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INTRODUCTION

Cell size has long been established in aquatic micro-
bial ecology as a major controlling factor of community
structure and metabolism (Chisholm 1992, Rodríguez
1994, Li 2002). Fenchel (1974), Banse (1976) and
Taguchi (1976) were among the first to report a strong
relationship between a specific metabolic rate and
phytoplankton cell size. This relationship is commonly
expressed by the equation, R = aVb, where R is the
biomass-specific metabolic rate, V is cell size (biovol-
ume or carbon biomass), a is a group-specific constant
or rate coefficient and b is the size-scaling parameter.
Early experimental observations led to the conclusion
that b takes a constant value of around –0.25 (Hem-
mingsen 1960; see review by Peters 1983). However,
the numerical value of this parameter continues to be a
matter of debate. Several authors have argued that
when interspecific variability is taken into account the

relationship between phytoplankton cell size and
growth rate becomes weaker (Banse 1982, Blasco et al.
1982, Chisholm 1992) and highly variable (Tang 1995).
In addition, numerous studies in productive environ-
ments have reported instances of larger phytoplankton
sustaining higher rates of chlorophyll a-normalised
photosynthesis than smaller cells (i.e. Legendre et al.
1993, Tamigneaux et al. 1999, Hashimoto & Shiomoto
2002, among others). Unfortunately, the interpretation
of the chlorophyll a-normalised photosynthesis
depends on the carbon-to-chlorophyll a ratio, which
has been reported to vary with environmental condi-
tions, cell size and phyletic affiliation (Taylor et al.
1997, Finkel et al. 2004). It is therefore necessary to
obtain simultaneous measurements of size-fraction-
ated photosynthesis and carbon biomass in order to
determine the carbon-specific phytoplankton photo-
synthesis, which is analogous to a specific growth rate
(e.g. Kirchman 2002). However, there are relatively
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few measurements of the size-fractionated, carbon-
specific photosynthesis by natural phytoplankton
assemblages, and, to the best of our knowledge, no
previous study has addressed this variable throughout
an entire annual cycle.

It is well established that biomass and production of
small-sized cells tend to remain relatively constant,
whereas large-sized cells bloom whenever adequate
conditions of light and nutrients exist (see review by
Chisholm 1992). Any increase in the biomass of small-
sized phytoplankters is rapidly followed by an increase
in the biomass and activity of the small herbivores,
which exert a strict grazing control upon these popula-
tions (Banse 1992, Kiørboe 1993). In contrast, large
phytoplankton are grazed by mesozooplankters with
longer generation times than those of phytoplankton.
Consequently, the uncoupling between prey (phyto-
plankton) and predators (zooplankton) has been pro-
posed to explain why large phytoplankton become
dominant in resource-saturated environments (Kiør-
boe 1993). However, there are a few reports showing
that large-sized phytoplankton can attain higher
growth rates than small-sized phytoplankton under
natural conditions, particularly when nutrient concen-
trations are high (Furnas 1991, Frenette et al. 1996,
Crosbie & Furnas 2001, Jochem 2003). This raises
the possibility that, in addition to trophic mecha-
nisms, purely physiological factors could also explain
the dominance of large-sized phytoplankton under
favourable conditions for growth.

In this work, we have used a combination of flow
cytometry and microscopy image analysis to determine
the carbon biomass of the microbial autotrophic com-
munity during a full annual cycle. Simultaneously, we
have also determined the photosynthesis rate by
phytoplankton in the picoplankton (<2 µm), small
nanoplankton (2 to 5 µm), large nanoplankton (5 to
20 µm) and microplankton (>20 µm) size ranges. Our
study system, the Ría de Vigo (NW Iberian Peninsula),
is a coastal embayment characterised by a very
dynamic, wind-driven horizontal circulation (Álvarez-
Salgado et al. 2001). As a result of the ever changing
hydrodynamical forcing, phytoplankton assemblages
in the Ría de Vigo display a high degree of variability
in plankton size-structure and primary production (Til-
stone et al. 1999), which makes it an excellent testing
ground for hypotheses on the relationship between cell
size and metabolic rates. Our main goals were to deter-
mine the temporal and vertical variability in size-frac-
tionated, carbon-specific photosynthesis by coastal
phytoplankton assemblages during a full annual cycle
and to test the hypothesis that, under conditions
favourable for growth, large phytoplankton are capa-
ble of sustaining higher carbon-specific photosynthetic
rates than smaller phytoplankton.

