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1. INTRODUCTION

The p-adic order, νp(r) (often also denoted by ρp(r)), of r is the exponent of the

highest power of a prime p which divides r. We characterize the p-adic order νp(Fn)

of the Fn sequence using multisection identities. The method of multisection is a

helpful tool in discovering and proving divisibility properties. Here it leads to

invariants of the modulo p2 Fibonacci generating function for p 6= 5. The proof

relies on some simple results on the periodic structure of the series Fn.

The periodic properties of the Fibonacci and Lucas numbers have been exten-

sively studied (e.g., [13]). (For a general discussion of the modulo m periodic-

ity of integer sequences see [8].) The smallest positive index n such that Fn ≡ 0

(mod p) is called the rank of apparition (or rank of appearance or Fibonacci entry-

point) of prime p and is denoted by n(p). The notion of rank of apparition n(m)

can be extended to arbitrary modulus m ≥ 2. The order of p in Fn(p) will be

denoted by e = e(p) = νp(Fn(p)) ≥ 1. Interested readers might consult [6] and [9]

for a list of relevant references on the properties of νp(Fn).

The main focus of this paper is the multisection based derivation of some

important divisibility properties of Fn (Theorem A) and Ln (Theorem D). A result

similar to Theorem A was obtained by Halton [4]. A different derivation using a

Kummer-like theorem was given in [7]. This latter approach expresses the p-

adic order of generalized binomial coefficients in terms of the number of “carries.”

Theorem A can be generalized to include other linear recurrent sequences and a

proof without using generating functions was given in [6, Exercise 3.2.2.11]. The

latter approach is implicitly based on multisections.

The generating functions of the Fibonacci and Lucas numbers are f(x) =∑∞
n=0 Fnx

n = x/(1− x− x2) and h(x) =
∑∞

n=0 Lnx
n = (2− x)/(1− x− x2), re-
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spectively. In this paper the general coefficients of these generating functions will

be determined by multisection identities, as we prove

Theorem A [9]: For all n ≥ 0 we have

ν2(Fn) =


0, if n ≡ 1, 2 (mod 3),

1, if n ≡ 3 (mod 6),

3, if n ≡ 6 (mod 12),

ν2(n) + 2, if n ≡ 0 (mod 12),

ν5(Fn) = ν5(n),

νp(Fn) =

{
νp(n) + e(p), if n ≡ 0 (mod n(p)),

0, if n 6≡ 0 (mod n(p)),
if p 6= 2 and 5.

The cases p = 2 and p = 5 are discussed in Sections 2 and 3, respectively. The

general case is completed in Section 4. The case of p = 2 has been discussed in

[5] using a different approach. The multisection based technique offers a simplified

treatment of this case. We extend the method to the Lucas numbers in Section 5.

By the m-section of a power series g(x) =
∑∞

n=0 anx
n we mean the extraction

of the sum of terms alx
l in which l is divisible by m. We use the resulting power

series gm(x) =
∑∞

n=0 amnx
mn in its modified form gm(x1/m) =

∑∞
n=0 amnx

n and

call it the m-section, too. The corresponding sequence {amn}∞n=0 of coefficients is

referred to as the m-section of the sequence {an}∞n=0. The notion of m-section can

be generalized to form a sum of terms with index l ranging over a fixed congruence

class of integers modulo m. It will be used in Sections 2 and 5. There are various

general multisection identities (cf. [10, p. 131] or [1, p84.]), and they can be helpful

in proving divisibility patterns (e.g., [2]). The m-section of the Fibonacci sequence

leads to the form
∞∑

n=0

Fmnx
n =

Fmx

1− Lmx + (−1)mx2
. (1)

The denominators are referred to as Lucas factors. For other application of Lucas

factors see [11].

The present proof of Theorem A is based on a multisection invariant. In fact,

we will see in (5), (13), and (14) that x/(1 − x)2 or x/(1 + x)2 is an invariant of

the properly sected Fibonacci generating function taken mod p2 for every prime

p 6= 5. The power of p can be easily improved.
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We shall need some facts on the location of zeros in the series {Fn mod m}n≥0.

Theorem B (Theorem 3 in [13]): The terms for which Fn ≡ 0 (mod m) have

subscripts that form a simple arithmetic progression. That is, for some positive

integer d = d(m) and for x = 0, 1, 2, . . . , n = x · d gives all n with Fn ≡ 0

(mod m).

