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Kleiber’s law describes the scaling of metabolic rate with body
size across several orders of magnitude in size and across taxa
and is widely regarded as a fundamental law in biology. The
physiological origins of Kleiber’s law are still debated and gen-
eralizations of the law accounting for deviations from the scaling
behavior have been proposed. Most theoretical and experimental
studies of Kleiber’s law, however, have focused on the relation-
ship between the average body size of a species and its mean
metabolic rate, neglecting intraspecific variation of these 2 traits.
Here, we propose a theoretical characterization of such varia-
tion and report on proof-of-concept experiments with freshwater
phytoplankton supporting such framework. We performed joint
measurements at the single-cell level of cell volume and nitro-
gen/carbon uptake rates, as proxies of metabolic rates, of 3
phytoplankton species using nanoscale secondary ion mass spec-
trometry (NanoSIMS) and stable isotope labeling. Common scaling
features of the distribution of nutrient uptake rates and cell vol-
ume are found to hold across 3 orders of magnitude in cell size.
Once individual measurements of cell volume and nutrient uptake
rate within a species are appropriately rescaled by a function
of the average cell volume within each species, we find that
intraspecific distributions of cell volume and metabolic rates col-
lapse onto a universal curve. Based on the experimental results,
this work provides the building blocks for a generalized form of
Kleiber’s law incorporating intraspecific, correlated variations of
nutrient-uptake rates and body sizes.

phenotypic heterogeneity | Synechococcus | Scenedesmus |
Cryptomonas | metabolic theory of ecology

Research across diverse systems has revealed remarkable reg-
ularities in the distributions of species, their abundances, and
metabolic requirements (1–4), providing a foundation to predict
how ecological communities assemble and respond to environ-
mental change. Kleiber’s law (1) is widely regarded as one of
the most important of these regularities. It states that, across
many orders of magnitude, the average metabolic rate B of
an ensemble of organisms of a species scales with its average
body mass, M , according to the power law B = cMα (where
α is a scaling exponent and c a is a constant that may vary
across different branches of the tree of life). The metabolic
requirements of organisms underlie many fundamental biologi-
cal properties, including life-history, population, and community
attributes (5), giving Kleiber’s law a central role in the under-
standing of ecosystem-level consequences of resource utilization
(4, 6, 7). The majority of experimental studies support the claim
that the exponent in Kleiber’s law is α' 3/4 (8–10) and theoreti-
cal explanations that return this value have been proposed, based
on general features of metabolic networks (11, 12). However,

the applicability of the law across taxa (13) and the universality
of the exponent 3/4 have been repeatedly challenged (14–18).
Recent investigations point at corrections to the simple power-
law scaling, which, however, proves a reasonable approximation
across a wide range of body sizes (19, 20).

Most studies investigating Kleiber’s law have measured aver-
age metabolic rates and body masses within individual species, so
that each species is described by one point in (M ,B) plots. How-
ever, these physiological traits are typically very heterogeneous
within a population (14, 21), due to environmental fluctuations,
to differences in life stages and physiological conditions, and to
phenotypic heterogeneity, caused by either phenotypic plasticity
or genetic differences. Such heterogeneity may be particularly
important in natural settings, where it is increasingly being rec-
ognized as nature’s solution to 2 challenges: resource limitation
and fluctuations of the environment (22, 23). From an evolution-
ary point of view, body size and metabolic rate are heritable traits
(24, 25), and quantifying their intraspecific variation is key to
understanding how fast they evolve.

Community effects of variability in individual traits, includ-
ing size and metabolic rates, have been predicted theoretically
(22). Experimentally, the variability of metabolic rates among
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individuals has been examined within single species or classes
(14, 23, 26–28), often looking at species-specific molecular path-
ways as well as temporal fluctuations of individual rates (29).
However, no systematic measurements of common patterns of
intra- and interspecific metabolic rate heterogeneity and their
covariation with body size seem to have been performed to date
across a significant range of body sizes. Here, we aim at char-
acterizing how the variability of body sizes and of metabolic
rates within a species affects Kleiber’s law and whether one
can formulate a more general law that takes the intraspecific
heterogeneity of physiological traits explicitly into account. At
the community level, the metabolic theory of ecology can be
used to link individual metabolism to the global carbon cycle
(5, 30). The characterization of intraspecific variability of carbon
uptake rates is a prerequisite for understanding how it affects the
global carbon cycle—an interesting and timely avenue for future
research.

