aim of this study was to 44 45 apply targeted HPLC-HR-MS methodology, which provides high sensitivity and selectivity, to obtain detailed and novel information on the identity of metabolites and colon-derived 46 phenolic catabolites in plasma and urine 0-24 h after acute consumption of 500 mL of OJ by 12 47 physically-fit male volunteers. 48

49

50 ■MATERIAL AND METHODS

51 **Chemicals and Reagents.** 4-Hydroxybenzoic acid, 3-hydroxybenzoic acid, ferulic acid,

52 isoferulic acid, 4'-hydroxyphenylacetic acid, 3'-hydroxyphenylacetic acid, 3',4'-

53 dimethoxyphenylacetic acid, 3'-methoxy-4'-hydroxyphenylacetic acid (homovanillic acid),

54 hippuric acid, 3,4-dihydroxybenzoic acid (protocatechuic acid), 3-methoxy-4-hydroxybenzoic

55 acid (vanillic acid), 3-hydroxy-4-methoxybenzoic acid (isovanillic acid), 3-(3'-methoxy-4'-

- 56 hydroxyphenyl)propionic acid (dihydroferulic acid), 3-(3'-hydroxy-4'-
- 57 methoxyphenyl)propionic acid (dihydroisoferulic acid), 3-(3'-methoxy-4'-hydroxy)mandelic
- 58 acid, 4'-hydroxymandelic acid, 3-(3',4'-dihydroxyphenyl)propionic acid (dihydrocaffeic acid),
- 59 3-(3',4'-dihydroxyphenyl)acetic acid (homoprotocatechuic acid), 3-(4'-
- 60 hydroxyphenyl)propionic acid, sinapic acid, phenylacetic acid, 3-(phenyl)propionic acid, 1,3,5-
- 61 trihydroxyphenol (phloroglucinol), 1,2,3-trihydroxyphenol (pyrogallol) and 1,2-
- 62 dihydroxyphenol (catechol), 3'-hydroxycinnamic acid (*m*-coumaric acid), 4'-hydroxycinnamic

63	acid (<i>p</i> -coumaric acid) and <i>p</i> -sympatol were purchased from Sigma-Aldrich (Poole, Dorset,
64	U.K.). 3'-Hydroxyhippuric acid, 3-(3'-hydroxyphenyl)hydracrylic acid, hesperetin-7-0-
65	glucuronide, naringenin-4´-O-glucuronide, and naringenin-7-O-glucuronide were purchased
66	from Toronto Research Chemicals (Toronto, ON, Canada). Coumaric acid-3´-O-glucuronide,
67	coumaric acid-4´-O-glucuronide, caffeic acid-3´-O-glucuronide, caffeic acid-3´-sulfate, caffeic
68	acid 4´-O-glucuronide, caffeic acid 4´-sulfate, ferulic acid-4´-O-glucuronide, ferulic acid-4´-
69	sulfate, isoferulic acid-3´-O-glucuronide, 3-(3´-hydroxyphenyl)propionic acid-4´-O-glucuronide
70	(dihydrocaffeic acid-4'-0-glucuronide), 3-(phenyl)propionic acid-4´-0-glucuronide, 3-(4´-
71	hydroxyphenyl)propionic acid-3'-0-glucuronide (dihydrocaffeic acid-3'-0-glucuronide), 3-(3'-
72	hydroxyphenyl)propionic acid-4´-sulfate (dihydrocaffeic acid-4'-sulfate), 3-(4´-
73	hydroxyphenyl)propionic acid-3´-sulfate(dihydrocaffeic acid-3'-sulfate), 3-(3´-
74	methoxyphenyl)propionic acid-4´-O-glucuronide (dihydroferulic acid-4´-O-glucuronide), 3-(4´-
75	methoxyphenyl)propionic-acid-3'-O-glucuronide (dihydro-isoferulic acid-3'-O-glucuronide)
76	and 3-(3'-methoxyphenyl)propionic-acid-4'-sulfate (dihydroferulic acid-4'-sulfate) were
77	kindly provided by Denis Barron (Nestle Research Center, Lausanne, Switzerland) and Gary
78	Williamson (School of Food Science and Nutrition, University of Leeds, UK). 4'-
79	Hydroxyhippuric acid was obtained from Bachem (UK) Ltd (St Helens, UK). 3-(3'-
80	Hydroxyphenyl)propionic acid was supplied by Fluorochem (Derby, UK). 3-(3'-Hydroxy-4'-
81	methoxyphenyl)hydracrylic acid was isolated in a previous study. ¹⁰ Hesperetin-7-O-rutinoside
82	(hesperidin), 4'-O-methyl-naringenin-7-O-rutinoside (didymin), and naringenin-7-O-
83	rutinoside (narirutin) were obtained from Extrasyntheses (Genay, France). Hesperetin-3'-
84	sulfate was a generous gift from Dr. Christine Morand (INRA/Clemont-Ferrand, France).
85	Formic acid and HPLC-MS grade methanol were obtained from Panreac (Barcelona, Spain).

Study Design. Twelve men aged 31.8 ± 5.7 years, with a body mass index of 21.7 ± 1.8 86 kg/m^2 mean value \pm SD) volunteered to participate in this study. All trained regularly, were fit, 87 88 healthy normotensive non-smokers and were not taking any drug therapies or supplements. Other exclusion criteria included: history of gastrointestinal disease, eating disorders and 89 90 being vegetarian. Written informed consent was provided by all participants. The study protocol was approved by the College of Medical, Veterinary and Life Sciences Ethics 91 92 Committee of the University of Glasgow and registered at BioMed Central Ltd. (http://www.controlledtrials.com/ISRCTN04271658). 93

Before attending the clinic, participants were asked to follow a low (poly)phenol diet for 2 94 days by avoiding fruits and vegetables, nuts, high-fibre products, chocolate and beverages such 95 as tea, coffee and fruit juices, as well as to abstain from consuming alcohol. On the morning of 96 the feeding trial, volunteers reported to the metabolic suite between 08.00 and 09.00 h after a 97 12-h fast and brought their 12 h overnight urine. A venous cannula was inserted and after a 10 98 min interval a 10 mL baseline blood sample was obtained. Participants then consumed 500 mL 99 of OI (Tropicana "With Bits"), homogeneity of samples was ensured by mixing and freezing in 100 bulk and, except for water intake to maintain adequate levels of hydration, no other food or 101 drink was allowed for the next 4 h. Further 10 mL blood samples were obtained 1, 2, 3, 4, 5, 6, 102 7 and 8 h after OJ consumption. Four hours after collection of the first blood sample 103 participants were provided with a white roll with butter. After blood collection at 8 h, the 104 cannula was removed and participants were provided with a standard low (poly)phenol meal 105 (a buttered white roll with ham and cheese and potato chips/crisps) after which they left the 106 107 laboratory. They were instructed to continue the low (poly)phenol diet that evening and return to the laboratory the next morning in the fasted state, to give the last blood sample. 108

In addition, after OJ consumption all urine excreted over the following time periods: 0-5, 5-8, 8-10 and 10-24 h was collected and into sealable flasks kept on ice. The total volume of each urine fraction was recorded and 2 mL aliquots were stored at -80 °C prior to analysis. Blood samples were placed in potassium EDTA tubes (BD Vacutainer Systems, UK) and immediately placed on ice. Plasma, separated within 15 min of collection by centrifugation at 2000 *g* for 15 min at 4 °C (SorvalTM ST, Thermo Scientific, San Jose, CA) was stored at -80 °C prior to analysis.

Extraction of Orange Juice. The OJ used in the feeding study was extracted using the
procedure described by Pereira-Caro.¹⁰ Briefly, 5 mL aliquots of juice, previously homogenised
using an Ultraturrax homogenizer, were extracted twice with 5 mL of methanol for 2 min and
centrifuged at 2800 *g* for 15 min at 4 °C. The pellet was extracted in the same manner with 2
mL of methanol. The 2 supernatants were pooled and reduced to dryness in vacuo, redissolved
in 6 mL of 50% aqueous methanol and stored at -80 °C prior to analysis.

