DIVISIBILITY PROPERTIES BY MULTISECTION

Tamás Lengyel

Occidental College, 1600 Campus Road, Los Angeles, CA 90041 $\label{eq:computation} December~2000$

1. INTRODUCTION

The p-adic order, $\nu_p(r)$ (often also denoted by $\rho_p(r)$), of r is the exponent of the highest power of a prime p which divides r. We characterize the p-adic order $\nu_p(F_n)$ of the F_n sequence using multisection identities. The method of multisection is a helpful tool in discovering and proving divisibility properties. Here it leads to invariants of the modulo p^2 Fibonacci generating function for $p \neq 5$. The proof relies on some simple results on the periodic structure of the series F_n .

The periodic properties of the Fibonacci and Lucas numbers have been extensively studied (e.g., [13]). (For a general discussion of the modulo m periodicity of integer sequences see [8].) The smallest positive index n such that $F_n \equiv 0 \pmod{p}$ is called the rank of apparition (or rank of appearance or Fibonacci entrypoint) of prime p and is denoted by n(p). The notion of rank of apparition n(m) can be extended to arbitrary modulus $m \geq 2$. The order of p in $F_{n(p)}$ will be denoted by $e = e(p) = \nu_p(F_{n(p)}) \geq 1$. Interested readers might consult [6] and [9] for a list of relevant references on the properties of $\nu_p(F_n)$.

The main focus of this paper is the multisection based derivation of some important divisibility properties of F_n (Theorem A) and L_n (Theorem D). A result similar to Theorem A was obtained by Halton [4]. A different derivation using a Kummer-like theorem was given in [7]. This latter approach expresses the p-adic order of generalized binomial coefficients in terms of the number of "carries." Theorem A can be generalized to include other linear recurrent sequences and a proof without using generating functions was given in [6, Exercise 3.2.2.11]. The latter approach is implicitly based on multisections.

The generating functions of the Fibonacci and Lucas numbers are $f(x) = \sum_{n=0}^{\infty} F_n x^n = x/(1-x-x^2)$ and $h(x) = \sum_{n=0}^{\infty} L_n x^n = (2-x)/(1-x-x^2)$, re-

spectively. In this paper the general coefficients of these generating functions will be determined by multisection identities, as we prove

Theorem A [9]: For all $n \ge 0$ we have

$$\nu_2(F_n) = \begin{cases} 0, & \text{if } n \equiv 1, 2 \pmod{3}, \\ 1, & \text{if } n \equiv 3 \pmod{6}, \\ 3, & \text{if } n \equiv 6 \pmod{12}, \\ \nu_2(n) + 2, & \text{if } n \equiv 0 \pmod{12}, \end{cases}$$

$$\nu_5(F_n) = \nu_5(n),$$

$$\nu_p(F_n) = \begin{cases} \nu_p(n) + e(p), & \text{if } n \equiv 0 \pmod{n(p)}, \\ 0, & \text{if } n \not\equiv 0 \pmod{n(p)}, \end{cases}$$
 if $p \neq 2$ and 5.

The cases p=2 and p=5 are discussed in Sections 2 and 3, respectively. The general case is completed in Section 4. The case of p=2 has been discussed in [5] using a different approach. The multisection based technique offers a simplified treatment of this case. We extend the method to the Lucas numbers in Section 5.

By the *m*-section of a power series $g(x) = \sum_{n=0}^{\infty} a_n x^n$ we mean the extraction of the sum of terms $a_l x^l$ in which l is divisible by m. We use the resulting power series $g_m(x) = \sum_{n=0}^{\infty} a_{mn} x^{mn}$ in its modified form $g_m(x^{1/m}) = \sum_{n=0}^{\infty} a_{mn} x^n$ and call it the *m*-section, too. The corresponding sequence $\{a_m\}_{n=0}^{\infty}$ of coefficients is referred to as the *m*-section of the sequence $\{a_n\}_{n=0}^{\infty}$. The notion of *m*-section can be generalized to form a sum of terms with index l ranging over a fixed congruence class of integers modulo m. It will be used in Sections 2 and 5. There are various general multisection identities (cf. [10, p. 131] or [1, p84.]), and they can be helpful in proving divisibility patterns (e.g., [2]). The *m*-section of the Fibonacci sequence leads to the form

$$\sum_{n=0}^{\infty} F_{mn} x^n = \frac{F_m x}{1 - L_m x + (-1)^m x^2}.$$
 (1)

The denominators are referred to as Lucas factors. For other application of Lucas factors see [11].