Results
Previous work (31) has shown that intraspecific body size dis-
tributions of microorganisms display universal features such
that the average body volume V of a species is sufficient
to completely characterize such distributions. In mathematical
terms, the intraspecific body size distribution pi(v) of species
i can be expressed as pi(v)= p(v |Vi), where Vi is the aver-
age/characteristic body volume of species i , the expression “|Vi”
indicates conditioning on Vi , and the probability distribution p
does not depend on other species-specific traits. Kleiber’s law
tells us that, at the species level, body size is a good predictor
of metabolic rate. Therefore, we expect that, at the intraspecific
level, a part of the metabolic rate variability will be explained by
the body size variability and therefore inherit the universal fea-
tures of intraspecific body size distributions. However, additional
variability may emerge due to other physiological heterogeneity
among individuals. This additional component of the variability
might also display universal features, as suggested by the study of
temporal metabolic rate fluctuations by Labra et al. (29). Based
on this evidence, we hypothesize that the intraspecific metabolic
rate distribution pi(b), where b is the metabolic rate of individ-
uals of species i , can be expressed as p(b|Vi) similarly to the
intraspecific body size distribution, where the probability distri-
bution p again does not depend on other species-specific traits.
Under this hypothesis, knowing the functional dependence of
p(b|V ) on b and V would allow us to compute the intraspe-
cific metabolic rate distribution for any species based solely on
its mean body volume V . The existence of such a universal dis-
tribution of metabolic rates implies that their typical range of
variation within a species scales with V (SI Appendix). Exist-
ing data pose a constraint on the functional form of p(b|V ),
given that it must produce Kleiber’s law, B ∝V α, when the
average metabolic rate B is computed from p(b|V ) as B =∫
b p(b|V )db. Identifying the functional form of p(b|V ) compat-

ible with experimental data would provide a first generalization
of Kleiber’s law, accounting for the variability of b regardless of v
within a species. A further generalization of Kleiber’s law would
be provided by the joint distribution p(v , b|V ) (Materials and
Methods), which encapsulates the covariation of v and b, and
of which p(v |V ) and p(b|V ) are the marginal distributions; i.e.,
p(v |V )=

∫
p(v , b|V )db and p(b|V )=

∫
p(v , b|V )dv .

Our experiments are aimed at demonstrating the universality
of the intraspecific variability of v and b. Reconstructing the joint
distribution p(v , b|V ) empirically requires simultaneous mea-
surements of metabolic rates b and body volumes v of individuals
of different species with different mean volumes V . Verifying the
universality of such distribution, however, requires a sufficiently
smooth reconstruction of p(v , b|V ), which we cannot achieve
with available experimental approaches because of the relatively
small number of individuals that we can probe for each species.

Furthermore, to address questions concerning the universality
of p(v , b|V ), one needs to measure individual body sizes and
metabolic rates of species with average size spanning a broad
range, ideally a few orders of magnitude, with the same exper-
imental procedure. Due to these severe requirements, we are
capable of estimating only the marginal distributions p(v |V ) and
p(b|V ), which is less data demanding, and testing their univer-
sality. Our measurements of p(v |V ) agree with previous results
(31) and support the scaling form

p(v |V ) =
1

v
F
( v

V

)
, [1]

where the function F is species independent. Here, we hypothe-
size and test the validity of the scaling form for the intraspecific
distribution of metabolic rates,

p(b|V ) =
1

b
G

(
b

V α

)
[2]

(with α> 0), where G is again a species-independent function
(see SI Appendix for the properties that F and G must satisfy).
This hypothesis can be shown to imply the canonical form of
Kleiber’s law with exponent α for the mean metabolic rate B
and the mean volume V (i.e., B ∝V α). Note that an equation
similar to Eq. 2 has been proposed previously (14) and shown to
be compatible with experimental data on metabolic rate fluctu-
ations for small mammals. We discuss the relationship between
Eq. 2 of this work and equation 2 of ref. 14 in Materials and Meth-
ods. In our experiments, we measured 2 nutrient uptake rates (bC
and bN ), one for carbon (subscript C ) and one for nitrogen (sub-
script N ), as proxies of the metabolic rate (32). We hypothesize
that both satisfy Eq. 2 with 2 different exponents (αC and αN )
and 2 different scaling functions (GC and GN ).