MATERIALS AND METHODS

Sampling. A total of 25 visits to a central station in
the Ría de Vigo (42° 14.09’ N, 8° 47.18’ W) were carried
out from July 2001 to July 2002. Typically, sampling
was completed between 07:00 and 09:00 h. On each
visit, we recorded vertical profiles (0 to 40 m) of tem-
perature and conductivity with a SBE 25 CTD probe.
The vertical distribution of photosynthetically active
irradiance (PAR, 400 to 700 nm) was measured with a
spherical quantum sensor connected to a LiCor data-
logger. Water samples for chemical and biological
measurements were collected using single 5 l Niskin
bottles. Samples for the analysis of dissolved inorganic
nutrients (nitrate, nitrite, silicate, phosphate and
ammonium) were obtained from 0, 5, 10, 15, 20 and
30 m. These samples were immediately frozen and
stored at –20°C until they were analysed in the labora-
tory following the methods described in Grasshoff et
al. (1999).

Size-fractionated chlorophyll a and carbon biomass.
For determination of the size-fractionated chlorophyll a
(chl a) concentration, 250 ml samples (2 replicates per
sample) were filtered sequentially through 20, 5, 2 and
0.2 µm polycarbonate filters, using low vacuum pres-
sure (<100 mm Hg). Filters were stored frozen at –80°C
until further analysis, which took place within 4 mo of
sampling. Pigment was extracted by placing the filters
in 90% acetone during 12 h in the dark. Chl a concen-
tration was determined fluorometrically, using the non-
acidification technique of Welschmeyer (1994), on a
TD-700 fluorometer that had been calibrated with pure
chl a (Sigma).

We identified and obtained estimates of cell size
and the abundance of pico- and nanophytoplankton
(0.2 to 12 µm equivalent spherical diameter, ESD) by
flow cytometry, on the basis of the fluorescence sig-
nals and forward- and side-light scatter (FSC and
SSC, respectively). For flow cytometry analyses, 10 ml
samples were preserved with glutaraldehyde (1%
v/v) and stored in liquid nitrogen until further analy-
sis, which took place within 2 to 3 wk. Samples were
analysed with a FACScan (Becton Dickinson) flow
cytometer following the protocols in Rodríguez et al.
(1998). For the image analysis of larger cells under the
microscope, 100 ml samples were preserved with (1%
v/v) Lugol’s solution. After sedimentation of a sub-
sample (10 to 25 ml), cells were counted and mea-
sured at × 100 and × 200 on a Leitz Fluovert inverted
microscope connected to a VIDS V (Analytical Mea-
suring Systems) image analysis system. Finally, cell
volume was estimated as the revolution volume
according to an ellipsoidal shape. Analytical sub-
ranges for flow cytometry and image analysis were
approximately 0.7 to 12 and 8 to 60 µm ESD, respec-
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tively. Flow cytometry and image analysis analytical
sub-ranges were coupled in order to obtain a continu-
ous size–abundance spectrum for the whole
autotrophic plankton community (see Rodríguez et al.
1998 for further details). We also counted cells within
diatom chains separately, and determined the length
of their major and minor cell axes, as well as the num-
ber of cells per chain.