The present proof of Theorem A is based on a multisection invariant. In fact, we will see in (5), (13), and (14) that $x/(1-x)^2$ or $x/(1+x)^2$ is an invariant of the properly sected Fibonacci generating function taken mod p^2 for every prime $p \neq 5$. The power of p can be easily improved.

We shall need some facts on the location of zeros in the series $\{F_n \mod m\}_{n\geq 0}$.

Theorem B (Theorem 3 in [13]): The terms for which $F_n \equiv 0 \pmod{m}$ have subscripts that form a simple arithmetic progression. That is, for some positive integer d = d(m) and for $x = 0, 1, 2, ..., n = x \cdot d$ gives all n with $F_n \equiv 0 \pmod{m}$.

Note that d(m) is exactly n(m), and $d(p^i) = d(p) = n(p)$, for all $1 \le i \le e(p)$. It also follows that $F_l \not\equiv 0 \pmod{p}$ unless l is a multiple of n(p).

We denote the modulo m period of the Fibonacci series by $\pi(m)$. Gauss proved that the ratio $\frac{\pi(p)}{n(p)}$ is 1, 2, or 4. In fact, we get

Lemma C [9]: The ratio $\frac{\pi(p)}{n(p)}$ can be fully characterized in terms of $x \equiv F_{n(p)-1} \equiv F_{n(p)+1} \pmod{p}$ by

$$\pi(p) = \begin{cases} n(p), & \text{iff} \quad x \equiv 1 \pmod{p}, \\ 2n(p), & \text{iff} \quad x \equiv -1 \pmod{p}, \\ 4n(p), & \text{iff} \quad x^2 \equiv -1 \pmod{p}. \end{cases}$$

In the first case, p must have the form $10l \pm 1$ while the third case requires that p = 4l + 1.

We also will repeatedly use two identities (cf. (23) and (24) in [12]) for the Lucas numbers with arbitrary integers $h \ge 0$:

$$L_{2h} = 2(-1)^h + 5F_h^2, (2)$$

$$L_h^2 = 4(-1)^h + 5F_h^2. (3)$$

It is worth noting that our proofs of Theorems A and D rely on three congruences for the Lucas numbers (cf. Lemmas 1, 2, and 3) which in turn can be significantly improved (cf. Lemmas 1', 2' and 3') using the theorems.

2. THE CASE OF p=2

By adding together the six 6-sections $\sum_{n=0}^{\infty} F_{6n+l}x^{6n+l}$, $l=0,1,\ldots,5$, of the generating function f(x), we obtain

$$f(x) = \frac{x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 - 5x^7 + 3x^8 - 2x^9 + x^{10} - x^{11}}{1 - 18x^6 + x^{12}}$$

which is equivalent to the recurrence relation $F_{n+12} = 18F_{n+6} - F_n$, $F_0 = 0$, $F_1 = 1, \ldots, F_{11} = 89$. This immediately implies that

$$\nu_2(F_n) = \begin{cases} 0, & \text{if } n \equiv 1, 2 \pmod{3}, \\ 1, & \text{if } n \equiv 3 \pmod{6}, \\ 3, & \text{if } n \equiv 6 \pmod{12}. \end{cases}$$

It remains to be proven that

$$\nu_2(F_{12\cdot n}) = \nu_2(n) + 4. \tag{4}$$

To this end, first we note that

Lemma 1: $L_{12 \cdot 2^k} \equiv 2 \pmod{2^2}$ for all $k \ge 0$.