Processing of Urine and Plasma. Urine samples were defrosted, vortexed, centrifuged at 122 123 16110 *g* for 10 min at 5 °C, and passed through 0.45 μm filter discs prior to the analysis of 5 μL aliquots by HPLC-HR-MS. The extraction of metabolites from the plasma samples has been 124 carried out as described by Ludwig et al.¹⁷ with some modifications. Briefly, plasma samples 125 were defrosted, vortexed and 400 μ L alignots were mixed with 10 μ L of ascorbic acid (10%, 126 v/v), and 980 µL of 1% formic acid in acetonitrile. One µg of rutin was added to the samples as 127 internal standard for plasma extraction efficiency. The samples were then vortexed for 1 min 128 and ultrasonicated for 10 min. After centrifugation at 16110 g for 15 min, supernatants were 129 130 reduced to dryness in vacuo using a concentrator plus (Eppendorf, Hamburg, Germany) and resuspended in 150 µL of distilled water containing 1% formic acid and 50 µL of methanol, 131

which was then centrifuged at 16100 *g* for 10 min and 10 μ L aliquots of the supernatant analysed by HPLC-HR-MS. The recoveries values of the internal standard were of 78 ± 14% (n = 20).

HPLC-HR-MS Analysis. Aliquots of OJ, plasma and urine were analysed using a Dionex 135 136 Ultimate 3000 RS UHPLC system comprising of a UHPLC pump, a PDA detector scanning from 137 200 to 600 nm, and an autosampler operating at 4 °C (Thermo Scientific). The HPLC conditions were previously described by Pereira-Caro et al.¹⁰. Briefly, reverse phase separations were 138 carried out using a 150 x 4.6 mm i.d. 5 µm 100Å C18 Kinetex column (Phenomenex, 139 Macclesfield, UK) maintained at 40 °C and eluted at a flow rate of 1.0 mL/min with a 45 min 140 gradient of 3-50% of 0.1% acidic methanol in 0.1% aqueous formic acid. After passing through 141 the flow cell of the PDA detector the column eluate was split and 0.2 mL/min directed to an 142 ExactiveTM Orbitrap mass spectrometer fitted with a heated electrospray ionization probe 143 (Thermo Scientific) operating in negative ionization mode. Analyses were based on scanning 144 from 100 to 1000 m/z, with in-source collision-induced dissociation at 25.0 eV. The capillary 145 temperature was 300 °C, the heater temperature was 150 °C, the sheath gas and the auxillary 146 gas flow rate were both 20 units, the sweep gas was 3 and the spray voltage was 3.00 ky. Data 147 acquisition and processing were carried out using Xcalibur 3.0 software. 148

Identification of flavanones in OJ and flavanone metabolites and phenolic acid catabolites
in plasma and urine samples were achieved by comparing the exact mass and the retention
time with available standards. In the absence of standards, compounds were tentatively
identified by comparing the theoretical exact mass of the molecular ion with the measured
accurate mass of the molecular ion. Identifications were categorized according to the
Metabolite Standards Initiative Metabolite Identification (MSIMI) levels.¹⁸

155	(Poly)phenols and <i>p</i> -sympatol in OJ were quantified on the basis of chromatographic peak
156	areas acquired at 280 nm and 325 nm by reference to standards of hesperetin-7-0-rutinoside,
157	naringenin-7-0-rutinoside, 4-0-methyl-naringenin-7-0-rutinoside , ferulic acid, p-coumaric ,
158	sinapic acid and <i>p</i> -sympatol. Hesperetin- <i>O</i> -glucosyl- <i>O</i> -rutinoside was quantified as hesperetin-
159	7-0-rutinoside equivalents, and naringenin-7-0-glucosyl-0-rutinoside and eriodictyol-7-0-
160	rutinoside were quantified as naringenin-7-0-rutinoside equivalents.

161

162 ■ RESULTS

Analysis of (Poly)phenols in Orange Juice. HPLC-PDA-HR-MS analysis detected and 163 164 quantified 9 compounds in the OJ in agreement with our previous analysis of OJ¹⁰. The main compounds were hesperetin-7-0-rutinoside (hesperidin)(246 µmol) and naringenin-7-0-165 rutinoside (narirutin) (62 umol), followed by the flavone apigenin-6.8-C-diglucoside (vicenin-166 2) (35 µmol) and the hydroxycinnamates ferulic acid-4'-O-glucoside (16 µmol), coumaric acid-167 4'-0-glucoside (11 µmol) and the flavanone 4'-0-methyl-naringenin-7-0-rutinoside (didymin) 168 (14 µmol). Small quantities of other flavanones such as hesperetin-7-0-rutinoside-3'-0-169 glucoside (4 µmol) and eriodictyol-7-0-rutinoside (eriocitrin) (4 µmol) were also present 170 along with a sinapic acid-O-hexoside (6 µmol). A total of 398 µmol of (poly)phenols were 171 present in 500 mL of OJ of which 250 µmol corresponded to the total amount of hesperetin 172 derivatives ($\sim 63\%$ of the total (poly)phenol content) and 76 µmol of naringenin derivatives 173 (~19% of the total (poly)phenol content). In addition the juice contained 27 µmol of the 174 175 amine *p*-sympatol. For structures of the fully identified OJ components see Figure 1.

176	Identification of Plasma and Urinary Metabolites and Phenolic Catabolites. A total of
177	19 flavanone metabolites and 65 phenolic and aromatic catabolites were identified or
178	tentatively identified in plasma and urine collected 0-24 h after the consumption of 500 mL of
179	OJ. Typical HPLC-HR-MS chromatograms are illustrated in Figures 2 and 3.
180	Flavanone metabolites. The HPLC-HR-MS characteristics such as the retention time,
181	accurate mass, mDa error between mass found and the accurate mass and the molecular
182	formula of the flavanone metabolites are summarized in Table 1.
183	Peaks M1 , M2 and M3 (Rts 17.3, 18.1 and 20.2 min) all had a negative exact mass at m/z
184	623.1245 (+0.48 ppm). The low collision energy spectrum in negative mode showed high
185	intensity ions at 447.0927 (+1.34 ppm), indicating a neutral loss of 176.0313 Da
186	(corresponding to an elemental formula (EF) of $C_6H_8O_6$) (glucuronide moiety) and at 271.0605
187	(+1.48 ppm) (naringenin daughter ion) indicating a further loss of 176.0322 Da. This
188	fragmentation pattern partially identifies these compounds as naringenin-O-diglucuronide
189	isomers. Because there are only three hydroxyls on the naringenin skeleton, based on the
190	likely HPLC elution order, ¹⁵ these metabolites are, respectively, the 4´,7-, 5,7- and 4´,5- <i>O</i> -
191	diglucuronides. They were detected in urine but not plasma.
192	Peak M4 (Rt 22.3 min) yielded a negative charge accurate mass at m/z 527.0490 (+0.18
193	ppm). The low collision energy spectrum in negative mode showed high intensity ions at
194	447.0927 (+1.34 ppm), indicating a neutral loss of 79.9563 Da (corresponding to an EF of a
195	SO ₃ -sulfate moiety), and the presence of SO ₃ - in the fragmentation spectra (i.e. m/z 79.9562);
196	and ions at 351.0171 (+0.56 ppm), indicating a neutral loss of 176.0319 Da (glucuronide
	· · · · · · · · · · · · · · · · · · ·

197	moiety). This metabolite, tentatively identified as a naringenin-O-glucuronyl-sulfate, has
198	previously been detected in human urine after OJ intake. ^{10,13,16}

Peaks **M5** and **M6** (Rts 27.4 and 28.7 min) had a negative exact mass at 447.0927 (+1.34 ppm) which at low collision energy had a loss of 176.0322 Da (glucuronic acid moiety) yielding a daughter ion at m/z 271.0605 (+1.48 ppm) (naringenin). Co-chromatography with authentic standards established that **M5** and **M6** peaks were naringenin-4′-*O*-glucuronide and naringenin-7-*O*-glucuronide, respectively. These metabolites were present in both plasma and urine.