Note that d(m) is exactly n(m), and d(pi) = d(p) = n(p), for all 1 ≤ i ≤ e(p).

It also follows that Fl 6≡ 0 (mod p) unless l is a multiple of n(p).

We denote the modulo m period of the Fibonacci series by π(m). Gauss proved

that the ratio π(p)
n(p)

is 1, 2, or 4. In fact, we get

Lemma C [9]: The ratio π(p)
n(p)

can be fully characterized in terms of x ≡ Fn(p)−1 ≡
Fn(p)+1 (mod p) by

π(p) =


n(p), iff x ≡ 1 (mod p),

2n(p), iff x ≡ −1 (mod p),

4n(p), iff x2 ≡ −1 (mod p).

In the first case, p must have the form 10l ± 1 while the third case requires that

p = 4l + 1.

We also will repeatedly use two identities (cf. (23) and (24) in [12]) for the

Lucas numbers with arbitrary integers h ≥ 0:

L2h = 2(−1)h + 5Fh
2, (2)

L2
h = 4(−1)h + 5Fh

2. (3)

It is worth noting that our proofs of Theorems A and D rely on three con-

gruences for the Lucas numbers (cf. Lemmas 1, 2, and 3) which in turn can be

significantly improved (cf. Lemmas 1’, 2’ and 3’) using the theorems.

2. THE CASE OF p = 2

By adding together the six 6-sections
∑∞

n=0 F6n+lx
6n+l, l = 0, 1, . . . , 5, of the

generating function f(x), we obtain

f(x) =
x + x2 + 2 x3 + 3 x4 + 5 x5 + 8 x6 − 5 x7 + 3 x8 − 2 x9 + x10 − x11

1− 18 x6 + x12
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which is equivalent to the recurrence relation Fn+12 = 18Fn+6 − Fn, F0 = 0, F1 =

1, . . . , F11 = 89. This immediately implies that

ν2(Fn) =


0, if n ≡ 1, 2 (mod 3),

1, if n ≡ 3 (mod 6),

3, if n ≡ 6 (mod 12).

It remains to be proven that

ν2(F12·n) = ν2(n) + 4. (4)

To this end, first we note that

Lemma 1: L12· 2k ≡ 2 (mod 22) for all k ≥ 0.

In fact, the modulo 4 period of Fn is 6, and this implies L6j ≡ 2F6j+1 ≡ 2

(mod 4) for every integer j ≥ 0.

By identity (1), we obtain that for all k ≥ 0

∞∑
n=0

F12· 2kn

F12· 2k

xn =
x

1− L12· 2kx + x2
≡ x

(1− x)2
≡

∞∑
n=1

nxn (mod 22) (5)

We have F12 = 144 = 24 · 9. By setting k = 0 and n = 2 in (5) it follows that

F12· 2/F12 ≡ 2 (mod 22), thus ν2(F24) = ν2(F12)+1 = 5. In general, we use n = 2

and observe that ν2(F12· 2k+1) = ν2(F12· 2k)+1 = . . . = ν2(F12)+k+1 = 4+ν2(2
k+1)

follows by a simple inductive argument. We complete the proof of (4) by noting

that for n odd ν2(F12· 2kn) = ν2(F12· 2k) holds by (5).

A sharper version of Lemma 1 can be derived from Theorem A (once it has

been proven):

Lemma 1’: L12· 2k ≡ 2 (mod 22k+6) for all k ≥ 0.

Proof of Lemma 1’. We note that L12· 2k ≡ 2 (mod 2k+3) can be easily

derived from the periodicity of Fn, for L12· 2k ≡ 2F12· 2k+1 ≡ 2 (mod 2k+3) as

π(2l) = 12· 2l−3, l ≥ 1. We notice, however, that the sharper L12 = 322 ≡ 2

(mod 26) also holds. Moreover, identity (2) yields L12· 2k+1 ≡ 2 (mod F 2
12· 2k), and

we derive that L12· 2k+1 ≡ 2 (mod (24+k)2) using Theorem A. Accordingly, we can

replace the exponent of p in identity (5).

3. THE CASE OF p = 5
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This case is a little more involved. We will find ν5(F5kn), k ≥ 1, in terms of

ν5(F5k) in three steps. In the first two we assume that (n, 5) = 1 then we deal with

the case of n = 5.

