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Abstract. In this paper we investigate the properties of generalized
bent functions defined on Zn

2 with values in Zq where q ≥ 2 is any posi-
tive integer. We characterize the class of generalized bent functions sym-
metric with respect to two variables, provide an analogue of Maiorana–
McFarland type bent functions in the generalized set up. A class of bent
functions called generalized spreads type is introduced and it is demon-
strated that recently introduced Dillon type generalized bent functions
and Maiorana–McFarland type generalized bent functions can be de-
scribed as generalized spreads type functions. Thus unification of two
different types of generalized bent functions is achieved.
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1 Introduction

The Walsh–Hadamard transform on generalizations of Boolean functions have
been studied for some time [11, 15–17]. Particular interest are analogues of bent
functions in different generalized scenarios. In this paper we investigate the prop-
erties of generalized bent functions defined on Zn2 with values in Zq where q ≥ 2
is any positive integer.

Suppose Z is the set of integers and Zr is the ring of integers modulo r. A
function from Zn2 to Z2 is said to be a Boolean function on n variables and the
set of all such functions is denoted by Bn. A function from Zn2 to Zq (q a positive
integer) is said to be a generalized Boolean function on n variables [16]. The set
of all such functions is denoted by GBqn. Let the set of real numbers and complex
numbers be denoted by R and C.

? ? ? B.K.S. is a Ph.D. student in Mathematics at the Indian Institute of Technology
Roorkee.



Any element x ∈ Zn2 can be written as an n-tuple (xn, . . . , x1), where xi ∈ Z2

for all i = 1, . . . , n. The addition over Z, R and C is denoted by ‘+’. The addition
over Zn2 for all n ≥ 1, is denoted by ⊕. Addition modulo q is denoted by ‘+’
and is understood from the context. If x = (xn, . . . , x1) and y = (yn, . . . , y1)
are two elements of Zn2 , we define the scalar (or inner) product, by x · y =
xnyn ⊕ · · · ⊕ x2y2 ⊕ x1y1. The cardinality of the set S is denoted by |S|. If
z = a + b ı ∈ C, then |z| =

√
a2 + b2 denotes the absolute value of z, and

z = a − b ı denotes the complex conjugate of z, where ı2 = −1, and a, b ∈ R.
The conjugate of a bit b will also be denoted by b̄.

The Walsh–Hadamard transform of f ∈ Bn at any point u ∈ Zn2 is defined
by

Wf (u) = 2−
n
2

∑
x∈Zn2

(−1)f(x)(−1)u·x.

A function f ∈ Bn, where n is even, is a bent function if |Wf (u)| = 1 for all
u ∈ Zn2 . If n is odd, a function f ∈ Bn is said to be semibent if and only if
|Wf (u)| ∈ {0,

√
2}, for all u ∈ Zn2 .

The sum
Cf,g(z) =

∑
x∈Zn2

(−1)f(x)⊕g(x⊕z)

is the crosscorrelation of f and g at z. The autocorrelation of f ∈ Bn at u ∈ Zn2
is Cf,f (u) above, which we denote by Cf (u).

The (generalized) Walsh–Hadamard transform of f ∈ GBqn at any point u ∈
Zn2 is the complex valued function defined by

Hf (u) = 2−
n
2

∑
x∈Zn2

ζf(x)(−1)u·x,

where ζ = e2πı/q is a complex q-primitive root of unity. A function f ∈ GBqn is
a generalized bent function (gbent, for short) if |Hf (u)| = 1 for all u ∈ Zn2 . If
f is gbent then |Hf (u)| = 1, for all u. Assume that for every such u, we have
Hf (u) = ζku , for some 0 ≤ ku < q. That is, for such a gbent function f , there is
a function F : Zn2 → Zq such that ζF = Hf . We call such a function F the dual
of f (Caution: only some gbent functions admit duals).