To test this hypothesis, we measured experimentally nutrient
uptake rates and cell volumes of individual freshwater phyto-
plankton cells of the 3 species Synechococcus sp., Scenedesmus
obliquus, and Cryptomonas ovata, together covering 3 orders
of magnitude in cell volume (1 µm3 to 103 µm3). We chose
to perform experiments with freshwater phytoplankton because
they cover a significant size range while maintaining functional
similarity and allowing uniform measurement techniques and
because of their ecological relevance as primary producers at
the heart of marine and freshwater trophic webs (17). We used
nanoscale secondary ion mass spectrometry (NanoSIMS) (Mate-
rials and Methods) in combination with stable isotope labeling
to simultaneously measure cell size and rates of nutrient (car-
bon and nitrogen) uptake—the latter a measure of metabolic
rate of particular relevance for phytoplanktonic communities—
although aware of the difficulties of constraining measures of
heat production and photosynthetic energy conversion in nature
and in cultures (33, 34). Specifically, we targeted nitrogen and
carbon uptake because phytoplankton photosynthesis has been
routinely measured via C uptake for decades (16, 32) and
because C and N uptakes tend to be coupled during photoau-
totrophic exponential growth (7, 35). The cell size was measured
as the volume v of individual cells, rather than their mass, based
on density being nearly constant within species. Monocultures
of the 3 study species were exposed to a medium enriched in
2 rare isotopes of carbon and nitrogen, 13C and 15N, for a
known amount of time (Materials and Methods). By measuring
the uptakes of 13C and 15N of a cell, and knowing the iso-
tope ratios in the medium, we can compute its total carbon and
nitrogen uptake and therefore the uptake rates bC and bN . The
uptakes were obtained as follows. Each individual cell’s 13C:C
and 15N:N ratios were measured by NanoSIMS imaging (Materi-
als and Methods and Fig. 1). The total cell content of 13C and 15N
was then obtained by multiplying such ratios by the total cell con-
tent of C and N, inferred from the species averages measured by
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Fig. 1. Examples of ratio images from NanoSIMS experiments. Colors (see color bars) represent 13C enrichment (relative to the control sample), measured by
the ratio (rmes− rcontrol)/(rcontrol)× 1, 000, where r =13 C12C/12C2 and the subscripts mes and control indicate the isotope ratios measured in the 13C-enriched
and the control samples, respectively. White contours highlight the ROI over which the isotopic ratio is averaged. (A) Synechococcus sp. (B) S. obliquus.
(C) C. ovata.

gas chromatography (SI Appendix) as explained in Materials and
Methods. The uptake was then obtained by subtracting the nat-
ural content of 13C and 15N, known from the control samples.
The volume v of each cell was also inferred from the NanoSIMS
image processing.

The experiments thus provide a dataset of N joint measure-
ments of single-cell uptake rates bC , bN and cell volumes v ,
which are shown in Fig. 2 A and B, for each of the 3 phyto-
plankton species employed here. Each point represents a single
cell and the species averages V , BC , BN are highlighted. It can
be seen that average uptake rates scale with the species’ aver-
age cell volume, with exponents αC =0.69± 0.01 for carbon and
αN =0.56± 0.01 for nitrogen, where the exponents have been
obtained by linear least-squares fitting of log-transformed data.
The fact that these values are close to 2/3, which is the exponent
for the scaling of the cell surface area as a function of the cell vol-
ume, may suggest that uptake is limited by membrane transport,
an observation consistent with the high nutrient concentration
used in the experiments (but see also the discussion concern-
ing low-irradiance experimental conditions). At the intraspecific
level, the correlation of B and V visible in Fig. 2 A and B is
based on the assumption that the interspecific scaling of carbon
and nitrogen content holds also at the intraspecific level (Mate-
rials and Methods, Computation of Size and Uptake Rates), an
assumption which could not be verified experimentally due to the
impossibility of measuring absolute C and N levels in cells to the
accuracy required with the available experimental methods. On
the other hand, unit carbon and nitrogen uptake rates b̃i = bi/ci
(cC is the total cell content of carbon and cN is the total cell con-
tent of nitrogen), shown in Fig. 2 C and D, are not affected by this
assumption. Within each species, the correlations of unit carbon
and nitrogen uptake rates with cell volume are weak, implying
that the variabilities of cell size and unit uptake rates for cells
of the same species are approximately independent. The corre-
lations of total uptake rates bC and bN with cell volume V are
therefore mediated by the cellular content of carbon and nitro-
gen. A small number of outliers among the Synechococcus cells,
possibly affected by errors during manipulation or NanoSIMS
analysis, were excluded from the analysis (SI Appendix). Carbon-
specific and nitrogen-specific uptake rates show a strong positive
correlation (Pearson coefficient 0.83, Fig. 2E). Note that we con-
sider nutrient-specific rates to assess the existence of correlations
because the multiplication by cell volume (which is necessary to
obtain total uptake rates) introduces a strong spurious effect.