Individual cell carbon (C) biomass was estimated
from cell volume (V), according to empirical volume-
to-carbon conversion factors. The choice of adequate
volume-to-carbon conversion factors is critical in
obtaining reliable estimates of phytoplankton C bio-
mass. A major source of uncertainty in the application
of these conversion factors to natural phytoplankton
assemblages stems from the different relationships
reported for different taxonomic groups. For instance,
dinoflagellates are more dense than diatoms (Menden-
Deuer & Lessard 2000). Among diatoms, the C content
per unit V depends on the presence of vacuoles
(Strathmann 1967). In addition, great uncertainty
exists in dealing with cell shrinkage as a result of fixa-
tion procedures (Montagnes et al. 1994, Menden-
Deuer & Lessard 2000). Finally, different factors have
been reported for picophytoplankton groups such as
Synechococcus or picoeukaryotes (Verity et al. 1992).
In the present study, estimates of picophytoplankton C
were obtained using the equation: pg C cell–1 =
0.433V 0.863 (Verity et al. 1992). Nano- and microphyto-
plankton C estimates were obtained using the follow-
ing equations: pg C cell–1 = 0.288V 0.811 for diatoms and
pg C cell–1 = 0.216V 0.939 for other phytoplankton
(Menden-Deuer & Lessard 2000). We restricted the use
of Menden-Deuer and Lessard’s conversion factors to
the nano- and microplankton size ranges, because
when applied to picoplankton it consistently yielded
C-to-chl a ratios that were unrealistically low (2 to
10 mg C mg–1 chl a), which strongly suggests that pico-
phytoplankton C was underestimated. Finally, C bio-
mass for each size category was calculated by multi-
plying cell concentration by cell C, thus generating
size spectra of C biomass (see Fig. 2). From these spec-
tra, we assigned the C biomass to 4 size fractions, 0.2 to
2 µm (picophytoplankton), 2 to 5 µm (small nanophyto-
plankton), 5 to 20 µm (large nanophytoplankton) and
>20 µm (microphytoplankton). The C content of cells
within chains was included in the >20 µm size class.

Flow cytometry and image analysis allowed us to
define different analytical populations that were
related to different phytoplankton groups. Using flow
cytometry we defined Synechococcus spp., cytometry
population 1 (picoeukaryotes), cytometry population 2
(mainly nanoflagellates) and Cryptophytes. Image
analysis allowed us to identify diatoms and other
phytoplankters, mainly dinoflagellates.

Size-fractionated photosynthesis. Size-fractionated
photosynthetic rates were determined by the 14C
uptake technique. Four 75 ml, acid-cleaned poly-
styrene bottles (3 light and 1 dark bottle) were filled
with water from surface, 10 and 20 m depths. Each bot-
tle was inoculated with ~370 kBq (10 µCi) of NaH14CO3

and then incubated for 2 h starting at noon. We used an
incubator equipped with a set of blue and neutral-
density plastic filters that reproduced the irradiance
conditions at the original depths where the samples
had been collected. A system of re-circulating water
passing through 2 refrigerators was used to maintain
incubation temperature within 1.5°C of the original
temperature at each sampling depth.

At the end of the incubations, samples were sequen-
tially filtered through 20, 5, 2 and 0.2 µm polycarbon-
ate filters under low-vacuum pressure (<100 mm Hg).
Inorganic carbon on the filters was removed by expos-
ing the filters to HCl fumes overnight. After removal of
inorganic 14C, filters were placed into scintillation vials
to which 4 ml of scintillation cocktail was added.
Radioactivity was measured on a 1409-012 Wallac
scintillation counter that used an internal standard for
quenching correction.