The sum
Cf,g(z) =

∑
x∈Zn2

ζf(x)−g(x⊕z)

is the crosscorrelation of f and g at z. The autocorrelation of f ∈ GBqn at u ∈ Zn2
is Cf,f (u) above, which we denote by Cf (u).

2 Properties of Walsh–Hadamard transform on
generalized Boolean functions

Several properties of Walsh–Hadamard transform and their generalized ana-
logues are presented below [9, 16, 17].



Theorem 1 We have:

(i) The inverse of the Walsh–Hadamard transform is

(−1)f(y) = 2−
n
2

∑
u∈Zn2

Wf (u)(−1)u·y, for all f ∈ Bn.

(ii) If f, g ∈ Bn, then ∑
u∈Zn2

Cf,g(u)(−1)u·x = 2nWf (x)Wg(x),

Cf,g(u) =
∑
x∈Zn2

Wf (x)Wg(x)(−1)u·x.

(iii) Taking the particular case f = g we obtain Cf (u) =
∑
x∈Zn2

Wf (x)2(−1)u·x.

(iv) A Boolean function f is bent if and only if Cf (u) = 0 for 0 6= u ∈ Zn2 .
(v) For any f ∈ Bn, the Parseval’s identity holds

∑
x∈Zn2

Wf (x)2 = 2n.

For more details we refer to [5–7]. Analogues properties for generalized Boolean
functions is as follows:

Theorem 2 We have:

(i) Let f ∈ GBqn. The inverse of the Walsh–Hadamard transform is given by

ζf(y) = 2−
n
2

∑
u∈Zn2

Hf (u)(−1)u·y.

Further, Cf,g(u) = Cg,f (u), for all u ∈ Zn2 , which implies that Cf (u) is always
real.

(ii) If f, g ∈ GBqn, then ∑
u∈Zn2

Cf,g(u)(−1)u·x = 2nHf (x)Hg(x),

Cf,g(u) =
∑
x∈Zn2

Hf (x)Hg(x)(−1)u·x.

(iii) Taking the particular case f = g we obtain Cf (u) =
∑
x∈Zn2

|Hf (x)|2(−1)u·x.

(iv) If f ∈ GBqn, then f is gbent if and only if

Cf (u) =

{
2n if u = 0,
0 if u 6= 0.

(1)

(v) Moreover, the (generalized) Parseval’s identity holds
∑
x∈Zn2

|Hf (x)|2 = 2n.



3 Characterization and affine transformations of
generalized bent functions

Let v = (vr, . . . , v1). We define

fv(xn−r, . . . , x1) = f(xn = vr, . . . , xn−r+1 = v1, xn−r, . . . , x1).

Let u = (ur, . . . , u1) ∈ Zr2 and w = (wn−r, . . . , w1) ∈ Zn−r2 . We define the vector
concatenation by

uw := (ur, . . . , u1, wn−r, . . . , w1).

Lemma 3 Let u ∈ Zr2, w ∈ Zn−r2 and f be an n-variable generalized Boolean
function. Then

Cf (uw) =
∑
v∈Zr2

Cfv,fv⊕u(w). (2)

In particular, for r = 1,

(i) Cf (0w) = Cf0(w) + Cf1(w),
(ii) Cf (1w) = 2Re[Cf0,f1(w)].

Proof. Certainly,

Cf (uw) =
∑
x∈Zn2

ζf(x)−f(x⊕uw)

=
∑
v∈Zr2

∑
z∈Zn−r2

ζf(vz)−f(vz⊕uw)

=
∑
v∈Zr2

∑
z∈Zn−r2

ζfv(z)−fv⊕u(z⊕w)

=
∑
v∈Zr2

Cfv,fv⊕u(w).

ut

Two functions f, g ∈ GBqn are said to have complementary autocorrelation if
and only if Cf (u) + Cg(u) = 0 for all u ∈ Zn2 \ {0}.