In fact, the modulo 4 period of F_n is 6, and this implies $L_{6j} \equiv 2F_{6j+1} \equiv 2 \pmod{4}$ for every integer $j \geq 0$.

By identity (1), we obtain that for all $k \geq 0$

$$\sum_{n=0}^{\infty} \frac{F_{12 \cdot 2^k n}}{F_{12 \cdot 2^k}} x^n = \frac{x}{1 - L_{12 \cdot 2^k} x + x^2} \equiv \frac{x}{(1 - x)^2} \equiv \sum_{n=1}^{\infty} n x^n \pmod{2^2}$$
 (5)

We have $F_{12} = 144 = 2^4 \cdot 9$. By setting k = 0 and n = 2 in (5) it follows that $F_{12 \cdot 2}/F_{12} \equiv 2 \pmod{2^2}$, thus $\nu_2(F_{24}) = \nu_2(F_{12}) + 1 = 5$. In general, we use n = 2 and observe that $\nu_2(F_{12 \cdot 2^{k+1}}) = \nu_2(F_{12 \cdot 2^k}) + 1 = \dots = \nu_2(F_{12}) + k + 1 = 4 + \nu_2(2^{k+1})$ follows by a simple inductive argument. We complete the proof of (4) by noting that for n odd $\nu_2(F_{12 \cdot 2^k n}) = \nu_2(F_{12 \cdot 2^k})$ holds by (5).

A sharper version of Lemma 1 can be derived from Theorem A (once it has been proven):

Lemma 1': $L_{12 \cdot 2^k} \equiv 2 \pmod{2^{2k+6}}$ for all $k \ge 0$.

Proof of Lemma 1'. We note that $L_{12 \cdot 2^k} \equiv 2 \pmod{2^{k+3}}$ can be easily derived from the periodicity of F_n , for $L_{12 \cdot 2^k} \equiv 2F_{12 \cdot 2^k+1} \equiv 2 \pmod{2^{k+3}}$ as $\pi(2^l) = 12 \cdot 2^{l-3}, l \geq 1$. We notice, however, that the sharper $L_{12} = 322 \equiv 2 \pmod{2^6}$ also holds. Moreover, identity (2) yields $L_{12 \cdot 2^{k+1}} \equiv 2 \pmod{F_{12 \cdot 2^k}^2}$, and we derive that $L_{12 \cdot 2^{k+1}} \equiv 2 \pmod{(2^{4+k})^2}$ using Theorem A. Accordingly, we can replace the exponent of p in identity (5).

3. THE CASE OF p=5

This case is a little more involved. We will find $\nu_5(F_{5^k n}), k \geq 1$, in terms of $\nu_5(F_{5^k})$ in three steps. In the first two we assume that (n, 5) = 1 then we deal with the case of n = 5.

First we take the 5-section of f(x) and obtain

$$\sum_{n=0}^{\infty} \frac{F_{5n}}{F_5} x^n = \frac{x}{1 - 11x - x^2} \equiv \frac{x}{1 - x - x^2} \equiv \sum_{n=1}^{\infty} F_n x^n \pmod{5}$$

which guarantees that $\nu_5(F_{5n}) = \nu_5(F_5)$ if (n,5) = 1. In the second step we try to generalize this relation for indices of the form $5^k n, (n,5) = 1, k \ge 2$. We shall need

Lemma 2: $L_{5^{k+1}} - L_{5^k} \equiv 0 \pmod{25}$ for $k \ge 1$.

Proof of Lemma 2. By identity (3), we have for $k \geq 1$ that

$$L_{5^{k+1}}^2 - L_{5^k}^2 \equiv 0 \pmod{F_{5^k}^2}.$$

It follows that

$$(L_{5^{k+1}} - L_{5^k})(L_{5^{k+1}} + L_{5^k}) \equiv 0 \pmod{25}$$
(6)

by Theorem B. Clearly,

$$L_{5^{k+1}} \equiv L_{5^k} \equiv L_5 \equiv 1 \pmod{5},\tag{7}$$

thus the factor $L_{5^{k+1}} + L_{5^k}$ cannot be a multiple of 5. Therefore, $L_{5^{k+1}} - L_{5^k} \equiv 0 \pmod{25}$ by identity (6).