The marginal distributions p(v |V ), p(bC |V ), and p(bN |V )
were obtained by binning data and are shown in Figs. 3A and
4 A and C, respectively. The validity of the scaling forms in Eqs.

1 and 2 can be tested via data collapse as follows. If Eq. 1 is veri-
fied, plotting the quantity v/V vs. v · p(v |V ) should cause curves
from different species to collapse onto the same universal curve,
which provides the plot of the scaling function F . Similarly, if
Eq. 2 holds, the curves obtained by plotting b/V α vs. b · p(b|V )
should collapse on the function G , which can in principle be dif-
ferent for carbon and nitrogen uptake. Such collapses are shown
in Fig. 3B for p(v |V ) and in Fig. 4 B and D for p(bC |V ) and
p(bN |V ), respectively; thus Eqs. 1 and 2 hold true. We estimated
the exponents αC and αN by computing the values that give the
best collapses of p(bC |V ) and p(bN |V ) for the 3 species, using
the method described in ref. 36, yielding αC =0.685± 0.002
and αN =0.585± 0.005. The error is computed as the value
of the exponent at which the error functional Pb (defined in
ref. 36 by the sum of the areas enclosed between all pairs of
rescaled curves) is 1% larger than its value at the minimum
(SI Appendix). Note that by fixing the threshold for the accep-
tance of the collapse at 10%, the error becomes ±0.01. It should
also be noted that we had estimated these exponents previously
via linear least-squares fitting of log-transformed data, and the
2 methods of estimation give compatible values for each expo-
nent. Forcing scaling exponents equal to 2/3 or 3/4 irrespective
of C, N significantly worsened the collapse (SI Appendix). Fur-
thermore, if Eq. 2 holds true, the probability distribution for
the variable Y = log(b/V α) is simply p(Y )=G(eY ), regard-
less of the species. By rescaling the data in this way, we can use
the k-sample Anderson–Darling test to determine whether the
null hypothesis—namely that the rescaled samples from the 3
species are drawn from the same distribution—is rejected. This
gives us a statistical procedure to test whether our hypothesis
is consistent with the data. Analogous considerations hold for
Eq. 1, where the rescaled variable used for the statistical testing is
X = log(v/V ). For the intraspecific body size distributions, the
k-sample Anderson–Darling test on the 3 rescaled samples does
not reject the hypothesis that the samples come from the same
distribution at the 5% confidence level (P value = 0.17), sup-
porting the hypothesis that cell size distributions have the scaling
form given by Eq. 1.

Similarly, for both carbon and nitrogen uptake rates, the
k-sample Anderson–Darling tests on the rescaled samples (Mate-
rials and Methods) do not reject the hypothesis that the 3 samples
come from the same distribution at the 5% confidence level (with
P values of 0.09 and 0.07, respectively), supporting the rescal-
ing framework hypothesized in Eq. 2. We note that when testing
for the universality of scaling probability distributions, we find
it remarkable that the statistical test does not rule out the null
hypothesis. In fact, any small correction (e.g., logarithmic) to the
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Fig. 2. (A and B) Plot of the single-cell uptake rate of (A) carbon and (B)
nitrogen vs. single-cell volume for the 3 strains studied here. Black circles
are species averages (V , BC ) and (V , BN), while black dashed lines are linear
least-squares fits of (log V , log BC ) and (log V , log BN). Orange diamonds,
Synechococcus sp.; pink squares, S. obliquus; blue circles, C. ovata. (C and
D) Scatter plot of single-cell, carbon-specific carbon uptake rate (C) and
nitrogen-specific nitrogen uptake rate (D) vs. single-cell volume for the 3
strains. (E) Scatter plot of single-cell, carbon-specific carbon uptake rates
bC/cC (i.e., the carbon uptake rate bC divided by the cell total carbon con-
tent cC ) and single-cell, nitrogen-specific nitrogen uptake rates bN/cN (i.e.,
the nitrogen uptake rate bN divided by the cell total nitrogen content cN).
(F) Scaling of the average per-cell carbon (red squares) and nitrogen content
(black circles) with average cell volume V , for the 3 phytoplankton strains.
Lines are linear least-squares fits of log-transformed values.

