Distributed Collaborative Structuring —
A Data Mining Approach to Information
Management in Loosely Coupled Domains

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
der Technischen Universitat Dortmund
an der Fakultdt Informatik

von
Michael Wurst

Dortmund

2008

Tag der miindlichen Priifung: 18.06.2008
Dekan: Prof. Dr. Peter Buchholz

Gutachter: Prof. Dr. Katharina Morik
Prof. Dr. Heinrich Miiller

Danksagung

Ich moéchte mich zunédchst bei Katharina Morik bedanken, fiir die Betreuung meiner
Arbeit, fiir ihre Anregungen, ihre Kritik, ihren Enthusiasmus, ihre Geduld und nicht zu
letzt auch fiir die Freiheit, die Sie mir wahrend meiner Zeit am Lehrstuhl gewéhrt hat.
Bei Heinrich Miiller bedanke ich mich herzlich fiir die Ubernahme des Zweitgutachtens,
fiir die Korrekturen der Arbeit und fiir die Anregungen, die mir dabei geholfen haben,
die Arbeit klarer und versténdlicher zu machen. Peter Padawitz und Eike Riedemann
danke ich fiir ihre Bereitschaft an der Kommission mitzuwirken.

Des Weiteren gilt mein Dank auch meinen aktuellen und ehemaligen Kollegen am Lehrstuhl,
die durch ihre offene, kollegiale Art stets ein produktives, positives Klima geschaffen
haben, welches fiir die erfolgreiche wissenschaftliche Arbeit so wichtig ist. Besonders
mochte ich dabei Ingo Mierswa danken, fiir zahlreiche Anregungen und Diskussionen,
vor allem aber auch fiir die Entwicklung des RapidMiner Systems. Martin Scholz und
Stefan Haustein danke ich mich fiir viele interessante und wichtige Diskussionen zum
Thema Data Mining und dariiber hinaus. Des Weiteren gilt mein Dank den zahlreichen
Diplomanden mit denen ich in den letzten Jahren zusammenarbeiten durfte und den Mit-
gliedern der Projektgruppe 461, die mit viel Engagement den Nemoz Prototypen erstellt
haben.

Auch aufserhalb des Fachbereichs wurde ich in meiner Arbeit unterstiitzt. Hier gilt mein
besonderer Dank Jasminko Novak, fiir die produktive Zusammenarbeit an dem Projekt
Awake, sowie fiir viele interessante Diskussionen. Claus Weihs und seinem Team danke
ich fiir die Bereitstellung ihrer Daten im Rahmen des SFB 475. Andreas Hotho danke
ich fir die Bereitstellung des Bibsonomydatensatzes, fiir Anregungen und fiir die gute
Zusammenarbeit im Projekt KDubiq.

Contents

I Background

1 Structuring Information

Introduction
1.2 Basic Concepts
1.3 Similarity

1.1

14

1.5

2.1
2.2
2.3

24

1.3.1

Basic Formalism

1.3.2 Structuring Information by Similarity
1.3.3 Obtaining Similarity from Data
1.3.4 Comparing and Evaluating Similarity Measures
Cluster Structures and Taxonomies

1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7
1.4.8
1.4.9

1.5.1

Basic Formalism

Structuring Information by Taxonomies and Cluster Structures . .
Creating Cluster Structures from Data
Classifying Items into a given Cluster Structure
Comparing and Evaluating (Hierarchical) Cluster Structures

Merging Cluster

Structures

Non-redundant Clustering,
Feature Selection for Clustering and Subspace Clustering
Other Variants of the Traditional Clustering Task
Formal Ontologies . .

Basic formalism

1.5.2 Structuring Information by Formal Ontologies
1.5.3 Creating Formal Ontologies from Data
1.6 Conclusion.

Distributed Computing

Introduction
Distributed Computing
Paradigms and Technologies for Distributed Computing
Basic Networking
2.3.2 Models for Resource Discovery and Access
2.3.3 Paradigms for Higher-Level Cooperation
Description and Analysis of Distributed Systems

2.3.1

241

Formal Models

23

25
25
26
28
28
29
30
32
33
33
35
36
40
43
46
47
47
49
50
50
52
53
95

57
57
o7
58
58
59
61
66
66

2.4.2 Network Topologies and Simulation 67

2.5 Conclusion 68
Distributed Information Structuring 69
3.1 Imtroduction 69
3.2 Distributed Data Mining oo 69
3.3 Distributed Structuring From a User Perspective 71
3.3.1 Collaborative Ontology Engineering 73
3.3.2 Ontology Reuse 76
3.3.3 Ontology Merging 76
3.3.4 Ontology Mapping 78
3.3.5 Social Tagging and Bookmarking 81

3.4 Conclusion 81
Problem Definition, Methods and Evaluation 83
Distributed Feature Extraction 85
4.1 Introduction 85
4.2 (Generalized) Feature Relevance and Redundancy 87
4.2.1 Feature Relevance and Redundancy for Classification Tasks 87
4.2.2 Existing Approaches to Single-task Feature Selection 89
4.2.3 Generalized Feature Relevance and Redundancy 93

4.3 Feature Relevance and Redundancy for Several Tasks 95
4.4 Distributed Feature Extraction 99
4.4.1 The Problem of Distributed Feature Extraction 99
4.4.2 Prioritized Forward Selection 102
4.4.3 Feature Filtering oo 104

4.5 Distributed Feature Extraction in Peer-to-Peer Networks 111
4.5.1 Existing Approaches to Data Mining in Peer-to-Peer Settings . . . 111
4.5.2 Differences to the Non-distributed Case 112
4.5.3 Sharing Features in a Peer-to-Peer Scenario 114
4.5.4 Comparison of the Approaches 119
4.5.5 Further Optimizations 119

4.6 Empirical Results 120
4.6.1 Overview e 120
4.6.2 Experimental Setupo 121
4.6.3 Results 125
4.6.4 Summary e 130

4.7 Conclusion 130
Social Annotation and Feature Extraction 133
5.1 Imtroduction 133

5.2 Social Bookmarking vs. the Semantic Web 134

5.2.1 Social Bookmarking Systems 134

5.2.2 Key Advantages of Social Bookmarking Systems 136
5.3 Aspect-Based Tagging 138
5.3.1 (Personal-) Hierarchical Tag Structures. 139
5.3.2 Classification Functions 141
5.3.3 Aspect-based Tagging and Description Logics 142
5.4 Feature Extraction from Social Annotations 143
5.4.1 (Mixed) Collaborative Feature Spaces 143
5.4.2 Representation Axioms oL 144
5.4.3 Extracting Binary Features 144
5.4.4 Making Use of the Position in the Tag Tree 145
5.4.5 Tag Aggregation 148
5.5 Collaborative Classification With Social Annotations 150
5.5.1 Problem Definition 0oL 150
5.5.2 Collaborative Classification 150
5.6 Clustering with Social Annotations 151
5.6.1 Problem Definition o000 152
5.6.2 Collaborative Similarities, 153
5.6.3 Hierarchical Cluster Ensembles 154
5.7 Evaluation 155
B.7.1 Overview e 155
5.72 The Datasets 156
5.7.3 Collaborative Classification 157
5.7.4 Collaborative Clustering 158
5.8 Conclusion 160
Localized Alternative Cluster Ensembles 163
6.1 Introduction 163
6.2 Problem Definition 163
6.3 Applicability of Existing Clustering Approaches 164
6.3.1 Cluster Ensembles and Constrained Clustering 164
6.3.2 Subspace Clustering 165
6.3.3 Non-redundant Clustering 165
6.3.4 Ontology Learning, 165
6.4 Localized, Alternative Cluster Ensembles 166
6.4.1 Bagsofclusterings 166
6.4.2 The LACE Algorithm 168
6.4.3 Hierarchical Matching 171
6.4.4 Using LACE for Collaborative Clustering 172
6.5 Empirical Evaluation oo 173
6.5.1 Evaluation Criteria 173
6.5.2 Empirical Evaluation 174
6.6 Implementing LACE in a Peer-to-Peer Environment 176
6.7 Conclusion 177

Il Application and Integration

7 Supporting Heterogeneous Expert Communities
7.1 Introduction L
7.2 Information and Knowledge Management
7.3 Heterogeneous Expert Communities
7.3.1 The Problem of Heterogeneity
7.3.2 The Importance of Heterogeneity
7.3.3 Approaches to Cross Community Knowledge Sharing
7.4 Cross Community Knowledge Sharing and Data Mining
7.5 The Knowledge Explorer
7.5.1 Basic Concepts
7.5.2 The Knowledge Map Metaphor
7.5.3 Operations on Knowledge Maps

7.6 Knowledge

Explorer Data Mining

7.6.1 Basic Architecture L Lo
7.6.2 Knowledge Sharing and Feature Engineering
7.6.3 Personal Agents.

7.7 Conclusion

8 Collaborative Media Organization
8.1 Imtroduction
8.2 Challenges for Distributed Multimedia Mining
8.3 Nemoz Concepts e
8.3.1 Basicconcepts
8.3.2 Nemoz Tagging o
8.3.3 Nemoz (Intelligent) Operations
8.4 The Nemoz Framework
8.4.1 Data Mining
8.4.2 System Architecture

8.5 Conclusion

9 Conclusion

179

181
181
182
183
183
184
184
186
188
188
188
190
191
191
192
193
194

197
197
198
199
199
200
200
201
201
201
202

203

List of Figures

1.2.1 Features describing an item oL L Lo 27
1.4.1 An example taxonomy 34
1.4.2 The k-means algorithm o 38
1.4.3 Tree-distance 44
1.4.4 Subspace clustering Lo 48
2.3.1 An example network with power law structure 61
4.2.1 The forward selection algorithm 91
4.4.1 The prioritized forward selection algorithm 103
4.6.1 Distribution of example set sizes for garageband and register 125
4.6.2 The development of accuracy in the course of feature selection 128
4.6.3 Histogram of task similarities for synthd 129
4.6.4 Pareto optimal solutions for the garageband dataset 129
521 A tagcloud 135
5.3.1 Aspect-based tagging 139
5.4.1 The specificy of anodeinatree. 145
5.5.1 Decision trees to deal with disjoint concepts 151
6.4.1 A bag of clusterings composed of two input clusterings 167
6.4.2 The LACE algorithm 168
6.4.3 Long tail in the tag distribution 172
7.5.1 The Knowledge Explorer 189
7.6.1 The Knowledge Explorer architecture 191
8.1.1 The interface of the Nemoz application 198
8.4.1 The Nemoz architecture 202

10

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3

5.4
9.5

6.1
6.2
6.3
6.4
6.5
6.6

Generalization of feature relevance and redundancy to several tasks 97
Message size complexity for feature sharing 119
Computational complexity for feature sharing 120
Overview of the datasets used for evaluation 123
Feature sharing results for synthl 125
Feature sharing results for synth2, 126
Feature sharing results for synth3 126
Feature sharing results for synth4 126
Feature sharing results for garageband 126
Feature sharing results for register 126
Communication costs for the feature facilitator approach 129
Communication costs for the p2p approach 130

Results of collaborative classification on the awake and garageband datasets157

Results of collaborative classification on the bibsonomy dataset 158
Influence of tag selection and aggregation on the accuracy of collaborative

classification 158
Results of collaborative clustering on the garageband dataset 159
Results of collaborative clustering on the awake dataset 159
Results of LACE on the garageband dataset 174
Results of LACE on the awake dataset 175

Influence of the concept representation in LACE for the garageband dataset.175
Influence of the concept representation in LACE for the awake dataset. . . 175
The influence of response set cardinality in LACE for the garageband dataset176
The influence of response set cardinality in LACE for the awake dataset . 176

11

12

Overview of the Formalism

General

sim similarity measure, defined on items, users or taxonomies
d distance measure defined on items, users or taxonomies
f a function, assumed true relationsship

h hypothesis on a true relationship

L loss function used to estimate the expected error

E expected value of a random variable

D probability of an event

1,7, k,l,m index, meaning depends on context

a average value

o(a) standard deviation

a, B, constant values, parameters

24 the power set of set A (set of all subsets of A)
veERF a vector of values

v; €ER the value of the i-th feature of a vector

Items, Users and Features

D finite set of all items (identifiers)
SCD specific set of items

z,y,z2 € D individual items

X:D — R afeature

X(x) value of feature X € X for item z € D

X all available features for a fixed set of items D

XC X a set of features

X, eX the i-th feature in set X

X~X denotes that two features X, X’ € X are alternative
U set of users of the system

uelU a user

Distributed Feature Engineering

Wi

Xt CX
Xcand g X
Ey

denotes that X C X is a Markov blanket for X € X

the accuracy by which a data mining task is achieved

a set of data mining tasks

a single data mining task

task ¢; € T" must be solved before ¢; € T' is solved

the accuracy by which task ¢; € T is achieved given a feature set

the accuracy by which a set of tasks T is achieved

a set of base features

the weight of the [-th feature X; € Xp for a task t; € T

the aggregated feature set of a set of tasks T

a set of candidate features for feature selection

expected loss if a hypothesis optimized for task t is applied to task ¢’

Tags, Aspects and Functions

C

ceC
ext: C — 2P
c=c
Cc,CcC
Cpy CC
Cs
cqg:Cs— R
ZjiER
Z(c,)

A

a€ A
asp:C — A
C(a)CC
rCa

S, CD

G

9<4g
gp:S—>2G
p:8—G

g+ Sq — 2C(a)

a set concepts or tags

an individual concept/tag

extension function denoting which items are covered by a concept
denotes that ¢ € C is a sub concept of ¢/ € C

all concepts in C that contain item z € D

all concepts in C' that contain both items z,y € D

the set of all possible concept structures C' on items in S C D
a quality measure for cluster structures on S C D

value of the i-th feature of the centroid assigned to cluster c;
the mutual information of two sets of concepts C, C’

a set of aspects

an individual aspect

function assigning each tag ¢ € C to an aspect a € A

all concepts belonging to aspect a € A

item x € D is covered by aspect a € A

items covered by an aspect a € A

a finite set of classes

denotes that ¢ is a subgroup of ¢’

a hierarchical classification function

a classification function

an aspect classification function

X, feature derived from tag c
Xc feature space derived from a set of tags C'
spec: C' —]RbF the specificy of a tag

specD:DxA—ﬂR(T

14

the specificy of a tag concerning an aspect

O

*

q
q

Network

v
veV
FcCv?

a classification functions covers an item sufficiently

a set of points that represent a function ¢

maps items in the i-th output function to the index of the corresponding bag
the j-th partition of the i-th output function

denotes that two functions are in direct sub function relation

set of input functions (tags) to collaborative structuring

set of results of collaborative structuring

the quality of a single output clustering

the quality of a set of solutions O

set of network nodes in the system
a node
communication channels

nbrs(v) CV set of neighbors of a node v € V

deg(v) € N

Awake

B

BeB
N;

Ui <ks Uj

degree of a node

set of communities

a single community, with B C U

the set of predictors for user u;

denotes that u; € U shares knowledge with u; € U

General Notes

e Throughout the work, the Big O notation is used to indicate the upper bound on
the asymptotic behaviour of algorithms dependent on the input size.

e Online resources are cited directly in the text or in a footnote. If the actual version
of an online resource could make a difference, a date is attached.

e External work, concepts, algorithms, systems, etc. are cited once at their first
occurrence in the text.

e Page numbers are only indicated for articles in journals. Many current conference
proceedings are not published in book form and do not have page numbers. All
external work is referenced in such a way that this work is uniquely identified.

15

16

Overview

Making Internet resources available in a structured way is one of the most important and
challenging problems today. While search and filtering technology is becoming more and
more powerful, the development of explorative access methods lacks behind. A recent,
very successful approach to this problem are social bookmarking systems. These systems
allow users to annotate resources with arbitrary textual expressions, called tags. These
tags can be used to navigate information collections in a very intuitive way. Their success
can largely be attributed to three properties. They allow users to describe resources easily,
without obeying rules or global schemata, they allow for heterogeneous views of domains
and they make the underlying social structure explicit. A downside of this loosely-
coupled approach is, however, that tag collection quickly become chaotic and hard to
manage, which limits their applicability considerably. This work aims at exploring how
data mining methods can be employed to achieve the best of both worlds. On the one
hand, users should be free to apply arbitrary annotations to express their personal views.
On the other hand, they should be supported in doing so by exploiting patterns in the
underlying data and, even more important, by reusing structures in the annotations of
other users. Beyond the current hype of the Web 2.0, this leads to several interesting,
novel questions in the area of data mining and intelligent data analysis.

The amount of data on the Internet is growing at a speed that makes it impossible to
even measure it accurately. Moreover, there is a clear shift from text related resources to
multimedia data, such as pictures, audio or video. The shift from the traditional web to
a participatory web, in which users with only minimal skills can add content, makes this
process even faster. Furthermore, most resources on the Internet are very heterogeneous.
The term ,long tail content|6] captures this effect very well. Traditional media could
always only focus on popular resources. The Internet, in contrast, allows to share even
content that is interesting for only very small niches. While each individual niche might
be very small, all niches together make-up a considerable part of the available content.

Searching and navigating large and heterogeneous information spaces in a structured
way is extremely challenging. There is a general agreement among researchers from
different areas that the only way to cope with this problem is semantic annotation. The
most ambitious project into this direction is the semantic web [20]. The basic idea is to
describe resources in a way that allows machines to reason about them automatically.
An image, for instance, would not be described by its individual pixels but by a set of
logic assertions, describing the content of the image semanticlly. Given that all resources
on the Internet would be described in such a way, logic based reasoning could be used
assisting users in navigation and searching the web in any possible way. There are,

17

however, some essential problems. First, it is unclear how a semantic annotation of an
enormous amount of heterogeneous, complex information on the web can be achieved.
Second, the semantic web faces a considerable acceptance problem on the side of the
users. Assuming a global semantic (and thus a global view of the world) does not reflect
the very subjective way in which users structure their information. Just as anybody
wants to furnish one’s house or working place, the same holds for the aspects of living
accessed through the Internet. Global approaches, such as the semantic web, do not
reflect this natural heterogeneity. Therefore, many researchers nowadays doubt that the
semantic web will become a reality. Still, we can hope to support users in navigating and
searching the web.

However, there must be a paradigm shift, similar to the one experienced in robotics.
Sebastian Thrun, one of the pioneers of adaptive robotics, points out that the key to
build a car that drives autonomously through the desert was to develop pragmatic so-
lutions. Given that each car is equipped with a camera, a long time vision in robotics
was to automatically recognize all entities in the range of the camera in real-time and
put them into relation with given background knowledge. Based on logical entailment
and planning, optimal actions could then be chosen. However, till now, it is not possible
to build pattern recognition systems that would recognize arbitrary entities. Moreover,
logic based planning and entailment is often much too slow to enable acting in an envi-
ronment that requires short response times. The key insight to solve this problem is that
it is not necessary to recognize everything in the environment. To drive a car, the most
important thing is to recognize the road and obstacles. This goal can be achieved effi-
ciently by simply comparing the portions of the camera image that are known to contain
no obstacles to the rest of the image [180].

On the web, we face a similar problem. There is a large amount of highly complex
and heterogeneous data. Instead of trying to annotate this data in a complete and
accurate way, we can choose task-oriented approaches that are based on the annotations
that we are actually given, how noisy or incomplete they may be. A typical example
for methods that are not based on a semantic annotation and do still deliver highly
helpful assistance to users are social recommender systems [160]. Users rate items, such
as books, and these ratings are then used to generate recommendations for other users
that rated items similarly. Collaborative filtering methods do not try to annotate or
analyze the underlying items. This technique can be applied to any kind of content.
It allows different communities and individuals to have different views or preferences.
Recommender systems are a cornerstone of the current Internet and can be found in
a broad range of applications ranging from online stores, such as Amazon, over music
organizers to web site recommenders [156].

However, merely filtering items is not enough. Rather, a way of annotation is needed that
allows users to organize and navigate complex information spaces. In this work, such an
approach is developed. The basic idea is to allow users to tag items with hierarchical
classes instead of just selecting or rating them. This process can be rather work inten-
sive, as it requires not only knowledge of the items but knowledge of the corresponding
domain, as well. Therefore, the users should be supported in creating and maintaining

18

such personal access structures, just as collaborative filtering supports them in assess-
ing the quality of items. Two major assistance tasks are automatic supervised tagging
and automatic unsupervised tagging. For supervised tagging, the system automatically
annotates new items with the tags defined by the current user. In terms of data min-
ing, this is a classification task. Unsupervised tagging tries to find appropriate tags, if
no user tagging is given. This corresponds to a clustering task. Both tasks should be
achieved by exploiting the tags assigned by other users. The term collaborative structur-
ing was developed for this approach to express the synthesis of information structuring
with collaborative recommenders [198| and to cover classification and clustering.

A key to achieve collaborative structuring is data representation. First, the representation
of data is essential for enabling successful data mining. FEven very simple algorithms can
be extended to capture arbitrarily complex structures by providing an adequate data
representation [119]. For users, the representation of data is essential for accessing and
navigating information structures.

The problem of finding an adequate representation will be denoted as representation
problem. This representation problem is modeled as problem of selecting a subset of
features from a possibly infinitely large number of features that describe the data. The
problem of collaborative structuring is then mapped to another, more general problem,
namely to the problem of finding an optimal representation for a set of data mining
tasks. In contrast to the traditional, single-task representation problem, we now search
for a adequate representations for several, heterogeneous, partially related data mining
tasks. This problem is formalized and analyzed as combinatorial optimization problem.
Approaches to solve this problem will be denoted as distributed feature extraction.