We note that $\nu_5(F_{25}) = 2$. It is true that for $k \geq 1$

$$\begin{split} \sum_{n=0}^{\infty} \big(\frac{F_{5^{k+1}n}}{F_{5^{k+1}}} - \frac{F_{5^kn}}{F_{5^k}} \big) x^n &= \frac{x}{1 - L_{5^{k+1}}x - x^2} - \frac{x}{1 - L_{5^k}x - x^2} \\ &= (L_{5^{k+1}} - L_{5^k}) \frac{x}{1 - L_{5^{k+1}}x - x^2} \, \frac{x}{1 - L_{5^k}x - x^2}. \end{split}$$

The first factor is divisible by 25 according to Lemma 2. For (n, 5) = 1, we get

$$\nu_5(F_{5^k n}/F_{5^k}) = \nu_5(F_{5^{k-1}n}/F_{5^{k-1}}) = \dots = \nu_5(F_{5n}/F_5) = 0, \tag{8}$$

i.e., $\nu_5(F_{5^k n}) = \nu_5(F_{5^k})$ by induction on $k \ge 1$.

Now we turn to the case of n = 5. For $k \ge 1$ and n = 5 we get that $F_{5^{k+2}}/F_{5^{k+1}} \equiv F_{5^{k+1}}/F_{5^k} \pmod{25}$; therefore, $\nu_5(F_{5^{k+2}}) = \nu_5(F_{5^{k+1}}) + 1 = \dots =$

 $\nu_5(F_5) + k + 1$ by induction using $\nu_5(F_{25}/F_5) = 1$. The proof of the case p = 5 is now complete.

Note that, once it is proven, Theorem A guarantees the much stronger

Lemmas 2': $L_{5^{k+1}} \equiv L_{5^k} \pmod{5^{2k}}$ for $k \ge 1$.

We note that an alternative derivation of (8) is possible by (7) but without using Lemma 2:

$$\frac{x}{1 - L_{5^{k+1}}x - x^2} \frac{x}{1 - L_{5^k}x - x^2} \equiv \sum_{n=0}^{\infty} F_n^{(2)} x^n \pmod{5}$$

with $F_n^{(2)}$ being the 2-fold convolution of the sequence F_n . The *m*-fold convolution of the sequence F_n is defined by

$$F_n^{(m)} = \sum_{i_1 + i_2 + \dots + i_m = n} F_{i_1} F_{i_2} \dots F_{i_m}$$

which has the generating function $[f(x)]^m$. Note that by identity (7.61) in [3, p.354] $F_n^{(2)} = \frac{1}{5}(2nF_{n+1} - (n+1)F_n) = \frac{n}{5}(2F_{n+1} - F_n) - \frac{1}{5}F_n = \frac{n}{5}L_n - \frac{1}{5}F_n$. We can easily find the period of $F_n^{(m)}$ by the general theory (cf. [8]) or by simple inspection. The latter approach provides us with the actual elements of the period. It is clear that 100 is the modulo 25 period of $nL_n - F_n$, and $nL_n - F_n$ is divisible by 25 if n is divisible by 5. It follows that $5|F_n^{(2)}|$ if 5|n.