Peak M7 (Rt 30.1 min) produced a negative exact mass at 351.0171 (0.56 ppm), which
with the loss of 79.9566 Da (sulfate unit) yielded a fragment at 271.0605 (naringenin). This
metabolite, tentatively identified as naringenin-4'-sulfate, has not been detected before in
either urine or plasma after OJ consumption by humans. It has, however, recently been
identified in stomach and colon lumen samples of mice after single-pass intestinal perfusion of
naringenin.¹⁹

Peaks **M8-M10** (Rts 20.9, 21.8 and 25.9 min), which appeared in urine and plasma after OJ 211 consumption, had a negative accurate mass at m/z 653.1355 (+ 1.07 ppm) which on low 212 213 collision energy gave major fragments at m/z 477.1032 (+1.04 ppm) (loss of 176.0322 Da) (glucuronic acid moiety) and m/z 301.0710 (-1.33 ppm) (hesperetin) with further loss of 214 215 176.0322 Da. The three compounds showed the same pattern and were tentatively identified as hesperetin-O-diglucuronide derivatives. **M8** was tentatively identified as hesperetin-3',7-O-216 diglucuronide and **M9** as hesperetin-5,7-*O*-diglucuronide, based on previously reported 217 elution profiles¹⁵. **M10** is probably the 3′,5-*O*-diglucuronide. 218

219	Peak M11 (Rt 24.8 min) produced a negative exact mass at m/z 557.0597 (+0.75 ppm)
220	which on low collision energy yielded major fragments at 477.1032 (+1.04 ppm) loss of
221	79.9566 Da (sulfate unit) and m/z 301.0710 (-1.33 ppm) (hesperetin) with a loss of 176.0322
222	Da. This metabolite, which has been detected previously in human urine ^{10, 13,15,16} , was
223	tentatively identified as a hesperetin-O-glucuronyl-sulfate.
224	Peaks M12-M14 (Rts 30.1, 30.5 and 33.6 min) had a negative exact mass at <i>m/z</i> 477.1032
225	(+1.04 ppm), which produced an ion at m/z 301.0710 (-1.33 ppm) (hesperetin) upon low
226	collision energy. This loss of 176.0322 Da corresponded to cleavage of a glucuronic acid
227	moiety. Co-chromatography with an authentic standard established that M13 was hesperetin-
228	7-0-glucuronide. Because there are only three hydroxyls on the hesperetin skeleton, M12 is
229	probably the 5- <i>O</i> -glucuronide which is a urinary metabolite while peak M14 is probably the
230	3'-O-glucuronide. Peaks M13 and M14 were detected in plasma after intake of OJ.
231	Peaks M15 and M16 (Rts 24.8 and 31.7 min), occurred in urine and plasma, and produced
232	a negative accurate mass at m/z 381.0279 (+1.31 ppm), which with the 79.9563 Da loss of a
233	sulfate unit yielded a major fragment at 301.0710 (-1.33 ppm) (hesperetin). Co-
234	chromatography with authentic standard established that M16 was hesperetin-3'-sulfate.
235	Because there are only three hydroxyls on the hesperetin skeleton, M15 could be tentatively
236	identified as either the 5- or the 7-sulfate.
237	Peak M17 (Rt 23.7 min) had a negative exact mass at m/z 543.0808 (+0.92 ppm) with
238	fragment with a loss of 162.0519 (+1.85 ppm) (corresponding to an EF $C_6H_8O_5$, hexose group)
239	to produce a daughter ion at m/z 381.0279 (+1.31 ppm), which with an 79.9563 Da loss of a

ACS Paragon Plus Environment

240	sulfate unit yielded a fragment at 301.0710 (-1.33 ppm) (hesperetin). This metabolite was
241	tentatively identified as a hesperetin-O-glucosyl-sulfate. It was found only in urine samples.
242	Peak M18 (Rt 29.6 min), an urinary metabolite, produced a negative accurate mass at m/z
243	367.0122 (+1.08 ppm) which with low collision energy gave rise to a m/z 287.0553 (- 1.05
244	ppm) (eriodictyol moiety). The loss of 79.9569 Da indicates cleavage of a sulfate ion. This peak
245	was, therefore, tentatively identified as an eriodictyol-sulfate.
246	Peak M19 (Rt 22.1 min) had a negative exact mass at m/z 543.0447 (+1.47 ppm). The low
247	collision energy spectrum in negative mode showed two major ions at 463.0876 (+1.07 ppm),
248	indicating a neutral loss of 79.9571 Da (sulfate unit) and at 367.0122 (+1.08 ppm) indicating a
249	loss of 176.0325 Da (glucuronide structure). This fragmentation pattern partially identifies
250	this compound as an eriodictyol-O-glucuronide-sulfate not previously detected in human
251	urine.
252	The structures of the identified flavanone metabolites are presented in Figure 4.
253	Phenolic and aromatic catabolites. The HPLC-HR-MS characteristics the phenolic and
254	aromatic are summarized in Table 2. A total of 14 phenylpropanoid acid derivatives (C1-C14)
255	were identified in human plasma and/or urine after OJ consumption, 4 of them were free
256	phenolic acids (3'-hydroxycinnamic acid, 4'-hydroxycinnamic acid, ferulic acid and isoferulic
257	acid) and 10 phase II metabolites (Table 2), mainly glucuronide and sulfate derivatives of
258	coumaric, caffeic, ferulic and isoferulic acids. All, except peak C5, were identified by comparing
259	the exact mass and the retention time with authentic standards. Peak ${f C5}$ was tentatively
260	identified as coumaric acid-4'-sulfate as this peak presented a negative exact mass at m/z

261	242.9953 (+2.41 ppm) which with low collision energy gave rise to a m/z 163.0388 (+ 1.05
262	ppm) (coumarate moiety). The loss of 79.9564 Da indicated cleavage of a sulfate ion.
263	In addition, 20 phenylpropionic acid derivatives, 8 free phenolic acids and 12 conjugate
264	derivatives (glucuronide and sulfate conjugates) were detected in plasma and urine. Peaks
265	C15, C17-27, C29, C30 and C34 (Table 2) were identified based on comparisons with
266	authentic standards. Peak C16 had a negative accurate mass at m/z 211.0607 (-3.32 ppm)
267	which with low collision energy gave rise to a m/z 181.0492 (+0.55 ppm) corresponding to a
268	standard of 3-(3'-hydroxyphenyl)hydracrylic acid, with loss of 30.0115 Da (cleavage of a
269	methoxy ion).
270	Peaks C27 and 28 had a negative exact mass at m/z 275.0225 (-1.82 ppm) and a fragment
271	at m/z 195.0657 (-2.64 ppm) (corresponding to a standard of 3-(3'-hydroxy-4'-
272	methoxyphenyl)propionic acid) indicating a further loss of 79.9568 Da (sulfate ion). The
273	identity of peak C2 7 was confirmed by reference to a standard of 3-(3'-
274	methoxyphenyl)propionic acid-4'-sulfate. The later eluting C28 was tentatively identified as 3-
275	(4'-methoxyphenyl)propionic acid-3'-sulfate. This is in keeping with the sulfates of caffeic acid
276	(C7 and C9), 3-(hydroxyphenyl)propionic acid (C21 and C22), and 3-
277	(methoxyphenyl)propionic acid (C27 and C28), where the 3'-derivative elutes after the 4'-
278	isomer.
279	Peak C31 had a negative exact mass at m/z 341.0874 (-2.03 ppm), yielding at low collision
280	energy a fragment at m/z 165.0547 (-0.48 ppm). The loss of 176.0321 Da corresponded to a
281	glucuronic acid moiety. This catabolite was putatively identified as 3-(phenyl)propionic acid-
282	3'-O-glucuronide. Peaks C32 and C33 presented a negative accurate mass at m/z 245.0123 (-

283	3.53 ppm), which yielded an ion at m/z 165.0547 (-0.48 ppm) (corresponding to a standard of
284	3-(3′/4′-hydroxyphenyl)propionic acid) upon low collision energy. The loss of 79.9576 Da
285	(sulfate ion) tentatively identified these two catabolites as 3-(phenyl)propionic acid sulfate
286	isomers. As has been described above, the earlier eluting peak C32 is tentatively identified as
287	3-(phenyl)propionic acid-4'-sulfate and C33 as 3-(phenyl)propionic acid-3'-sulfate.
288	Peaks C35-C46 corresponded to phenylacetic acid derivatives. Among them, peaks C35,
289	C39, C43-46 were identified by reference to standards and comprised a range of free phenolic
290	acids (see Table 2). Peak C36 had a negative exact mass at m/z 327.0719 (-2.75 ppm), yielding
291	at low collision energy a fragment at m/z 151.0390 (-0.66 ppm) (hydroxyphenylacetic acid
292	moiety). The loss of 176.0329 Da corresponded to a glucuronic acid group. This catabolite was
293	putatively identified as a hydroxyphenylacetic acid- <i>O</i> -glucuronide. Peaks C37 and C38
294	presented negative exact masses at m/z 230.9964 (-3.03 ppm) and a fragment at m/z
295	151.0390 (-0.66 ppm) (corresponding to a standard of hydroxyphenylacetic acid) indicating a
296	further loss of 79.9574 Da (sulfate ion). The HPLC elution order of the sulfates indicates that
297	C37 is probably 3'-hydroxyphenylacetic acid-4'-sulfate and C38 is 4'-hydroxyphenylacetic
298	acid-3'-sulfate.