First we take the 5-section of f(x) and obtain

∞∑
n=0

F5n

F5

xn =
x

1− 11x− x2
≡ x

1− x− x2
≡

∞∑
n=1

Fnx
n (mod 5)

which guarantees that ν5(F5n) = ν5(F5) if (n, 5) = 1. In the second step we try to

generalize this relation for indices of the form 5kn, (n, 5) = 1, k ≥ 2. We shall need

Lemma 2: L5k+1 − L5k ≡ 0 (mod 25) for k ≥ 1.

Proof of Lemma 2. By identity (3), we have for k ≥ 1 that

L2
5k+1 − L2

5k ≡ 0 (mod F 2
5k).

It follows that

(L5k+1 − L5k)(L5k+1 + L5k) ≡ 0 (mod 25) (6)

by Theorem B. Clearly,

L5k+1 ≡ L5k ≡ L5 ≡ 1 (mod 5), (7)

thus the factor L5k+1 + L5k cannot be a multiple of 5. Therefore, L5k+1 − L5k ≡ 0

(mod 25) by identity (6).

We note that ν5(F25) = 2. It is true that for k ≥ 1

∞∑
n=0

(
F5k+1n

F5k+1

− F5kn

F5k

)xn =
x

1− L5k+1x− x2
− x

1− L5kx− x2

= (L5k+1 − L5k)
x

1− L5k+1x− x2

x

1− L5kx− x2
.

The first factor is divisible by 25 according to Lemma 2. For (n, 5) = 1, we get

ν5(F5kn/F5k) = ν5(F5k−1n/F5k−1) = . . . = ν5(F5n/F5) = 0, (8)

i.e., ν5(F5kn) = ν5(F5k) by induction on k ≥ 1.

Now we turn to the case of n = 5. For k ≥ 1 and n = 5 we get that

F5k+2/F5k+1 ≡ F5k+1/F5k (mod 25); therefore, ν5(F5k+2) = ν5(F5k+1) + 1 = . . . =
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ν5(F5) + k + 1 by induction using ν5(F25/F5) = 1. The proof of the case p = 5 is

now complete.

Note that, once it is proven, Theorem A guarantees the much stronger

Lemmas 2’: L5k+1 ≡ L5k (mod 52k) for k ≥ 1.

We note that an alternative derivation of (8) is possible by (7) but without

using Lemma 2:

x

1− L5k+1x− x2

x

1− L5kx− x2
≡

∞∑
n=0

F (2)
n xn (mod 5)

with F
(2)
n being the 2-fold convolution of the sequence Fn. The m-fold convolution

of the sequence Fn is defined by

F (m)
n =

∑
i1+i2+···+im=n

Fi1Fi2 . . . Fim

which has the generating function [f(x)]m. Note that by identity (7.61) in [3, p.354]

F
(2)
n = 1

5
(2nFn+1− (n+1)Fn) = n

5
(2Fn+1−Fn)− 1

5
Fn = n

5
Ln− 1

5
Fn. We can easily

find the period of F
(m)
n by the general theory (cf. [8]) or by simple inspection. The

latter approach provides us with the actual elements of the period. It is clear that

100 is the modulo 25 period of nLn − Fn, and nLn − Fn is divisible by 25 if n is

divisible by 5. It follows that 5|F (2)
n if 5|n.

4. THE GENERAL CASE

In this section p is a prime different from 2 and 5, and n denotes an integer

for which νp(n) is either 0 or 1. We will either use an n(p)pk- or a 2n(p)pk-section

in obtaining the required divisibility properties. First we prove

Lemma 3: For any prime p ≡ 3 (mod 4)

Ln(p)pk ≡
{

2 (mod p2), if π(p)/n(p) = 1

−2 (mod p2), if π(p)/n(p) = 2
.

Proof of Lemma 3. Formula (3) yields that if h ≥ 0 is even then L2
2h −

L2
h ≡ 0 (mod F 2

h ). Note that n(p) is even for p ≡ 3 (mod 4) [13]. By setting

h = n(p)pk we obtain

(L2n(p)pk − Ln(p)pk)(L2n(p)pk + Ln(p)pk) ≡ 0 (mod p2) (9)
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Therefore, either

L2n(p)pk ≡ Ln(p)pk (mod p2) (10)

or

L2n(p)pk ≡ −Ln(p)pk (mod p2), (11)

for otherwise both L2n(p)pk − Ln(p) and L2n(p)pk + Ln(p)pk will be divisible by p. It

would lead to Ln(p)pk ≡ 0 (mod p) which is impossible as Ln(p)pk ≡ 2Fn(p)pk+1

(mod p). According to identity (2), L2n(p) = 2 + 5F 2
n(p) which yields L2n(p) ≡ 2

(mod p2) and also

L2n(p)pk ≡ 2 (mod p2) (12)

by Theorem B [13].