An important issue in implementing distributed feature extraction is the distributedness
of many information collections in loosely coupled networks. While the Internet allows to
exchange information between any two points, there are still several limitations. Mobile
devices or cell phones are not connected to the Internet via a high speed connection.
Sharing large amounts of data with such devices is prohibitively expensive. For these
reasons, there is a trend to ad hoc and p2p networks, that allow for a better resource
allocation and can be used with network technology such as Wireless LANs. As a conse-
quence, sophisticated distributed data mining techniques are needed that can be applied
on the Internet, as well as in ad hoc and p2p networks [41].

A major aim of this work is explore the interrelation of loosely-coupled information struc-
turing with distributed data mining for multiple heterogeneous task. This work takes
the following approach. First, the general representation problem for multiple tasks is
defined and analyzed. This problem occurs in several current application scenarios and
is, thus, not restricted to information structuring. Several methods for distributed fea-
ture extraction are developed and it is shown that they can be implemented efficiently
into a p2p network. In a next step, the representation problem is put into relation with
information structuring and it is shown how users can be supported in collaboratively
structuring their information using data mining and distributed feature extraction. Fi-
nally, it is shown that the traditional formulations of the clustering problem are not

19

well-suited to structure information collaboratively in an unsupervised way. Based on
this observation, a new formal problem definition is provided together with an efficient
algorithm to solve this task. The contributions of this work are the following:

20

1.

A summary of existing relevant research on information structuring, data mining
and distributed computing, as well as the interrelations among these topics is given.

. Based on existing research in the area of feature selection for single-task learning,

the representation problem for multiple tasks is defined and analyzed from a combi-
natorial point of view. Since more than one task is involved, definitions, such as the
minimality of a feature set, must be generalized. This leads to the novel, general
challenge of distributed feature extraction. Several methods for distributed feature
extraction are developed and analyzed. These methods are shown to improve over
existing single task methods in two respects. First, they make the process of feature
extraction more efficient, second, they yield smaller aggregated feature sets. Also,
they make no assumptions on the temporal order of learning or on the learning
algorithm that is applied, which is in contrast to methods of multi-task learning.
Moreover, the proposed methods can be applied in a wide range of scenarios, such
as p2p networks, as they make only minimal assumptions about the underlying
network structure.

The problem of user-centric information structuring is analyzed, identifying two
shortcomings of current approaches to social bookmarking. First, these approaches
do not allow to separate tags into different aspects, making the organization of tags
quite complicated and sensitive to errors. Second, they provide only poor support
in assisting users in organizing tag collections.

As a consequence, a novel representation mechanism for tags is developed, called
aspect-based tagging. Based on this representation formalism, two especially impor-
tant tasks to assist users in structuring items are identified, namely collaborative
classification and collaborative structuring. Both allow to employ tags assigned by
other users to provide assistance to a given user in finding optimal representations.
For clustering, it can be shown that this approach yields an intuitive extension of
cluster ensembles for hierarchical cluster models. An empirical study shows the
benefits of using tags instead of using content only, as in the case of traditional
classification and clustering approaches.

While collaborative classification and clustering produce sound and accurate re-
sults, it is argued why the traditional formulation of a clustering task does not yet
meet the requirements of information structuring from a user’s perspective. There-
fore, a novel definition for this task is given and an algorithm to solve it, called
localized, alternative cluster ensembles. This algorithm is shown to be superior to
traditional clustering approaches in two respects. First, it guarantees the sound-
ness of the results from a user’s perspective, captured by the notion of structure
preservation. Second, it yields better results on a quantitative level for two different
application areas, one concerned with textual data and the second one concerned
with multimedia data.

5. It is shown how the methods developed in this work were applied in two application
areas, namely distributed media organization and distributed knowledge manage-
ment in expert communities.

This work is structured into three parts. Part one presents background information and
related work in the areas of data mining, (collaborative) information structuring and
distributed systems. Part two first analyzes the general problem of feature extraction for
several tasks and develops several algorithms and optimizations to solve it. Then, this
framework is applied to information structuring. Part three contains two case studies
for the developed methods, one in the domain of heterogeneous expert communities, the
second one in the domain of distributed, collaborative media organization.

21

22

Part |

Background

23

1 Structuring Information

1.1 Introduction

Accessing information in a structured way is an essential part of almost every application
based on information technology. This is especially true for the Internet. The large
amount of information provided through the Internet can only be made utile, because
we can rely on its underlying structure as guideline and orientation. Just imagine all
websites would be printed out and all these printouts would be piled up in random order.
Even for a small number of websites the resulting stack would be almost worthless.

The concept of a ,structure” is very general in this sense. You can structure your book
collection by assigning it to different topics, you can structure your favorite webpages into
bookmark folders or your music collections in a file system. In a more general sense, the
ability to impose structures on entities is a precondition of knowledge and communication
in general. Usually, structuring a set of items means putting them into some kind of a
relation to each other. This may happen implicitly (without the user being aware of the
underlying structure) or explicitly. This work is mostly concerned with the second case.

Why would we like to impose an explicit structure on an information collection? A typical
example of the explicit use of structured information on the Internet are directories that
allow users to find resources by browsing a set of hierarchically structured topics. This
approach is taken by Web directories, such as Yahoo! or Open Directory?, catalogues of
online retailers, such as Amazon?®, topic structures used in (digital) libraries, such as the
ACM classification?, and many others. Besides query based search, browsing is currently
the second major search strategy in large information collections. Users usually browse
information collections because they cannot express their information need in terms of
a search query or because they only have and unspecific information need, thus do not
know exactly what they are looking for.

However, searching for items that fulfill a specific or unspecific information need is not
the only use of explicitly imposing a structure on an underlying information collection.
Often we face an unstructured set of items and need to get an exhaustive overview of
them. Analyzing each item individually is not possible for any information collection that
is not trivially small. We can, however, use algorithms that group a large set of items into

"http://www.yahoo.com
Zhttp://www.dmoz.org
3http:/ /www.amazon.com
‘http://www.acm.org/class

25

a small number of groups of similar items. Instead of reviewing each item individually,
the user must only analyze a small number of representative items of each group. This
method is known in data analysis as clustering and is applied in many application areas
ranging from document retrieval to customer segmentation for marketing purposes [81].

Finally, there is a third important reason why we would like information to be explicitly
structured. While humans can deal with fairly unstructured information, such as natural
language texts, automatic processing of such resources is very limited. Therefore, it is
desirable to represent information in a highly structured way that allows processing it
by (intelligent) software. A very ambitious project to represent resources on the Internet
in a formal way is the semantic web [20]. Based on a formal description of all web
resources, access could be much more specific than it is using term based queries. A
common vision is, for instance, that users would simply ask questions, such as ,How is
the new film by Francis Ford Coppola called and where can I see it nearby on Saturday
evening?“. The software would then gather all necessary information from different,
semantically structured Internet sources, and produce a final answer. While this vision
is very appealing, there a several serious obstacles that need to be overcome to make it
a reality. They will be discussed below.

In this chapter we first review some basic formalisms for structuring information and how
they are employed to make large information collections easier to access and organize.
These formalisms are similarity, cluster structures, taxonomies and formal ontologies.
For each of them, we will discuss the basic formalism, how they are used in information
structuring (especially on the Internet) and how they can be obtained automatically from
data. Obviously, not all of the existing methods can be described in detail here. Rather
we focus on methods that play an important role in the subsequent chapters of this work.

1.2 Basic Concepts

One common basic concept in all formalisms presented below is the notion of a ,thing"
that is put into relation with other things. This concepts reoccurs under different names
in different approaches. In formal logic, the set of all things is usually called universe of
discourse. In the context of the semantic web things are called resources. Object oriented
approaches call them objects or instances. In the following we choose the term ,item‘ to
talk about these basic entities, which is relatively neutral.

Definition 1.2.1. An item is a uniquely identified entity. The set of all possible items
is denoted as D. For sake of formal simplicity, we assume D to be a finite set and to be
totally ordered in some arbitrary way.

In the scope of this work, the items we deal with are mostly web pages, music files,
scientific documents and similar things. The methods presented here are, however, not
limited to this kind of information.

We assume that each item can be associated with a set of features or attributes. Formally,
we define a feature as follows.

26

Title : Help
Artist: The Beatles
Year: 1965
Meta data \

]

Content-related features

6 of 6 people found the following review helpful: pop mccartney |enn°n
it A Helping Of Beatles, January 4, 2001 . o
By Thomas Magnum (), USA) - See all my reviews gu itar movie brltls h
Help! is the soundtrack to the second Beatles fim. The songs from "
the soundtrack really don't convey the feeling of the fim (a loose User-assigned tags
spoof of James Bond films) like their first soundtrack did, but who
cares as the album stands Up on it's own. The title track may be
the most confessional of John Lennon's career, "Ticket To Ride" has
a slow driving force, "It's Only Love" questions feelings and "vou've

Reviews and ratings

Figure 1.2.1: Items can often be described by various features of different type and het-
erogeneous source. In this example, music is described by structured meta-
data, by user-assigned tags, by ratings and reviews and by features ex-
tracted from the raw content of the music file.

Definition 1.2.2. A feature is a vector

X ¢ RIPI

that is indexed by the items in D,
X(z1)

x=| X
X(ﬂ;m\)

where the items x; € D are totally ordered by some arbitrary order (e.g. lexicographic)
that is identical for all features. For convenience, we alternatively write X : D — R.
Thus, X (x;) denotes the value of feature X for the item x; € D.

Note that D is assumed to be finite and fixed. A special case of features are binary
features, that denote logical expression. For the sake of formal simplicity, we map binary
features to a subset of R containing two elements, namely {0,1}. These two values are
associated with the logical expressions true (= 1) and false (= 0), as to denote whether
the item has the associated feature, or not. Nominal features are not discussed here. The
set of all features that are available for a fixed D is denoted as X. We can assume that
this set is totally ordered in some way (e.g. lexicographically). This set can be finite or
infinite, depending on the application area. In the following we assume this set to be
finite, unless stated otherwise.

27

Features can be of different type and origin. Music files, for instance, have features, such
as the year they were published. Text documents are often automatically annotated by
relevant terms they contain. Webpages, movies, etc. can be represented in similar ways.
Figure 1.2.1 shows an example.

Some features are easy to understand for human users, such as meta data on the topic,
and can directly be used to access and search an information collection. Others are rather
abstract but can still help to structure an information space automatically.

Usually, we deal with a subset of all possible features XC X that describe the items.
Such a set will be denoted as feature set. The value that a given feature assigns to an
item is denoted as feature value. The vector of all feature values for a given item is called
a feature vector.

We assume features to be globally uniquely identified and static. Thus, each feature has
a unique name and value X (x) does not change over time for any z € D and X € X.

Items can be grouped into item collections. An item collection is simply a set of items,
for instance the set of all scientific publications that occurred in a specific journal. This
work is mostly concerned with personal item collections. A personal item collection is
the set of items owned by a single user. The term may refer to different things depending
on the context. A personal collection of music files could be all music files the user stores
on her wearable player, the personal collection of webpages would mostly be a set of
references to webpages that a user bookmarked etc. In most applications, we can assume
that such personal item collections significantly overlap among users. Many users own
the same music files, for instance.

In the following we do not make any further assumption about users other than assuming
that they are uniquely identified. The set of all users is then simply denoted as U.

1.3 Similarity

1.3.1 Basic Formalism

Structuring means putting things into relation to each other. A very basic way to do
so is to say that two items are similar or dissimilar. This can be expressed formally in
different ways, depending on the scale that is used®

Definition 1.3.1. A binary similarity relation is a relation
SIM C D?

Two items are similar exactly if they are in the relation SIM. Usually this relation is
required to be reflexive and symmetric.

5The following presentation is adapted from [151]

28

In some cases it might make sense to introduce an additional relation DISSIM C D?
that denotes that two items are dissimilar. In this case, pairs of items neither in STM
nor in DISSIM have an undefined similarity.

Definition 1.3.2. A similarity measure is a function

sim : D* — RJ

assigning a degree of similarity to a pair of items. A high value of this function denotes
that both items are similar. This representation usually assumes a rational scale. Also,
in most cases, this function will be symmetric (thus Vz,y € D : sim(x,y) = sim(y,x)).

Opposite to the notion of similarity is the notion of distance.

Definition 1.3.3. A distance measure is usually expressed on a rational scale by

d:D?— RS‘
Distance measures are often required to be metric.

Definition 1.3.4. A distance measure d : D? —]Rar is a metric if it fulfills for all
x,y,z € D the following conditions:

1. d(z,y) =0 2=y
2. d(z,y) =d(y,)
3. d(z,z) < d(z,y) + d(y, 2)
These properties are used by many algorithms to process similarity information more

efficiently. M-Trees [36], for instance, employ the properties of a metric for efficient
similarity search.

A distance measure can be converted into a similarity measure and the other way around.
Such conversion functions are usually required to at least preserve the ordinal quality of
the original measure. This is fulfilled, for example, by

_d(z,y)
1+d(z,y)

In the following, the terms similarity and distance will be used interchangeable.

sim(z,y) =1

1.3.2 Structuring Information by Similarity
Many information systems structure items based on similarity. An important example are

item based recommender systems. These systems are applied, for instance, by Amazon,
to give recommendations of the form: ,Users that bought book x also bought books y,

29

2 [156, 155]. Users are often not able to express their information need in terms of a
search query. They can, however, name items of which kind they would like additional
ones.

Another example are Self Organizing Maps (SOM) [101] used in information search |79].
A SOM projects items in a high dimensional feature space to a two dimensional space
preserving as much of the mutual similarity between items as possible. On the resulting
map, two items are similar, if they are near to each other. Users can navigate such a map
just like a real world map. An extension to basic SOM described in [185] even enriches
the map with hills and valleys based on density estimates, making it even better suited
for explorative data analysis.

Similarity is also a building block for many other representation mechanism, as clustering,
which will be presented below.

1.3.3 Obtaining Similarity from Data

If the underlying domain D is finite, then a similarity measure can be defined explicitly
by a symmetric matrix. Usually similarity is rather defined indirectly by referring to
underlying properties and relations of the items in D. There is a huge number of different
similarity measures for this purpose, of which only some basic ones will be discussed in
the following.

In the simplest case, all features are binary. The most popular choice of comparing
two binary feature vectors is to compare them bit-wise. Corresponding measures are
called matching coefficients [5]. There are four possible cases for each feature. First, it
can be true for both items (case a), second, it can be false for both items (case d) and
third /forth, it can be true for one of the items and false for the other one (cases b and c).
Similarity measures for binary data mostly differ in how they weight these three cases.
Two important examples are simple matching and the Jaccard measure.

Definition 1.3.5. The similarity of two items z,y € D given a set of features X C X

using simple matching is given as

na(2,y) +n4(z,y)
Tla(«f, y) + nb(x7 y) + nc(a:, y) + nd(‘r’ y)

sim(x,y) =

where ng(x,y) denotes the number of features that are true for both items, ny(x,y)
denotes the number of features which are true for x and false for y, n.(z,y) denotes the
number of features that are false for x and true for y and ng(x,y) denotes the number
of features that are false for both items.

This measure weights cases a and d equally. This is not always appropriate. Given,
for instance, a set of binary features, each of which denotes which items a specific user
bought from an online vendor. The fact that a user did not buy any of two products

30

should not render these two products similar in the same way as if she actually bought
both items. Adding new items, for instance, would make all existing items more similar
to each other, which is quite unintuitive. A measure that is better suited in such cases
is Jaccard’s coefficient.

Definition 1.3.6. The similarity of two items z,y € D given a set of features X C X

using Jaccard’s coefficient is given as

na(xvy)
na (2, y) + np(z, y) + ne(z, y)

sim(z,y) =

where n,(x,y) denotes the number of features that are true for both items, ny(x,y)
denotes the number of features which are true for z and false for y and n.(x,y) denotes
the number of features that are false for x and true for y. As can be seen, case d
(false-false matches) does not play any role in the result.

In many domains, we face real valued features rather than binary ones. Two of the
most important measures for this kind of features are the inner product and a family of
measures called Minkowski or L,,, distances of which the Euclidean distance is the most
prominent representative.

Definition 1.3.7. The Minkowski or L., distance of two items z,y € D given a set of
features X C X is

3|~

d(x,y) = (Z (X(z) - X(y))m>

XeX

where m > 0 is a natural number. For m = 2 we obtain the Euclidean distance, for
m = 1 we obtain the absolute distance (also referred to as Manhattan distance).

The L,, distance shares some problems with simple matching. Imagine a feature set in
which each feature denotes how often a given user visited a large set of webpages. The
fact that a user never visited any of two webpages should not contribute much to their
similarity. A measure, for which this problem does not occur, is the inner product.

Definition 1.3.8. The similarity of two items z,y € D using the inner product given a
set of features X C X is

sim(z,y) = Z X(z) - X(y)

XeX

We assume that for all X € X and all z € D, X (x) > 0. This ensures that the similarity
never becomes negative.

31

This measure can additionally be normalized by the Euclidean length of the feature
vectors corresponding to x and y. The resulting measure is called cosine measure. It
is applied in cases, in which the length of feature vectors should not play an important
role. In the above example, the total number of users that visited a webpage should not
have a strong influence on its similarity to other webpages.

There are many other similarity measures for binary and real valued features, for a nice
survey refer to [5].

Comparing items based on nominal and mixed attributes is a more challenging task and
will not be discussed here. For a discussion on this problem, refer to [191].

1.3.4 Comparing and Evaluating Similarity Measures

As discussed above, there are many different approaches to measure similarity. Further-
more, similarity also depends on the feature space that is used. Comparing scientific
publications according to their topic will lead to different results than comparing them
according to the year in which they were published. Both issues lead to the question of
how to evaluate, compare and optimize similarity measures.

To evaluate and optimize similarity measures, usually an external criterion is needed. In
recommender systems, the accuracy of the recommendations can be used as performance
criterion for the underlying similarity measure. Another possibility is to use explicit
constraints provided by a user in form of pairs of items that should be similar/dissimilar.
We can then derive feature weights that optimize for these constraints [202]. A similar
method is to use pairwise comparisons of items as constraints [158, 86].

Also, we can use a reference similarity measure as ground truth, against which we evaluate
a similarity measure in question. This leads to the question of how to compare two
similarity measures. Two popular approaches are based on the Pearson correlation and
on the absolute distance.

Both approaches are applied to each pair of items in a finite subset of S C D . Two
similarity measures are similar, if they produce similar values over all pairs of items
(z,y) € 5%

Definition 1.3.9. The absolute distance of two similarity measures sim; : S* — Rar and

sim;j : 5% — Rg with S C D is given as

1 . .
W Z |S7’mi(x7y) - Szmj(xvy”

(z,y)€S?

In some cases it is desirable that this measure is tolerant to linear transformations. In
this case the Pearson correlation can be used.

Definition 1.3.10. The correlation of two similarity measures sim; : S? —]RaL and
sim; : 5?2 — Rg with S C D is given as

32

2 (e yyesz (simi(z,y) — simy)(sim;(x, y) — sim)

o(sim;)o(sim;)

where sim; and sim; are the average similarities over all pairs of items in S. o(sim;)
and o(sim;) are the corresponding standard deviations. Thus,

: 1 .
sim; = KR Z sim;(z,y)

(z,y)€S2
and
1
) bl
o(sim;) = KR Z (sim;(z,7y) — sim;)?
(z,y)€S?

and correspondingly for sim; and o(sim;). To be applicable, o(sim;) > 0 and o(sim;) >
0 must hold, thus it is not allowed that all pairwise similarities are equal in any of both
measures.

Both measures can be applied to distances as well.

1.4 Cluster Structures and Taxonomies

1.4.1 Basic Formalism

While similarity is already quite useful, it is not well suited to get an overview of a whole
set of items. This can be achieved much better if the items are assigned to a small
number of clusters, such that each cluster contains items that are similar to each other
[5]. If each item is assigned to ezactly one cluster, the resulting structure is called a
partition. A partition can be encoded using the binary similarity relation STM , which,
however, must be an equivalence relation in this case. Below, some algorithms will be
presented, that create a partition based on data and an arbitrary similarity measure.
Cluster analysis is mostly used to get a quick survey of a set of items, because inspecting
a small number of clusters is usually easier than inspecting each item individually.

However, the problem of grouping items can also be regarded from another perspective.
Instead of thinking of clusters as sets of similar items, we can regard them as concepts
that group items by a common intension. A scientific topic, e.g. ,Artificial Intelligence",
would be a concept that groups a set of documents together that are connected by this
topic.

It general, we can assume that there is a finite set of concepts or classes C' and an
extension function.

33

rock

alternative

Figure 1.4.1: An example taxonomy

Definition 1.4.1. An extension function
ext : C — 2P

denotes which items in D belong to which concept ¢ € C.

This relation between item and concept is often denoted as ,IS-A“ relation [150].

Definition 1.4.2. A set of concepts C is a partition of a set of items S C D if

Ve e S,dce C: x € ext(c)

and

Ve,d € C: (SNext(e) Next(d) #0) = c=¢

thus every item in S is assigned to one concept and concepts are not allowed to overlap
on S.