Peak **C40** had a negative accurate mass at m/z 357.0828 (-3.30 ppm), yielding at low collision energy a fragment at m/z 181.0490 (+2.96 ppm) (hydroxymethoxyphenylacetic acid moiety). The loss of 176.0338 Da allowed the putative identification of this catabolite as a methoxyphenylacetic acid-*O*-glucuronide with glucuronic acid moiety at either the 3'- or 4'positions. Peaks **C41-C42** had a negative exact mass at m/z 261.0073 (-3.64 ppm) and fragments at m/z 181.0490 (+2.96 ppm) indicating a further loss of 79.9583 Da, which indicates these compounds are methoxyphenylacetic acid sulfate isomers. In view of the 306 elution order **C41** was tentatively identified as 3'-methoxyphenylacetic acid-4'-sulfate and

307 **C42** as 4'-methoxyphenylacetic acid-3'-sulfate.

Among the benzoic acid and hydroxycarboxylic acid derivatives identified, 7 corresponded 308 to free phenolics (C47, C51-54, C57, C58, see Table 2) and have been identified based on their 309 comparison with authentic standards. Peak C48 presented a negative accurate mass at m/z310 311 329.0513 (-3.04 ppm), yielding at low collision energy a fragment at m/z 153.0183 (-0.65 ppm) (corresponding to a standard of 3,4-dihydroxybenzoic acid). The loss of 176.0330 Da 312 313 allowed the identification of this catabolite as hydroxybenzoic acid-O-glucuronide derivative. Peaks C49-C50 and C55-C56 presented negative exact masses at m/z 232.9756 (-2.58 ppm) 314 and at m/z 216.9807 (-2.77 ppm), respectively, yielding at low collision energy fragments at 315 m/z 153.0183 (-0.65 ppm) (corresponded to a standard of 3,4-dihydroxybenzoic acid) and 316 137.0230 (+2.19 ppm) (corresponded to a hydroxybenzoic acid standard), with the loss of 317 318 79.9583 Da, facilitating the tentative identification of peaks **C49-C50** as hydroxybenzoic acid-319 sulfate isomers with the elution order implying that C49 is 3-hydroxybenzoic acid-4-sulfate and **C50** is 4-hydroxybenzoic acid-3-sulfate. Likewise the benzoic acid-sulfate isomers, **C55-**320 **C56**, are tentatively identified as benzoic acid-4-sulfate (**C55**) and benzoic acid-3-sulfate 321 322 (**C56**).

Other groups of phenolic and aromatic acids identified in plasma and urine after OJ consumption by humans were the benzenetriol and benzoylglycine derivatives which comprises three hydroxyphenol derivatives (peaks **C59-C61**, see Table 2) and two hydroxyhippuric acid derivatives (peak **C63-C64**, see Table 2). Except for peak **C62**, all were identified based on the comparison of their exact mass and retention time with authentic standards. Peak **C62** had a negative accurate mass at *m/z* 370.0778 (-5.67 ppm) which with

329	low collision energy gave rise to a fragment at m/z 194.0455 (-4.12 ppm) (corresponding to a
330	standard of hydroxyhippuric acid). The loss of 176.0323 Da allowed the tentative
331	identification of this catabolite as hippuric acid-O-glucuronide. Finally, the fragmentation and
332	retention time of peak C65 corresponded to those of a standard of hippuric acid (Table 2).
222	
555	

334 ■ DISCUSSION

This paper describes a comprehensive characterization of 19 flavanone metabolites and 65
colon-derived phenolic acid catabolites in human plasma and urine after OJ consumption.
Some hesperetin and narigenin metabolites have been detected in earlier studies. ^{8-13,15}
However, the current investigation identified 2 urinary flavanone metabolites, naringein-4′sulfate and an eriodictyol-*O*-glucuronyl-sulfate, and more than 40 phenolic catabolites that
had not previously been identified in human plasma and/or urine after OJ intake.

341 After ingestion and during transport through the small intestine, the 7-O-rutinosides of hesperetin and naringenin undergo limited hydrolysis of the O-rhamnose-glucose unit and 342 343 release of the aglycone. As a consequence relatively little absorption and phase II metabolism of the aglycone occurs in the enterocyte. The sugar moiety is a major determinant of the 344 absorption site and bioavailability of flavanones.^{15,20} Flavanone monoglucosides are absorbed 345 in the small intestine after hydrolysis by lactase phlorizin hydrolase present in the gut lumen 346 brush border²¹ and/or cytosolic β -glucosidase in the intestinal cells.²² In contrast, substantial 347 amounts of flavanone rutinosides are not hydrolysed and substantial amounts reach the colon 348 intact¹⁴ where the resident microbiota catalyse deconjugation of the sugar moiety¹. A portion 349

of the released aglycones is absorbed and transformed by the phase II enzymes beforeentering in circulatory system.

352	In the current study 10 hesperetin, 7 naringenin and 2 eriodictyol metabolites were
353	identified in urine after consumption of OJ while 8 hesperetin and 3 naringenin metabolites
354	were detected in plasma (Table 1, Figure 4). None of the parent OJ flavanone glycosides were
355	detected in either urine or plasma. These results are in keeping with earlier by HPLC-MS based
356	studies which identified flavanone metabolites in human biological fluids. For instance, Mullen
357	and co-workers ¹² identified a hesperetin- <i>O</i> -diglucuronide, a naringenin- <i>O</i> -diglucuronide,
358	naringenin-7-0-glucuronide and hesperetin-0-glucuronyl-sulfate in urine, and hesperetin-7-0-
359	glucuronide in both urine and plasma after consumption of OJ by healthy subjects. In a further
360	study, Bredsdorft et al. ¹⁵ identified hesperetin-3´,7- <i>0</i> -diglucuronide, hesperetin-5,7- <i>0</i> -
361	diglucuronide, naringenin-4'-0-glucuronide, hesperetin-3'-0-glucuronide and hesperetin-3'-0-
362	sulfate in urine after ingestion of OJ and an α -rhamnosidase-treated OJ. Two recent studies
363	carried out by our group detected additional metabolites, namely naringenin-4',7-0-
364	diglucuronide, naringenin-5,7-0-diglucuronide, naringenin-4′,5-0-diglucuronide, hesperetin-
365	3′,5- <i>0</i> -diglucuronide and hesperetin- <i>0</i> -glucosyl-sulfate and eriodictyol-sulfate in urine after
366	ingestion of a pulp-enriched OJ^{10} and after acute OJ intake with and without a
367	microencapsulated probiotic. ¹³ As well as these metabolites, naringenin-4'-sulfate and an
368	eriodictyol-O-glucuronyl-sulfate were detected in both plasma and urine in the current study.
369	Further metabolites were detected in urine, namely hesperetin-5-0-glucuronide, a naringenin-
370	<i>O</i> -glucuronyl-sulfate and an eriodictyol- <i>O</i> -glucuronyl-sulfate.
371	Not all the flavanone aglycones released in the distal GI tract are absorbed as sizable

amounts undergo microbiota-mediated ring fission and yield a family of low molecular weight

373	phenolic catabolites which before being absorbed, in some instances, undergoing additional
374	metabolism locally and/or in the liver and kidney before entering the systemic circulation and
375	undergoing renal excretion. ^{10, 11} Analysis of urinary phenolic catabolites after OJ consumption
376	has emphasized their involvement in the overall bioavailability of OJ (poly)phenols as well as
377	subsequent hepatic conversions that lead to hippuric acid and its hydroxylated
378	analogues ^{10,11,13} . Phase II metabolites of phenolic catabolites that have previously been
379	identified in urine include coumaric acid-3'-0-glucuronide, coumaric acid-4'-sulfate, 3-
380	(phenyl)propionic acid-4'-O-glucuronide, 3-(4'-hydroxyphenyl)propionic acid-4'-sulfate, a
381	hydroxyphenylacetic acid- <i>O</i> -glucuronide and a hippuric acid- <i>O</i> -glucuronide ⁸ . In the current
382	study with OJ, analysis of urine and plasma by HPLC-HR-MS enabled a much more
383	comprehensive profile of phenolic catabolites to be obtained (Table 2). These findings,
384	together with the results of earlier studies ^{10,13,14} and in vitro fecal incubations of OJ and OJ
385	(poly)phenols ^{11, 23} have enabled us to propose up-dates of potential catabolic routes for the
386	conversion of hesperetin-7-0-rutinoside, naringenin-7-0-rutinoside, ferulic acid-4'-0-
387	glucoside and p -sympatol (Figures 5-6). For simplification the potential routes incorporate
388	many, but not all, of the compounds listed in Table 2.