4. THE GENERAL CASE

In this section p is a prime different from 2 and 5, and n denotes an integer for which $\nu_p(n)$ is either 0 or 1. We will either use an $n(p)p^k$ - or a $2n(p)p^k$ -section in obtaining the required divisibility properties. First we prove

Lemma 3: For any prime $p \equiv 3 \pmod{4}$

$$L_{n(p)p^k} \equiv \begin{cases} 2 \pmod{p^2}, & \text{if } \pi(p)/n(p) = 1\\ -2 \pmod{p^2}, & \text{if } \pi(p)/n(p) = 2 \end{cases}$$

Proof of Lemma 3. Formula (3) yields that if $h \ge 0$ is even then $L_{2h}^2 - L_h^2 \equiv 0 \pmod{F_h^2}$. Note that n(p) is even for $p \equiv 3 \pmod{4}$ [13]. By setting $h = n(p)p^k$ we obtain

$$(L_{2n(p)p^k} - L_{n(p)p^k})(L_{2n(p)p^k} + L_{n(p)p^k}) \equiv 0 \pmod{p^2}$$
(9)

Therefore, either

$$L_{2n(p)p^k} \equiv L_{n(p)p^k} \pmod{p^2} \tag{10}$$

or

$$L_{2n(p)p^k} \equiv -L_{n(p)p^k} \pmod{p^2},\tag{11}$$

for otherwise both $L_{2n(p)p^k} - L_{n(p)}$ and $L_{2n(p)p^k} + L_{n(p)p^k}$ will be divisible by p. It would lead to $L_{n(p)p^k} \equiv 0 \pmod{p}$ which is impossible as $L_{n(p)p^k} \equiv 2F_{n(p)p^k+1} \pmod{p}$. According to identity (2), $L_{2n(p)} = 2 + 5F_{n(p)}^2$ which yields $L_{2n(p)} \equiv 2 \pmod{p^2}$ and also

$$L_{2n(p)p^k} \equiv 2 \pmod{p^2} \tag{12}$$

by Theorem B [13].

If $\pi(p)/n(p) = 1$ then $F_{n(p)+1} \equiv 1 \pmod{p}$ by Lemma C, and we get $L_{2n(p)} \equiv L_{n(p)} \equiv 2 \pmod{p}$ and, similarly, $L_{2n(p)p^k} \equiv L_{n(p)p^k} \equiv 2F_{2n(p)p^k+1} \equiv 2 \pmod{p}$ leading to (10). If $\pi(p)/n(p) = 2$ then $F_{n(p)+1} \equiv -1 \pmod{p}$ and $L_{2n(p)} \equiv -L_{n(p)} \equiv 2 \pmod{p}$ and $L_{2n(p)p^k} \equiv -L_{n(p)p^k} \equiv 2 \pmod{p}$ corresponding to (11).

We are now able to finish the proof of Theorem A. In the case of $\pi(p)/n(p)=1$ and 2, we can use

$$\sum_{n=0}^{\infty} \frac{F_{n(p) \cdot p^k n}}{F_{n(p) \cdot p^k}} x^n = \frac{x}{1 - L_{n(p) \cdot p^k} x + x^2} \equiv \frac{x}{(1 \pm x)^2} \equiv \sum_{n=1}^{\infty} (\mp 1)^{n-1} n x^n \pmod{p^2}$$
(13)

which proves $\nu_p(F_{n(p)p^kn}) = \nu_p(F_{n(p)p^k}) + \nu_p(n)$ for $\nu_p(n) \leq 1$. In particular, by setting n = p we obtain $\nu_p(F_{n(p)p^{k+1}}) = \nu_p(F_{n(p)p^k}) + 1$, and $\nu_p(F_{n(p)p^{k+1}}) = e(p) + k + 1$ follows by induction on $k \geq 0$. In summary, we derived that $\nu_p(F_{n(p)p^kn}) = e(p) + k + \nu_p(n)$ and the proof is now complete.