If items may belong to more than one concept, it is possible to impose a subset relation
on them.

Definition 1.4.3. Two concepts ¢, € C are in subconcept relation <C C? if their
extensions are in subset relation, thus:

ext(c) Cext(d) & e =<

This relation is by definition restricted to directed acyclic graphs (DAG). Often it is
further restricted to allow only tree like structures. Following the definition in [150],
structures in which items are assigned to concepts using an extension function (IS-A
relation) and in which concepts are arranged using the subset relation, are called taz-
onomies. Figure 1.4.1 shows an example of a taxonomy containing music.

34

1.4.2 Structuring Information by Taxonomies and Cluster Structures

As described above, taxonomies are used in many applications to allow users to browse
information collections according to topic, genre, etc. Prominent examples are Yahoo!,
the open directory, catalogues of online vendors, (digital) libraries and many others.
The underlying structure is mostly a simple subset tree. In some cases the hierarchy is
enriched with cross links, such as in the Yahoo! hierarchy, making it technically a DAG.

Taxonomies are much more powerful than similarity and recommendation systems, be-
cause of their ability to capture semantic. They are, for instance, well suited if users
want to explore new topics. Taxonomies do not only point to relevant items, but also
tell something about how a topic is structured into subtopics and how it relates to other
topics. Thus, the use of taxonomies goes far beyond simple search by keywords or by
similarity. Portals like Yahoo! combine keyword based search with taxonomies by re-
turning not only relevant web pages upon a search query but also relevant concepts in
the taxonomy.

Taxonomies, as described so far, are global. There is one taxonomy that should cover
all items (e.g. all webpages) and that is shared by all users. The other extreme are
bookmarks and directory structures. They represent taxonomies created by an individual
user to cover exactly the personal item collection of the user. It is neither clear whether
this structure would be valid for other items, nor if other users would share it. In this
sense it is local. Such local, personal taxonomies are usually much smaller than global
ones. Users employ their personal taxonomies not only for search but also for organizing
items. They insert, for instance, new webpages into their bookmark tree, they create
new nodes, rearrange the tree, etc. In a metaphorical sense one could say they furnish
their personal information space, just like they would furnish their apartment.

Both global and local taxonomies are usually created and maintained manually, which is
very unsatisfying. There are several approaches to create them dynamically from data.
This is achieved by clustering methods. The most prominent application of clustering
to interactive information retrieval is probably the scatter and gather approach [40]. A
set of documents is clustered automatically into a partition. The user then chooses the
most promising partition. Then the items in this partition are clustered. This process
continues until there are only few items left, which the user can inspect manually.

There are also many approaches that automatically classify new items into an existing,
fixed concept structure. Given, for instance, a set of music genres, audio classification
methods annotate new music files automatically with genre information [68, 109]. This
allows users to access so far unstructured items using a known class structure. A similar
approach is to learn preferences of a user. Preferences can be represented as two concepts,
one containing the items the user likes another one the items the user dislikes. One of
the first approaches that applied this principle to Internet resources was the Letizia
system [110]. Another, more sophisticated approach to support for browsing pages based
on topics is WebWatcher [87]. It allows users to specify a topic and then guides them
through the links on a web page.

35

Finally, there are hybrid systems which classify new items into an existing class structure
only if they fit to one of the classes. If this is not the case, a new cluster is created. They
are often referred to as incremental clustering systems. This approach is followed, e.g.,
by the FOCI system [138| or by the Newsgroup clustering system co-developed by the
author and described in [74].

Most methods developed in this work are based on taxonomies and cluster structures,
because these a very popular and widely used formalisms for structuring information,
both at a global and at a local level. On the one hand, they provide more semantic
information than simpler approaches based on similarity and recommendations. On the
other hand, they are simple enough to be managed by casual users. Finally, there are
many methods that allow to create and maintain such structures (semi-)automatically,
some of which will be described in the next sections.

1.4.3 Creating Cluster Structures from Data

Taxonomies used on the Internet are often hand crafted. Usually, a very small team of
people designs a concept hierarchy and assigns new items to these concepts manually,
as they arrive. Faced with the vast amount of information on the Internet, this is not
satisfying.

Creating cluster structures automatically from data is a well known task from explorative
data analysis. We assume the subset of items to be clustered is S C D.

Definition 1.4.4. The task of clustering is to yield a finite set C' of clusters, such that
Uegec ext(c) = S, where S is a given subset of D.

Algorithms differ first of all in the kind of output they produce. As described above,
there are basically three possibilities, the items in S can be partitioned, they can be
grouped into a set of overlapping clusters or into a hierarchical cluster structure, which
is a special case of overlapping clusters.

A second important question is what is regarded as a cluster. This is usually expressed
by a set of constraints or by an objective function denoting a valid and optimal clus-
ter structure. In the following, we will present some of the most important problem
definitions, partially together with algorithms that solve them.

Definition 1.4.5. A cluster quality function is a function that assigns to each set of
clusters C' a numerical quantity that expresses the quality of the clustering concerning a
given set of items S C D.

cqg:Cs — R

where Cg is the set of all possible cluster structures on S.
Often, clusters are defined in terms of pairwise distance. A basic approach is to minimize

the mutual distance among items in the same cluster and maximize the distance between
items in different clusters.

36

Definition 1.4.6. The average within cluster distance is defined as

Cquea(C) =D Y > d,a)

ceC zeext(c) z’' €ext(c)

where C is a fixed set of clusters, ext a corresponding extension function and d a distance
measure.

The task is to find such an assignment of items to clusters that cgy.q 18 minimized.
It can be shown that by minimizing cgy.q the mean pairwise difference between pairs
of points in different clusters is maximized [73]. If the underlying distance measure is
Euclidean distance, there is an efficient optimization strategy for this problem. The k-
means algorithm, depicted in figure 1.4.2, applies an alternating optimization procedure
[72]. For each cluster, a centroid is calculated, the point with the smallest average
distance to all items in the cluster. Then every data point is assigned to the cluster with
the nearest centroid. After this step, centroids are recalculated for each cluster and data
points are newly assigned to clusters based on the new centroids. This alternation stops
if there is no further change in cluster assignment or after a maximal number of steps.
The centroids are initialized with random items. k-means does not guarantee to find an
optimal solution and is sensitive to the choice of initial points. Therefore, a common
strategy is to start k-means several times with different random initializations. For its
simplicity and efficiency, k-means is one of the most popular clustering algorithms.

The k-means algorithm works only with Euclidean distance. Recent work shows that
a highly similar optimization strategy works for a family of distance measures called
Bregman divergences [12]. Another generalization of k-means is k-medoids, for which any
similarity or distance measure can be used |[73]. The idea is to select an item in each step,
with the smallest average distance to all points in the cluster. This item then serves as
centroid. Related to this approach are extensions of k-means using kernel methods [207,
44|. However, both, kernel k-means and k-medoids, suffer from the problem that they
must compute similarities for all pairs of items in each step, while calculating centroids
with k-means is linear in the number of items.

While k-means does only produce partitions in its base version, it can be easily extended
to yield hierarchical structures as well [73]. The idea is to split the set of items to be
clustered in a top-down manner. First, the set S is partitioned into k subsets. Then
k-means is applied to each of these subsets. This procedure continues until a minimal
cluster size is reached. This approach is very efficient. It shows good results, e.g. for
hierarchical document clustering [167].

Approaches, such as k-means, model clusters as sets of items with minimal pairwise
distance. This can be expressed in another way by assuming that items are the visible
output of several different hidden processes. Items are grouped together if they are
assumed to have been generated by the same hidden process. The optimization works
similar as for k-means. In each step, parameters of the underlying distribution are

37

Input:

A set of k empty clusters C
A set of items S

A set of features X

Output:
An extension function ext that assigns the items in S to clusters in C
A centroid z; € RIXI for each cluster

for ¢; € C do
Initialize z; € RXI with random values
end for
round = 0;
while round < maxRounds do
for x € S do
l= argminj(zyqu(zji — X;i(2))?);
Assign z to ¢, thus z € ext(c));
end for
for ¢c; € C do
for X; € X do
Zji = m ZIEext(Cj) Xl(x)
end for
end for
round = round + 1;
end while

Figure 1.4.2: The k-means algorithm: Given a set of features and a number of k clus-
ters, k-means reassigns items to clusters by alternatingly calculating the
cendroid of each cluster (where zj; denotes the value of feature X; for the
centroid corresponding to ¢;), and assigning items to the cluster with near-
est cendroid.

estimated for each cluster based on the items currently assigned to the cluster. Then
items are reassigned to the cluster with the distribution that most likely produced them.
This approach is denoted as expectation maximization clustering, named after the more
general EM-optimization strategy [43].

Another view of the clustering problem is to assume that items are vertices in a graph.
Two items are connected if they are sufficiently similar. The task of clustering is then
to find connected components in the similarity graph. In this case, not the number of
clusters is fixed, but a threshold that defines whether two items are connected and thus in
the same cluster. This strategy is denoted as single link clustering [5]. Often it is used to
produce a cluster tree instead of an item partition. The idea is to start with a clustering
in which each item has its own cluster. Then clusters are consecutively merged, always

38

selecting the two most similar clusters. The similarity of clusters is assessed for single
link clustering as the smallest distance between an item in one cluster to an item in the
other cluster. In each step, the number of connected compounds is decreased by one,
until all items are in the same cluster.

Single link clustering suffers from the problem of outliers. One faulty item is sufficient
to join two otherwise clearly separated clusters. Obviously, this is not desirable. Density
based clustering algorithms solve this problem by using another cluster definition. Two
items are in one cluster, if they are connected by a dense area [52]. A dense area is
basically one, that contains a minimum of data points per volume unit. There are also
more sophisticated estimates of density, such as used for Support Vector Clustering [18§],
though the basic idea is the same. The benefit of density based approaches is that they
are usually robust to outliers and are able to find clusters of any shape. A problem
shared with pairwise similarity approaches are clusters of different density. Optics 9] is
an approach to allow interactive density based clustering as a reaction to this problem.

Single-link clustering and density based approaches search for connected compounds in
graphs. They differ in what is regarded as connection between two items. Another way
to use an underlying graph of connected items is graph separation. Each edge in the
graph has a weight that corresponds to the similarity of the items that it connects. The
problem of how to find & clusters is then mapped to the problem of partitioning a graph
into k subgraphs by deleting the set of edges that has a minimal sum of weights. Instead
of usual graphs, often hypergraphs are used [71]. Hypergraphs may connect two items
with more than one edge.

All of the above approaches differ in how they define the concept ,cluster and what
is regarded as correct or optimal clustering. They also differ in whether the search is
performed bottom-up, top-down or by re-arranging items iteratively. Furthermore, they
differ in an additional point which is more subtle and deserves some discussion: the
representation of clusters. The representation of clusters determines which clusters can
be found and is strongly connected to the definition of clusters, although not necessarily
determined by it.

A common way of representing clusters, especially for pairwise similarity approaches, is
by sets of points. A cluster can be represented by one point (the cluster centroid or
another data item). This is the approach of k-means clustering and of its variants. A
problem with this approach, at least if used with unweighted Euclidean distance, is that
clusters have to be separable by spherical decision boundaries.

Another possibility is to represent a cluster by all its data points. Single link clustering
applies this representation. A major drawback of this approach is the high computational
effort to store all points and its sensitivity to outliers. An interesting alternative is to
represent clusters by several well scattered points [66]. Such points capture, on the one
hand, cluster boundaries even if they are non-spherical. On the other hand, they are less
sensitive to outliers. A very similar approach are the ,specific core points” as applied in
distributed density-based clustering [82].

39

Grid based clustering algorithms [188] represent clusters by a set of cells. These cells can
be further aggregated and described in terms of attribute values by forming the maxi-
mal hyper rectangle that contains all the points. Finally, clustering algorithms working
on probabilities and hidden concepts describe clusters by probability distributions or
parameters of these distributions.

1.4.4 Classifying Items into a given Cluster Structure

Clustering imposes a new structure on a set of previously unstructured items by assigning
them to groups. These groups are generated during the clustering process. Classification,
on the other hand, assumes a given, fixed set of classes to which new items are assigned
[125]. This is usually achieved by providing examples for each of the classes. Examples
are items that have been tagged with the information to which class they belong. A
typical scenario are music files which are tagged by a user according to whether she
likes them or dislikes them. The task of classification is then to decide for new music
files whether the user will probably like them, or not. This kind of learning is called
supervised learning, because the algorithm is provided with training data. Clustering on
the other hand is unsupervised, because it does not provide this kind of information.

Methods for classification differ significantly from those used for clustering. In clustering,
the aim is usually to get a survey of the data. For classification, the aim is encoded into
the training examples. In the example above, the aim is to find out which music the user
could like. If the user had annotated the items according to genre instead, it would be
the task of genre classification.

Definition 1.4.7. Given a finite set of classes C, the task of classification is to find an
optimal function h : R¥ — C assuming a given function f : R¥ — C of true values and a
set of examples, where each example has the form (vy,...v,¢) with v,;€ R and c € C. A
function A is optimal, if it minimizes the expected loss regarding the true concept f.

For a finite set C', which we assume here, and binary features, the expected loss can be
formalized as follows.

Definition 1.4.8. The expected loss of a hypothesis h : {0,1}¥ — C concerning a true
concept f :{0,1}¥ — C and a finite set of classes C is defined as

ve{0,1}+

where L(a,b) = 0, if @ = b and 1 otherwise. p(v) is the probability by which the datapoint
v € {0,1}* is drawn from an underlying distribution.

This definition can be easily extended to continuous features as well. If the set C is
binary, then we will write f as logical term, for sake of simplicity.

40

Given, for instance, the binary function f(X,, Xp) = X, + Xp > 5. Labeled examples
of this function could be {(1,2, false), (2,6, true)}. Based on these examples, we could
induce, the not quite correct, hypothesis h(X,, Xp) = X3 > 2.

How is the problem of classification related to clusters and items? We again assume
a fixed set of non-overlapping concepts (a partition) C. Also we assume a function
f D — C that assigns each element in D to exactly one concept in C. The function f
can usually not be observed directly. Rather we know the value of f only for a subset
S C D of items, the examples. This can be written as a function f’: S — C. The set
S could be, for instance, a set of items already tagged by a user according to taste. The
task of item classification is to yield a hypothesis that classifies the remaining items in
D according to this concept.

Definition 1.4.9. The aim of item classification is to find a function h : D — C that
approximates the true concept f given some examples S C D with f’: S — C in such a
way that expected loss is minimized.

We assume here that C is a finite set. Then, the expected loss can be rewritten for item
classification as follows.

Definition 1.4.10. The expected loss for item classification of a hypothesis h concerning
a true concept f is defined as

E(L) =) L(h(z), f(2)) - plx)

zeD

where L(a,b) =0, if a = b and 1 otherwise. p(z) is the probability that item = is drawn
from an underlying distribution.

The expected loss respects the distribution of the data. Misclassifying an item that is
likely to occur is more severe than misclassifying an unlikely item.

Given a set of features X, then a function h : D — C' can be defined based on a traditional
classification function, by

h(z) = b'(X1(2),.., Xi(z), .., Xjx|(2)) with X; € X and A’ : RXI — C a classification
function. Similarly, given f’ : S — C, we can easily transform this into examples

{(Xl(x)’ 7X2(x>7 "7X|X\(x>7 f/(.%')ﬂ.%' € S}

Usually, the distribution of the items and the true label are not known. Therefore, the
expected error can only be estimated. A usual assumption is that the items in S obey
the same distribution as the items in D. Under this assumption, the expected loss can be
estimated by cross validation [73]. The idea is to subsequently delete examples S C S
from S. The remainder of examples is used to generate a hypothesis h. Then h and f’
are compared on the set S’. This process is repeated until each example in S was used
for testing exactly once. The size of S’ is called batch size and can be varied.

41

There are many different algorithms to create hypotheses or models given labeled exam-
ples. A very good survey can be found in [73] or in [125]. In the following, we will mostly
use a simple but very flexible and powerful classification algorithm, namely nearest neigh-
bor. This algorithm assumes a similarity function sim : D?> — Rar defining the pairwise
similarity of all items to each other. If a new item is to be classified, the algorithm first
looks for the k£ most similar items in the training set S. Then, a majority vote between
the members of this set is performed, concerning the class label. The class label with the
highest count is used as prediction. Ties are broken randomly. There are many variants
and optimizations of this basic algorithm [192].

Until now, we assumed a partition of items. The approach can be extended to cover
concept hierarchies as well. The problem of classifying items into a concept hierarchy is
denoted as hierarchical classification. An obvious problem is that an item is in general
not assigned to a single concept but to several ones. A first possibility to map this
problem to a traditional, flat classification problem is to only regard the most specific
concept to which an item is assigned. In this case, the function h, as well, should predict
only this most specific concept. Evaluation and training are performed based on the most
specific concept. Basically, all concepts are regarded as independent by this approach.
The hierarchical structure among them is ignored.

Regarding all concepts independently can be suboptimal, especially if the number of
leaf nodes is large. A better possibility to map hierarchical to flat classification is not
to train a single classifier, but to train a classifier for each inner node in the concept
hierarchy. Such a classifier then decides into which of the subtrees an item belongs.
Items are classified in a top-down manner, thus they are inserted at the root. Then, at
each step a classifier is used to decide how to propagate them down the tree, until a leaf
node is reached. Using a classifier in each node has the advantage of dealing with much
fewer classes in each individual classifier. For each classifier more examples are available,
because for each class all items in the corresponding subtree serve as examples.

A second point that is not satisfying in regarding all concepts independently is evaluation.
We usually would like to make a distinction between small mistakes (e.g. an item is
falsely assigned to a sister or daughter concept) and a large mistakes (e.g. an item is
falsely classified to a completely different subtree). This notion can be operationalized
by, e.g., modeling the loss not binary but rather as tree distance between the true and
the predicted concept.

Finally, there is still another possibility for evaluation. We can estimate the expected
loss for each inner node (and its associated classifier) separately and then average all of
these values. The idea behind this concept is that we often do not input items only at the
root but at arbitrary inner nodes. A user can, for example, assign an item to the genre
,rock and leave it to the algorithm into which sub genre to put the item. Therefore, all
classifiers should be regarded equally important. Using tree distance, classifiers closer to
the root of the concept hierarchy tend to obtain more weight.

At least equally important as the classification algorithm and its parameters is the set
of features used. As discussed above, similarity can be defined under different aspects

42

represented by subsets of the features used to describe the items. Finding an optimal set
of features is therefore a major challenge for automatic classification. This problem will
be discussed in detail in chapter 4.

1.4.5 Comparing and Evaluating (Hierarchical) Cluster Structures

Comparing and evaluating cluster structures is important for several reasons. Especially,
it allows to select optimal solutions in terms of the clustering algorithm, its parameters
and the feature space. For classification, such an evaluation could be achieved by using
cross validation to estimate the expected loss. For clustering, the situation is more
complicated.

There is a distinction between internal and external evaluation measures for cluster
structures. Internal measures can be derived from the result an algorithm produces.
A typical example is the average within cluster distance cqueq, as used by k-means
clustering.

Internal quality measures have the disadvantage that they are not well suited to optimize
a clustering by parameter optimization and feature selection. Trivial choices (using only
one nominal feature) often lead to optimal results. They are, however, almost certainly
not intended by the user. The same holds for parameters, such as k in k-means. Using the
number of items in S as value for k leads to the optimal result of cqueq = 0. A second
drawback of internal evaluation measures is that they often do not allow to compare
two different clustering schemes. The measures used by density based methods are, for
example, very different from the ones used in single link clustering.

An alternative is to use external criteria to evaluate cluster structures. The simplest and
most prominent method is to provide a reference clustering as ground truth. Cluster
structures can then be evaluated by comparing them to this reference structure.

There is a large amount of research on how to compare two partitions of items. Most
approaches are based on the notion of concordance. Two items assigned to the same
cluster in the first partition should be in the same cluster in the second partition as well.
Methods mostly differ in how they weight different forms of concordance and discor-
dance. [117] provides an axiomatic characterization of desirable properties of functions
comparing partitions and gives an impossibility result.

In this work, the focus is on comparing taxonomies and thus hierarchical cluster struc-
tures. This problem is considerably more complicated. In the following the most impor-
tant approaches to compare taxonomies will be presented.

Theoretical computer science has contributed a lot of work on comparing tree structures.
As hierarchical cluster models can be regarded basically as trees, such measures can
be applied to compare them as well. The most important measure for structural tree
similarity is tree edit distance. The similarity of two trees is derived by measuring the
minimal number of steps (or more general costs) necessary to transfer one tree into the
other one by deleting and creating nodes. The computational effort to compute the tree

43

Figure 1.4.3: The treedistance of two items x and y. C,, contains all concepts that contain
x, Cy contains all concepts that contain y and C,, contains all concepts that
contain both.

edit distance is quite high, especially, because items must be modeled as leaf nodes of the
tree in this formalism. [22]| gives a nice overview of different algorithms that calculate
the tree edit distance.

As stated above, clusters and cluster structures are often defined by some form of sim-
ilarity: clusters should contain similar items. This view can easily be reversed. Given
a cluster structure, it is possible to define a similarity of items according to this cluster
structure. The most popular measure of this kind is tree distance. The tree distance of
two clusters is the length of the shortest path connecting them. The tree distance of two
items is the tree distance of the most specific nodes they are associated with.