In the preparation of the proposed pathways illustrated in Figures 5 and 6, the following points were taken into consideration. The rupture of the flavanone skeleton is primarily a feature of the gut microflora while subsequent methylation and glucuronide, sulfate and glycine conjugation are mammalian in origin. Dehydroxylation and demethoxylation are almost certainly mediated by the gut microflora while demethylation and hydrogenation steps can be mediated by both microbial and mammalian enzymes. For convenience, the pathways in Figures 5 and 6 show C_6-C_3 catabolites being converted by two α -oxidations to C_6-C_1

compounds by microflora and/or mammalian enzymes. However, it is possible the C_6-C_3 396 catabolites progress directly to C_6-C_1 structures via β -oxidation and that C_6-C_2 catabolites 397 arise by independently, possibly by α -oxidation. In reality, further complexity is introduced as 398 there are multiple points at which catabolites might be absorbed. For example, a percentage of 399 some C_6 – C_3 catabolites could be absorbed and undergo β -oxidation and/or mammalian phase 400 II conjugation while the balance is subjected to microbial hydrogenation and β -oxidation 401 402 prior to absorption and mammalian conjugation. Also for some catabolites mammalian conjugation either does not occur or is incomplete. 403

Figure 5 indicates that hesperetin, released through colonic bacteria-mediated 404 405 deglycosylation, as well as being glucuronidated and sulfated, undergoes ring fission yielding 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, 3-(3'-hydroxyphenyl)hydracrylic acid and 406 isoferulic acid from the B-ring and phloroglucinol from the A-ring. It is noteworthy that 3-(3'-407 hvdroxy-4'-methoxyhydroxyphenyl)hydracrylic acid has been reported as potential 408 biomarker of the intake of OJ containing hesperetin-O-glycosides.^{10,13} Urinary excretion of 3-409 (3'-hydroxyphenyl)hydracrylic acid, which also increases after OJ intake, has also been 410 detected in urine after consumption of (+)catechin ²⁴, green tea²⁵ and mixed wine and grape 411 juice^{26,27}. The hesperetin catabolite, isoferulic acid, is further converted to dihydro-isoferulic 412 413 acid [3-(3'-hydroxy-4'-methoxyphenyl)propionic acid] which is demethylated yielding dihvdrocaffeic acid [3-(3',4'-dihvdroxyphenyl)propionic acid]. Dihvdro-isoferulic acid can also 414 be degraded to 3'-hydroxy-4'-methoxyphenylacetic acid which is further converted to 3-415 hydroxy-4-methoxybenzoic acid via shortening of the side chain. Phase II metabolites of 416 dihydro-isoferulic acid, in the form of dihydro-isoferulic acid-3'-sulfate, dihydro-isoferulic 417 acid-3'-0-glucuronide, are also produced while dihydrocaffeic acid can be converted to sulfate 418

Page 21 of 41

Journal of Agricultural and Food Chemistry

419	and glucuronide derivatives of 3-(hydroxyphenyl)propionic acid (Figure 5). Other products,
420	potentially derived from dihydrocaffeic acid via successive dehydroxylations, include 3-(3'-
421	hydroxyphenyl)propionic acid and 3-(phenyl)propionic acid, which could, respectively,
422	contribute to the urinary pools of 3'-hydroxyhippuric acid and hippuric acid. In addition,
423	dihydrocaffeic acid may be converted to 3-(4´-hydroxyphenyl)propionic acid which, via the
424	pathways illustrated in Figure 5, could lead to the accumulation of 4'-hydroxyhippuric acid.
425	The proposed catabolic routes for naringenin begin with ring fission yielding
426	phloroglucinol from the A-ring and 3-(4'-hydroxyphenyl)propionic acid from ring B. 3-(4'-
427	Hydroxyphenyl)propionic acid undergoes dehydroxylation and shortening of the side chain to
428	respectively, produce 3-(phenyl)propionic acid and 4'-hydroxyphenylacetic acid, which, it is
429	proposed, are ultimately converted to hippuric acid and $4'$ -hydroxyhippuric acid via the
430	pathways shown in Figure 6. Other phenolics identified in plasma and/or urine after OJ
431	consumption, such as 4'-hydroxycinnamic acid and dihydroferulic acid could be derived from
432	ferulic acid, which occurs in OJ as ferulic acid-4´-glucoside. In addition, ferulic acid-4´-sulfate,
433	ferulic acid-4'-O-glucuronide, dihydroferulic acid-4'-O-glucuronide and dihydroferulic acid-4'-
434	sulfate were all identified in plasma and urine after OJ consumption. Catabolism of
435	dihydroferulic acid via the network illustrated in Figure 6 leads to the formation of hippuric
436	acid, 4'-hydroxyhippuric acid and benzoic acid-4-sulfate.

After OJ consumption, plasma and urine contain elevated levels of 4'-hydroxymandelic
acid (Pereira-Caro, unpublished), the likely source of which is not flavanones but the amine *p*sympatol (aka *p*-synephrine) which was present in the juice. Tritium-labeled *p*-sympatol has
been shown to be converted to 4'-hydroxymandelic acid following ingestion by humans.²⁸ A
potential pathway for the three step conversion of *p*-sympatol to 4'-hydroxymandelic acid is

442 shown in Figure 6. The plasma C_{max} of p-sympatol occurs ~1 h after OJ intake indicating that 443 the conversions are likely to be enterocyte/hepatic in origin consistent with findings using 444 tritated sympatol.²⁸

It is noteworthy, that except for compounds originating from hesperetin, no methylated 445 flavanone metabolites were detected either in plasma or urine after OJ intake. This supports 446 447 the view that the methylation is less prevalent in the large intestine than the upper GIT ¹⁷, and also implies that there is little or no hepatic methylation of flavanone metabolites. This may 448 449 be because, except for eriodictyol-7-*O*-rutinoside, a very minor component, OJ flavanones lack a catechol group on the B-ring which is a requirement for catechol-O-methyltransferase 450 activity. The appearance of several methoxy-phenolic catabolites, such as **C27** and **C41**, 451 indicates the some degree of methylation of phenolic acids does take place. 452

A number of the phenolic acid catabolites, such as hippuric acid, were present in 0-24 h 453 urine collected before supplementation, however, earlier studies have identified those which 454 increase following OJ consumption,^{10,11,13} and this was taken into account in the preparation of 455 456 the pathways illustrated in Figures 5 and 6. The detailed elucidation of metabolites and catabolites appearing in the circulatory system and excreted in urine after OJ intake provides a 457 valuable foundation for time-course studies and quantitative analyses after supplementation. 458 This will help identify potentially bioactive compounds to test using in vitro models of human 459 cell lines in order to assist elucidation the mechanisms underlying the protective effects of OI 460 consumption. 461