scaling form in Eq. 2 could make the statistical test fail, although
it would have little effect on the consequences of Eq. 2. In biolog-
ical or ecological contexts, logarithmic corrections may be more
important than in classical statistical physics, given that the sizes
of the systems under investigation here are much farther from
the thermodynamic limit than, say, a gas of N ∼ 1023 molecules.
Finally, we estimated that the intraspecific volume heterogene-
ity explains only 34% to 58% of the observed variance of carbon
uptake rates within one species and only 14% to 31% of the vari-
ance of nitrogen uptake rates (SI Appendix). Intrinsic variability,
as given for example by phenotypic heterogeneity, is therefore a
crucial contributor to the manifestation of biological variability
and should be accounted for in any generalized scaling theory.

Discussion
When confronting the diversity of phytoplankton form and func-
tion, 2 broadly divergent approaches exist: one emphasizing the
existence of master traits, such as cell size, that underlie much of
the diversity, and the other emphasizing the importance of phylo-
genetic variability. The latter implies that taxonomic differences
would be crucial to explain functional differences. Phytoplank-
ton species are particularly relevant for the general study of
size-dependent vital rates. On the one hand, in fact, changes in

phytoplankton community structure as a consequence of global
changes in ocean chemistry and circulation, and in light and
nutrient regimes, are expected to have major cascading effects
on primary production, food web dynamics, the structure of
the marine food web, and biogeochemical cycles (37). On the
other hand, cell size has been shown to be a key determinant of
phytoplankton metabolism and community structure (17, 38–41).

Our main result is that species that differ widely in their phy-
logenetic affiliation show patterns of intraspecific variability of
metabolic rates and cell sizes that are identical, when appropri-
ately rescaled according to the average species’ mean cell size, as
suggested by the collapses shown in Fig. 4 B and D. As a conse-
quence, size predicts not only the average metabolic rate, as per
Kleiber’s law, but also the variability that is expected around that
average. The scaling in Eq. 2 suggested by our results implies that
such variability scales with a power of size, supporting size as a
fundamental trait to determine the structure of microbial com-
munities (17), and consequently their functioning and response
to environmental fluctuations (22).

Eq. 2 predicts that the maximum and the minimum metabolic
rates bmin and bmax that would be observed in a population of
N individuals of the same species with average body size V
scale with the same exponent as the average metabolic rate
B ; i.e., B ∝ bmin∝ bmax∝V α (SI Appendix). This suggests that
discrepancies in the measured value of the scaling exponent α in
the literature might not be explained merely by discrepancies of
measurements (say, targeting basal, field, or maximum metabolic
rates), but rather represent real shifts in the scaling exponents.

In this work, we characterized physiological variations of body
size and metabolic rate within clonal populations at a con-
stant temperature. In natural populations, different sources of
variability will also be important, most notably genetic and envi-
ronmental ones. An environmental variable that is well known to
affect metabolic rate (42) and body size is temperature (31, 43),
which enters the classical Kleiber’s law through an Arrhenius-
like term as B ∝V αe−E/(kT), where E is an activation energy, k
is Boltzmann’s constant, and T is the temperature. The most par-
simonious way to account for the dependence of metabolic rates
on temperature in the marginal distribution of metabolic rates
would be to assume the following dependence of p(b|V ,T ) on
V and T : p(b|V ,T )= b−1G

[
b/
(
V αe−E/(kT)

)]
. Experiments

performed at different values of T are required to verify this
hypothesis.

The limited number of cells that can be analyzed with
the experimental approach adopted here precludes a detailed
identification of the joint probability distribution of mass and
metabolic rate, p(v , b|V ) (Materials and Methods), or the

A B

Fig. 3. (A) Experimental body size distributions p(v|V) for the 3 freshwater
species. Dashed lines are log-normal fits as predicted by ref. 31. (B) Collapse
of the 3 distributions in A when plotted by rescaling vp(v|V) vs. v/V . The
dashed line in B is a quadratic least-squares fit of the average of the 3
collapsed curves and corresponds to a log-normal functional form for the
nonrescaled curves (A). Orange, Synechococcus sp.; pink, S. obliquus; blue,
C. ovata.
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Fig. 4. (A) Intraspecific carbon uptake rate distributions p(bC |V) for the
3 strains. (B) Collapse of the 3 distributions in A obtained by plotting
bCp(bC |V) vs. bC/VαC in a double-logarithmic plot (Materials and Methods).
(C) Intraspecific nitrogen uptake rate distributions p(bN|V) for the 3 strains.
(D) Collapse of the 3 distributions in C obtained by plotting bNp(bN|V) vs.
bN/VαN in a double-logarithmic plot. Orange, Synechococcus sp.; pink, S.
obliquus; blue, C. ovata.