Lemma 4 Two functions f, g ∈ GBqn have complementary autocorrelation if and
only if

|Hf (u)|2 + |Hg(u)|2 = 2, for all u ∈ Zn2 . (3)

Proof. If f and g have complementary autocorrelation then

2n
(
|Hf (u)|2 + |Hg(u)|2

)
=
∑
x∈Zn2

(Cf (x) + Cg(x)) (−1)u·x = 2n+1.

Thus, |Hf (u)|2 + |Hg(u)|2 = 2, for all u ∈ Zn2 .



Conversely, suppose that

|Hf (x)|2 + |Hg(x)|2 = 2, for all x ∈ Fn2 .

Then,

Cf (u) + Cg(u) =
∑
x∈Zn2

(|Hf (x)|2 + |Hg(x)|2)(−1)u·x

= 2
∑
x∈Zn2

(−1)u·x = 2n+1δ0(u),

and so, if u 6= 0, then Cf (u)+Cg(u) = 0. Therefore, f and g have complementary
autocorrelation. ut

Theorem 5 If n is a positive integer and h is an (n + 1)-variable generalized
Boolean function, we write

h(xn+1, xn, . . . , x1) = (1⊕ xn+1)f(xn, . . . , x1) + xn+1g(xn, . . . , x1).

Then the following statements are equivalent:

(a) h is gbent.
(b) f and g have complementary autocorrelation and Re[Cf,g(w)] = 0.
(c) |Hf (u)|2 + |Hg(u)|2 = 2, for all u ∈ Zn2 and Hg(u)

Hf (u) is purely imaginary
whenever |Hf (u)||Hg(u)| 6= 0.

Proof. The equivalence of the first two statements is immediate from equa-
tion (1) and Lemma 3.

Let us identify (xn+1, xn, . . . , x1) ∈ Zn+1
2 with (xn+1,x) ∈ Z2×Zn2 . Suppose

that the function

h(xn+1,x) = (1⊕ xn+1)f(x) + xn+1g(x) (4)

is gbent. The Walsh–Hadamard transform of h at (a,u) ∈ Z2 × Zn2 is

Hh(a,u) = 2−
n+1

2

∑
(xn+1,x)∈Z2×Zn2

ζh(xn+1,x)(−1)xn+1a+u·x

= 2−
n+1

2

∑
x∈Zn2

ζf(x)(−1)u·x + (−1)a
∑
x∈Zn2

ζg(x)(−1)u·x


=

1√
2

(Hf (u) + (−1)aHg(u))

(5)

Since the function h is gbent, then |Hh(a,u)| = 1 for all (a,u) ∈ Z2×Zn2 . There-
foreHf (u) andHg(u) cannot be zero simultaneously. Suppose that |Hf (u)||Hg(u)| 6=
0, for u ∈ Zn2 . From (5) we have |Hf (u) +Hg(u)| = |Hf (u)−Hg(u)| which im-
plies

Hf (u)Hg(u) = −Hf (u)Hg(u). (6)



Since Hf (u) 6= 0 we obtain

Hg(u)
Hf (u)

= −
(
Hg(u)
Hf (u)

)
. (7)

Therefore Hg(u)
Hf (u) is purely imaginary. Since h is generalized bent, f and g have

complementary autocorrelation and therefore by Lemma 4, we have |Hf (u)|2 +
|Hg(u)|2 = 2 for all u ∈ Zn2 . This proves that (a) implies (c). Conversely, suppose
(c) is true. Suppose Hf (u) = 0. Then we obtain |Hg(u)| =

√
2. This implies that

|Hh(a,u)| = 1 for all a ∈ Z2. Now, suppose |Hf (u)||Hg(u)| 6= 0 for u ∈ Zn2 . Let
Hg(u)
Hf (u) = ıφ(u), where φ(u) is real. Then

|Hh(a,u)|2 =
1
2
|Hf (u)|2|1 + ı(−1)aφ(u)|2

=
1
2
|Hf (u)|2(1 + φ(u)2)

=
1
2
|Hf (u)|2

(
1 +
|Hg(u)|2

|Hf (u)|2

)
=

1
2

(|Hf (u)|2 + |Hg(u)|2) = 1.