RESULTS

Hydrographic variability and biomass size spectra

The Ría de Vigo shows a marked hydrographic sea-
sonality accompanied by important changes in the size
structure of phytoplankton communities. This system
is very productive as a result of the high nutrient
inputs that occur all year round, either through
upwelling, continental runoff or ‘in situ’ remineralisa-
tion (Nogueira et al. 1997). The temporal and vertical
variability of temperature, nitrate concentration and
photosynthetic rates from July 2001 to July 2002 in the
Ría de Vigo has been recently described (Marañón et
al. 2004). Summer stratification was characterised by
high temperatures (>16°C), low nitrate (<0.5 µmol l–1),
but high ammonia concentrations (>3.5 µmol l–1) in
surface waters (Fig. 1), and a sub-surface chl a maxi-
mum (3 to 6 mg m–3) at around 10 m depth. From 5
October 2001 to 30 March 2002, we found vertical mix-
ing and high nitrate concentrations (>4 µmol l–1)
throughout the water column. During this period,
water column temperature varied between 12 and
18°C, and chl a concentrations were in the range from
0.5 to 1.5 mg m–3. Summer upwelling gave way to
intermittent intrusions of cold (12°C) and nitrate-rich
(>9 µmol l–1) sub-surface waters. During this period,
chl a concentrations were typically >5 mg m–3 in the
upper layer.
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Our size spectra of C biomass indicate that as cell size
increases the taxonomic composition changes from
small cyanobacteria, mainly Synechococcus sp., to
large dinoflagellates and diatoms (Fig. 2). Although we
did not determine the taxonomic composition at the
species level, our analysis allowed us to observe that
the overall taxonomic pattern, in terms of presence of
main groups, did not change significantly either during
the different oceanographic conditions (Fig. 2) or over
depth (data not shown). However, we did find a
stronger dominance of larger cells during conditions of
enhanced phytoplankton biomass, such as summer
stratification and upwelling events (Fig. 3A). In these
cases, >40% of total autotrophic C would be accounted
for by the >20 µm size fraction. In contrast, typical
relative contributions of microphytoplankton to total
autotrophic C during winter were <15% when total C

biomass did not exceed 90 mg C m–3. A similar pattern
was observed for size-fractionated chl a (Fig. 3B). On
average, during stratification and upwelling, diatoms
accounted for 17 ± 8 and 43 ± 21% of the total C bio-
mass, respectively (data not shown). In winter, the con-
tribution of diatoms decreased to about 2.3 ± 1.8%, and
a higher contribution was mainly accounted for by pico-
cyanobacteria, picoeukaryotes and nanoflagellates.

Carbon-specific photosynthetic rates

According to the vertical profiles of temperature and
density observed on each visit to the sampling station,
we grouped our determinations of the size-fraction-
ated, C-specific photosynthetic rate into 3 contrasting
oceanographic conditions: summer stratification, win-

54

 J A N D J F O S M A M J J  
40

30

20

10

0

D
ep

th
 (

m
)

40

30

20

10

0

D
ep

th
 (

m
)

A

B
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ter mixing and upwelling. All observations included in
the summer stratification period were carried out from
2 to 19 July 2001. The monthly measurements taken in
October, November and December 2001 and January
and March 2002, plus the observations obtained on 18
February as part of the February intensive sampling,
were used to characterise the phytoplankton commu-
nity during conditions of winter mixing. Finally, the
upwelling phase included the measurements carried
out during the April and July intensive sampling peri-
ods, plus those obtained during the monthly sampling
in May 2002. In all these oceanographic conditions,
surface samples showed a consistent pattern in the
size-fractionated, C-specific photosynthetic rates, with
significantly higher values (>0.2 h–1) in the micro-
plankton size fraction than in the <20 µm size fractions