Definition 1.4.11. Given a cluster tree C, the tree distance of two items z,y € S is

d(x7y) = ‘Cx‘ + ‘Cy‘ - Q‘Cmy|

where Cp = {c € C' | = € ext(c)} is the set of clusters containing item z, Cy = {c € C'|
y € ext(c)} is the set of clusters containing item y and Cpy = C, N Cy the set of clusters
containing both items. The set S C D here denotes all items that are in the extension
of any of the clusters in C, thus S = {z € D|z € ext(c),c € C}.

Figure 1.4.3 illustrates the idea.

Two clustering can be compared by comparing the corresponding tree distance measures
that are generated by each of them. The problem of comparing two similarity measures
was described above. In this case, the correlation of tree distances is especially well
suited, because more detailed cluster structures can still be similar to less detailed ones,
as long as this can be captured as linear transformation of the tree distance.

Another popular measure to compare two cluster structures is f-measure, which often used
in information retrieval and machine learning. In the following we will use f-measure to
compare two individual clusters ¢ € C and ¢ € C’, where C and O’ are two cluster
structures. Given a query set of items and a result set of items (e.g. results delivered by
a search engine and truly relevant items) precision denotes the fraction of items in the
result set that are relevant.

44

Definition 1.4.12. The precision of a cluster ¢ € C' concerning another cluster ¢ € C’
is

N lext(c) Next(d)|
prie) = i)

for |ext(c)| > 0.

Recall is the fraction of relevant items that are contained in the result set.

Definition 1.4.13. The recall of a cluster ¢ € C' concerning another cluster ¢ € C’ is

n lext(c) Next(d)|
re(c,c) = eat())

for |ext()| > 0.

F-measure is a (weighted) combination of both.

Definition 1.4.14. The f-measure of a cluster ¢ € C' concerning another cluster ¢’ € C’
is

2-pr(c,c’)-re(c,c)

fm(e,d) = {pr(c,c’)Jrre(c,c’)

0 , else

,ifpr(c,d) +re(c,d) >0

Two cluster structures are can be compared as follows [167]. For each cluster ¢ € C in the
first cluster structure C' we search for the cluster ¢ € C’ in the second cluster structure
(' that has the highest f-measure concerning c¢. Thus, we search for each cluster its best
match in the reference clustering. The similarity of two cluster structures is then the
average f-measure over all clusters in C. Additionally, these clusters can be weighted by
the number of items they contain. The overall measure is then defined as follows:

Definition 1.4.15. The FScore of a clustering C' concerning a reference clustering C’ is
defined as

FScore(C,C") = 1 Z lext(c)| - mazycor fmic,)
@ ceC
with
o= Z lext(c)|
ceC

and fm(c,c’) the f-measure between ¢ and ¢, as defined above.

45

While this measure is asymmetric in general, it can easily be made symmetric by switch-
ing the roles of both cluster structures and using the average as result. This symmetric
version of the FScore will be used in the empirical evaluation.

A popular measure to compare partitions of items is mutual information.

Definition 1.4.16. Given two partitions C' and C’ with respect to a common set of
items S C D, the mutual information among both is defined as

N lext(c) Next(d)| lext(c) Next(d)||S|
KO =2 2 g fenlent(@)]

While it can be extended to hierarchical structures as well, this step is not trivial and
only applicable if all items reside in leaf nodes. In general this is not the case. Therefore
this measure will not be used in the following.

1.4.6 Merging Cluster Structures

Classifier ensembles are one of the most important techniques in supervised learning [73].
The idea is to train several classifiers using different feature sets or different subsets of
the training data. Then the individual classifiers are combined into a final classification
function. Classifiers ensembles have been shown to be very accurate and robust to noisy
data [73]. There are several attempts to transfer this success to unsupervised learning.
Corresponding techniques are denoted as cluster ensembles. To date, research is only
concerned with flat cluster ensembles and especially with partition ensembles. Another
common assumption of all approaches is that all partitions cover the same set of items.

Several approaches were proposed to merge partitions. The most simple one uses the co-
association of items in the given partitions to derive a binary similarity measure which is
then used together with a traditional, similarity based clustering algorithm. The major
advantage of this algorithm is its simplicity and the ability to plug it into any state of the
art clustering algorithm. Empirical results suggest that it works very well on different
problems [182]. A major drawback is the consumption of storage space, because an |S|?
matrix has to be created as input to the clustering procedure. Another general approach
is to search for a median partition among the input partitions, thus a partition that has
a maximum average similarity to all other partitions.

Another possibility is to formulate the search for a common clustering as optimization
problem.

Definition 1.4.17. Given a set of partitions & = {C1,..,C}, ..,Cx} on a common set of
of items S C D, find a median partition Cgyg, that maximizes

> Z(C, Cavg)-

Ce®

46

The idea is to find the clustering that shares a maximum of information with all input
cluster structures .

[171] propose a hypergraph based algorithm to solve this problem. First, a hypergraph
is generated from the input partitions. This hypergraph contains an edge between two
items for each concept they both are assigned to. This hypergraph can then be clustered
using a graph clustering algorithm, as described above.

While merging cluster structures is a very promising approach, the basic assumption
that all input cluster structures as well as the output cluster structure must be global
limit its applicability to clustering local item collections of users. Also, the limitation to
flat structures makes them hard to apply in practical scenarios that often rather contain
hierarchical structures. In chapter 5, we will propose an intuitive extension to flat cluster
merging, called hierarchical cluster ensembles. This methods is global in the sense that
all input cluster structures are assumed to cover all items. Also, it delivers only a single
solution, which we will show is not appropriate for information structuring that naturally
implies several, heterogeneous views on a domain. In chapter 6, another approach is
developed that is local in this sense, called localized alternative cluster ensembles.

1.4.7 Non-redundant Clustering

A recent approach to extend the traditional clustering problem is non-redundant clus-
tering [65]. The idea is to find a clustering that, on the one hand, is valid but, on the
other hand, is dissimilar to a given, existing clustering.

Definition 1.4.18. Given a partition C on S the aim of non-redundant clustering is
to find a partition C’ on S such that the mutual information among both Z(C,C") is
minimized while a clustering criterion c¢q(C’) on the new clustering is maximized.

In [65] both criteria are combined into one criterion. The task is then solved by using
an EM-like approach. Non-redundant clustering can be used to find several orthogonal
structures in the data.

1.4.8 Feature Selection for Clustering and Subspace Clustering

As for similarities, a fundamental question for clustering is which features to use. For
descriptive or explorative data analysis, there usually is no external performance criterion
that could be used to answer this question. The aim is rather to describe the data, as
it is. There are two approaches to perform feature selection for clustering despite these
limitations. The first is called subspace clustering [1]. The idea is to identify clusters in
subspaces of the data. Thus each cluster is not only defined by the items it contains,
but also by the subset of features for which it is a valid cluster. The validity of clusters
is computed based on density. The approach makes use of the fact that the density
decreases monotonically as features are added.

47

o |oe :.;

Figure 1.4.4: Subspace clustering. There is no unit that contains more than four items
in the original space X = {X1, X2}. Projecting units to the space X' =
{X1}, there are two units that pass this threshold. These two units can be
combined into a pattern.

The idea of subspace clustering is not to deliver a partition of items, but a set of possibly
overlapping, maximal clusters.

Definition 1.4.19. Given a set of features X = {Xy,.., X;,.., X}, n = |X|. A grid on
this set of features is defined by segmenting the values of each feature in equal intervals. A
unit is an intersection of intervals from each attribute, {[vy,, v}), .., [Vr;; vr,)5 oy [V, 02)
such that v,,,v;, € Rand 1 <7 <. <r; <.. <7 < |X] and k < n with 7; € N.

This leads to the notion of an item being contained in a unit.

Definition 1.4.20. An item z € S is contained in a unit, iff for all 1 < i < k :
v, < Xp () < ...

Subspace clustering aims to find maximal units, that contain more than a given fraction
of the total number of items in S. Figure 1.4.4 shows an example.

An example output of a subspace cluster algorithm would be, for instance, {(1 < X; <
IIN(2< X5<4),(1 <Xy <6)}. Note, that both clusters overlap and that not all
features are used for clustering.

If the features are all binary, subspace clustering degenerates to the task of frequent
itemset mining. A unit in this case has the form {X, A.X, A.X, } (if no negation
is allowed), which can be seen as a frequent itemset [2]. The minimal density is in this
case the exact support.

A highly similar approach is clustering based on frequent itemsets [16, 62, 187|. The
idea is to first find combinations of features that co-occur very often. These sets are
then arranged according to the lattice underlying them. This lattice is pruned by diverse
heuristics to yield a tree. The number of clusters produced by both approaches can,
however, be quite high, just as the number of frequent itemsets. This makes these
clusters hard to interpret and to use for explorative data analysis.

48

Another approach is multi-objective optimization to find an appropriate set of features.
Earlier works on this topic try to minimize the number of features while minimizing the
average within cluster distance cqyeq for k-means clustering (94, 95, 129|. In [122] we
show that this is not appropriate. Instead we propose an approach that maximizes the
number of features while minimizing cqy.q. Thus, on the one hand, we want to obtain
dense clusters, on the other hand we want the data to be described as completely as
possible. Multi-objective optimization allows us to explore this tradeoff by means of a
set of Pareto optimal solutions. In contrast to subspace clustering, this methods delivers
several global results, in the sense that each cluster structure in the Pareto set covers all
items. As will be shown in chapter 6, both are not well suited for clustering items locally.
Subspace clustering does not deliver closed cluster structures but a set of clusters that is
not easy to overview for the user. Multi-objective feature selection for clustering does not
deliver results that are local. We will therefore propose a new method for feature selection
in chapter 6 that is local, but still delivers several complete, sound cluster structures.

1.4.9 Other Variants of the Traditional Clustering Task

In some applications, items are described by features representing several different as-
pects. A typical example are web pages described by their content and by the link
structure connecting them. Co-clustering exploits this input data by clustering the data
items alternately according to each aspect. Corresponding algorithms, such as Co-EM
[21], are reported to yield superior results in some areas. Another possibility to improve
traditional clustering is to cluster the features simultaneously with the items. This can
be especially beneficial if there are many, highly correlated features. In text clustering,
for instance, terms can be clustered into prototypical topics, which again helps to cluster
the documents, etc. Typical algorithms include latent semantic indexing [42| and its
probabilistic counterpart [75], as well as the more general multi-way clustering [17].

Semi-supervised or constraint clustering algorithms allow users to pose constraints on
the resulting cluster structure [39]. Constraints state, for instance, that two items must
be assigned to the same cluster or that they cannot be assigned to the same cluster.

Definition 1.4.21. A must-link constraint for two items x,y € S with S C D states that
the clustering algorithm must deliver a partition C' such that 3¢ € C' : x € ext(c) ANy €
ext(c).

In a similar way, a cannot-link constraint can be defined.

Definition 1.4.22. A cannot-link constraint for two items z,y € S with S C D states
that the clustering algorithm must deliver a partition C' such that —-dc € C : z €
ext(c) Ny € ext(c).

There are two general approaches to semi-supervised clustering. The first one is to learn

a distance function that fulfills the constraints as good as possible and then to apply this
distance function with a traditional clustering algorithm [202|. The resulting clustering

49

is not guaranteed to fulfill all constraints. The second approach is to incorporate the
constraints directly into the clustering algorithm [186].

Other possible constraints include, e.g., that all items with different nominal values for
a given feature must be assigned to different clusters. Also constraints on the size of the
resulting clusters are possible.

A variant of semi-supervised clustering is supervised clustering [56]. The user provides
a cluster structure on a small subset of items which is then used to cluster the resulting
items.

Beside constraints, other kinds of background knowledge can be used to guide the clus-
tering process. A typical example is presented in [80]. A text clustering algorithm is
improved by enriching the original text documents with information from a thesaurus.

Incremental clustering refers to the task of clustering a stream of items, thus to adapt the
cluster structure to new items automatically. A very simple method is to check whether
a new item is sufficiently similar to one that is already assigned to an existing cluster.
If this is the case, it is assigned to this cluster, otherwise a new cluster is created that
contains only this item [81]. A more sophisticated approach can be found in [33]. Both
approaches adopt a mostly data centric view, thus they try to achieve a high quality of
clusters without performing the overall clustering process anew when items are added. In
[74] we propose a user-centric view on the problem. If a cluster structure is employed for
navigation by users, then each change to this structure is a critical step, because users
must accommodate to the new, modified structure. Therefore, users prefer that their
navigation structures are only altered if this is absolutely necessary. This leads to the
interesting question of how to change a cluster structure minimally from a user’s point
of view, while preserving a high clustering quality.

1.5 Formal Ontologies

1.5.1 Basic formalism

Cluster structures can be further refined in several ways. First, directed relations between
items and concepts of any type and any arity can be allowed. Especially important is,
for instance, the support of part-of relationships, describing how an entity is internally
structured (e.g. how the parts of a car form the whole car). Second, concepts may not
only be described extensionally but also intensionally. For example, we can explicitly
define a concept ,bachelor” as set of entities that are male and unmarried. The extension
of this set is then implicitly inferred from these properties, instead of being explicitly
assigned by a clustering or classification algorithm.

An early approach for allowing different relations between items and concepts are concep-
tual networks [164]. They consist of nodes, representing items, and of edges, representing
relations among these items. There are many variants of such networks. A fundamental

50

problem with these early approaches is a rather unclear semantic [194|. Also, relations
with arity more than two are not easily representable in such networks.

Description Logics (DL) consolidates much of the research on conceptual networks and
provides a well defined semantic [11]. DL are a family of formalisms based on first order
logic. The expressiveness of DL is usually restricted in order to make them (efficiently)
decidable. Members of the DL family mostly differ in how they are positioned in the
tradeoff between expressiveness and worst case complexity of inference.

In the following, we give a short sketch of a very simple description logic (following mostly
the formalism and examples in [11]).

DL distinguish a TBox and an ABox. The ABox contains assertion about entities in the
domain of interest, the TBox contains assertion about concepts.

The TBox contains expressions in a language denoted as AL. The members of this
language can be defined recursively. The language AL may contain a finite set of atomic
concept expressions, of relation expressions and the symbols L and T as terminal symbols.

Assume F, G to be compound concept expressions, A to be an atomic concept expression
and R to be a relation expression in AL. Then the following expressions are also in AL:

—~A|[FNGVR.G|3R.T

1 denotes the empty concept, to which no entity is assigned, T denotes the universal
concept, that contains all entities. A is a atomic concept and —A is its negation (all
entities not in A). F M G is the set of entities contained in F' and G. VR.G denotes
the entities to which all entities in relation R are in G. IR.T denotes the set of entities
that are in relation R with at least one other entity. Formally, this can be expressed as
follows.

Definition 1.5.1. Let A be a set that contains all entities of interest (A = D, for
instance). Then an interpretation function ext : AL —2 is defined as follows:

ext(L)=10

(T) =

ext(—A) A\ext(A)

ext(F N G) = ext(F) Next(GQ)

ext(VR.G) ={zx € AlVy € A: (z,y) € ext(R) — y € G}
ext(AR.T)={z € A|Fy € A : (z,y) € ext(R)}

ext

The extensions of all atomic concepts and of all relations are mapped directly by the
extension function, just as described above for the simpler case of taxonomies.

Based on these expressions, terminological constraints can be stated.

o1

If we assume, for instance, an atomic concept Person, then we can define Parent
Person M 3hasChild. T. In this case, trivially, the terminological constraint Parent
Person holds, defining that ext(Parent) C ext(Person).

11l

L]

The ABox contains assertions about individual entities, for instance Person(peter) o
hasChild(peter, mary).

Based on a TBox, the consistency of the ABox can be checked. Also, it is possible
to derive entailed assertions in the ABox, for instance, it would be possible to derive
Person(peter) from Parent(peter).

The DL described above is called AL. There are many extensions that allow more power-
ful expressions in the TBox. A DL with high expressiveness is, for instance, SHOZN (D)
[11].

DL extend simple taxonomies in two ways. First, it is possible to state relations among
entities. Second, terminological constraints can be stated. Simple taxonomies and cluster
structures can therefore be regarded as ABox without assertions about relations.

1.5.2 Structuring Information by Formal Ontologies

Logic based formalism are used for a long time in a wide variety of domains. These
domains include all kinds of expert systems, e.g. for medical diagnosis, configuration
management, software engineering and many others. Knowledge in such systems is cre-
ated by specially skilled experts in conjunction with domain experts, because creating
and maintaining large knowledge bases is far from being trivial.

In the last years, a new application area for logic based descriptions emerged: the Inter-
net. The current Internet is optimized for the access by human users. It contains mostly
text and image data that can easily be processed by human users, that is, however, quite
hard to process automatically. The increasing amount of highly interactive multimedia
content makes this problem even more severe. Search engines, such as Google, derive
semantic information from such data only indirectly, e.g. by extracting keywords from
webpages. For many applications it would be desirable to obtain explicit, highly specific
semantic information on web resources. Applying logic based representation mechanisms
is the vision of the semantic web.

,The semantic web is an extension of the current web in which information
is given well-defined meaning, better enabling computers and people to work
in cooperation®[20]

There are several languages on the semantic web. Most popular is still the resource
description framework (RDF)S. It allows statements that represent named links between
entities, very similar to conceptual networks. This makes it equivalent to concept net-
works. RDF Schema’ allows to define simple ontologies for RDF. Because there were

Shttp://www.w3.org/RDF
"http:/ /www.w3.org/TR/2002/WD-rdf-schema-20021112

52

still problems of finding a formal semantics for these approaches, most current semantic
web representation mechanisms add an additional semantic layer that is derived from
description logics. An example is the Web Ontology Language (OWL)®, that is partially
based on the SHOZN (D) description logic [11].

There are several problems that need to be solved before the semantic web may become
a reality. First, much of the knowledge shared on the Internet is rather implicit and very
hard to express explicitly. Even if this is possible, the costs to do so can be extremely
high. This raises the question whether the benefits of the semantic web make up the
costs of building it. Many applications work well enough with much simpler semantic
descriptions (as based on natural text). A prominent example are approaches to build
structured white pages on the Internet, that would contain names, phone numbers, mail
addresses, etc. of users in a well defined format. None of these approaches was successful
so far, because all users simply applied Google keyword search to find people on the
Internet.

Finally, the semantic web depends on the active participation of large number of users.
Otherwise it will not be possible to annotate the large amount of information the Internet
offers. This participation does, however, require certain skills, because the aim is to create
annotations in a formal language. It is not possible to make any strong assumption
about how skilled users are. Experience shows that most of them are not really capable
of dealing with simple logical expressions. Most users never even apply logic operators
in keyword based search. This makes a participation in the semantic web a non-trivial
task.

This problem can be solved in two ways. Either, we can use variants of logic that better
fit to human thinking. Research on non-monotonic logics and reasoning goes into this
direction [25]. The other possibility is to stick with simpler forms of structuring and
combine them with advanced data mining technology. In this work, the second option
is chosen. A point of departure are taxonomies and cluster structures that are defined
by the user extensionally and by an informal textual description rather than formal
descriptions. The success of bookmarking and tagging systems shows that this level of
interaction is well accepted by most users. This topic will be discussed in some more
detail in chapter 3.

1.5.3 Creating Formal Ontologies from Data

Formal ontologies can be created and populated (semi-) automatically, which is, however,
more challenging than creating cluster structures, because beside the concept hierarchy,
relations and formal descriptions have to be derived. As formal ontologies are logic
expressions, many relevant work has its origin in the area of inductive logic programming.
The idea is to induce domain knowledge from facts of the domain. In the terminology
of description logics to infer a TBox from an ABox. This is usually a highly interactive

Shttp://www.w3.org/TR/2004/REC-owl-guide-20040210

93

process: the user might enter some knowledge into the knowledge base manually and
then infer additional knowledge automatically using a data mining algorithm. In [128§]
the term ,balanced cooperative modeling* was coined for this process.

In the following we will exemplarily sketch the algorithm KLUSTER (93], that generates
a TBox from an ABox.

KLUSTER works in several steps. In the following we assume A = D, thus the underlying
universe of discourse contains a predefined set of items.

In a first step, KLUSTER collects a set of candidate concepts C.4pq. For each predicate
symbol appearing in the ABox, all entities that are in the extension of the predicate
are collected into a concept. For each role, two concepts are formed. One containing
all entities that appear in any ABox assignment at the first place of the relation and a
second concept for all entities that appear at the second place of the relation. These can-
didate concepts are ordered according to the subset relation. Additionally, the pairwise
disjointness of these concepts is determined.

The result of the first step is a DAG with possible overlaps on each level. On the one
hand, these overlaps are not desirable from the point of view of ontologies. Rather
subconcepts of a superconcept should form a partition, thus should be pairwise disjoint.
On the other hand, overlaps are necessary, because sometimes the same domain can be
described from different viewpoints or aspects.

Music, for instance, could be described by the concepts ,rock®, ,pop“ and ,,jazz* on the
one hand and by ,germany”, ,uk“ and ,jusa“ to denote the country of origin. While we
could assume that the first group of concepts forms a partition and that the second group
of concepts forms a partition, it is very likely that there are overlaps between concepts
of both groups (e.g. jazz music from Germany). An ontology learning method should be
able to deliver concepts for both aspects. KLUSTER is such a method.

The key to solve this problem is to search for mutually disjoint concepts.