(8)

Therefore (c) implies (a), and the theorem is proved. ut

Theorem 6 Let f, g be two generalized Boolean functions in n variables, where

g(x) = f(Ax⊕ a) + ε b · x + d, where A ∈ GL(2, n),a,b ∈ Zn2 , d ∈ Zq,

and ε =

{
0, q/2 if q = even

0 if q = odd
. Then f is gbent if and only if g is gbent.

Proof. Let B = A−1. We show the theorem when q is even and ε = q/2, since
the other cases are absolutely similar. Using ζ

q
2 = −1, we compute the Walsh–

Hadamard transform of g at z ∈ Zn2 ,

Hg(z) = 2−
n
2

∑
x∈Zn2

ζf(Ax⊕a)+ q
2b·x+d(−1)z·x

= 2−
n
2 ζd

∑
x∈Zn2

ζf(Ax⊕a)(−1)(z⊕b)·x

= 2−
n
2 ζd(−1)B

T (b⊕z)·a
∑
x∈Zn2

ζf(x)(−1)B
T (b⊕z)·x

= ζd(−1)B
T (b⊕z)·aHf (BT (b⊕ z)),

which concludes our proof. ut



4 Generalized bent functions symmetric about two
variables

A generalized Boolean function h ∈ GBqn+2 is symmetric with respect to two
variables y and z if and only if there exist f, g ∈ GBqn such that

h(z, y,x) = f(x) + (y ⊕ z)g(x) + yzs(x) (9)

where y, z ∈ Z2 and x ∈ Zn2 and Zn+2
2 is identified with Z2 × Z2 × Zn2 .

Theorem 7 Suppose q is a positive integer. Let h be a generalized Boolean func-
tion symmetric about two variables, as in (9). Then h is gbent if and only if
f, f + g are gbent and s(x) = q

2 (and consequently, q must be even).

Proof. Let ∆(F ) = F (x)− F (x⊕ u). Now, for a function h as in (9),

h(z, y,x)− h((z, y,x)⊕ (a, b,u))
= f(x) + (y ⊕ z)g(x) + yz s(x)− f(x⊕ u)
−(y ⊕ z ⊕ a⊕ b)g(x⊕ u)− (z ⊕ a)(y ⊕ b)s(x⊕ u)

= ∆(f) + (y ⊕ z)∆(g) + yz ∆(s)
−(a⊕ b)g(x⊕ u)− (ay ⊕ bz ⊕ ab)s(x⊕ u),

and the autocorrelation

Ch(a, b,u) =
∑

(y,z,x)∈Zn+2
2

ζ∆(f)+(y⊕z)∆(g)−(a⊕b)g(x⊕u)+yz s(x)−(z⊕a)(y⊕b)s(x⊕u).

(10)
Assume that h is gbent on Zn+2

2 , and so, in particular Cf (1, 1,0) = 0. Replace
a = b = 1 and u = 0 in equation (10), and since ∆(F ) = 0 if u = 0, we get

Ch(1, 1,0) =
∑

(y,z,x)∈Zn+2
2

ζ(yz−ȳz̄)s(x)

=
∑
x∈Zn2

∑
y,z

ζ(yz−ȳz̄)s(x)

=
∑
x∈Zn2

(
ζ−s(x) + ζs(x) + 2

)
=

∑
x:s(x)= q

2

0 +
∑

x:s(x)=l,l 6= q
2

k, for all l ∈ Zq \
{q

2

}
, 0 < k ≤ 4.

which follows from the following relations, (since ζ = e
2πı
q )

ζr + ζ−r + 2 = 0⇔ ζr = −1⇔ r =
q

2
, and

ζr + ζ−r + 2 = 2
(

1 + cos
2πr
q

)
> 0, if r 6= q

2
.