(Fig. 4). In sub-surface waters, C-specific photosyn-
thetic rates decreased relative to surface values, espe-
cially in the microplankton size class, and, excluding
upwelling conditions, no significant differences were
obtained between size fractions (Fig. 4).
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A possible bias in our estimates of C-specific photo-
synthesis lies in the reliability of the C estimates used
(see ‘Materials and methods’). For this reason, we
recalculated the size-fractionated, C-specific photo-
synthesis for surface samples using different volume-
to-carbon conversion factors reported in the literature.
This sensitivity test allowed us to determine to what

extent the choice of particular conversion factors could
alter our conclusions (Fig. 5). In general, statistical
analyses of the differences in C-specific photosynthe-
sis between the different size-class combinations
yielded the same results as those presented in Fig. 4.
Only for winter samples and when using the conver-
sion factors reported by Booth (1988) and Montagnes
et al. (1994) for the pico- and microphytoplankton,
respectively, did we fail to find significant differences
in C-specific photosynthesis between these 2 size frac-
tions (Mann-Whitney test, p > 0.05). Excluding these
particular cases, we observed that irrespective of the
conversion factors used, C-specific photosynthesis by
>20 µm phytoplankton always exceeded that of the
nano- and picophytoplankton (Kruskal-Wallis and a
posteriori Mann-Whitney tests, p < 0.05, Fig. 5).

Similar to the pattern obtained for the size-fraction-
ated, C-specific photosynthesis in surface waters,
large-sized phytoplankton also showed higher chl a-
specific photosynthetic rates than small-sized frac-
tions. For instance, the surface photosynthesis-to-chl a
ratio during summer stratification was 1.6 ± 1, 1.9 ± 1,
4 ± 1.3 and 6.6 ± 1.9 mg C mg–1 chl a h–1 for pico-, small
nano-, large nano- and microphytoplankton, respec-
tively. During winter mixing, we obtained chl a-spe-
cific photosynthetic rates of 2.6 ± 1.6, 1.9 ± 1.5, 4.4 ± 2.2
and 4.8 ± 2.2 mg C mg–1 chl a h–1 for pico-, small nano,
large nano- and microphytoplankton, respectively.
Finally, during upwelling the chl a-specific photosyn-
thetic rates were 2.2 ± 1.5, 1.2 ± 0.6, 2.7 ± 2 and 5.9 ±
3.2 mg C mg–1 chl a h–1 for pico-, small nano-, large
nano- and microphytoplankton, respectively. Consis-
tent with the vertical pattern obtained for the C-
specific photosynthesis, the photosynthesis-to-chl a
ratio decreased with depth, and lower differences
were observed between size fractions. Thus, although
chl a-specific photosynthesis cannot directly be inter-
preted as an estimate of phytoplankton growth, these
values provide further evidence that in surface waters
large phytoplankton have higher photosynthetic effi-
ciency than smaller cells.

Phytoplankton increase their intracellular pigment
concentration in response to decreasing growth irradi-
ance (Taylor et al. 1997). This variability in pigment
concentration is usually reflected in the C-to-chl a
(C:chl a) ratio, which represents an index of phyto-
plankton acclimation to different growth irradiances.
Thus, using our estimates of phytoplankton C biomass
and the chl a measurements, we also calculated the
size-fractionated C:chl a ratio for the same 3 oceano-
graphic situations. We assessed the differences in the
size-fractionated C:chl a ratios over depth. During
summer stratification, we observed significant differ-
ences in the C:chl a ratios between the surface and
20 m depths (Mann-Whitney tests, p < 0.05, see
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Table 1), reflecting the increasing chl a cellular content
in the populations acclimated to low light. In contrast,
we did not observe any significant differences
between depths, either during winter or the upwelling
period. It is likely that during these periods the lack of
vertical variability in the C:chl a ratios was due to the
vertical mixing, which prevented any possible photo-
acclimation in phytoplankton assemblages.

The C:chl a ratio shows a large degree of variability,
depending on growth irradiance, nutrient concentra-
tions and taxonomic composition. However, this ratio
usually falls within values in the range of from 10 to
150 mg C mg–1 chl a (Taylor et al. 1997). The C:chl a
ratios obtained in this study are all within the range of
those previously reported for other coastal areas
(Scheafer & Lewin 1984, Chang et al. 2003), or pre-
dicted by physiological models based on irradiance
and nutrient conditions (Taylor et al. 1997). This fact,
together with the expected observation of a decrease
in C:chl a ratios over depth during stratification, gives
us further confidence in the validity of our phytoplank-
ton C estimates.