462

463 ■ ACKNOWLEDGEMENTS

Page 23 of 41

464	We thank the volunteers who participate in the study and Ana-Maria Nastase who helped
465	recruit the volunteers and assisted with the feeding studies and Professor Mike Clifford
466	(University of Surrey) for invaluable assistance with the construction of Figures 5 and 6.
467	ABBREVIATIONS USED
468	OJ, orange juice; HPLC-HR-MS, ultra-high performance liquid chromatography-high resolution
469	mass spectrometry; MSIMI Metabolite Standards Initiative Metabolite Identification.
470	
470	
471	■ REFERENCES
472	1. Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary
473	(poly) phenolics in human health: structures, bioavailability, and evidence of protective
474	effects against chronic diseases. Antioxid. Redox Signal. 2013 , 18, 1818–1892.
475	2. Rodriguez-Mateos, A.; Vauzour, D.; Krueger, C.; Shanmuganayagam, D.; Reed, J.; Calani,
476	L.; Mena, P.; Del Rio, D.; Crozier, A. Bioavailability, bioactivity and impact on health of dietary
477	flavonoids and related compounds: an update. <i>Arch. Toxicol.</i> 2014 , <i>88</i> , 1803–1853.
478	3. Abad-García, B.; Garmón-Lobato, S.; Berrueta, L.A.; Gallo, B.; Vicente, F. On line
479	characterization of 58 phenolic compounds in citrus fruit juices from Spanish cultivars by
480	high-performance liquid chromatography with photodiode-array detection coupled to
481	electrospay ionization triple quadrupole mass spectrometry. <i>Talanta</i> . 2012 , 99, 213-224.
482	4. Palli, D.; Russo, A.; Ottini, L.; Masala, G.; Saieva, C.; Amorosi, A., Cama, A.; D'Amico, C.;
483	Falchetti, M.; Palmirotta, R. Red meat, family history, and increased risk of gastric cancer with
484	microsatellite instability. <i>Cancer Res.</i> 2001, 61, 5415–5419

485	5. McCullough, M.L.; Robertson, A.S.; Jacobs, E.J.; Chao, A.; Calle, E.E.; Thun, M.J. A
486	prospective study of diet and stomach cancer mortality in United States men and women.
487	Cancer Epidemiol. Biomarkers Prevent. 2001, 10, 1201–1205.
488	6. Al-Zalabani, A.H.; Stewart, K.F.; Wesselius, A.; Schols, A.M.; Zeegers, M.P. Modified risk
489	factors for the prevention of bladder cancer: a systematic review of meta-analyses. <i>Eur. J.</i>
490	<i>Epidemiol.</i> 2016 , in press.
491	7. Morand, C.; Dubray, C.; Milenkovic, D.; Lioger, D.; Martin, J.F.; Scalbert.; A, Mazur, A.
492	Hesperidin contributes to the vascular protective effects of orange juice: a randomized
493	crossover study in healthy volunteers. <i>Am. J. Clin. Nutr.</i> 2011 , <i>93</i> , 73–80.
494	8. Vallejo, F.; Larrosa, M.; Escudero, E.; Zafrilla, M.P.; Cerdá, B.; Boza, J.; García-Conesa, M.T.;
495	Espín, J.C.; Tomás-Barberán, F.A. Concentration and solubility of flavanones in orange
496	beverages affect their bioavailability in humans. J. Agric. Food Chem. 2010 , 58, 6516–6524.
497	9. Silveira, J.Q.; Cesar, T.B.; Manthey, J.A.; Baldwin, E.A.; Bai, J.; Raithore, S.
498	Pharmacokinetics of flavanone glycosides after ingestion of single doses of fresh-squeezed
499	orange juice versus commercially processed orange juice in healthy humans. J. Agric. Food
500	<i>Chem.</i> 2014 , <i>62</i> , 12576–12584.
501	10. Pereira-Caro, G.; Borges, G.; Van Der Hooft, J.; Clifford, M.N.; Del Rio, D., Lean, M.E.:
502	Roberts, S.A.; Kellerhals, M.B.; Crozier, A. Orange juice (poly)phenols are highly bioavailable in
503	humans. <i>Am. J. Clin. Nutr.</i> 2014 , <i>100</i> , 1378–1384.
504	11. Roowi, S.; Mullen, W.; Edwards, C.A.; Crozier, A. Yoghurt impacts on the excretion of
505	phenolic acids derived from colonic breakdown of orange juice flavanones in humans. <i>Mol.</i>
506	<i>Nutr. Food Res.</i> 2009 , <i>53</i> (S1), S68–S75.

507	12. Mullen, W.; Archeveque, M-A.; Edwards, C.A.; Matsumoto, H.; Crozier, A. Bioavailability
508	and metabolism of orange juice flavanones in humans: Impact of a full-fat yogurt. J. Agric. Food
509	<i>Chem.</i> 2008 , <i>56</i> , 11157–11164.
510	13. Pereira-Caro, G.; Oliver, C.M.; Weerakkody, R.; Singh, T.; Conlon, M.; Borges, G.;
511	Sanguansri, L.; Lockett, T.; Roberts, S.A.; Crozier, A.; Augustin, M.A. Chronic administration of a
512	microencapsulated probiotic enhances the bioavailability of orange juice flavanones in
513	humans. Free Rad. Bio. Med. 2015, 84, 206–214.
514	14. Borges, G.; Lean, M.E.J.; Roberts, S.A.; Crozier, A. Bioavailability of dietary
515	(poly)phenols: a study with ileostomists to discriminate between absorption in small and
516	large intestine. <i>Food Funct.</i> 2013 , <i>4</i> , 754–762.
517	15. Bredsdorff, L.; Nielsen, I.L.F.; Rasmussen, S.E.; Cornett, C.; Barron, D.; Bouisset, F.;
518	Offord, E.; Williamson, G. Absorption, conjugation and excretion of the flavanones, naringenin
519	and hesperetin from α -rhamnosidase-treated orange juice in human subjects. Br. J. Nutr. 2010 ,
520	<i>103,</i> 1602–1609.
521	16. Tomás-Navarro, M.; Vallejo, F.; Sentandreu, E.; Navarro, J.L.; Tomás-Barberán, F.A.
522	Volunteer stratification is more relevant than technological treatment in orange juice
523	flavanone bioavailability. J. Agric. Food Chem. 2013, 62, 24–27.
524	17. Ludwig, I.A.; Mena, P.; Calani, L.; Borges, G.; Pereira-Caro, G.; Bresciani, L.; Del Rio, D.;
525	Lean, M.E.; Crozier, A. New insights into the bioavailability of red raspberry anthocyanins and
526	ellagitannins. <i>Free Radic. Biol. Med</i> . 2015 , <i>89</i> , 758–769.
527	18. Summer, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.;

528 Fiehn, O.; Goldagre, R.; Griffin, J.L. et al. Proposed minimum reporting standards for chemical

analysis. Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). *Metabolomics*. 2007, *3*, 211–221.

19. Orrego-Lagarón, N.; Vallverdú-Queralt, A.; Martínez-Huélamo, M.; Lamuela-Raventos,
R.M.; Escribano-Ferrer, E. Metabolic profile of naringenin in the stomach and colon using
liquid chromatography/electrospray ionization linear ion trap quadrupole-Orbitrap-mass
spectrometry (LC-ESI-LTQ-Orbitrap-MS) and LC-ESI-MS/MS. *J. Pharm. Bio. Anal.* 2016, *120*,
38–45.

536	20. Actis-Goretta, L.; Dew, T.P.; Léveques, A.; Pereira-Caro, G.; Rein, M.; Teml, A.; Schafer,
537	C.; Hofman, U.; Schwab, M.; Eichelbaum, M.; Crozier, A.; Williamson, G. Gastrointestinal
538	absorption and metabolism of hesperetin-7-0-rutinoside and hesperetin-7-0-glucoside in
539	healthy humans. <i>Mol. Nutr. Food Res.</i> 2015 , <i>59</i> , 1651–1662.
540	21. Day, A.J.; Cañada, F.J.; Díaz, J.; Kroon, P.A.; Mclauchlan, R.; Faulds, C.B.; Plumb, G.W.;
541	Morgan, M.R.A.; Williamson, G. Dietary flavonoid and isoflavone glycosides are hydrolysed by
542	the lactase site of lactase phlorizin hydrolase. <i>FEBS Letters.</i> 2000 , <i>468</i> , 166–170.
543	22. Gee, J.M.; Dupont, M.S.; Day, A.J.; Plumb, G.W.; Williamson, G.; Johnson, I.T. Intestinal
544	transport of quercetin glycosides in rats involves both deglycosylation and interaction with
545	the hexose transport pathway. <i>J. Nutr.</i> 2000 , <i>130</i> , 2765–2771.
546	23. Pereira-Caro, G.; Borges, G.; Ky, I.; Ribas, A.; Calani, L.; Del Rio, D.; Clifford, M.N.;
547	Roberts, S.A.; Crozier, A. In vitro colonic catabolism of orange juice (poly)phenols. <i>Mol. Nutr.</i>

548 *Food Res.* **2015**, *59*, 465–475.