Since Ch(1, 1,0) = 0 this implies that s(x) = q
2 for every x ∈ Zn2 . Further, using

s(x) = q
2 in (10), we obtain

Ch(a, b,u) =
∑
x∈Zn2

ζ∆(f)−(a⊕b)g(x⊕u)
∑

(y,z)∈Z2
2

ζ(y⊕z)∆(g)+yz s(x)−(z⊕a)(y⊕b)s(x⊕u)

=
∑
x∈Zn2

ζ∆(f)−(a⊕b)g(x⊕u)
(
ζ−ab s(x⊕u) + ζ∆(g)−b̄a s(x⊕u)

+ζ∆(g)−āb s(x⊕u) + ζs(x)−b̄ā s(x⊕u)
)

=
∑
x∈Zn2

ζ∆(f)−(a⊕b)g(x⊕u)
(
ζ−2ab + ζ∆(g)−2b̄a + ζ∆(g)−2āb + ζ2−2b̄ā

)
.

Moreover,

Ch(0, 0,u) =
∑
x∈Zn2

ζ∆(f)(2 + 2ζ∆(g)) = 2Cf (u) + 2Cf+g(u);

Ch(0, 1,u) =
∑
x∈Zn2

ζ∆(f)(ζ∆(g) + ζ∆(g)− q2 ) = 0;

Ch(1, 0,u) =
∑
x∈Zn2

ζ∆(f)(ζ∆(g) + ζ∆(g)− q2 ) = 0;

Ch(1, 1,u) =
∑
x∈Zn2

ζ∆(f)(−2 + 2ζ∆(g)) = −2Cf (u) + 2Cf+g(u).

(11)

Now, since h is gbent, then Ch(0, 0,u) = Ch(1, 1,u) = 0, from which we derive
that Cf (u) = Cf+g(u) = 0 (if u 6= 0) and so, both f, f + g are gbent.

Conversely, we assume that both f, f + g are gbent and s(x) = q
2 . From

equations (11), we obtain that Ch(0, 0,0) = 2Cf (0) + 2Cf+g(0) = 2 · 2n + 2 · 2n =
2n+2, and Ch(z, y,u) = 0, when (z, y,u) 6= (0, 0,0). The theorem is proved. ut

For g = 0, we have the following corollary. We provide an alternative proof
in this case.

Corollary 8 Let h : Z2 × Z2 × Zn2 → Zq (n even) be the generalized Boolean
function (symmetric with respect to two variables y, z) given by

h(z, y,x) = f(x) +
q

2
yz for all x ∈ Zn2 , y, z ∈ Z2,

where f : Zn2 → Zq is an arbitrary generalized Boolean function. Then h is gbent
if and only if f is gbent.

Proof. Since ζ = e
2πi
q , therefore ζ

q
2 = −1. The Walsh transform of h at (a, b,u) ∈

Z2 × Z2 × Zn2 is



Hh(a, b,u) = 2−
n+2

2

∑
x∈Zn2

∑
(y,z)∈Z2×Z2

ζf(x)+ q
2 yz(−1)u·x+ay+bz

= 2−
n
2

∑
x∈Zn2

ζf(x)(−1)u·x

1
2

∑
(y,z)∈Z2×Z2

(−1)yz(−1)ay+bz

 .

But it is easy to show that the function k : Z2
2 → Z2 such that k(z, y) = yz is

bent, and so,

|Hh(a, b,u)| = |Hf (u)|, for all a, b ∈ Z2 and u ∈ Zn2 ,

which concludes our proof. ut

5 Generalized Maiorana–McFarland and Dillon functions
are contained in the generalized spreads class

Let φS denote the indicator function of any subset S of Zn2 .
Schmidt [15] proved that for any permutation σ on Zt2 and g ∈ GB4

t , a
function f ∈ GB4

n defined by

f(x,y) = 2x · σ(y) + g(y) for all x,y ∈ Zt2, (12)

is a generalized bent function. In Theorem 9 below we generalize this to functions
from Zn2 to Zq, for any even positive integer q, as follows

f(x,y) = g(y) +
q

2
x · σ(y), for all x,y ∈ Zn2 , (13)

for all x,y ∈ Zt2, where g ∈ GBqt , σ is a permutation on Zt2. The class of such
functions is referred to as the generalized Maiorana–McFarland class (GMMF ).