DISCUSSION

Size-scaling physiological factors and 
ecological implications

Throughout our annual survey, we consistently
found that surface phytoplankton in the >20 µm size
fraction sustain higher C-specific photosynthesis rates
than smaller cells. In principle, this contrasts with the-
oretical models and empirical observations suggesting
that an increase in cell radius decreases both solute
exchange on a volume basis (Raven 1998, Raven &
Kübler 2002) and the optical absorption cross section,
which is an estimate of light absorption efficiency per

pigment content, referred to as the ‘package effect’
(Morel & Bricaud 1981, Kirk 1983). In contrast to this,
Stolte et al. (1994) reported that, in diatoms, nitrate
uptake rates show a strong positive correlation with
cell size under nutrient-pulsed conditions. Many works
have indicated that certain phytoplankters, in particu-
lar diatoms, have a special ability to store nutrients in
vacuoles, which might allow them to grow faster in
nutrient-depleted conditions by maximising photosyn-
thesis during favourable light periods (Geider et al.
1986, Raven 1997). In this sense, several studies have
described how nutrient-uptake rates frequently ex-
ceed the requirements imposed by cellular metabolic
demands. This physiological mechanism, known as
luxury uptake, is typically associated with vacuolated
diatoms growing under intermittent upwelling condi-
tions (Malone 1980, Raven 1997). Similarly, a recent
study suggests that large-sized phytoplankton, mainly
diatom groups, may have higher light utilisation effi-
ciency than smaller algae (Hashimoto & Shiomoto
2002).

Differences in the maximum potential growth rates
have been reported in relationship to the specific com-
position of the phytoplankton community (Chan 1980,
Furnas 1990). A number of factors exist explaining
variability between specific groups, such as differ-
ences in C:chl a ratios and absorption cross sections
(Falkowski et al. 1985). Distribution of chloroplasts in
the cell appears to be a major factor in light acquisition,
especially under light-limited conditions. In diatoms,
chloroplasts are frequently organised in a thick layer
close to the cytoplasm membrane. This allows them to
maximise the cell surface to absorb light, whereas
nutrients can be stored in large intracellular vacuoles
(Paasche 1960). Thus, given that the taxonomic compo-
sition changes along the size spectrum of the phyto-
plankton communities, it is possible that differences
in the C-specific photosynthetic rates reported in
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Depth (m) Picophytoplankton Small nanophytoplankton Large nanophytoplankton Microphytoplankton

Stratification
Surface 75.8 ± 39.3a 43.6 ± 9.1a 97.2 ± 31.6a 33.3 ± 12.6a

10 29.8 ± 20.9b 19.5 ± 9.8b 55.3 ± 28.5b 43 ± 32.4a

20 12.1 ± 4.8b 21.3 ± 10.4b 51 ± 36.1b 13.4 ± 4.8b

Winter mixing
Surface 49.6 ± 32.7a 46.2 ± 17.6a 81.2 ± 55.4a 28.2 ± 16.6a

10 34.8 ± 13.1a 52.2 ± 16.3a 88.5 ± 56.5a 40.9 ± 18.5a

20 35.4 ± 8.6a 54.2 ± 24.3a 60.9 ± 21.9a 40.5 ± 22.2a

Upwelling
Surface 125.4 ± 46.9a 94.3 ± 38.1a 79.9 ± 20.1a 22 ± 12.1a

10 93.3 ± 58.7a 62.7 ± 35.1a 65.4 ± 55.3a 14.5 ± 4.4a

Table 1. Size-fractionated carbon-to-chlorophyll a ratios (mg C mg–1 chl a) at different depths during 3 distinct oceanographic
conditions. For each oceanographic condition and size fraction, depth means that are not significantly different (Kruskal-Wallis 

and a posteriori Mann-Whitney tests) are labelled with the same letter
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this study represent differences between taxonomic
groups rather than the effect of cell size per se.