On the other hand, if $\pi(p)/n(p) = 4$ then we switch from using a $n(p)p^k$ -section to a $2n(p)p^k$ -section. By the duplication formula (cf. [3] or [12]) we get $F_{2n(p)p^kn} = F_{n(p)p^kn}L_{n(p)p^kn}$ for any integer n > 0. This yields $\nu_p(F_{2n(p)p^kn}) = \nu_p(F_{n(p)p^kn})$. We consider

$$\sum_{n=0}^{\infty} \frac{F_{2n(p)p^k n}}{F_{2n(p)p^k}} x^n = \frac{x}{1 - L_{2n(p)p^k} x + x^2}.$$

Identity (12) implies that

$$\sum_{n=0}^{\infty} \frac{F_{2n(p)p^k n}}{F_{2n(p)p^k}} x^n \equiv \frac{x}{(1-x)^2} \equiv \sum_{n=1}^{\infty} nx^n \pmod{p^2}.$$
 (14)

The proof can be concluded as above for $\nu_p(F_{n(p)p^kn}) = \nu_p(F_{2n(p)p^kn}) = \nu_p(F_{2n(p)}) + k + \nu_p(n) = \nu_p(F_{n(p)}) + k + \nu_p(n) = e(p) + k + \nu_p(n)$.

By means similar to Lemma 1', we can prove a stronger version of Lemma 3

Lemma 3': For any prime $p \equiv 3 \pmod{4}$

$$L_{n(p)p^k} \equiv \begin{cases} 2 \pmod{p^{2(k+e(p))}}, & \text{if } \pi(p)/n(p) = 1\\ -2 \pmod{p^{2(k+e(p))}}, & \text{if } \pi(p)/n(p) = 2 \end{cases}.$$

Proof of Lemma 3'. We know that $\nu_p(F_{n(p)p^k}^2) = 2(k+e(p))$ by Theorem A. Thus we can replace p^2 by $p^{2(k+e(p))}$ in identities (9)–(14).

We note that according to Lemmas 1' and 3', the denominators of the multisection identities (5), (13), and (14) have either 1 or -1 as a double root modulo some p-power with exponent 2k + 6 or 2(k + e(p)). This observation, combined with the remarks made in the proofs of the lemmas, helps in obtaining the full description of the structure of the periods of the corresponding multisected sequences [cf. (5), (13), and (14)] with respect to above mentioned p-power moduli ($p \neq 5$).

5. LUCAS NUMBERS

By using methods we applied to the Fibonacci sequence, we obtain

$$\sum_{n=0}^{\infty} L_n x^n = \frac{2 + x + 3x^2 + 4x^3 + 7x^4 + 11x^5 - 18x^6 + 11x^7 - 7x^8 + 4x^9 - 3x^{10} + x^{11}}{1 - 18x^6 + x^{12}}$$

which proves that

$$\nu_2(L_n) = \begin{cases} 0, & \text{if } n \equiv 1, 2 \pmod{3}, \\ 2, & \text{if } n \equiv 3 \pmod{6}, \\ 1, & \text{if } n \equiv 0 \pmod{6}. \end{cases}$$

If p=5 then the modulo 5 periodic pattern of L_n is 2, 1, 3, 4, and thus $5/L_n$.

If $p \neq 2, 5$ then the order $\nu_p(L_n)$ can be derived easily by the duplication formula and Theorem A (see [9]). Here, for the sake of uniformity, we use multisection identities. We need the companion multisection identity to (1) for the Lucas sequence

$$h_m(x) = \sum_{n=0}^{\infty} L_{mn} x^n = \frac{2 - L_m x}{1 - L_m x + (-1)^m x^2}.$$
 (15)

As $L_n = F_{2n}/F_n$, we see that L_n is divisible by p only if 2n is a multiple of n(p) while n is not; in other words if n is an odd multiple of n(p)/2. This implies that we have to deal only with the case in which n(p) is even. The generalized $\frac{n(p)}{2}$ -sected Lucas sequence will suffice to prove

Theorem D: If $p \neq 2$ and $\pi(p)/n(p) \neq 4$, then, for every $k \geq 0$ and $m = (n(p)/2) p^k$

$$l(x) = \sum_{2 \nmid n} \frac{L_{mn}}{L_m} x^n \equiv \begin{cases} \frac{x(1+x^2)}{(1-x^2)^2} \equiv \sum_{2 \nmid n} nx^n \pmod{p^2}, & \text{if } \pi(p)/n(p) = 1\\ \frac{x(1-x^2)}{(1+x^2)^2} \equiv \sum_{2 \nmid n} (-1)^{\frac{n-1}{2}} n \, x^n \pmod{p^2}, & \text{if } \pi(p)/n(p) = 2 \end{cases}$$

yielding $\nu_p(L_n) = \nu_p(n) + e(p)$ if $n \equiv n(p)/2 \pmod{n(p)}$.