Theorem 9 Suppose q is an even positive integer. Let σ be a permutation on
Zn2 , let g : Zn2 → Zq be an arbitrary function, then the function f : Z2n

2 → Zq
defined as

f(x,y) = g(y) +
q

2
x · σ(y) for all x,y ∈ Zn2 (14)

is a gbent function and its dual is g(σ−1(x)) + q
2y · (σ

−1(x)).

Proof. Compute

Hf (u,v) = 2−n
∑
x∈Zn2

∑
y∈Zn2

ζg(y)+ q
2x·σ(y)(−1)u·x⊕v·y

= 2−n
∑
y∈Zn2

ζg(y)(−1)v·y
∑
x∈Zn2

(−1)(u⊕π(y))·x

=
∑
y∈Zn2

ζg(y)(−1)v·yφ{0}(u⊕ π(y)).

= ζg(σ
−1(u))+ q

2v·σ−1(u),

and the theorem is proved. ut



The following corollary is Theorem 5.3 of Schmidt [15].

Corollary 10 Let σ be a permutation on Zk2 , g : Zk2 → Z4 arbitrary, and let
f : Z2k

2 → Z4 be given by

f(x,y) = 2σ(x) · y + g(x).

Then f is a gbent function.

Carlet [2] introduced the generalized partial spreads class (GPS) of bent
functions and conjectured that any bent function belongs to GPS. This conjec-
ture was proved in affirmative by Carlet and Guillot [3]. A similar representation
which provides a unique representation of bent functions were proposed by Carlet
and Guillot [4]. Below we introduce a class for generalized bent functions which
we refer to as the generalized spreads class (GS). We demonstrate that the Dil-
lon type generalized bent functions as well as generalized Maiorana–McFarland
type bent functions belong to GS. The question whether any generalized bent
is in GS remains open.

Let n = 2t. Suppose E1, . . . , Ek are t-dimensional subspaces of Zn2 such that

∪ki=1Ei = ∪ki=1E
⊥
i = Zn2 . (15)

For each x ∈ Zn2 we define the following two sets

Ex = {Ei : x ∈ Ei} and E⊥x = {E⊥i : x ∈ E⊥i }. (16)

Theorem 11 Let m1, . . . ,mk ∈ Z and F : Zn2 → C is defined by

F (x) =
k∑
i=1

ζmiφEi(x) for all x ∈ Zn2 . (17)

Suppose ∑
{i:Ei∈Ex}

ζmi ,
∑

{i:E⊥i ∈E⊥x }

ζmi ∈ {ζj : j = 0, 1, . . . , q − 1}. (18)

Then the function f : Zn2 → Zq defined by

ζf(x) = F (x) for all x ∈ Zn2 , (19)

is a generalized bent function. The class of such functions is referred to as the
generalized spreads class (GS).

Proof. Suppose f ∈ GBqn satisfies (19). Then

Hf (u) = 2−t
∑
x∈Zn2

ζf(x)(−1)u·x = 2−t
∑
x∈Zn2

F (x)(−1)u·x

= 2−t
∑
x∈Zn2

k∑
i=1

ζmiφEi(x)(−1)u·x = 2−t
k∑
i=1

ζmi
∑
x∈Zn2

φEi(x)(−1)u·x

= 2−t
k∑
i=1

ζmi
∑
x∈Ei

(−1)u·x =
k∑
i=1

ζmiφE⊥i (u) =
∑

{i:E⊥i ∈E⊥u }

ζmi .