If π(p)/n(p) = 1 then Fn(p)+1 ≡ 1 (mod p) by Lemma C, and we get L2n(p) ≡
Ln(p) ≡ 2 (mod p) and, similarly, L2n(p)pk ≡ Ln(p)pk ≡ 2F2n(p)pk+1 ≡ 2 (mod p)

leading to (10). If π(p)/n(p) = 2 then Fn(p)+1 ≡ −1 (mod p) and L2n(p) ≡
−Ln(p) ≡ 2 (mod p) and L2n(p)pk ≡ −Ln(p)pk ≡ 2 (mod p) corresponding to

(11).

We are now able to finish the proof of Theorem A. In the case of π(p)/n(p) = 1

and 2, we can use

∞∑
n=0

Fn(p)· pkn

Fn(p)· pk

xn =
x

1− Ln(p)· pkx + x2
≡ x

(1± x)2
≡

∞∑
n=1

(∓1)n−1nxn (mod p2)

(13)

which proves νp(Fn(p)pkn) = νp(Fn(p)pk) + νp(n) for νp(n) ≤ 1. In particular, by

setting n = p we obtain νp(Fn(p)pk+1) = νp(Fn(p)pk) + 1, and νp(Fn(p)pk+1) = e(p) +

k + 1 follows by induction on k ≥ 0. In summary, we derived that νp(Fn(p)pkn) =

e(p) + k + νp(n) and the proof is now complete.

On the other hand, if π(p)/n(p) = 4 then we switch from using a n(p)pk-section

to a 2n(p)pk-section. By the duplication formula (cf. [3] or [12]) we get F2n(p)pkn =

Fn(p)pknLn(p)pkn for any integer n > 0. This yields νp(F2n(p)pkn) = νp(Fn(p)pkn). We

consider
∞∑

n=0

F2n(p)pkn

F2n(p)pk

xn =
x

1− L2n(p)pkx + x2
.

Identity (12) implies that

∞∑
n=0

F2n(p)pkn

F2n(p)pk

xn ≡ x

(1− x)2
≡

∞∑
n=1

nxn (mod p2). (14)
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The proof can be concluded as above for νp(Fn(p)pkn) = νp(F2n(p)pkn) = νp(F2n(p))+

k + νp(n) = νp(Fn(p)) + k + νp(n) = e(p) + k + νp(n).

By means similar to Lemma 1’, we can prove a stronger version of Lemma 3

Lemma 3’: For any prime p ≡ 3 (mod 4)

Ln(p)pk ≡

{
2 (mod p2(k+e(p))), if π(p)/n(p) = 1

−2 (mod p2(k+e(p))), if π(p)/n(p) = 2
.

Proof of Lemma 3’. We know that νp(F
2
n(p)pk) = 2(k+e(p)) by Theorem A.

Thus we can replace p2 by p2(k+e(p)) in identities (9)–(14).

We note that according to Lemmas 1’ and 3’, the denominators of the multisec-

tion identities (5), (13), and (14) have either 1 or −1 as a double root modulo some

p-power with exponent 2k +6 or 2(k + e(p)). This observation, combined with the

remarks made in the proofs of the lemmas, helps in obtaining the full description

of the structure of the periods of the corresponding multisected sequences [cf. (5),

(13), and (14)] with respect to above mentioned p-power moduli (p 6= 5).

5. LUCAS NUMBERS

By using methods we applied to the Fibonacci sequence, we obtain

∞∑
n=0

Lnx
n =

2 + x + 3 x2 + 4 x3 + 7 x4 + 11 x5 − 18 x6 + 11 x7 − 7 x8 + 4 x9 − 3 x10 + x11

1− 18 x6 + x12

which proves that

ν2(Ln) =


0, if n ≡ 1, 2 (mod 3),

2, if n ≡ 3 (mod 6),

1, if n ≡ 0 (mod 6).

If p = 5 then the modulo 5 periodic pattern of Ln is 2, 1, 3, 4, and thus 56 |Ln.