549	24. Das, N.P. Studies on flavonoid metabolism: absorption and metabolism of (+)-catechin
550	in man. <i>Bio. Pharmacol.</i> 1971 , <i>20</i> , 3435–3445
551	25. Roowi, S.; Stalmach, A.; Mullen W.; Lean, M.E.; Edwards, C.A.; Crozier, A. Green tea
552	flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans. J. Agric. Food
553	<i>Chem.</i> 2010 , <i>58</i> , 1296–1304.
554	26. van Dorsten, F.A.; Grun, C.H.; van Velzen, E.J.; Jacobs, D.M. Draijer, R.; van Duynhoven,
555	J.P. The metabolic fate of red wine and grape juice polyphenols in humans assessed by
556	metabolomics. <i>Mol. Nutr. Food Res.</i> 2010 , <i>54</i> , 897–908.
557	27. Jacobs, D.M.; Spiesser, L.; Garnier, M.; de Roo, N. van Dorsten, F.; Hollebrands, B.; van
558	Velzen, E.; Draijer, R.; van Duynhoven, J. SPE-NMR metabolite sub-profiling of urine. Anal.
559	Bioanal. Chem. 2012 , 404, 2349–2361.
560	28. Hengstmann, J.H.; Aulepp, H. Pharmacokinetics and metabolism of synephrine-H ³ .
561	<i>Arzneimittelforschung</i> 1978 , <i>28</i> , 2326–2331.
562	
563	■ AUTHOR INFORMATION
564	Funding
565	GP-C is supported by a postdoctoral research contract funded by IFAPA and ESF. IL is
566	supported by a postdoctoral research contract funded by the Spanish Ministry of Economy and
567	Competitiveness (FJCI-2014-20689).
568	Notes

569 The authors declare no competing interest.

570	Figure Legends
571	
572	Figure 1. Structures of compounds identified in orange juice.
573	Figure 2 . HPLC-HR-MS traces of flavanone metabolites in urine samples collected 10-24h
574	after the consumption of orange juice. For peak identification see Table 1.
575	Figure 3. HPLC-HR-MS traces of selected flavanone catabolites identified in urine samples
576	collected 10-24h after the consumption of orange juice. For peak identification see Table 2.
577	Figure 4. Structures of metabolites of hesperetin and naringenin identified in
578	plasma/urine after consumption of orange juice.
579	Figure 5. Proposed pathways for the catabolism of hesperetin by colonic microbiota and
580	mammalian phase II metabolism. Red arrows indicate microbiota-mediated steps, blue
581	arrow represent mammalian enzyme-mediated conversions. Based on the data presented
582	in this paper and earlier orange juice feeding studies and in vitro anaerobic incubations of
583	fecal material with flavanones and orange juice. 9,10,22 GlcUA - glucuronide; * - potential
584	intermediate that did not accumulate in detectable amounts.
585	Figure 6. Proposed pathways for the catabolism of naringenin, ferulic acid and <i>p</i> -sympatol
586	by colonic microbiota and mammalian phase II metabolism. Red arrows indicate
587	microbiota-mediated steps, blue arrow represent mammalian enzyme-mediated
588	conversions. Based on the data presented in this paper and earlier orange juice feeding
589	studies and in vitro anaerobic incubations of fecal material with flavanones and orange
590	juice. ^{9,10,22} GlcUA - glucuronide; * - potential intermediates that did not accumulate in
591	detectable amounts.

Table 1. HPLC-HR-MS Based Identification of Flavanone Metabolites in Human Plasma and Urine Collected 0-24 h After OrangeJuice Consumption.

Peak	Metabolites	Chemical Formula [<i>m/z</i>] [.]	Theoretical mass [<i>m/z</i>] [_]	Experimental mass [<i>m/z</i>] [.]	Δppm	Rt (min)	Location ^a	MSI MI level ^b
Naringenin	metabolites							
M1	Naringenin-4´,7-O-diglucuronide	C27H27O17	623.1248	623.1245	0.48	17.3	U	2
M2	Naringein-5,7-0-diglucuronide	C27H27O17	623.1248	623.1245	0.48	18.1	U	2
M3	Naringenin-4´,5-O-diglucuronide	C27H27O17	623.1248	623.1245	0.48	20.2	U	2
M4	Naringenin -O-glucuronyl-sulfate	C21H19O4S	527.0490	527.0491	0.18	22.3	U	2
M5	Naringenin-4´-O-glucuronide	C21H19O4	447.0921	447.0927	1.34	27.4	U, P	1
M6	Naringenin-7-0-glucuronide	C21H19O4	447.0921	447.0927	1.34	28.7	U, P	1
M7	Naringenin-4'-sulfate	C15H1108S	351.0169	351.0171	0.56	30.1	U, P	2
Hesperetin	metabolites							
M8	Hesperetin-3´,7-0-diglucuronide	C38H30018	653.1348	653.1355	1.07	20.9	U, P	2
M9	Hesperetin-5,7-0-diglucuronide	C38H30018	653.1348	653.1355	1.07	21.8	U, P	2
M10	Hesperetin-3´,5- <i>0</i> -diglucuronide	C38H30018	653.1348	653.1355	1.07	25.9	U, P	2
M11	Hesperetin-O-glucuronyl-sulfate	C22H22O15S	557.0595	557.0597	0.75	24.8	U, P	2
M12	Hesperetin-5-0-glucuronide	C22H22O12	477.1027	477.1032	1.04	30.1	U	2
M13	Hesperetin-7-0-glucuronide	C22H22O12	477.1027	477.1032	1.04	30.5	U, P	1
M14	Hesperetin-3´-O-glucuronide	C22H22O12	477.1027	477.1032	1.04	33.6	U, P	2
M15	Hesperetin-sulfate	C16H1409S	381.0274	381.0279	1.31	24.8	U, P	2
M16	Hesperetin-3´-sulfate	C16H1409S	381.0274	381.0279	1.31	31.7	U, P	1
M17	Hesperetin-O-glucosyl-sulfate	C22H23O14S	543.0803	543.0808	0.92	23.7	U	2
Eriodictyol	metabolites							
M18	Eriodictyol sulfate	C15H1109S	367.0118	367.0122	1.08	29.6	U, P	2
M19	Eriodictyol-O-glucuronyl-sulfate	C21H19O15S	543.0439	543.0447	1.47	22.1	U, P	2
^a U, urin	^a U, urine; P, plasma.							

^bMetabolite standards initiative (MSI) metabolite identification (MI) levels¹⁷. Reference compounds were available for all compounds identified at MSI MI level 1

Table 2.HPLC-HR-MS	Based Identifications	of Phenolic Ac	id Catabolites	in Human	Plasma	and Urine	Collected	0-24 h Afte
Orange Juice	Consumption.							

Peak	Rt (min)	Catabolites	Chemical Formula [<i>m/z</i>]-	Theoretical mass [<i>m</i> /z]-	Experimental mass [<i>m/z</i>]-	∆ppm	Location ^a	MSI MI level ^b
		Phenylpropanoid acid derivatives						
C1	22.70	3'-Hydroxycinnamic acid	С9Н7ОЗ	163.0390	163.0388	1.05	U	1
C2	15.21	Coumaric acid-3'-O-glucuronide	C15H15O9	339.0711	339.0712	-0.42	U	1
C3	19.33	4'-Hydroxycinnamic acid	С9Н7ОЗ	163.0390	163.0388	1.05	U	1
C4	10.53	Coumaric acid-4'-O-glucuronide	C15H15O9	339.071	339.0712	-0.59	U	1
C5	12.32	Coumaric acid-4'-sulfate	C9H7O6S	242.9958	242.9953	2.41	U	2
C6	14.00	Caffeic acid-3'-0-glucuronide	C15H15O10	355.0660	355.0659	0.21	U	1
C7	11.94	Caffeic acid-3'-sulfate	C9H7O7S	258.9907	258.9917	-3.86	U, P	1
C8	11.03	Caffeic acid-4'-0-glucuronide	C15H15O10	355.0659	355.0659	0.00	U	1
С9	10.31	Caffeic acid-4'-sulfate	C9H7O7S	258.9907	258.9905	0.77	U, P	1
C10	22.42	Ferulic acid	С10Н9О4	193.0495	193.0492	1.74	U, P	1
C11	13.88	Ferulic acid-4´-O-glucuronide	C16H17O10	369.0816	369.0825	-2.38	U, P	1
C12	13.99	Ferulic acid-4´-sulfate	C10H907S	273.0063	273.0074	-3.85	U, P	1
C13	24.32	Isoferulic acid	С10Н9О4	193.0495	193.0496	-0.34	U,P	1
C14	18.37	Isoferulic acid-3'-0-glucuronide	C16H17O10	369.08162	369.0825	-2.38	U, P	1
		Phenylpropionic acid derivatives						
C15	8.74	3-(3'-Hydroxyphenyl)hydracrylic acid	C9H9O4	181.0493	181.0492	0.55	U, P	1
C16	11.32	3-(3'-Hydroxy-4'-methoxyphenyl)hydracrylic acid	C10H1105	211.0600	211.0607	-3.32	U, P	1
C17	11.20	3-(3´,4´-Dihydroxyphenyl)propionic acid	С9Н9О4	181.0495	181.0489	3.31	U, P	1
C18	11.59	3-(3'-Hydroxyphenyl)propionic acid-4'-0-glucuronide	C15H17O10	357.0816	357.0816	0.00	U	1
C19	14.11	3-(Phenyl)propionic acid-4´-O-glucuronide	C15H1709	341.0867	341.0874	-2.03	U	1
C20	12.57	3-(4'-Hydroxyphenyl)propionic acid-3-0-glucuronide	C15H17O10	357.0816	357.0816	0.00	U	1
C21	9.11	3-(3'-Hydroxyphenyl)propionic acid-4'-sulfate	C9H9O7S	261.0063	261.006	1.34	U, P	1