(20)



Therefore any the function f ∈ GBqn satisfying (17) is generalized bent if the
condition (18) is satisfied. ut

Since the only units in the ring of Gaussian integers are ±1,±ı, we have the
next corollary, for the case q = 4.

Corollary 12 Let m1, . . . ,mk ∈ Z and F : Zn2 → C is defined by

F (x) =
k∑
i=1

ımiφEi(x) for all x ∈ Zn2 . (21)

The function f : Zn2 → Z4 defined by

ıf(x) = F (x) for all x ∈ Zn2 , (22)

is a generalized bent function if and only if
∑
{i:E⊥i ∈E⊥x }

ımi ∈ {±1,±ı}.

The analogue of Dillon type functions is introduced in [9]. Suppose that Ei
(i = 1, . . . , 2t+1) are t-dimensional subspaces of Zn2 with Ei∩Ej = {0}, if i 6= j.
It can be checked that this implies E⊥i ∩ E⊥j = {0}, if i 6= j. It is also noted

that in this case ∪2t+1
i=1 Ei = ∪2t+1

i=1 E⊥i = Zn2 . Thus (15) is satisfied. A natural
generalization of [9, Theorem 10] leads us to a class of generalized bent functions
which we refer to the the generalized Dillon class (GD).

Theorem 13 Let k,m1, . . . ,m2t+1 be integers such that
∑2t+1
i=1 ζmi = ζk. Let

F : Zn2 → C be given by

F (x) =
2t+1∑
i=1

ζmiφEi(x), for all x ∈ Zn2 . (23)

Then the function f : Zn2 → Zq defined by

ζf(x) = F (x) for all x ∈ Zn2 (24)

is a generalized bent function.

Below we demonstrate that GD and GMMF both are contained in GS. Our
proof is similar to the proof by Carlet [2] in the Boolean case.

Theorem 14 The generalized Dillon and generalized Maiorana–McFarland classes
are both contained in the generalized spreads class (i.e., GD ∪GMMF ⊆ GS).

Proof. First, it can be directly checked that, for generalized Dillon type gen-
eralized bent functions with m1, . . . ,m2t+1, k ∈ Z such that

∑2t+1
i=1 ζmi = ζk,

Ei ∩ Ej = {0} and E⊥i ∩ E⊥j = {0} if i 6= j, the equations (18) are satisfied by
the subspaces Ei’s and E⊥i ’s. Therefore, GD ⊆ GS.



Next, we concentrate on the GMMF and assume q to be an even positive
integer. Without loss of generality, we assume σ(0) = 0. Consider the following
t-dimensional subspaces,

Ez = σ(z)⊥ × {0, z},
Kz = (σ(z)⊥ × {0}) ∪ ((Zt2 \ (σ(z)⊥))× {z}),

(25)

for all z ∈ Zt2 \ {0}. The duals of the above subspaces are as follows:

E⊥z = {0, σ(z)} × z⊥,

K⊥z = ({0} × z⊥) ∪ ({σ(z)} × (Zt2 \ z⊥)).
(26)

for all z ∈ Zt2 \ {0}. Let

F (x,y) =
∑

z∈Zt2\{0}

ζg(z)φEz(x,y) +
∑

z∈Zt2\{0}

(−ζg(z))φKz(x,y)

+ ζg(0)φZt2×{0}(x,y),

(27)

for all x,y ∈ Zt2. We observe that in case y 6= 0

F (x,y) =

{
ζg(y), if x ∈ σ(y)⊥

ζ
q
2 +g(y), if x ∈ Zt2 \ σ(y)⊥.

In case y = 0 we observe that (x, 0) ∈ Ez if and only if (x, 0) ∈ Kz. Therefore
for all x ∈ Zt2, F (x, 0) = ζg(0). Thus, the function

f(x,y) =
q

2
x · σ(y) + g(y)

satisfies F (x,y) = ζf(x,y) for all x,y ∈ Zt2. This proves that GMMF ⊆ GS. ut
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