identification of the effects of cell cycle stage or nutrient lim-
itations (44). Because we posit that v and b are correlated
random variables, their joint probability distribution cannot sim-
ply be obtained by the product of marginal; i.e., p(v , b|V ) 6=
p(v |V ) p(b|V ). To study the full joint distribution, one must
instead bin the experimental data both in body size and in
metabolic rate, which requires a much greater number of
analyzed cells for each species than that achievable with
the experimental methods used here. Nevertheless, our mea-
surements of the marginal distributions p(v |V ) and p(b|V )
constrain the possible form of the joint probability distribution
p(v , b|V ) through the relationships p(v |V )=

∫
p(v , b|V ) db

and p(b|V )=
∫
p(v , b|V ) dv , where integration is carried out

over the experimental ranges. The implications of our findings
on the possible dependence of p(v , b|V ) on v , b and V given the
constraints imposed by our measurements are briefly discussed in
Materials and Methods.

Experimental circumstances may have limited the generality of
our results, but nonetheless support the need for broader inves-
tigations along these lines. First, cultures were grown at likely
subsaturating irradiance, which may have affected the observed
size-scaling exponents (0.69 for carbon and 0.59 for nitrogen),
which were lower than the exponents estimated in previous stud-
ies (in the range 0.8 to 0.9) obtained by measuring bulk rates of
nutrient uptake under light-saturating conditions (7, 15, 35). Low
light is known to induce a shallower slope in the scaling between
metabolic rate and cell size, possibly because larger cells suffer
from “package” effects (a reduction in chlorophyll-specific light
absorption) that become progressively more important as light
levels decrease (low light induces higher pigment content and
therefore a lower absorption efficiency) (15). Second, determin-
ing the carbon and nitrogen content at the single-cell level would
be a challenging major advance. In fact, our results rest on the
assumption that individual elemental content can be predicted by
cell volume by Eq. 4, although their relationship at the intraspe-
cific level has not been tested to date. Combining electron-probe
X-ray microanalysis (XRMA) for measurement of single-cell ele-

mental content with NanoSIMS analyses is a possible solution
(45). Relatedly, experimental observations (16) have shown that,
at the interspecific level, elemental content is a better predictor
of metabolic rates than cell volume in phytoplankton, possibly
because it is a better proxy for body mass. Therefore, relating
metabolic rate to elemental content rather than volume would
be a promising development.

Kleiber’s law is particularly valuable for its use in theoretical
and computational models of community dynamics, because it
allows theoretical ecologists to account for the dependence of
metabolic rates of different species on their typical body size
(16, 17, 46) via a simple power-law relationship that bypasses
the need to explicitly account for each species’ physiology (4).
This dependence has been used, for example, to predict the
height distribution of trees in tropical forests (47), to explore
the covariation of macroecological scaling laws (4), and to study
the fluctuations of the number of species inhabiting islands of dif-
ferent areas (48). In all these applications, Kleiber’s law provides
the link between the resources available in a given ecosystem
and the consumption rate of individuals. Our characterization
of the scaling of intraspecific variability of metabolic rates with
body size is a first step toward understanding the intraspecific
correlation of metabolic rate with body size and being able to
account for intraspecific variability in theoretical and computa-
tional models of community dynamics. An outstanding question
in this field is whether and how the correlated fluctuations of
body size and metabolic rates at the individual level affect size-
related ecological patterns such as the interspecific body size
distribution and the species–area relationship at the community
level. To get there, we first need to close the circle and identify
how the joint distribution depends on v , b, and V .

In conclusion, common scaling features of body sizes and
uptake rates are shown to hold for species of freshwater phy-
toplankton across 3 orders of magnitude in cell volume. Such
features imply the collapse of distinct experimental distributions
of body size and uptake rates onto a universal master curve once
suitably rescaled. The foundations are thus provided for a uni-
fied framework for metabolic rate–organismic body size relations
embedding fluctuations and operating across taxa and scales.