Another important factor is the possibility that very
small cells are prevented from increasing their scal-
able components (i.e. photosynthetic units) due to the
necessity of maintaining a constant quota of non-
scalable essential components (i.e. genome) within a
very small cell volume (Raven 1998). This has impor-
tant implications for the maximum growth rate
because under conditions favourable for growth only
large cells will be able to increase their intracellular
quota of molecules involved in metabolic processes.

Our observations of a higher C-specific photosynthe-
sis by large-sized phytoplankton may bear important
implications for our understanding of phytoplankton
size distribution in nature. It is well established that
small herbivores exert a tight grazing control over the
biomass of small-sized cells (Banse 1992). In contrast,
the uncoupling between large-sized phytoplankton
and mesozooplankon, with generation times larger
than those of phytoplankton, appears to explain the
dominance of large phytoplankton in resource-satu-
rated environments (Banse 1992, Kiørboe 1993).
Although these trophic interactions are of unques-
tioned importance in marine ecosystems (Banse 1992),
our analysis indicates that under favourable conditions
for growth, namely high irradiance and nutrient con-
centrations, large-sized phytoplankton sustain a
higher C-specific photosynthetic rate than do small-
sized cells. This finding implies that size-differential
physiological mechanisms could constitute another
feasible alternative to explain the dominance of large
phytoplankters under high irradiance and concentra-
tions of sufficient nutrients.

Carbon-specific photosynthesis under 
light-limited conditions

The vertical pattern in our measurements of size-
fractionated, C-specific photosynthesis revealed an
interesting feature. The high C-specific photosynthesis
of large-sized phytoplankton observed at the surface
showed a sharp decrease with increasing depth, when
low light conditions were likely to give rise to the pack-
age effect, particularly in larger cells. Different studies
have pointed out the size dependence of light absorp-
tion and the resulting package effect (Agustí 1991,
Finkel 2001, Fujiki & Taguchi 2002). Finkel (2001) has
shown that the chl a-specific absorption coefficient,
the quantum yield for photosynthesis and the mass-
specific photosynthetic rate are all size dependent and
that anomalous size-scaling exponents could be due to
the package effect under light-limited conditions. In
cultures growing under light-limited conditions, she

obtained a smaller size-scaling exponent for C-specific
photosynthesis than that expected from the 3/4 law,
which suggests that large-sized cells are more strongly
subjected to pigment packaging. However, her work
involved only diatom cultures, whereas in the present
study natural, multispecific assemblages were ana-
lysed. Following Finkel’s conclusion, it is possible that
the lack of differences in C-specific photosynthesis
between size fractions that we observed in light-
limited conditions could be similarly related to the
package effect. It is expected that the physiological
advantages enjoyed by large-sized cells in surface
waters, under saturated resource conditions, will
decrease with depth, as the package effect, which
affects small cells less severely (Raven 1998, Raven &
Kübler 2002), becomes a limiting factor for larger
phytoplankton.

CONCLUSIONS

We have shown that large-sized phytoplankton
sustain higher C-specific photosynthetic rates than
small-sized cells in a productive coastal ecosystem
characterised by a diverse phytoplankton community.
The higher C-specific photosynthesis in the large size
fraction appears to have an important ecological sig-
nificance, as it represents a physiological basis to
explain why large phytoplankters become dominant
in resource-saturated environments. In sub-surface
waters, the variability in the C-specific photosynthetic
rates among the different size fractions becomes
weaker or disappears, which might constitute a field
evidence for the theoretically predicted package
effect. Further studies must be developed in this
direction, in order to determine if the higher C-specific
photosynthesis by large-sized phytoplankton is a
common feature in other aquatic ecosystems under
favourable conditions for growth.
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