Definition 1.5.2. Given a set of concepts C' C Ciypna, such that Ve € C' : ¢ < csuper,
where Cgyper is the direct ancestor of all concepts in C’. Such a set C’ forms a set of
mutually disjoint concepts (MDC) | iff

1. Ve e C": ¢ < csyper, where Csyper € Ceand

2. ' is a partition of the items in ext(csyper).

3. There is no C” C Cryng with C' € C” and C” also fulfills 1 and 2.

Thus an MDC is a partition of the subconcepts of a given concept. KLUSTER finds such
MDCs using a top-down procedure for each inner concept in the hierarchy. This can be,
however, quite costly in the worst case, because all subsets of concepts C' C C,4p,q must
be evaluated on whether they form an MDC (and in the worst case they do). This leads
to computational costs that are exponential in the number of concepts in Cgypg. If this
set is rather small, then the task of finding MDCs is feasible.

o4

In the next step, KLUSTER obtains terminological descriptions for the concepts in each
MDC in a top-down manner. The idea is to first find for each concept in an MDC a
most specific description, in terms of a DL expression, i.e. find a DL expression that
has an extension that is a minimal superset of the extension of the concept. Such an
expression is called most specific generalization (MSG). MSGs are, although they are
maximally specific, not guaranteed to be perfect. Particularly, MSGs might not be able
to perfectly separate concepts in an MDC, which might not be desirable, because concepts
are overlapping in this case.

There are two possibilities to deal with concepts which are ,jill-defined”“ by their MSG.
First, these concepts can be defined as atomic concepts, given by their ABox defined
extension. Second, MSG can be made more specific by generating new concepts. These
concepts can be subconcepts of concepts used originally in the MSG, or concepts derived
by splitting the ranges of roles used in universal quantification.

All concepts that could be defined without further specialization can be further gener-
alized. The idea is to find a DL expression that covers maximally many entities but
does not overlap with other concepts in the MDC. MSGs are generalized to most general
discriminations (MGD) by first dropping restrictions (thus conjunctive terms) from the
expression. Then all restrictions are relaxed by replacing the original target concept by
a superconcept such that the overlap within an aspect is excluded. This approach is
exponential if an optimal solution must be found. In practice it is sufficient to use any
solution. Other generalizations include the relaxation of number constraints.

There are approaches to learn ontologies from textual data [37| that work similar to
approaches such as KLUSTER, require, however, considerable preprocessing.

In chapter 5 we will discuss the suitability of ontology learning for collaborative media
organization.

1.6 Conclusion

Structuring items is an essential task in many application areas. There are several for-
malism for structuring items and representing knowledge. They differ in their syntax
and semantic, in their expressiveness and in the kinds of inference they support. This
chapter gave an overview of different formalisms, their variants and corresponding algo-
rithms and evaluation measures. Furthermore, it was shown how these formalisms are
interrelated and how they are applied in practical applications.

A focus of this chapter was on concept or cluster structures. Such structures are very well-
suited for information structuring because they are simple to process and to comprehend
and still powerful enough to express semantic meaning needed to navigate or search large
information collections. The task of creating such concept structures from data is denoted
as clustering. An overview of clustering algorithms was given, including many important
variants, such as subspace clustering or non-redundant clustering. Also, the problem
of evaluating clustering structures and algorithms was discussed. Complementary to

95

clustering is the task of classification, i.e. of assigning new items into a predefined set
of classes, based on examples for such assignments. This problem was put into relation
with the formalism of concept structures.

Clustering and classification on concept structures are the point of departure of this
work concerning structuring information. They can be applied to assist users in creating
and organizing information collections. It will be shown that the fact that several users
create and organize (partially the same) information, using concept structures, leads to
several new solutions for clustering and classification, that will be denoted as collaborative
clustering and classification.

o6

2 Distributed Computing

2.1 Introduction

The Internet enables users to share information independently of their geographical loca-
tion. This is achieved by a variety of underlying network technologies and paradigms that
allow for communication and cooperation in distributed systems. As most information
collections are distributed, the question of how to (collaboratively) structure information
is tightly coupled to the question of how to share information in a distributed system.

This chapter gives a brief overview of the challenges of distributed computing. The aim of
this analysis is to get an insight into the requirements of collaborative information struc-
turing methods from the point of view of distributed systems. This will help to choose
an appropriate paradigm and technology on a network level and to derive requirements
for collaborative structuring methods from this point of view.

2.2 Distributed Computing

The vision behind distributed systems and distributed computing is maybe best expressed
in the definition by Andrew Tanenbaum [176]:

A distributed system is a collection of independent computers that appear
to the users of the system as a single computer”

A natural question is in which ways distributed systems differ from traditional systems.
One obvious difference between a local system and a distributed one is timing. While for
a single control flow all actions and operations are completely ordered, this is usually not
the case in a distributed system. Imposing a global ordering on events is only possible
with additional effort and can only be achieved to a certain extent. Connected to the
problem of global timing and event ordering, there is a second important difference,
namely the failure model assumed in distributed systems. A failure model describes
which kinds of errors and failures may occur in an information system. There are several
failures in distributed systems, that cannot occur in local systems. These failures can
be structured into two classes, link errors and node errors. Link errors include the
modification or loss of a message, as well as permutations of the order of messages sent
from a node A to a node B. Node failures are stopping failures (a node does not send any
messages any more) and Byzantine failures (a node sends arbitrary messages possibly
not complying to the protocol the nodes agreed upon).

o7

Communication is not only a source of failure but also an additional cost factor. Costs
refers to the networking resources that have to be provided as well as to network latency
(time for executing a distributed algorithm). Therefore, the total amount of messages
exchanged in distributed processing is an important issue in analyzing and developing
distributed information systems and algorithms. This is especially true for real time sys-
tems in which small differences in the network latency make a huge difference concerning
the proper functioning of the system.

Security is another issue that is much more problematic in distributed settings than it
is in local ones. Messages cannot only get lost by failure, they can also be recorded,
maliciously modified, deleted, redirected, or generated. Also, the sender of a message
can differ from the one stated in the message. These issues are captured in a security
model that, in analogy to the failure model, states all possible attacks on the system.

Another problem often occurring in distributed systems is heterogeneity. Although this
is a problem of every information system, local systems, residing on a single node, are
usually homogeneous at least in some major aspects (e.g. the operating system). Dis-
tributed systems, on the other hand, may contain components that differ in any possible
way. Interconnecting and coordinating such resources is a major challenge.

Distributed systems also require some services that are not necessary for local systems.
Most important, there is a need to identify resources uniquely and to locate them in a
network. Depending on the setting, this can be a conceptually very hard task.

In short, when developing a distributed system there are several additional problems
to deal with. These problems include the ordering of events, node and link failures,
communication costs and latency, security issues, the naming and location of resources
and heterogeneity.

On the other hand, distributed systems offer several benefits. An important issue is
scalability, the ability of a system to be extended in order to deal with increasing work
load. Also reliability and availability are important requirements that can often be met
only by distributing a system over several nodes. Finally, many information systems are
inherently distributed. The popularity of the Internet can be attributed to a large part
to its ability to make resources accessible from almost every corner of the world.

2.3 Paradigms and Technologies for Distributed Computing

2.3.1 Basic Networking

A fundamental operation in all distributed systems is communication. Communication
has first of all a physical aspect, namely transferring data between two geographically
separated points. In a network, such points are denoted as nodes. There is a whole range
of technologies to support the communication between nodes in a network on a physical
layer. Typical examples are cable, fiber optic, satellites and wireless connections.

o8

The physical layer represents the most fundamental layer in the OSI network model [177].
Additional functionality that is essential for almost every distributed system is added on
top of this layer, namely unique identification of resources and exchange of data over
arbitrary physical channels. The most prominent protocols for these tasks are IP and
UCP/TCP. IP allows to uniquely identify nodes and to route messages from one node
to another. UDP and TCP provide higher level communication functionality. For TCP
this includes certain guarantees, e.g. that messages do not get lost and that the order of
messages is preserved on a channel. Higher level protocols can rely on these guarantees
and have usually a much simpler failure model.

2.3.2 Models for Resource Discovery and Access

,Service and ,resource’ are basic terms to describe cooperation in distributed systems. A
resource is a hardware or software ,entity represented or shared on a distributed system”
[178]. A service represents a resource in a software system. Correspondingly, a node
that provides one or more services is denoted as server, a node that consumes services is
denoted as client. Nodes acting as client and server are often called peers [178].

Three fundamental operations in the context of services are providing a service, discov-
ering/locating a service and accessing a service. A traditional model to implement these
operations is the client /server model. There are some designated nodes that provide ser-
vices (servers) and other nodes that access these services (clients). Often one service is
provided by exactly one server. A typical example is the world wide web (WWW). The
service provided by servers are data files (e.g. HTML pages). This service is invoked by
a client calling the server directly and receiving the desired file as response. Resources
are discovered e.g. by a DNS lookup or by search engines, such as Google, or Internet
directories, such as Yahoo.

The client /server model suffers from poor scalability and reliability. A centralized server
can become a bottleneck and a single point of failure especially if each service is provided
by exactly one server. Replication can help to some extent, is, however, conceptually
limited. A good example for this limitation is the so called ,Slashdot Effect“l. A web
site referenced on ,slashdot.org” usually encounters an extreme increase of requests in the
days following the publication. The request rate then usually returns to its regular height
after a short period of time. Traditional sever replication is not a good solution, because
request peaks usually cannot be forecasted. For small, unknown web sites, that are
unable to quickly introduce several replication servers for some days, this is no solution
at all.

This observation led to the emergence of a more flexible pattern for resource access in
distributed systems: p2p networks. In p2p networks, each node may consume and serve
resources, because a peer is server and client at once. Replication and reliability are
achieved in a natural way. Very popular resources are accessed and copied by many

"http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html (4.12.2007)

99

nodes, which in turn act as a server for these resources. The availability of a resource
increases automatically with increasing demand. Current systems, such as Bittorrent,
make use of this idea to enable efficient sharing of large files on the Internet.

A finer grained distinction between the client/server and the p2p model can be achieved
by regarding resource access and resource discovery as two separated tasks. In the Nap-
ster system (see e.g. [178]), for example, resources are located by a centralized directory
service. The resources are then accessed directly in a decentralized manner. Such p2p
systems are called brokered systems. Systems like Gnutella (see e.g. [178]), in which
resource discovery is performed by a range limited broadcast, are called fully distributed
or true decentralized systems. Finally, there are p2p systems, such as some instant mes-
sengers, that rely on a central server that not only enables resource discovery but also
acts as a proxy server for the peers. Thus, all requests to other peers are sent to the
server and then forwarded to the actual peers. Such systems can be denoted as fully
centralized systems.

Fully distributed systems are further devised into structured and unstructured p2p net-
works. Structured p2p networks employ a reference space that allows for efficient resource
discovery. Examples are Distributed Hash Table (DHT) systems, such as Pastry [152]
or Chord [169]. Structured p2p systems often become suboptimal in the presence of
a high fluctuation of peers [34]|. In unstructured p2p networks, resource discovery and
propagation is based on range limited broadcast. There are several approaches to make
unstructured p2p systems more scalable. The authors of [34], for instance, propose a
combination of topology adaptation, flow control and look-aheads.

A closer analysis of decentralized p2p (file sharing) networks reveals three interesting
observations that are essential to understand and improve p2p systems. The first obser-
vation is that although all peers are equal in principal, they can often be grouped into
two categories. First, nodes that have a lot of resources and are online for a long time
without disconnecting. Such nodes usually have a lot of neighbors and have a funda-
mental influence on the overall network structure. They are therefore often called super
nodes or super peers. The second class of nodes are regular nodes, that join and leave the
system very often and have very few networking resources and neighbors. Figure 2.3.1
shows such a structure, that is often referred to a power law network (as the node degrees
can be described by a power law distribution, see below). Super nodes play a similar role
like servers in brokered p2p systems. They are, however, not set up explicitly but emerge
automatically. A second observation in p2p communities is the so called small world
phenomenon [98]. The observation is that the average distance between nodes is sur-
prisingly low even in very large networks. Based on this observation, distributed search
becomes feasible. A third observation is that nodes cannot only be grouped concerning
their capabilities and interests but also with respect to the amount of resources they
provide. Especially, there is often a large group of free riders, that only consume services
but do not provide any. Such free riders have a negative influence on the performance of
the system, because they cause much traffic without contributing to the system [149].

Free riders are a severe problem in (true) p2p networks and are often dealt with by special

60

Figure 2.3.1: An example network with power law structure

policies defining a minimal ratio of services consumed and provided. Power law network
structure and small world phenomena on the other hand allow for improved scalability in
true p2p systems, while preserving the benefits of a self organizing, decentralized network
structure. This combines the best of both worlds and is therefore the state of the art in
p2p networking,.

2.3.3 Paradigms for Higher-Level Cooperation

Communication and resource discovery/access provide the basic level for more sophisti-
cated collaboration in distributed systems. While much of the details of this collaboration
is application dependent, there are several paradigms that simplify the development and
analysis of distributed applications by providing predefined building blocks, patterns and
standards. Specific realizations of these conceptual building blocks are usually denoted
as middleware.

In the following four such paradigmatic approaches (and corresponding middleware) will
be discussed and compared: p2p computing, web services, grid computing and multi-
agent systems.

P2P Computing

P2p networking breaks the traditional difference between clients and servers by allowing
each node to consume and to provide services. The vision of p2p computing is more
general and goes far beyond basic networking:

,P2P is a class of applications that takes advantage of resources e.g. storage,
cycles, content, human presence, available at the edges of the Internet* [161]

61

What does ,the edges of the Internet® mean? In a client/sever architecture, servers are
usually first class nodes that have many resources and are connected to other nodes
through high speed connections. Clients on the other hand are computationally poor
with very limited network connections. This limitation is constituted not only by a poor
bandwidth. Many client nodes are behind network address translation (NAT) gateways
and do not have an IP address on their own but share a single address with several other
nodes. They are usually not directly reachable from outside. A similar problem are
firewalls, that block incoming and often even outgoing connections. Finally, many clients
are not online constantly but join and leave the system frequently. This is especially true
for dial-up connections. Traditional network solutions never focused on such nodes as
servers [178]. The major contribution of diverse p2p computing efforts is to incorporate
such clients as servers by providing methods to deal with NATs and firewalls and by
adopting distributed algorithms that can deal with a large number of nodes joining
and leaving the system frequently and unpredictably. The focus on the development
of such infrastructures and algorithms makes p2p computing different from many other
paradigms described below, especially from large scale web services. Current applications
based on the p2p paradigm go far beyond file sharing. Examples are the use of the p2p
paradigm for web search [107] and distributed problem solving.

Web Services

A common way to think about services is as functions defined by an interface. Invoking
a service is then similar to making a function call, only that the function is executed on
a remote machine. This idea of cooperation underlies, for example, remote procedure
call (RPC) systems. The shift to object orientation has led to several efforts to extend
the RPC paradigm to deal with objects. Middleware, such as CORBA?, allows, for ex-
ample, to represent remote object references. Method invocations on such references are
passed to a remote machine automatically. Object representations that are independent
of concrete programming languages allow the integration of heterogeneous resources in
a flexible way. Remote Method Invocation and Jini® go a step further. Because they
are based on Java, not only data can be transferred between nodes but also executable
byte code. A service in Jini is invoked by first obtaining an executable stub class which
than handles the communication with the actual service. Both CORBA and Jini provide
lookup services to discover resources in distributed systems based on interface descrip-
tions.

While these paradigms are extremely powerful, web services may seem to go a step back.
Web services enable applications to perform service invocations similar to remote proce-
dure calls by exchanging XML documents using standard Internet protocols. The use of
Internet protocols, such as HT'TP, has several consequences. Most importantly, these pro-
tocols do not support the representation of state information directly. Correspondingly,
there is no built-in support for remote object handlers. Also, the transfer of executable

http://www.corba.org
Shttp://www.java.com

62

code is not covered by these protocols. While these are severe limitations, using Internet
protocols has important advantages. First, stateless systems are often more robust and
much easier to develop and test. Second, there is a lot of reliable technology, as web
servers, that can be directly used as web service infrastructure. Finally, the orientation
on standards, as e.g. XML, helps when integrating heterogeneous resources.

Web Services can be described by the Web Service Description Language (WSDL)*. This
language allows to define which services are offered and how to invoke them. Services
are invoked by Simple Object Access Protocol (SOAP)5 messages. There are facilities to
discover web services based on their description by the Universal Description, Discovery
and Integration (UDDI)® service.

Resource and service description are usually low level, describing the interface of a service.
The semantic web is an effort to describe resources on a semantic level. By giving
resources an exact description, it will be possible to discover them with much higher
precision, even if the requirements are expressed on a high level (e.g. ,find a cheap flight
from Dortmund to Paris”). Clear semantic descriptions should also enable automatic
interaction among resources on the Internet, without explicit coordination. The semantic
web pushes forward several standards, such as RDF, to allow for universal resource
descriptions. This is in contrast to WSDL that allows for interface descriptions only.

Grid Computing

The vision of grid computing partially overlaps with the one of p2p computing, the focus
is, however, very different. The idea of grid computing stems from power networks and
electricity. Just as any electrical device can be plugged into a wall socket and works with
electricity, the idea is to plug any computer or device to a network from which it then
obtains services on demand. There are several aspects to this. First, each application
should obtain all services automatically, without bothering the user with details, just as
electronic devices work by plugging them in. Cooperation should be ad hoc: a service
should be chosen that suits the need of the consumer in a given situation. This ad
hoc interaction is in contrast to static cooperation underlying many current web service
applications. Second, there should be an accounting and security infrastructure that
delivers services and accounts them on a per use basis. Similarly, service providers
should get paid based on how often their services are invoked. Finally, there should be a
task allocation mechanism that allocates resources in an optimal way.

This vision is very general. In [60] Ian Forster gives three more specific conditions of
what can be regarded as a grid. First, a grid ,coordinates resources that are not subject
to centralized control“. Second, it ,uses standards, open, general purpose protocols and
interfaces and third, ,delivers non-trivial qualities of service“. While the first point is
rather obvious, the second point disqualifies many p2p applications, because they usually

*http://www.w3.org/ TR /wsdl
http://www.w3.org/TR/soap/
Shttp://www.uddi.org

63

incorporate special purpose protocols for a given application or application area. The
third point focuses on the definition of quality requirements (in p2p systems this would
be e.g. the transfer rate).

There are several obstacles that have to be removed in order to make the vision of grid
computing become true. Accounting and security are well known from previous frame-
works and do not pose severe conceptual problems that are special to grid computing. A
much more essential problem is the semantic description and interoperability of services.
Nodes automatically have to find the services that are needed to achieve a given task.
This search is often constrained by quality of service requirements and costs. The envi-
sioned services are extremely general and should support tasks ranging from file download
over high performance calculations to tasks such as travel booking. The proposed frame-
works, such as the Globus toolkit [59], are very complex, because they must provide a
wide range of functionality. This is probably the major difference to p2p middleware
like JXTA, that provides only minimal support for semantic description and discovery
and no support at all for aspects like accounting. On the other hand, p2p solutions are
often more focused and easier to implement. Also, they directly address the problem of
small nodes, as described above. This aspect is covered to some extend by the large grid
frameworks but does not seem to be a major focus.

While Globus and similar systems represent efforts to create a general grid system, there
are many frameworks for specialized tasks that resemble p2p computing frameworks. An
example is high performance computing by utilizing computation time of many personal
computers (e.g. Seti@Home [7]). Although such applications do not directly comply with
the three conditions of grid computing, they are often seen as grid applications.

Grid computing envisions providing services in a network just as power networks deliver
electricity. This has led on the one hand to rather complex frameworks that support
various aspects, such as security, accounting, load balancing and semantic description and
discovery. These efforts move into the direction of Service Oriented Architectures and
are driven by large organizations. A more general vision is to use semantic description, in
the sense of the semantic web to allow for universal interoperation of resources on a high
level. This effort is often denoted as semantic grid [64]. On the other hand, there are
several specialized applications and frameworks that try to accomplish resource intensive
tasks by combining many low performance nodes on the Internet. These efforts ressemble
current efforts in the p2p computing community.

Agents and Multi-Agent Systems

There are many different definitions for the term ,agent” and ,multi-agent system* (MAS)
[84]. It is important to notice that the notion of agents comes from at least three different
sources to understand this diversity. First, ,agent is often used in the sense of personal
assistant [105]. An agent is a software that supports its user by performing diverse
assistance tasks, e.g. negotiating appointments. This often presumes some degree of
personalization, making the agent aware of the preferences and interests of the user.

64

Most research on agents in the sense of personal assistants is contributed in the area of
intelligent human computer interfaces.

A second notion of agents and multi-agent systems has its origins in research on emerging
behavior. Ant colonies are often referenced as a typical example of very simple entities
achieving rather complex overall behavior. The idea of intelligence as emergent behavior
is in strong opposition to the idea of intelligence that assumes that intelligent behav-
ior is achieved by maintaining a representation of the world and then using reasoning
(planning) to choose the right actions [26].

A third notion of an agent comes from robotics and refers to physical agents moving in
a real world environment, possibly interacting intelligently with the physical world and
other agents [153].