C22	9.48	3-(4'-Hydroxyphenyl)propionic acid-3'-sulfate	C9H9O7S	261.0063	261.0067	-1.34	U, P	1
C23	19.42	3-(3'-Methoxy-4'-hydroxyphenyl)propionic acid	C10H1104	195.0652	195.0648	1.98	U, P	1
C24	14.85	3-(3'-Methoxyphenyl)propionic acid-4´-0-glucuronide	C16H19O10	371.0973	371.0979	-1.69	U, P	1
C25	21.45	3-(3'-Hydroxy-4'-methoxyphenyl)propionic acid	C10H1104	195.0652	195.0657	-2.64	U, P	1
C26	17.44	3-(4'-Methoxyphenyl)propionic-3'-0-glucuronide	C16H19O10	371.0973	371.0967	1.54	U, P	1
C27	12.23	3-(3'-Methoxyphenyl)propionic acid-4'-sulfate	C10H1107S	275.0220	275.0225	-1.82	U, P	1
C28	13.75	3-(4'-Methoxyphenyl)propionic acid-3'-sulfate	C10H1107S	275.0220	275.0225	-1.82	U, P	2
C29	18.33	3-(3'-Hydroxyphenyl)propionic acid	С9Н9ОЗ	165.0546	165.0547	-0.48	U,	1
C30	16.78	3-(4'-Hydroxyphenyl)propionic acid	С9Н9ОЗ	165.0546	165.0547	-0.48	U, P	1
C31	12.64	3-(Phenyl)propionic acid-3´-0-glucuronide	C15H17O9	341.0867	341.0874	-2.03	U	2
C32	11.73	3-(Phenyl)propionic acid-4´-sulfate	C9H9O6S	245.0114	245.0123	-3.53	U	2
C33	12.32	3-(Phenyl)propionic acid-3´-sulfate	C9H9O6S	245.0114	245.0123	-3.53	U	2
C34	12.20	3-(Phenyl)propionic acid	C9H9O2	149.0597	149.0593	2.72	U,P	1
		Phenylacetic acid derivatives						
C35	7.72	3´,4´-Dihydroxyphenylacetic acid	C8H7O4	167.0338	167.0332	3.59	U	1
C36	7.97	Hydroxyphenylacetic acid-O-glucuronide	C14H1509	327.071	327.0719	-2.75	U, P	2
C37	6.62	Hydroxyphenylacetic acid-4'-sulfate	C8H7O6S	230.9957	230.9964	-3.03	U	2
C38	7.21	Hydroxyphenylacetic acid-3'-sulfate	C8H7O6S	230.9957	230.9964	-3.03	U, P	2
C39	14.14	3'-Methoxy-4'-hydroxyphenylacetic acid	С9Н9О4	181.0495	181.049	2.96	U	1
C40	7.23	Methoxyphenylacetic acid-O-glucuronide	C15H17O10	357.0816	357.0828	-3.30	U, P	2
C41	7.19	3'-Methoxyphenylacetic acid-4'-sulfate	C9H9O7S	261.0063	261.0073	-3.64	U, P	2
C42	8.65	4'-Methoxyphenylacetic acid-3'-sulfate	C9H9O7S	261.0063	261.0073	-3.64	U, P	2
C43	22.28	3′,4′-Dimethoxyphenylacetic acid	C10H1104	195.0652	195.0653	-0.59	U	1
C44	12.53	3'-Hydroxyphenylacetic acid	C8H7O3	151.0389	151.0390	-0.66	U, P	1
C45	11.34	4'-Hydroxyphenylacetic acid	C8H7O3	151.0389	151.0390	-0.66	U, P	1
C46	16.84	Phenylacetic acid	C8H7O2	135.0440	135.0445	-3.70	U	1
		Benzoic acid derivatives						
C47	6.63	3,4-Dihydroxybenzoic acid	C7H5O4	153.0182	153.0183	-0.65	U, P	1
C48	3.85	Hydroxybenzoic acid-O-glucuronide	C13H13O10	329.0503	329.0513	-3.04	U	2
C49	4.83	3-Hydroxybenzoic acid-4-sulfate	C7H5O7S	232.9750	232.9756	-2.58	U	2

C50	5.50	4-Hydroxybenzoic acid-3-sulfate	C7H5O7S	232.9750	232.9756	-2.58	U	2
C51	13.51	3-Methoxy-4-hydroxybenzoic acid	C8H704	167.0339	167.0337	1.11	U	1
C52	15.00	3-Hydroxy-4-methoxybenzoic acid	C8H704	167.0339	167.0336	1.71	U	1
C53	12.14	3-Hydroxybenzoic acid	С7Н5ОЗ	137.0233	137.023	2.19	U	1
C54	9.83	4-Hydroxybenzoic acid	С7Н5ОЗ	137.0233	137.0227	4.38	U	1
C55	5.98	Benzoic acid-4-sulfate	C7H5O6S	216.9801	216.9807	-2.77	U, P	2
C56	7.41	Benzoic acid-3-sulfate	C7H5O6S	216.9801	216.9807	-2.77	U	2
		Hydroxycarboxylic acid derivatives						
C57	4.02	3'-Methoxy-4'-hydroxymandelic acid	С9Н905	197.0444	197.0453	-4.57	U, P	1
C58	2.96	4´-Hydroxymandelic acid	C8H7O4	167.0338	167.034	-1.20	U, P	1
		Benzenetriol derivatives						
C59	2.98	1,3,5-Trihydroxyphenol	С6Н5ОЗ	125.0233	125.0234	-0.80	U	1
C60	3.36	1,2,3-Trihydroxyphenol	С6Н5ОЗ	125.0233	125.0236	-2.40	U	1
C61	6.63	1,2-Dihydroxyphenol	C6H5O2	109.0284	109.0282	1.83	U	1
		Benzoylglycine derivatives						
C62	9.44	Hippuric acid-O-glucuronide	C15H16NO10	370.0757	370.0778	-5.67	U, P	2
C63	7.50	3'-Hydroxyhippuric acid	C9H8NO4	194.0447	194.0455	-4.12	U, P	1
		1' Hudrouwhinnuria agid	COHONOA	194.0447	10/ 0/55	-4.12	II P	1
C64	6.84	4 -nyuroxynippuric aciu	C91101104	174.0447	194.0435	-7.12	0,1	1
C64 C65	6.84 10.76	Hippuric acid	C9H8NO3	178.0498	178.0495	1.68	U, P	1

^aP, plasma; U, urine

^bMetabolite standards initiative (MSI) metabolite identification (MI) levels.¹⁷ Reference compounds were available for all compounds identified at MSI MI level 1

ACS Paragon Plus Environment

Plasma and Urinary Metabolites and Catabolites Derived from Orange Juice (Poly)phenols: Analysis by High Performance Liquid Chromatography-High Resolution-Mass Spectrometry

Gema Pereira-Caro, Iziar A. Ludwig, Thelma Polyviou, Dalia Malkova , Ada García, José Manuel Moreno-Rojas, and Alan Crozier