If p 6= 2, 5 then the order νp(Ln) can be derived easily by the duplication

formula and Theorem A (see [9]). Here, for the sake of uniformity, we use mul-

tisection identities. We need the companion multisection identity to (1) for the

Lucas sequence

hm(x) =
∞∑

n=0

Lmnx
n =

2− Lmx

1− Lmx + (−1)mx2
. (15)
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As Ln = F2n/Fn, we see that Ln is divisible by p only if 2n is a multiple of n(p)

while n is not; in other words if n is an odd multiple of n(p)/2. This implies that we

have to deal only with the case in which n(p) is even. The generalized n(p)
2

–sected

Lucas sequence will suffice to prove

Theorem D: If p 6= 2 and π(p)/n(p) 6= 4, then, for every k ≥ 0 and m =

(n(p)/2) pk

l(x) =
∑
2 6 |n

Lmn

Lm

xn ≡

{
x(1+x2)
(1−x2)2

≡
∑

2 6 |n nxn (mod p2), if π(p)/n(p) = 1
x(1−x2)
(1+x2)2

≡
∑

2 6 |n(−1)
n−1

2 n xn (mod p2), if π(p)/n(p) = 2

yielding νp(Ln) = νp(n) + e(p) if n ≡ n(p)/2 (mod n(p)).

Proof of Theorem D. Note that the conditions guarantee that n(p) is even.

We discuss the case in which π(p)/n(p) = 1 with k = 0 only, while the other cases

can be carried out similarly. We note that

Ln(p)/2 l(x) = hn(p)/2(x)− hn(p)(x
2).

It is known that n(p)/2 is odd if π(p)/n(p) = 1 (cf. [9]). The common denominator

of the above difference can be simplified. In fact, according to identity (15), the

denominator of hn(p)(x
2) is 1− Ln(p)x

2 + x4 = 1− (L2
n(p)/2 + 2)x2 + x4 by Ln(p) =

L2
n(p)/2 − 2(−1)n(p)/2 which follows by (2) and (3). We get 1 − Ln(p)x

2 + x4 =

(1 − x2)2 − L2
n(p)/2x

2 ≡ (1 − x2)2 (mod p2). Finally, it is easy to see that l(x)

simplifies to
x(1 + x2)

(1− x2)2
(mod p2).

The exponent of p can be increased to 2(k + e(p)) in the above proof and therefore

in the theorem also.

ACKNOWLEDGMENT

I wish to thank Greg Tollisen and the anonymous referee for making many

helpful suggestions and comments that improved the presentation of this paper.

REFERENCES

1. L. Comtet. Advanced Combinatorics. Dordrecht: D. Reidel, 1974.



10

2. I. Gessel and T. Lengyel. “On the Order of Stirling Numbers and Alternat-

ing Binomial Coefficient Sums.” The Fibonacci Quarterly 39.5 (2001):444–

54.

3. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. 2nd

ed. Reading, MA: Addison-Wesley, 1994.

4. J. H. Halton. “On the Divisibility Properties of Fibonacci Numbers.” The

Fibonacci Quarterly 4.3 (1966):217–40.

5. E. Jacobson. “Distribution of the Fibonacci Numbers Mod 2k.” The Fi-

bonacci Quarterly 30.3 (1992):211–15.

6. D. E. Knuth. The Art of Computer Programming, vol. 2: Seminumerical

Algorithms. 2nd ed. Reading, MA: Addison-Wesley, 1981.

7. D. E. Knuth and H. S. Wilf. “The power of a prime that divides a general-

ized binomial coefficient.” J. Reine Angew. Math. 396 (1989):212–19.

8. Y. H. Kwong. “Periodicities of a Class of Infinite Integer Sequences Modulo

m.” J. of Numb. Theory 31 (1989):64–79.

9. T. Lengyel. “The Order of the Fibonacci and Lucas Numbers.” The Fi-

bonacci Quarterly 33.3 (1995):234–29.

10. J. Riordan. An Introduction to Combinatorial Analysis. New York: Wiley,

1958.

11. I. Strazdin. “Lucas Factors and a Fibonomial Generating Function.” In

Applications of Fibonacci Numbers, 7:401–404. Dordrecht: Kluwer, 1998.

12. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section, Theory and

Applications. Chichester: Ellis Horwood, 1989.

13. D. D. Wall. “Fibonacci Series Modulo m.” Amer. Math. Monthly 67

(1960):525-532.

AMS Classification Numbers: 11B39, 05A15, 11B50, 11B37