Beside all these differences, agents are assumed to have at least three properties. They
should be autonomous in the sense that their internal behavior is not fully determined
from outside. Rather, an agent makes commitments to the user and other agents and
these commitments define its behavior. Agents are rational, which means that they
have explicit goals and follow them in a rational way. Third, agents are social, they
communicate and collaborate with the user and with other agents.

Modeling distributed components as agents goes far beyond the paradigms presented so
far. Since agents can be described by goal driven behavior, they allow for much more
general and complex representations than e.g. web services do by offering simple interface
descriptions. The research in this area correspondingly focuses on rather high level
semantic cooperation. There is a large variety of topics ranging from trust, negotiations,
emerging coalitions, adaptive behavior, game theory, agent reasoning about other agents
and themselves, cooperative language learning and a lot of other topics. Much of this
research is rather visionary and theoretical and is not incorporated in any large scale
application. On the other hand, an effort, as is the semantic web, makes extensive
use of existing research in the area of MAS, especially concerning issues like semantic
descriptions of resources or interoperability.

Overlaps and Differences

All the paradigms and technologies described above reflect in some sense the specific
nature of distributed systems. They provide diverse mechanisms to provide, discover,
access and combine services. Also they usually allow for the integration of heterogeneous
resources in flexible ways and provide layers for security, accounting etc.

Despite these common goals, the focus of the individual paradigms described above differs
very strongly. P2p computing focuses on algorithms and technological frameworks to
interconnect a large amount of small, computationally poor nodes. Web services rather
target large scale integration of existing services on the Internet based on Service Oriented
Architectures and are therefore often not well suited for fully distributed p2p computing.
The semantic web tries to develop an universal description language for resources to

65

enable ubiquitous integration of services. This is a vision shared with the multi-agent
community that focuses on complex high level cooperation among nodes. Finally, current
grid applications move into the direction of state enabled web services, on the one hand,
and the semantic grid, on the other hand. Also, there is a clear focus on integration,
load balancing and accounting.

2.4 Description and Analysis of Distributed Systems

2.4.1 Formal Models

Basic models for distributed computing capture the communication and coordination
among a set of nodes. Nodes are modeled as processes that have the ability to exchange
messages with other processes to accomplish a (common) task. Such models are used to
obtain complexity or (im-)possibility results for distributed systems. Distributed systems
can be modeled as synchronous or asynchronous systems [113|. A synchronous system
can be described as follows.

Definition 2.4.1. A network is a an undirected graph (V, F'), where V' denotes the set
of nodes. A communication channel between node v € V and v/ € V is denoted as
(v,0") € F.

In such a network, we can define the notion of neighbors of nodes.

Definition 2.4.2. The set of neighbors of a node v € V' in a network (V, F') is defined
as

nbrs(v) = {v' € V|(v,v") € F}
containing all nodes that are directly connected to v.

In the following it is assumed that edges are undirected and that communication channels
are bi-directional.

In general, the network graph may be of arbitrary topology. Some of these topologies
are especially popular.

Definition 2.4.3. In a client/server network (V,F'), there is a designated node vs €
V', the server, that is connected to all other nodes via a bi-directional communication
channel, thus

F ={(v,v5)|(v € V) A (v # vg)}.

Usually, there are no other connections.

A second model that is very popular are fully connected networks.

66

Definition 2.4.4. In a fully connected network (V, F'), each node is connected with each
other node, thus

F ={(v,0")|(v,v" € V) A (v #0)}

Finally, nodes can be partially connected. This is a structure found in many p2p and
ad-hoc networks. An important characteristic of such networks is the distribution of
node degrees.

Definition 2.4.5. The degree of a node v € V is the number of its neighbors, thus

deg(v) = |nbrs(v)|

Using these node degrees, we can calculate the distribution of node degrees for a network.

2.4.2 Network Topologies and Simulation

Simulation is a standard instrument to analyze distributed systems. One of the most
important tools for such simulations are random networks or graphs that represent the
topology of the network. As mentioned above, many networks expose a power law struc-
ture. They contain a small number of nodes with high degree and a large number of
nodes with low degree. This can be captured formally in the following way.

Definition 2.4.6. A network is said to obey a power law distribution if the probability
of node degrees follows the following relationship

p(k) ~ Bk~
where § > 0 and o > 0 are constants and k£ > 0 is a node degree [108].

We can assume that o € [2, 3] for most real world networks [14].

There are several models that allow to construct graphs and networks following the power
law. They also try to give insight into mechanisms that lead to the emergence of such
networks in various domains. In [14], much of the previous research on this topic is
consolidated. The authors introduce the model of preferential attachment and growth.
The idea is to start with an empty set of nodes V. At step [the network contains nodes
V). Then, at each step, a new node is added to the network, connecting it to a node v’
that is already in the network. The node v' € V] is chosen randomly according to the
probability

deg(v')
ZUEW deg(v)

This principle is denoted as ,preferential attachment. In a more general sense it is
referred to as ,rich get richer or ,the winner takes it all“. Nodes that already have many

p(v) =

67

connections are likely to get many additional ones while such with few connections are
likely to obtain few new or no links. It is interesting that if the node is chosen at random
with equal probability at each step, the resulting network does not obey a power law
distribution of node degrees.

The simulation procedure described above can be shown to yield a network in which
the distribution of degrees follows a power law distribution with o &~ 2.9 [14]. Several
variants of this basic simulation procedure were proposed to allow for other values of
a. In [4] connections between existing nodes can be added. In [143], it is argued that
often two processes mix in the emergence of random networks. New nodes either connect
according to preferential attachment to some ,popular” node or according to some other
preference to a random node. They show that the resulting distribution of node degrees
reflects the structure of the current WWW much better than the simple model presented
in [14].

2.5 Conclusion

This chapter described the foundations of distributed systems as well as challenges faced
in distributed applications that do not occur in local applications. These challenges
concern, for instance, different kinds of failures in the network or synchronization of
nodes. Also several paradigms for creating distributed systems were discussed in detail.
These are p2p computing, grid computing, web services and agent systems. It was shown
that each of them has an own focus and solves certain aspects connected to distributed
computing. Almost all of these systems rely on a client/server model.

The paradigm of p2p computing is particularly powerful. It can be applied in any kind
of networks, making only minimal assumptions on bandwidth, structure or reliability of
the network. Given that many current media organization systems are based on mobile
devices and ad hoc networks, p2p computing will play an important role in this area. A
downside of this flexibility is that algorithms for p2p computing must be able to operate
in such an environment in a robust way. This is especially challenging for data mining
algorithms, that usually require rather complex computations. Most distributed data
mining algorithms are based on a large amount of messages that must be exchanged
among nodes in a synchronized way. Achieving synchronization in a p2p network is very
costly and sometimes even impossible without a central server. We will come back to
this problem later in chapter 4.

In part two of this work, algorithms for distributed feature extraction will be developed,
that can be efficiently implemented in p2p networks. This is a prerequisite of enabling
collaborative structuring in p2p networks. We will see that current models using an
epidemic dissemination approach are not well-suited in heterogeneous settings and should
be replaced with approaches that are selectively exchange only relevant information.

68

3 Distributed Information Structuring

3.1 Introduction

So far, we discussed several formalisms for structuring sets of items, reviewed how they
can be used to facilitate the access to information collections and presented different
algorithms for structuring items (semi-) automatically based on features of these items.
Also, we discussed basic concepts of distributed systems and corresponding technology.
How can both be combined? Or, to put it another way, how can users, that are scattered
over a loosely-coupled network, structure and represent a set of common items?

In the following, we apply a notion of distributedness that goes beyond the distribution in
a network. A major characteristic of distributed systems is that the components are only
loosely-coupled and that several processes run independently of each other. In the same
sense, information can be structured in a loosely-coupled way. There are two aspects
to this. First, methods for structuring, such as are clustering or classification, can be
applied to distributed data. This could be denoted as data perspective to distributed
structuring. The area concerned with research on this topic is distributed data mining.
In section 3.2, a short survey of corresponding methods is given.

Second, we can regard structuring from a user perspective. Structures that serve a user
to access an information collection must reflect the knowledge and preferences of this
user to some extent. So if there are several users, how should a set of items be structured
to suite the needs of all of them? And how does the information structuring process
proceed if there are several users involved? These and other questions will be discussed
in the second part of this chapter.

3.2 Distributed Data Mining

As mentioned above, most current information collections are inherently distributed.
Data mining was shown to be a key technology for automatic structuring of information
collections. This leads to the problem of how data mining can be applied to distributed
information. Research in the area of distributed data mining has contributed several
methods to solve this problem.

The focus of most of the work in this area has been on scenarios in which global patterns
or concepts should be identified from large, distributed and often heterogeneous data
sources. The aim is to achieve a result that is as accurate as if all data was processed

69

at a single node. This is achieved by sharing only relevant information. What kind of
information is shared depends on the particular algorithm.

In systems that perform distributed classification, nodes usually exchange models of
the relationship between the features and target value. A typical example is distributed
Naive Bayes [103] for which only conditional probabilities are exchanged. A more general
approach is to train an arbitrary classifier on each of the distributed data bases and then
to combine them [170, 146|. Research on ensemble classifiers has shown that iterative
approaches, such as boosting, often improve the accuracy of the classifier considerably.
This has led to approaches, such as distributed boosting [106]. All of these approaches
aim at training a single global classifier.

Similar approaches exist for clustering as well. In distributed k-means [41], for instance,
nodes simply exchange their local centroids in each iteration. A distributed variant of the
dbscan algorithm [52]| can be implemented by allowing nodes to send points that lay in a
dense area to a central node, that then performs dbscan on the union of points received
from the individual nodes [82]. [89] describes an approach to cluster data hierarchically
at each node and to combine the resulting dendograms at a central server. In a similar
way, flat cluster ensembles can be used. Each node clusters the data using any algorithm
and a central node then combines these cluster structures.

Finally, there is a large amount of research on learning (association) rules from distributed
data [206]. Corresponding algorithms mostly share frequent itemsets. [201] describes
an approach to distributed rule discovery that is based on sharing counts and pruning
information to enable a distributed breadth-first search in the hypothesis space.

We exemplify the idea of distributed data mining on the distributed k-means algorithm
(as described in [92]). A central coordination node is assumed, as well as some distributed
nodes V that have access to the data. Each node [contains a portion of the data space
D; C D and we assume that these subsets do not overlap. The coordination node
randomly calculates centroids for k clusters and sends them to all other nodes. Now,
each node assigns each of its local data points to the nearest centroid and calculates local
centroids for each cluster. It then sends these local centroids together with counts on how
many items were assigned to each cluster to the coordinating node. The coordinating
node merges the centroids received from all nodes. This can be achieved easily by

Yo
_ 2i=1%ij
“T AV
1=1 "1
where z;;; is the centroid value of feature X; for the jth cluster as calculated by node I

and nj; is the number of items from D; that where assigned to cluster c;.

The local centroids are calculated as follows

aii= Y, Xilx)

x€ext(c;)NDy

70

Note that ext(c;) is a global property: all nodes use the same centroid to determine
which item belongs to which cluster. The actual assignment is, however, performed in a
decentralized way at each node locally.

The coordinating node then sends the new global centroids to all nodes, that again
respond with local centroids, until the algorithm converges or a maximum number of
steps is reached.

Most distributed data mining approaches assume a set of fully connected nodes and
a reliable communication network. However, the currently emerging field of p2p data
mining tries to allow for distributed data mining even in loosely coupled networks. Almost
all approaches to p2p data mining are based on epidemic dissemination protocols that
use simple base operations, such as distributed majority vote or averaging. In [103]
an approach based on the newcast model of computation is presented. It is based on
the dissemination of information by probabilistic broadcast [53] and applied to share
conditional probabilities for distributed Naive Bayes. In [193] an algorithm for distributed
averaging in p2p networks is proposed, that is used to evaluate locally generated rules
under the global distribution. [41] proposes a distributed k-means algorithm that uses this
strategy to obtain globally valid centroids from local ones by distributed averaging. These
approaches aim at establishing a kind of an equilibrium among the nodes, such that all
peers share the global model (or its approximation). While dissemination is well suited in
a homogeneous settings, it can produce a considerable overhead in heterogeneous settings,
in which each peer aims at developing an own local model. In the worst case, each
node faces a data mining problem that is completely independent of all other problems.
Then, a large amount of network bandwidth and local resources is wasted, because only
irrelevant information is shared among nodes. This demands for models and methods
that are targeted at the heterogeneous case.

In this work, we therefore discuss an alternative scenario. In this scenario, a large num-
ber of loosely coupled nodes applies data mining to different, usually very small and
overlapping subsets of the entire data space. The aim is not to learn a general, global
model to cover all data, but to learn a set of local concepts. Thus, each node learns
an own concept and cooperates with other nodes only to improve local learning. Still,
tasks can be related, but instead of assuming that all tasks are identical, cooperation
and information flow among tasks should emerge.

The areas most engaged in research on how to transfer information among heterogeneous
learning tasks are Multi-task Learning and Multi-Agent Learning. In both areas, the key
is to measure the relatedness of different data mining tasks and to share information only
if the tasks are similar. This topic will be discussed in detail in chapter 4.

3.3 Distributed Structuring From a User Perspective

The problem of a group of users structuring information occurs in many scenarios. Ex-
amples are knowledge engineers that collaboratively design a domain ontology, different

71

vendors consolidating their product descriptions or users tagging websites using a social
bookmarking system. In the following, we will make some basic distinctions that help
to classify these scenarios. Relevant aspects concern the desired outcome of the process
as well as its nature. Also, the number and the skills of the participating users must be
regarded.

An obvious question is whether the result of the structuring process should be a single
taxonomy or ontology for all users or a set of personal taxonomies or ontologies for each
user individually. The first option will be denoted as global structure, the second one as
local structure. Between these two extremes, group specific structures are also possible.
They will be in the following denoted as local structures as well.

Popular examples for global structures are web directories or taxonomies used in (digital)
libraries. Examples for local structures are personal bookmarks or directory structures
to organize files.

A clear advantage of global structures is that they can be created and maintained by a
small number of administrators. These experts use their extensive domain knowledge to
produce a model which they think most users can accept. A large number of usual users
then profits from this effort by simply using the resulting structure. They do not need
to participate in its creation and maintenance.

Another advantage of global structures is that they may serve as a means of communi-
cation. Imagine one user asking another one where to find information on ,spatial data
mining®“. The second user could then respond with specific topics in the Yahoo! hierarchy
containing interesting references (instead of sending the references themselves).

Low effort for casual users and standardized communication are certainly two important
advantages of using global structures. They are, however, very limited in capturing
any personal preferences and background of individual users. Information spaces (as the
Internet) are sometimes compared with real spaces. Many people take their participation
in various applications on the Internet as essential part of their living. In this sense,
structuring information for better access can be seen as similar task to furnishing a
house or arranging cooking tools in a kitchen. While the suitability of this metaphor
maybe questionable in general, it makes one point quite obvious: users like to personalize
their access to information. Just as most people would not like to live in an apartment
that is furnished according to some global standard, they do not want to organize their
information in a globally standardized way. In fact, many people really like to structure
their information to some extent, despite the additional work. The success of (social)
tagging and bookmarking systems stands evidence for this claim.

The same holds for companies or departments in companies. Even when dealing with
similar issues, different groups tend to prefer their own conceptualization. An engineer,
for instance, is often not willing to use business terminology. In such cases, it is not only
desirable but essential to allow for different conceptualizations, because otherwise the
system will not be accepted.

Coupled with the issue of local and global structures is the question of the scope of

72

a structure. Again, this scope can be global or local. The scope of a standard genre
classification for music are all possible musical expressions. The scope of a directory tree
in which a user organizes her mp3 files is only a small subset of this global set (e.g. only
jazz music). This example already suggests that mostly a local structure comes with a
its own corresponding scope. This must, however, not be the case. A user might classify
the same set of items using different, local taxonomies, all of which have the same scope.

Another important distinction for local structures is whether they are coupled. Coupling
refers to the question whether it is possible to make relations that connect two such
structures. It would be, for example, possible to define a personal concept as follows:

rock,1 = metalys M alternative,s

The concept ,rock of user ul would contain all items that are contained in the concept
,metal“ of user u2 and in the concept ,alternative“ of user u3. In uncoupled systems,
such connections cannot be made.

So far, distinctions were concerned with the outcome of the structuring process. This
process itself is, however, equally important.

First, structuring can be coordinated or implicit. If the structuring process is coordi-
nated, users must explicitly communicate with others users to achieve a (common) result.
Examples of such explicit approaches are collaborative ontology editors. In implicit sys-
tems, users must not coordinate their actions with others. In the extreme, they must not
even be aware that other users are using the system and can still profit from their work.
Examples for this kind of implicit communication are given below.

If structuring is coordinated, a second question is whether the aim is to reach an agree-
ment. If an agreement must be reached, the outcome of the process is a single agreed
upon structure. Corresponding systems must provide mechanisms to deal with all kinds
of conflicts and ways to resolve them.

Finally, an important question is the number of users, as well as their knowledge, skills
and motivation to use the system. The applicability of the methods strongly depends
on this question. A system designed for a small group of knowledge engineers is most
probably not well suited for casual Internet users that want to share their bookmarks.

In the following, several approaches to structuring information in a collaborative way
will be discussed concerning the dimensions presented above.

3.3.1 Collaborative Ontology Engineering

Tools that help users to work together on a common object are usually denoted as
groupware. Examples of groupware are collaborative text editors or distributed software
development tools. They coordinate the actions of several users such that the object they
are working on remains in a consistent state. Corresponding methods can be conceptually

73

rather simple, such as mutual exclusion on a common resource, or very sophisticated (e.g.
enabling ,,undo“ in a collaborative word processor). The research area concerned with
such systems is called computer supported collaborative work.

Creating and maintaining large ontologies and knowledge bases is a very complex task.
Also, there are often several people involved. Therefore, it is desirable to provide tools
that enable these users to coordinate their actions (semi-) automatically. This has led to
a large number of collaborative ontology editing tools.

First of all, a collaborative ontology editor allows for common access to a central ontology.
In many systems (e.g [55], [13]), this access is web based, an approach that has proved
to be very successful in other groupware systems, such as in the popular BSCW system

I19].

Second, these tools help to coordinate the actions of different users. This is achieved
on different levels. One aspect is rights management. It is possible, for instance, to
allow users only restricted access to a common ontology depending on their access rights.
In this way, important parts of an ontology can be protected, while other parts can
be made available for change and addition. Related to this problem is the problem of
consistency and synchronization. Often, it is desirable that two users are not allowed to
simultaneously make changes to the same part of the ontology, because this may lead to
severe consistency problems. Therefore, some systems, such as OntoEdit [174], allow to
lock concepts, such that only one user at a time can edit them. Related to this approach
is the use of transactions. If a user performs several related changes, transactions assure
that either all changes are performed or none of them. This avoids situations in which a
user changes the ontology at two different points of which only the changes at the first
point are committed (leading to inconsistencies). All of these approaches assume that
users work tightly coupled on the same global copy of the ontology. Another approach
is to allow users to work on local copies of the common ontology. Users obtain a copy,
modify it locally and then synchronize the result with the central repository. Changes
are usually logged, allowing to recover older version of an ontology in a convenient way.
Corresponding systems, such as OKNI [102], use methods that are very similar to the
methods used in CVS [58]. Similar to this approach is the use of a private and public
area, such as in Co-Protegé [45]. Users make changes in the private area and then publish
the result in the public area. The problem of ontology change in collaborative ontology
editing is discussed in detail in [137].

Most of these methods are quite generic. They are applied in many application domains
(e.g. software engineering) as well. An important advantage of formal descriptions is
that they can be used to automatically detect inconsistencies. This allows, for instance,
to first check whether changes made by a user would leave the ontology in a sound state.
This approach is supported, e.g., by Ontosaurus [175]. However, consistency checks
maybe quite inefficient in a large ontology. Therefore, an important addition is the use
of a module concept. Modules allow to encapsulate parts of the ontology and to link
them to other parts by well defined interfaces. This makes consistency checks, even
in a distributed system, feasible. An example of a system implementing such modular

74

ontologies is Wiki@nto [13].

While access management and consistency checks help to avoid accidental inconsistencies,
this is often not enough. Another important issue to enable successful collaborative on-
tology engineering is communication. Multiple purpose communication can be achieved
by any tool, such as email or instance messaging. There are, however, tools that are
tailored directly to ontology editing. An example is Tadzebao [49] that allows users not
only to communicate texts but also sketches and partial ontologies. In this way, they
may discuss intended changes. Another important mechanism to support communication
is a notification system. These systems allow users to register for certain parts of the
ontology and the users are then informed about any changes performed by other users.
To make such notifications manageable in large systems, tools, such as the Ontolingua
Server [55], allow to create sessions. Users can join a session or create a new session.
Notifications are only sent among members of a session. This method can also be used
to achieve mutual exclusion on a group level, such that nobody outside the group can
make any changes.

Another aspect of collaborative ontology editors is process support. The creation of an
ontology can be seen as a complex process including several different steps and stages.
The OntoEdit [174] system supports these stages by providing several tools for different
steps, e.g. a concept map tool for brainstorming. The most important aspect, however,
is the problem of achieving agreement among a set of users about how a domain should
be modeled. The approach described in [76] makes use of the Delphi methology for
this task. Each user proposes changes. An editor collects all proposals and consolidates
them in a global document. This document is then passed back to the users, which may
modify or retract their proposals. To keep the process focused, specific speech acts are
used (e.g. revision, addition, clarification, etc.). A very similar approach is described
in [144]. Here, however, the focus is on an evolving system, in which users make their
modifications locally and synchronize with a global copy only from time to time.