Proof of Theorem D. Note that the conditions guarantee that n(p) is even. We discuss the case in which $\pi(p)/n(p) = 1$ with k = 0 only, while the other cases can be carried out similarly. We note that

$$L_{n(p)/2} l(x) = h_{n(p)/2}(x) - h_{n(p)}(x^2).$$

It is known that n(p)/2 is odd if $\pi(p)/n(p) = 1$ (cf. [9]). The common denominator of the above difference can be simplified. In fact, according to identity (15), the denominator of $h_{n(p)}(x^2)$ is $1 - L_{n(p)}x^2 + x^4 = 1 - (L_{n(p)/2}^2 + 2)x^2 + x^4$ by $L_{n(p)} = L_{n(p)/2}^2 - 2(-1)^{n(p)/2}$ which follows by (2) and (3). We get $1 - L_{n(p)}x^2 + x^4 = (1 - x^2)^2 - L_{n(p)/2}^2x^2 \equiv (1 - x^2)^2 \pmod{p^2}$. Finally, it is easy to see that l(x) simplifies to

$$\frac{x(1+x^2)}{(1-x^2)^2} \pmod{p^2}.$$

The exponent of p can be increased to 2(k+e(p)) in the above proof and therefore in the theorem also.

ACKNOWLEDGMENT

I wish to thank Greg Tollisen and the anonymous referee for making many helpful suggestions and comments that improved the presentation of this paper.

REFERENCES

1. L. Comtet. Advanced Combinatorics. Dordrecht: D. Reidel, 1974.

- I. Gessel and T. Lengyel. "On the Order of Stirling Numbers and Alternating Binomial Coefficient Sums." The Fibonacci Quarterly 39.5 (2001):444–54.
- 3. R. L. Graham, D. E. Knuth, and O. Patashnik. *Concrete Mathematics*. 2nd ed. Reading, MA: Addison-Wesley, 1994.
- 4. J. H. Halton. "On the Divisibility Properties of Fibonacci Numbers." *The Fibonacci Quarterly* **4.3** (1966):217–40.
- 5. E. Jacobson. "Distribution of the Fibonacci Numbers Mod 2^k." The Fibonacci Quarterly **30.3** (1992):211–15.
- 6. D. E. Knuth. *The Art of Computer Programming*, vol. 2: Seminumerical Algorithms. 2nd ed. Reading, MA: Addison-Wesley, 1981.
- 7. D. E. Knuth and H. S. Wilf. "The power of a prime that divides a generalized binomial coefficient." *J. Reine Angew. Math.* **396** (1989):212–19.
- 8. Y. H. Kwong. "Periodicities of a Class of Infinite Integer Sequences Modulo m." J. of Numb. Theory **31** (1989):64–79.
- 9. T. Lengyel. "The Order of the Fibonacci and Lucas Numbers." *The Fibonacci Quarterly* **33.3** (1995):234–29.
- J. Riordan. An Introduction to Combinatorial Analysis. New York: Wiley, 1958.
- 11. I. Strazdin. "Lucas Factors and a Fibonomial Generating Function." In *Applications of Fibonacci Numbers*, **7:**401–404. Dordrecht: Kluwer, 1998.
- 12. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section, Theory and Applications. Chichester: Ellis Horwood, 1989.
- 13. D. D. Wall. "Fibonacci Series Modulo *m*." *Amer. Math. Monthly* **67** (1960):525-532.

AMS Classification Numbers: 11B39, 05A15, 11B50, 11B37