Materials and Methods
Labeling Experiment. Monocultures of the cyanobacterium Synechococcus
sp., the chlorophyte S. obliquus, and the cryptophyte C. ovata obtained from
the Culture Collection of Algae and Protozoa (CCAP) were grown in culture
medium for freshwater diatoms (WC medium) at 20 ◦C under cool white
light with a photon flux of 25 to 50 µE m−2s−1 and a 14 h light: 10 h
darkness photoperiod. Samples were obtained during the exponential
growth phase (17). Samples were incubated for 3 h in WC medium
enriched in 13C and 15N (see SI Appendix for details) and then fixed in 1%

paraformaldehyde. A comparison of cell volumes between fixed and unfixed
cultures showed that fixation did not cause cell shrinkage.

NanoSIMS Measurements. NanoSIMS is an ion microprobe that performs
mass spectrometry on secondary ions sputtered from the top few atomic
monolayers of a solid target by the impact of a primary beam of charged
particles (49). The high spatial resolution of the ion beam (∼100 nm) allows
the creation of an ion image of the sample through a raster of the primary
beam on the sample surface. The color of a pixel of the ion image corre-
sponds to the counts of that ion obtained from the sputtering of that pixel.
The ratios rC =13 C/12C and rN =15 N/14N in each pixel can be obtained from
a ratio of the appropriate ion images (27). For each species, we prepared a
control sample before incubation and an enriched sample after incubation
for NanoSIMS analysis by filtering fixed culture on polycarbonate filters (23,
27) (SI Appendix). Cells were bombarded with a beam of Cs+ ions focused
to a spot of about 180 nm on the sample surface. Secondary ion images
for 12C14N−, 12C15N−, 12C2, and 13C12C were simultaneously recorded. We
obtained ratio images from the ratio of the 12C15N− and 12C14N− images
and of the 13C12C− and 12C−2 images (see Fig. 1 for examples). Details of
the instrument settings, of the procedures, and on the conversion of the
measured ratios to 13C:12C and 15N:14N ratios can be found in SI Appendix.
The average C and N content of cells, necessary to compute the total C and N
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uptake during the incubation period, was measured by gas chromatography
(SI Appendix).

Computation of Size and Uptake Rates. Regions of interest (ROIs) were
defined for each imaged cell, following its contour (Fig. 1). A total of, respec-
tively, 37, 54, and 35 cells were imaged for each species. Individual cell
volumes were inferred from cell cross-sections by measuring the axes and
assuming a spherical cell shape for Synechococcus and an ellipsoidal one for
Scenedesmus and Cryptomonas, as in ref. 50. Average isotope ratios rC and
rN of each single cell were obtained by averaging the values of all of the
ROI pixels in the corresponding ratio image. In doing so, we assumed that
the analyzed layer was representative of the entire cell. For each imaged
cell, the uptake rate bi of each cell, where i= C, N, was computed by the
relation

bi =
(̄ri − r̄i,0)ci

r̄i,med

1

∆t
, [3]

where r̄i = ri/(1 + ri) are, respectively, the ratios 13C:C and 15N:N; r̄i,0 are the
natural ratios 13C:C and 15N:N measured in the control sample; r̄i,med are
the 13C:C and 15N:N ratios in the incubation medium; ∆t is the incubation
time; and ci is the total cell content of, respectively, C and N. The values of
ci are computed from the average carbon and nitrogen content measured
for each species, CC and CN, assuming that they scale sublinearly with the
average cell volume of that species V ; i.e., Ci ∝Vγi with γi < 1, where i= C,
N. A sublinear scaling of the carbon content with the average cell volume V
has been observed in several studies (51), with γC ranging from 0.76 to 1.04
in measurements from tens of taxa covering several orders of magnitude
in cell volume. From our measurements on the 3 species covering 3 orders
of magnitude in cell volume, we found γC = 0.8± 0.1 and γN = 0.8± 0.1
(mean ± SD; Fig. 2F). By assuming that the scaling holds at the individual
cell level within a species, ci is obtained as

ci = ki〈ci〉
(

v

V

)γi
, [4]

where ki ' 1 is a constant independent of individual or species identity (SI
Appendix).

Scaling Functional Form of p(v|V). We find that the function F from Eq.
1 obtained from the data collapse of Fig. 3B is fitted well by a parabola
in log-log space (R2 = 0.86), corresponding to a log-normal distribution
of body sizes (31) derived from a normal distribution with variance σ

and mean µ=−σ2/2. The parameter σ= 0.46 (95% confidence interval
[0.38, 0.53]) was estimated by fitting a parabola to the average of the
3 rescaled volume distributions (Fig. 3B). Note that this is a 1-parameter
fit because a log-normal distribution has the scaling form of Eq. 1 only if
µ=−σ2/2. The resulting log-normal fits of the size distribution are shown
in Fig. 3A. Note that even though p(v|V) is well fitted by a log-normal
distribution, the identification of the exact form of F is not necessary for
verifying Eq. 1.