There are many different tools that support (in parts) the functionality described above.
One of the first and most powerful systems is the Ontolingua Server [55], that already
provided a lot of innovative functionality, such as a separation of presentation and repre-
sentation of ontologies, access control and session based synchronous editing. A system
that focuses on the process of ontology engineering is the OntoEdit tool [174]. Its ma-
jor contribution is a fine grained locking mechanism to allow for mutual exclusion on a
concept basis. The Tadzebao system [49] introduced several new concepts concerning
communication. It allows users to exchange multimedia data consisting of text, hand
written sketches and partial ontologies. The Wiki@Qnt system [13] makes use of an ad-
vanced web based interface inspired by Wiki based systems. It introduces module based
editing and consistency checks.

Collaborative ontology engineering is targeted at small groups of highly skilled experts
that want to coordinate their actions in maintaining large, complex knowledge bases.
The aim is always to reach one global, explicitly agreed upon structure.

75

3.3.2 Ontology Reuse

The aim of collaborative ontology engineering, as described above, is to support a group
of users to create a new ontology. There is, however, another form of collaboration that
is rather indirect. Users create ontologies for their specific purpose. Then they can make
these ontologies publically available. Now, users who need to model a domain may first
look whether they find a (partial) ontology that already fits their needs. If this is the
case, they may reuse it as a whole or in parts. The overall vision of these approaches
is to create a library of ontologies which can be reused in many applications, reducing
the effort in creating new ontologies. This vision is similar to the vision of creating
reusable software components. Most of the systems mentioned in the last section provide
an ontology library as well.

The major question is how to find a relevant ontology. Most approaches currently rely
on simple keyword search. Users provide an expression and the system then matches
this expression against the concept names in the ontologies. The Ontolingua server [55],
for instance, provides this kind of functionality. An extension to this simple mechanisms
in presented in [28]. Ontologies can be evaluated by the users according to different
aspects, such as readability or level of formality. If a user searches for an ontology,
the result of this search is filtered by looking for evaluations by other users that fit the
query. An average score of these ratings is then used to re-rank the results. While the
applicability of this approach is questionable in the context described in [28], it correctly
focuses on two aspects. First, the evaluation of ontologies is a process that depends
heavily on human judgment. Therefore, ratings given by users are an important source
of information, when recommending ontologies. Second, the criteria used to judge on
the quality of ontologies are subjective as well. Therefore, it is important to find the
combination of criteria that matches the need of the current user.

Ontology re-use is a very powerful concept. It is a loosely-coupled approach that usually
does not demand any coordination among users or user groups. Also, no common result
has to be achieved, because each user may copy and modify the ontologies in a library
to suit her own needs, leaving the original ontology untouched. Afterwards, she might
possibly write the result back to the library as additional entry that others may reuse.

3.3.3 Ontology Merging

Often it is not possible to create a new ontology from scratch. Rather, one is faced with
different ontologies that emerged in parallel over time and must be consolidated into
a common ontology. Optimally, the resulting ontology should contain all concepts the
individual input ontologies contain, without any redundant concepts. This task is called
ontology merging [144]. Popular examples are catalogues of different vendors that are
consolidated because one company acquired the other.

Ontology merging is usually a two-step process. First, equivalent concepts and relations
in all input ontologies are identified. This step is denoted as ontology matching and will

76

be discussed in the next section. In a second step, corresponding concepts and relations
are consolidated.

Integrating ontologies is extremely challenging even in seemingly simple cases. One
ontology may contain, for instance, the concept ,adult® denoting persons aged 18 and
more. In another ontology, persons are ,adults* if they are aged 21 and more. Also
concepts are often constrained by their relations to other concepts. A person in the
US may have a social security number, while a person in Europe does not. How such
conflicts are resolved and how resulting concepts look like cannot be inferred from the
input structures alone. It rather depends on the application at hand. For these reasons,
ontology merging is a task that must in almost all cases be performed manually.

Systems, such as SMART [135], support the user in this process. The system can be
used in two modes. In the first mode, called ,merge“, both ontologies are assumed to
be on the same generality level. The system tries to find equivalence matches between
concepts and then either merges them or removes one of them. If the confidence in the
match is not sufficient, the user is prompted for input. The ,align* mode works similar,
however the assumption is that one ontology is less general than the other one, and the
aim is to find a superconcept for the concepts in the less general ontology. The system
employs a todo list to point out unresolved issues (as unmatched concepts) to the user.

Another approach to merge ontologies is based on formal concept analysis [173]. The
algorithm requires a set of documents as items. The authors assume that the overlap
between two ontologies may not be large enough to allow for an extensional matching.
The approach therefore first creates two term lattices from the original ontologies and a
document collection that must be representative for both ontologies. These two lattices
are then merged and pruned. In a manual step, the user must resolve conflicts (e.g. a
target concept having two different labels or a source concept without target concept).

Besides these approaches, there are several formal approaches that merge ontologies by
making the context of a conceptualization explicit. This helps to resolve conflicts that
occur because concepts are used differently in two contexts. As pointed out in [61], a
more severe problem is that users have conflicting opinions about how to conceptualize
a domain. A possible solution is to retain several conceptualizations in the same system
but to annotate them with meta information on how they are used by which users. This
process is called ,social reification® in [130]. It is, however, unclear, how to exploit these
annotations in a real world application. Another approach is used in the APECKS system
[179]. This system is based on frames and allows for conflicting ontologies. It compares
these ontologies with respect to consensus, conflict, correspondence and contrast. A
consensus is achieved if two concepts use the same terminology and attributes (slots).
The use of the same terminology but different attributes corresponds to a conflict, the use
of the same attributes but different terminology is a correspondence and if both differ,
there is a contrast. These properties of concepts are used in structured discussions, that
could, e.g., lead a user to rename a concept to a common name. An interesting approach
to automate this process is taken in the KnowCat system [38]. Users can add concepts
to a common taxonomy. They can also give feedback on concepts added by other users.

7

Concepts that get positive feedback receive a high degree of ,crystallization“. Concepts
with a low degree of crystallization are removed after some time. While the methods
used in the system are rather basic, the idea of emerging concept hierarchies is a quite
appealing alternative to ontology merging approaches.

In terms of the above characterization, ontology merging again aims at a global structure
with global scope, however, without the explicit agreement. The resulting structure is
rather chosen to capture as much of the input structures as possible and to suit the needs
of the given application.

3.3.4 Ontology Mapping

As described above, integrating ontologies is very complex and often leads to contradic-
tions that have to be resolved based on specifications taken from the application. On the
other hand, merging ontologies is often not really necessary or even desirable. Organi-
zations and individual users often prefer to structure information in their own way. Still
these structures should be interoperable. An example are timetables of railway compa-
nies. Each company may prefer an own format to represent their timetables and still
all of them should be combinable, such that the search system of one railway company
finds connections of the others. The task to achieve this is denoted as ontology mapping.
The idea is to find for each concept and each relation in one ontology corresponding
concepts and relations in another ontology. The complexity of this task depends highly
on the underlying ontologies. Today, ontology mapping is mostly performed manually.
Technology supports this process by providing convenient low level representations like,
e.g., XML.

Ontology mapping is sometimes distinguished from ontology alignment, denoting the
task of making ontologies with different domains interoperable. This task will not be
considered here.

Ontology mapping can be used in two modes [35]. Given k local ontologies, we can
either first create an integrated global ontology to which all k£ ontologies map, or we can
mutually map each local ontology to each other. The advantage of the first approach
is that only k ontology mappings are needed. Also, if a new ontology is added, only a
mapping for this ontology has to be created, which is very natural (e.g. a new railway
company joining). Mapping all k& ontologies to each other results in k(k — 1) mappings.
Each time a new ontology is added, (kK — 1) mappings need to be created, which is a
clear disadvantage concerning scalability. On the other hand, there is no need to create
and maintain a global ontology, which is a challenging problem in itself (as discussed
above). Another benefit of not using a central ontology as mediator is that usually more
information can be preserved. For instance, some of the railway companies could provide
estimates on train delays. They would be hard to represent in systems using a common
ontology, as not all participants provide this information. For each new company joining
the system, the common ontology would have to be extended to reflect such particular

78

information. However, if we map such information directly, it can be optimally preserved,
where this is possible, without any changes to a global information exchange format.

Another question concerns the type of links that ontology mapping establishes among
concepts and relations. The most simple approach is to find corresponding pairs of con-
cepts and corresponding pairs of relations in both ontologies. This semantic equivalence
automatically also entails that both concepts have the same extension. An extension of
this basic mechanism is to allow to express not only equivalence among concepts but also
other semantic relations, such as subset. Thus, a mapping can define that concept ¢ in
the first ontology is a subconcept of concept ¢’ in the second. Such a semantic mapping
[162] is, for instance, used in the C-OWL [172] methology. This can be extended further
by allowing arbitrary logical expressions in a mapping. In 32|, such an approach is pro-
posed, based on semantic and syntactic rewriting. Finally, the mappings themselves can
be described in terms of an ontology. An example for such an approach is the Semantic
Bridging Ontology used in the MAFRA framework [115]. It allows to specify information,
such as the cardinality of the mapping or constraints that must be fulfilled to actually
perform it.

In principle, a mapping between ontologies can be created manually. Quite appealing,
but more challenging, is to find a mapping between ontologies automatically. This task
is denoted as ontology matching. Solving this task is a prerequisite to make ontology
mapping scalable. It has been intensively discussed in research on formal ontologies.
However, the problem occurs quite prominently in yet another area, namely database
and information systems. The challenge in this area is to find mappings between different
database and xml schemes [148|. Methods in both areas resemble each other to some
extent. The largest difference between both is that schema mapping approaches can
not rely on a formal semantic description. Therefore, semantic relations, e.g. that two
concepts are in subset relation, cannot be easily achieved by these approaches. In the
following, a brief overview of approaches to schema matching is given. For a more detailed
discussion refer to [91, 136, 148, 162].

Most matching approaches deliver a function that calculates for any concept in the first
ontology and any concept in the second ontology a degree of how similar these two con-
cepts are. This function is then used to guide the user through a semi-automatic process
in linking corresponding concepts. Approaches differ mostly in the way this similarity is
calculated. [148] makes the following distinctions. Approaches either regard each concept
individually or they regard the relations among concepts. The first approach is denoted
as element-level matching, the second one as structure-level matching. Mostly both are
used in combination. In the CUPID system [114], a bottom-up tree matching procedure
is used to match hierarchical concepts. In [118] an approach known as similarity flooding
is used. Based on an initial element-based matching, similarities are propagated using a
fix point like computation. Element matching methods can be classified into instance-
level and schema-level methods. The latter ones use only schema information, such as
the name of a concept, its datatype, distributions and similar information. Addition-
ally, often external resources are employed, such as thesauri or lexicons. Instance based
methods use the actual data items assigned to a concept as well. A very simple and

79

efficient approach is to compare the extensions of two concepts. This works well only if
there is a considerable overlap between both ontologies. An approach that can be applied
even if both ontologies contain disjoint sets of items is implemented in the GLUE system
[47]. The idea is obtain an estimate on the probability that a given item is relevant to
a concept ¢, denoted as p(z € ext(c)). Given a concept ¢ in the first ontology C' and
another concept ¢’ in the second ontology C’ the aim is to obtain the joint probability
distribution, especially the probability of p(x € ext(c) Az € ext(d)) for a given z € D.
Given this joint distribution, any similarity measure can be applied. In [47] a generalized
version of the Jaccard coefficient is used. The major challenge is how to obtain the joint
distribution. The approach proposed in their work is basically to train a classifier on
concept ¢ and to apply it to the union of items in both ontologies. Then, the roles of
c and c are switched. This gives an estimate for any item contained in any of the two
ontologies by which of the two concepts it is covered. The joint probability distribution is
then obtained simply by counting. An important advantage of this approach is that any
classification scheme can applied. The authors propose a multi-strategy approach, using
instance attributes, name similarity, etc. In [48] a similar approach for schema matching
is proposed. Most approaches combine different techniques. COMA [46], for instance,
offers the possibility, to plug any schema matcher into a flexible meta schema matcher.

The approaches described so far deliver only suggestions on similar concepts in two on-
tologies. There are some approaches that are able to find semantic relations among
concepts as well. An example is the s-match algorithm [63]. The basic idea is the follow-
ing. In a first step, the approach heuristically finds a set of relations among concepts.
This is achieved by using string matching (e.g. ,,P.O.“ and ,Post Office* are equivalent)
and background knowledge, especially generality relations from Wordnet! (e.g. ,,Europe“
is more general than ,Italy). Based on these semantic relations and the relations that
are present in the original ontologies, the missing relations are found by a constraint
satisfaction procedure.

Ontology mapping is used in many web applications to achieve interoperability between
different, heterogeneous systems. These mapping are, however, almost in all cases derived
manually. An example of ontology matching applied in end user information access is
described in [104]. This system uses a central taxonomy, namely the open directory
for webpages (http://www.dmoz.org). It then maps the concepts in personal bookmark
folders to concepts in this taxonomy. By coupling a personal concept and a global
concept, users get recommendations on new items that are added to the global ontology.

In terms of the above characterization, ontology matching is based on local structures,
usually with a local scope. The concepts between different structures are coupled either
mutually or via a concept in a global ontology.

Most ontology mapping approaches are targeted at system administrators that maintain
heterogeneous information systems, create data warehouses or mash-ups based on web
services. These are usually experts. Only a minority of systems is targeted at casual
users.

'http://wordnet.princeton.edu

80

3.3.5 Social Tagging and Bookmarking

A key advantage of ontology mapping approaches is that they do not require all users to
obey the same structuring scheme. Still, individual structures should be coherent and it
should be possible to map between them. Social bookmarking systems go a step further
concerning loosely-coupledness. In contrast to the other formalisms discussed so far,
they represent a very simple form of information structuring. Users may simply assign
arbitrary textual descriptions, called tags, to items. Tags assigned by different users may
differ in any possible way. They must not even be consistent for a single user.

By making tags assigned by one user visible to all other users, still a kind of agreement
can be reached, as users add additional tags only if they find the existing tags not
satisfying. This keeps the vocabulary small, without any explicit coordination among
users. Coordination is achieved simply by visibility of what other users did.

Social bookmarking systems are a point of departure for the methods developed in this
work and will be discussed in detail in chapter 5.

3.4 Conclusion

Distributed data structuring can be analyzed from a data and from a user point of view.
Concerning a data point of view, the aim is to apply methods like data clustering or
classification to data that is not stored in a central database but is distributed over a
network. The result should be (approximately) the same as processing all data at a
central node.

From a user point of view, distributedness does also entail that different users may have
different, diverging opinions on how the items in a given domain should be structured.
For this heterogeneity, allowing users to collaboratively structure a domain of interest is
still a challenging task. On the one hand, each user or group of users should be able to
define one or even several views on a domain that can be completely independent of each
other and of the views of other users and user groups. On the other hand, a maximum of
agreement should be achieved, where this is possible, to make sharing information and
communication easier.

This chapter gave an overview of existing approaches to deal with this heterogeneity. On
the one hand, there are approaches based on formal ontologies, that allow a group of
users to create a common knowledge structure based on collaborative editing or merging.
If a common structure is not desirable, ontology mapping and matching approaches allow
to make heterogeneous ontologies interoperable. These systems are primarily targeted
at experts. On the other hand, there are social bookmarking systems, that allow casual
users to structure a domain in an intuitive way by allowing them to attach arbitrarily
chosen tags to items. While these systems are very popular, tag collections tend to be
hard to manage when the number of tags and items increases. One of the biggest social
bookmarking systems, del.icio.us (http://www.del.icio.us), contains currently more than

81

three million tags. Allowing users to navigate and organize items using this huge tag
collection is far from being trivial. The future success of these systems therefore depends
on methods that help to organize such tag collections and that support the emergence of
common tag structures among users and user groups.

In part two of this work, social bookmarking systems are discussed in more detail. Based
on methods of information structuring and distributed feature engineering, these systems
will be extended to support users in tagging items by exploiting the tags of other users.
This approach allows users to profit from the work of others, still not forcing them to
agree on a common structure. In this way, an implicit agreement among groups of users
is achieved, that does not require any explicit coordination.

82

Part |l

Problem Definition, Methods and
Evaluation

83

4 Distributed Feature Extraction

4.1 Introduction

Finding an adequate data representation is a key to successful information retrieval and
data mining. Such a representation is often expressed in terms of a feature space, the
space in which items in the universe of discourse are described. The problem of finding
an optimal feature space can be denoted as representation problem. Methods that solve
this problem are referred to as feature extraction or feature construction methods [69].
This term covers such diverse approaches as feature extraction from raw data, feature
selection, feature space transformation, dimensionality reduction, meta data extraction,
etc.

Feature extraction is a very general approach. By constructing appropriate features,
simple data mining algorithms can be extended to handle complex concepts, such as
trigonometric relationships, without modifying the algorithm [119]. Kernel methods,
that have found increasing attention in the recent years, can be regarded as feature
transformation methods as well [159]. They do, however, not create the target feature
space explicitly but through an implicit mapping. While this can be efficient, it has
the severe drawback that the resulting models are hard to interpret. The same holds
for dimensionality reduction methods, such as Principal Component Analysis (PCA) or
Singular Value Decomposition (SVD) (see e.g. [73]). Interpretable models are, however,
crucial in many application areas. This is especially true for information structuring,
because user interaction plays a central role in this process. In the following, we will
discuss only such methods, that explicitly transform the feature space without altering
the original features.

A family of methods that are particularly powerful for feature extraction are so called
wrapper approaches [100]. The idea of wrapper approaches is to invoke the target (data
mining) method several times with different feature sets and to apply an objective func-
tion to measure how well suited a feature set is for solving the problem. Optimization
algorithms can then be used to select an optimal feature set. If the task is to automati-
cally classify items into predefined classes, for instance, this objective function would be
the estimated accuracy of the classifier, thus the expected ability to classify new items
correctly. An advantage of wrapper approaches is that they directly optimize an objec-
tive function, instead of relying on heuristics that optimize this function indirectly. As
wrappers treat the inner data mining task as black-box, these approaches are very gener-
ally applicable. Particularly, they do not make any assumptions on the underlying task

85

and the objective function that is optimized. A downside of this generality is, however,
that the optimization process can be computationally very demanding.

In many current scenarios, not a single, separated data mining task is solved, but rather
several, partially related ones. Corresponding approaches are called multi-task learning
[30, 31]. ,Partially related“ refers to the fact that these tasks are allowed to differ in any
possible way, but that we can hope that some of them resemble each other to some extend.
An example for an application in which multi-task learning could be applied, is collabora-
tive media organization. Users arrange their media items (documents, video, audio, etc.)
into categories by tagging them. These taggings define data mining tasks, for instance,
the task of tagging new items automatically with user defined categories. While it would
be possible that the categories defined by different users differ completely, this is not very
likely. Many users will, for instance, arrange their music according to genre. These tasks
are then related. Other, similar application areas include, for instance, robotics (several
autonomous agents that recognize similar entities in different environments) or business
intelligence (data from different branches of company is analyzed).

Almost all approaches to multi-task learning make very restrictive assumptions. They
assume that all learners use the same underlying model class, the same set of features
and that all learning tasks are solved at once in parallel. These assumption do not
reflect the practical constraints posed by many application domains. First, using the
same underlying learning algorithm is a strong practical restriction in areas where many
different, heterogeneous components must be connected. Second, using the same feature
set for all tasks is often not optimal. Actually, a key to improve the accuracy by which
individual tasks can be solved is to select an optimal feature set for each of the tasks, as we
will see below. This is especially true if not only feature selection but feature construction
is used. Finally, tasks are often solved in some kind of a sequential order instead of being
solved all at once. As will be shown below, this is not just an implementation detail but
has an essential influence of the solveability of the problem.

In this chapter, a different approach is chosen. Based on the paradigm of wrapper ap-
proaches, the problem of selecting appropriate features is analyzed as a combinatorial
optimization problem. We will analyze how concepts, such as feature relevance, redun-
dancy and minimality, well known from single-task learning, can be generalized to the
case of multi-task learning. This will lead to the distributed representation problem, thus
the problem of finding an optimal local feature set for each task in a set of tasks. It will
be shown that constraints on the order in which tasks are solved have an influence on
whether we can guarantee to find an optimal solution. Based on this analysis, a simple,
heuristic algorithm, called prioritized forward selection, is developed. This algorithm is
applicable to very general problem classes. We show how this algorithm can be optimized
for special cases, such as classification. Also, two frameworks are proposed to implement
this algorithm and its optimizations efficiently in a p2p network. Based on the analysis
of the algorithm and its variants concerning computation time and message size, we will
show that the methods allow for a new solution in the tradeoff between response time,
message size and accuracy. Finally, to show the feasibility of the proposed methods, an
empirical evaluation is given.

86

4.2 (Generalized) Feature Relevance and Redundancy

In almost all data mining applications, items are represented by features of some kind.
Usually, there are many different ways to describe the entities in an application domain.
A multimedia item can, for instance, be described by an infinite number of content
related features, by textual features, ratings, etc. Furthermore, existing features can be
combined by applying arithmetic operations to them. The choice of features influences
the accuracy that can be achieved solving the data mining task to a large extent.