Elements for a Further Generalization of Kleiber’s Law. Experimental results
allowed the characterization of the marginal distribution of metabolic rates
(2). b and v being 2 correlated variables, their joint distribution is not
simply given by the product of the 2 marginals, but rather by p(v, b|V) =

p(v|V)p(b|v, V), where p(b|v, V) is the distribution of metabolic rates con-
ditional on both the species typical body size V and the body size v of
the individual. The scaling properties of p(b|v, V) cannot be inferred from
the available experimental data since they would require binning in both v
and b and very few data would fall in each bin. Nevertheless, knowing that
p(b|v, V) must be compatible with the form of the marginal p(b|V), we can
make reasonable hypotheses on its shape. In particular, we can distinguish 2
cases, depending on whether the intraspecific size scaling of b has the same
exponent α as the interspecific scaling, or a different one. The 2 cases are
both compatible with the form of p(b|V) supported by the data (Eq. 2), but
the data do not allow distinguishing between the 2 for 2 reasons. First, the
number of data points is not sufficient to verify the scaling form of p(b|v, V).
Second, the intraspecific scaling of b shown in Fig. 2 A and B is affected by

our assumption that the C and N content of cells scales with volume at the
intraspecific level with the same exponent of the interspecific scaling. This
assumption needs to be verified experimentally before drawing conclusions
regarding the intraspecific scaling of metabolic rates 〈b|v, V〉 with v. The 2
cases are as follows:
Case 1. In the case in which the intraspecific scaling of b has the same
exponent of the interspecific scaling, a reasonable further assumption is

p(b|v, V) = p(b|v) =
1

b
G̃1

(
b

vα

)
, [5]

where G̃1 is a function with the same properties of G (SI Appendix). Note
that Eq. 5 (but not our Eq. 2, in which p(b|V) is conditional on the aver-
age species’ mass) corresponds to equation 2 of ref. 14, where data on
the metabolic rate of small mammals were shown to be compatible with
it (to show that Eq. 5 and equation 2 of ref. 14 coincide, one needs to
multiply and divide Eq. 5 by vα and recognize that (b/vα)−1G̃1(b/vα) is
still a function of b/vα). This assumption means that, knowing the individ-
ual body size v, the average species body size V does not give any further
information on the individual metabolic rate. This hypothesis implies that
〈b|v, V〉=

∫
db b p(b|v, V)∝ vα (SI Appendix); therefore α is the exponent

of the intraspecific size scaling of b. The joint distribution would then have
the form

p(v, b|V) =
1

vb
F
(

v

V

)
G̃1

(
b

vα

)
=

1

vb
H1

(
v

V
,

b

Vα

)
, [6]

where H1(x, y) = F(x)G̃1(y/xα). This form for the joint probability distri-
bution is compatible with the marginal distribution in Eq. 2, for which
〈b|V〉∝Vα; i.e., the exponent of the interspecific scaling of 〈b|V〉 with V is
equal to α.
Case 2. If the intraspecific scaling of b has a different scaling exponent than
the interspecific one, we can hypothesize

p(b|v, V) =
1

b
G̃2

(
b

vα
,

v

V

)
. [7]

See SI Appendix for the properties of G̃2(x, y). Eq. 7 implies

〈b|v, V〉=
∫ ∞

0
bp(b|v, V)db = vαQ

(
v

V

)
, [8]

where Q(y) =
∫∞

0 G̃2(x, y)dx. To have a power-law intraspecific size scaling
of b, we need therefore to ask Q(y)∝ yη , which gives

〈b|v, V〉∝ vα+ηV−η
. [9]

Therefore, intraspecifically (i.e., for fixed V) the scaling exponent is α+ η.
In this case, the joint distribution has the form

p(v, b|V) =
1

vb
F
(

v

V

)
G̃2

(
b

vα
,

v

V

)
=

1

vb
H2

(
v

V
,

b

vα

)
, [10]

where H2(x, y) = F(x)G̃2(y, x). This functional form for p(v, b|V) is again
compatible with the function form of Eq. 2 for the marginal distri-
bution p(b|V), and thus the interspecific scaling of 〈b|V〉 with V is
equal to α.
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