On the one hand, the feature set should contain only such features that are relevant for
the task, i.e. omitting this information would lead to an inferior accuracy. On the other
hand, the feature set should not contain redundant features, thus features which express
the same information already expressed by another feature, or by a set of features in
the feature set. The latter point is important for efficiency reasons and to improve the
understandability of derived models.

In this section, we will first briefly review feature relevance and redundancy for classifi-
cation tasks. We will then generalize this framework to cover other data mining tasks as
well.

4.2.1 Feature Relevance and Redundancy for Classification Tasks

Classification learning was defined as the task of finding a decision function that automat-
ically assigns items to a finite set of classes, given example assignments. This decision
function should be selected in such a way that the expected error with respect to an
assumed true relationship is minimized.

An important concept in this context is the one of conditional class probabilities. In
the following, we will present this concept with respect to binary features only. It can,
however, easily be extended to continuous features.

Definition 4.2.1. The probability of a feature vector with respect to a set of binary
features X and an arbitrary item x € D is denoted by p(Xi(z) = wvy,..,X;(x) =
Viy ooy Xp(2) = vp) with X = {X1,..X;, .., X,,} and v; € {0,1}. We use p(X) to express
the probability distribution of feature vectors for arbitrary items.

In other words, p(X) describes a probability distribution on the values for the features
in X for all possible items D.

Definition 4.2.2. The conditional class probability with respect to a set of binary fea-
tures X and an arbitrary item x € D is denoted by p(z € ext(c)|X1(z) = vi,.., Xi(z) =
Viy ooy Xp () = vp) with X = {X1,.X;,.., X}, v; € {0,1}, ¢ € C, where C is a finite
set of classes. We use p(C|X) to express the probability distribution of classes, given a
feature vector.

87

The conditional class probabilities describe how likely each class occurs, given a vector
of feature values.

In [88], a systematic analysis of feature relevance is given, based on the idea of con-
ditional class probabilities. The authors argue that concerning a (classification) task,
features can not only be relevant or irrelevant, but relevant features must be further
divided into weakly and strongly relevant features. The following formalization follows
the presentation in [204].

Definition 4.2.3. A feature X € X is strongly relevant for classification with respect
to features X C X if

p(C1X) # p(CIX\{X})

Thus omitting feature X changes the conditional probability distribution concerning the
class value.

Definition 4.2.4. A feature X € X is weakly relevant for classification with respect to
features X C X if

p(C1X) = p(CIX\{X})

and

3X' € (X\{X}) : p(CIX/ U{X}) # p(CIX)

For features that are weakly relevant, omitting them may lead to a change in the condi-
tional probability, depending on which other features are selected.

Definition 4.2.5. A feature X € X is irrelevant for classification with respect to fea-
tures X C X if

VX' (X\{X}) : p(CIX U {X}) = p(CIX)
If a feature can be omitted without affecting the conditional distribution not regarding
which other features are selected, it is irrelevant for the classification task.

Complementary to the view of features as relevant or irrelevant is the concept of feature
redundancy. Feature redundancy is usually defined based on the concept of a Markov
blanket.

Definition 4.2.6. Given a set of classes C in a classification task, a feature X € X, a
set of features X C X and a subset X’ C (X\{X}) of X that does not contain X. Then
X’ is said to be a Markov blanket concerning classification for X if

P(X\{X}IUX'), C|X!, X) = p(X\({X}UX'), C|X)

88

Thus, a Markov blanket replaces a feature X in such a way that the conditional proba-
bility of the class C' and the remaining features X\ ({X }UX’) does not change. In other
words, the information contained in X does not have an influence of the joint probability
of the remaining features and the class, as long as we are given the information in the
Markov blanket X'.

Based on this definition, redundant features can be defined as follows.

Definition 4.2.7. A feature X € X is redundant with respect to a feature set X C X if
it is weakly relevant in X and has a Markov blanket in X.

If we try to learn the concept f(Xg, Xp, Xey Xg) = Xo + Xp > 3 and we know that
Xy = X, then X is clearly irrelevant, because it is not related to the target concept in
any way. X, is strongly relevant, because omitting it would not permit to capture the
target concept correctly. X; and X, are weakly relevant, because each of them could be
removed while learning the concept correctly, but not both of them can be removed. In
fact, X; and X, are redundant to each other.

Note that features can be weakly relevant but still not have a Markov blanket. The
reason is that a Markov blanket not only requires them to be replaceable with respect to
the class value but also to be replaceable with respect to the other features. Thus, four
groups of features can be defined: strongly relevant, weakly relevant but non-redundant,
redundant and irrelevant features.

Definition 4.2.8. An optimal set of features for classification is a set of features X C X
that contains no redundant and no irrelevant features and that minimizes the expected
classification error.

4.2.2 Existing Approaches to Single-task Feature Selection

In this section we will give a very brief summary of existing approaches to feature set
optimization for single learning tasks. This will be the point of departure to extend these
methods to several tasks.

Actually, we have to distinguish two different types of problems.

Definition 4.2.9. Feature selection is the problem of finding an optimal set of features
X CX, where X is a finite set of given features.

This problem is more specific than the general problem of feature extraction.

Definition 4.2.10. Feature extraction or construction is the problem of finding an op-
timal feature subset X C X from an infinite set of possible features X.

In the following, we will not make a distinction among both on a conceptual level, as-
suming that the number of features that we could reasonably construct is always finite.
On an algorithmic level, we have to be aware that this set can be extremely large.

89

Existing approaches to feature selection can be roughly classified in wrappers, filters
and embedded methods. Wrappers use an inner evaluation function that assesses the
estimated accuracy of a classifier. Based on some search strategy, different feature subsets
are evaluated until (an optimal) one is found. Filters select features without invoking
the actual learning process. They mostly produce a ranking of the features, according
to their relevance. While these methods are very efficient, they usually cannot capture
feature interaction appropriately (like redundant features), because features are regarded
only individually and not in combination to each other. Embedded methods are feature
selection methods that are part of an existing data mining algorithm. An example are
decision tree learners [147].

Filter Approaches for Feature Extraction

Most filter approaches aim at classification and regression tasks. They usually measure
the relatedness of a given feature to the concept that should be learned. They then select
the k features with the highest relatedness. A key advantage of such filter approaches
is that they are usually extremely efficient. Most algorithms are linear in the number of
features and items in question. See [69], chapter three, for an overview.

A limitation of filters is that they regard each feature individually and thus cannot
capture any feature interaction. Especially, they tend to select several weakly relevant
features. An extreme case are two identical features, that would obtain the same score.

Other filter approaches, such as RelieF [97], are more sophisticated, though less efficient.

Worapper Approaches for Feature Extraction

Wrapper approaches treat the inner data mining task as black box and assume only that
there is a possibility to assess the accuracy by which a certain data mining task can be
solved. Searching for an optimal subset then becomes a straight forward optimization
problem. The task is to select a subset X CX with optimal performance with respect
to an arbitrary objective function ¢ (this will be defined in a formal way below, see
definition 4.2.12). In general, it would be possible to evaluate all possible subsets. This
can be denoted as optimal feature selection, because it guarantees to yield an optimal
and minimal solution. If we do not make any restrictive assumptions about the objective
function, then the process of finding an optimal feature set involves in the worst case the
evaluation of 21%! feature subsets. Based on this observation, it can be shown that the
problem of optimal feature selection is NP-complete, in general, by reducing it to the
boolean satisfiability problem.

Therefore, several heuristics were developed to solve the representation problem more
efficiently. Probably best known are forward selection and backward elimination. The
forward selection algorithm is shown in figure 4.2.1. In each round, the algorithms adds
a feature to the current feature set that increases the accuracy ¢ maximally. If no

90

Input:
A set X of features from which to select
A task with evaluation function ¢

Output:
A subset of features X C X for the task

X = 0;
Xopen = X;
maz = q(0);
repeat

improve = false;
for X € X,pen do
score = q(X U{X});
if score > max then
maxr = Score;
Kmaz = X;;
improve = true;
end if
end for
if improve then
X=XU {Xma:c};
Xopen = Xopen \ {Xmax};
end if
until ((Xopen, = 0) V —improve)

Figure 4.2.1: Forward Selection: In each step, it is evaluated, whether adding one of the
not yet selected features increases the accuracy. A feature that increases
the accuracy maximally is then added to the feature set. If no such feature
exists, the process terminates.

such feature exists or if all features have been added to the feature set, the algorithm
terminates.

It is well known and easy to show, that forward selection has a worst-case complexity of
O(]X]?) in the number of necessary evaluations.

Lemma 4.2.11. Forward selection has a worst-case complezity of O(|X|?) in the number
of evaluations.

Proof. Sketch: In each round, the number of not yet selected features is reduced by one,
therefore the maximal number of rounds is |X|. In each step, all remaining features have

to be tried, upper-bounded by |X|. O

Backward elimination starts with a given feature set X and removes in each round the

91

feature for which the resulting feature set leads to an optimal performance. If no such
feature exists or if all features were deselected, the algorithm terminates.

Beside these two basic approaches, several other search strategies are possible, for in-
stance evolutionary approaches, simulated annealing, beam search, etc. See [69], chapter
4, for a recent overview.

Many approaches to feature selection can be extended to the case of feature construction
as well. Because the number of features that can be constructed is not finite (or at
least very large), it is usually necessary to provide an additional operation that delivers
for each set of given features X C X a finite set of candidate features Xcang, such that
XNXcand = 0. Instead of selecting from the remaining features in each search step (like in
feature selection), the algorithm selects from this finite candidate set. This approach can
be referred to as forward generation. Other approaches, such as genetic search strategies,
can be extended in a similar way.

Most approaches to feature construction restrict the space of possible features to be
searched in several ways. First, a threshold can be set, such that if a task is solved by
at least a minimal accuracy gmin, the procedure terminates. Second, the number and
kinds of possible feature sets that are regarded can be constrained. Finally, a common
strategy is to use a time-constraint, accepting the best solution that can be found in
some predefined period of time. This is mostly what happens in practice.

An important question for all wrapper approaches is how to assess the accuracy by which
an inner data mining task is solved. For classification problems, cross-validation can be
used to estimate the expected error of the classifier (see section 1.4.4). An extension to
this basic approach is the use of multi-objective optimization, thus applying two or more
different criteria. For instance, it is possible to select a feature set that optimizes the
accuracy and minimizes the number of features not preserving the accuracy [50]. This
leads to a set of Pareto-optimal solutions and the user can choose between a minimal set
of features or a set of features that optimizes the accuracy.

Another application area for multi-objective methods for feature selection and construc-
tion is clustering. Feature selection for clustering is much more challenging, because
unsupervised machine learning differs essentially from supervised learning. The aim is
usually rather to describe the data set, and thus to automatically find inherent, natural
patterns in the data.

Feature space transformation is important for unsupervised learning as well. Noise,
sparsity and redundancy can hide the natural patterns in a data set, just as they can
hide the relationship of the data points to a target function in supervised learning.
Feature space transformation for unsupervised learning can be performed manually based
on domain knowledge. This procedure is very time and labor intensive, especially as
unsupervised learning is often applied for data exploration and few or nothing is known
about the data and the domain.

Several multi-objective optimization schemes for unsupervised feature selection were pro-
posed in (94, 95, 129]. These approaches minimize the number of features. Simultane-

92

ously, the accuracy of the identified patterns should be maximized. This idea is directly
transferred from supervised feature selection. While these approaches are very promis-
ing, they are limited in two points. First, minimizing the number of features, just as in
supervised learning, is not robust for the unsupervised setting. Under very weak assump-
tions we can show that the set of Pareto optimal solutions collapses into one singular
point that represents a trivial solution [122]. The accuracy of a clustering algorithm,
for example, can trivially be optimized by selecting a single feature only. This, however,
leads in virtually every case to a completely inadequate and useless description of the
original data set.

In [122| an improved approach is proposed. This approach is based on maximizing the
accuracy of the clustering and the number of clusters simultaneously. The accuracy of
clusters is measured by within-cluster distance cqy.q, as described in section 1.4.5. This
approach leads to much more complete sets of solutions than the existing approaches and
is robust against nominal features. In [123] this framework is extended to cover feature
construction as well.

4.2.3 Generalized Feature Relevance and Redundancy

Almost all existing work on feature relevance and redundancy has been focusing on
classification tasks. The concept is, however, much more general and can be applied
to other tasks as well. Following the paradigm of wrapper approaches, we give a very
general definition of a data mining task. We consider a data mining task a black box
that gets a feature set as input and delivers a quality measure as output. We will denote
this quality as accuracy in the following.

Definition 4.2.12. A data mining task t € T is any task for which we can define an
accuracy measure ¢ : 2 — R that depends on the subset of features X C X used to
solve the task. R denotes an ordered set. In the following R = R is assumed. T denotes
a set of data mining tasks.

Given a set of features X C X we define the following.

Definition 4.2.13. A feature X € X is strongly relevant with respect to features X C X
if

VX' C X\{X}:q(X') < q(X'U{X})

Thus omitting the feature X leads always to a performance that is inferior than the one
achieved if X is part of the feature space.

Definition 4.2.14. A feature X € X is weakly relevant with respect to features X C X
if it is not strongly relevant and

IX' € X1 (XN {X}) < q(X)

93

For features that are weakly relevant, omitting them may lead to a decrease in perfor-
mance dependent on the which other features are used for data mining. A typical case
for weakly relevant features are features that are alternative.

Definition 4.2.15. Two features X € X and X’ € X are called alternative, denoted as
X ~X'if X(z)=a+ - X'(z) for all z € D with 5> 0.

Many learners can easily deal with linear transformations of features (e.g. SVM [73]).
For this reason, both features X and X’ are not strongly relevant, because either one
can be omitted, as long as the other one is used.

Definition 4.2.16. A feature X € X is irrelevant with respect to features X C X if

—-3X' C X : ¢(X"\{X}) < ¢(X')

If a feature can be omitted without affecting the accuracy not regarding which other
features are used, it is irrelevant for the task, because it can be omitted under all cir-
cumstances.

The concept of feature redundancy can be captured in a more general way as well.

Definition 4.2.17. Given a feature X € X, a set of features X C X and a subset of this
set X' C (X\{X}) then X’ is said to be a Markov blanket for X, denoted as mb(X’, X)
if

p(X\({XIUX)X', X) = p(X\({X}UX")[X')

This definition is the same as for the classification case (Def. 4.2.6), we do, however, not
make any assumption on whether there is class information given, or not.

Again, a feature X € X is redundant if it has a Markov blanket in X.

Definition 4.2.18. An optimal feature set is such a set of features X C X" that ¢(X) is
maximized and X does not contain redundant and irrelevant features with respect to X.

This is a generalization of definition 4.2.8 that covered only feature selection for classifi-
cation. By definition, irrelevant features cannot lead to an improvement in performance.
As redundant features are replaceable by their Markov blanket, their removal should
have no impact on the performance as well.

We can still give a slightly stronger characterization, by referring to the concept of a
minimal and optimal feature set.

Definition 4.2.19. An optimal, minimal feature set is such a set of features X C X
that ¢(X) is maximized and there is no X’ C X, such that ¢(X) = ¢(X’) and |X’| < |X].

This is also sometimes referred to as minimal sufficient feature subset for the case of
classification (see e.g. [69], page 20). It is obvious, that this definition covers the above
definition of a optimal feature set as well.

It is not necessary to state that a minimal feature set should not contain any redundant
or irrelevant features, because this is entailed by the minimality condition.

94

4.3 Feature Relevance and Redundancy for Several Tasks

In traditional scenarios, only a single task is considered. In many current scenarios, this
is not adequate. Rather we often face several related data mining tasks that are solved in
parallel or subsequentially. This problem is often denoted as multi-task learning [30, 31].
The idea is that it could be easier to learn several tasks, that are related to each other,
at once, than learning them individually. This assumption is based on the observation
that often several learning tasks in the same domain resemble each other to some extent
and that parameters to solve these tasks resemble each other as well. First approaches to
multi-task learning used, for instance, a common set of inner neurons in a neural net which
is shared among several tasks [30]. These common neurons encode common parameters
among different tasks. More current methods for multi-task learning make use of SVM,
kernel methods |54, 83| and Gaussian processes [203] to achieve a corresponding effect.
The idea in all cases is to have a class of models (for instance SVM) and several learning
tasks. Then a distribution among the parameters of the models is assumed that allows
to group tasks into clusters of tasks with similar parameters. There are several variants
to this basic idea. In [8] it is discussed how unlabeled data can be incorporated into the
process of multi-task learning. [205| discusses the problem of outlier tasks and how to
robustify existing approaches to multi-task learning. Finally, [10] proposes an interesting
variant to the problem by allowing to calculate a small number of artificial features that
are common to all tasks.

All of these approaches make several assumptions. First, only classification tasks are
regarded, with the standard expected loss function. Second, all approaches assume that
the same model class is used for each of the tasks. Third, a common set of features
is assumed for all learning tasks. Forth, all approaches assume that model parameters
cluster well. While [205] considers outliers, it is still assumed that clusters can be found.
Finally, it is assumed that all tasks are solved at once in a single optimization process.

In the following, we take a more general view on this problem. The idea is to make
none of the assumptions above, but to assume only the minimalistic definition of a data
mining task given above. Tasks are only related in that the solution of each task relies on
a subset of features XC X of the same superset of features X'. Which subset X of features
is relevant to solve a given task and how an optimal model looks like may differ for each
of the tasks in any possible way. This allows us to mix not only different data mining
algorithms but even different data mining tasks. Also, we do not make any restrictive
assumption on how the tasks clusters. Finally, we also analyze the influence of the order
in which the tasks are solved, which is a crucial problem in practice.

A downside of making only minimal assumptions is that it is harder to obtain specific
analytical results or to find optimizations. As will be shown, analyzing the problem on
an abstract level will still yield several interesting insights. Also, by making some more
assumptions later, it will be possible to optimize the basic approach proposed here.

A set of data mining tasks will be denoted as T. FEach task ¢t; € T is connected to a
accuracy function ¢;, as described above.

95

Definition 4.3.1. The overall accuracy of a several data mining tasks T is the sum over
all individual qualities

|T|
q*(Xh) Xi7 2] X|T\) = Z ql(Xl)
=1

where X; C X denotes the feature set used to solve task t; and ¢; the corresponding
accuracy.

Given more than one data mining task, we can generalize the notion of feature relevance,
redundancy and optimality.

To do so, we regard the accumulated feature set that contains exactly the features that
are used for at least one task in T'.

Definition 4.3.2. The accumulated set of features, given a set of tasks T', denoted as
X, is the union of all locally selected features

IT|
X1 = U X;
=1

where X; C X denotes the feature set used to solve task ¢;.

Assume an application that learns personal preferences of users concerning music. Also
assume that we can extract three features from each music clip that represent, for in-
stance, loudness X, rhythm X, and color X, of the music, thus X = {X;, X, X.}. Each
user defines a learning task by tagging music clips with a positive or a negative label,
according whether she likes them, or not. This results in one learning task per user,
for which we assume a true but unknown concept f;. For each of the users, another
subset of X may be relevant. For the first user, preferences may only depend on the
loudness, which should be high, thus f; = X > 2.3. For a second user, preference may
depend on the loudness and the rhythm, e.g. fo = X; 4+ X,. > 3. For a third user, the
preferences could depend on the loudness again, which should, however, be small in this
case, e.g. f3 = X; < 1. The task is to find for each user a subset of features and a
predictive model that captures her preferences in a way that allows predictions with a
high accuracy. If the true concepts were known, optimal feature subsets X; = {X;},
Xo = {Xj, X, } and X3 = {X;} could be selected easily. The accumulated set of features
is then X1 = {X}, X, }. In a real application, we can only approximate the real concepts
fi by hypothesis, as described above.

We can now generalize the notions of strongly and weakly relevant features in different
ways by regarding properties of features that hold for all, some or for none of the tasks.

Table 4.1 gives an overview.

96

VieT JteT,-VieT -dteT
irrelevant globally irrelevant relevant relevant
redundant globally redundant partially redundant not part. redundant
weakly rel. | globally weakly rel. globally weakly rel. not weakly rel.
strongly rel. | globally strongly rel. globally strongly rel. not strongly rel.

Table 4.1: This table gives an overview of how feature relevance and redundancy can be
generalized to several tasks.

Definition 4.3.3. A feature X € X is globally strongly relevant with respect to features
X if it is strongly relevant for at least one task ¢ € T

If X is deleted from X7 the overall accuracy decreases, because it must by definition
decrease for at least one task.

Definition 4.3.4. A feature X € X is globally weakly relevant with respect to features
X if it is not globally strongly relevant and is weakly relevant at least for one task t € T.
Globally weakly relevant features can be omitted, as long as there are alternative features
left that replace them in a way that does not affect the global accuracy.

Definition 4.3.5. A feature X € X is globally irrelevant with respect to features X

if it is irrelevant for every task.

Globally irrelevant features can be omitted from X7 in any case without affecting the
accuracy at all, because, by definition, they do not affect the accuracy of any individual
data mining task.

Now, we can extend the notion of redundancy and Markov blankets to the case of several
tasks. We have different options here. A feature can be regarded as redundant if it is
redundant for at least one task, for all tasks or with respect to the accumulated feature
set X.

Definition 4.3.6. A feature X € X is globally redundant if it contains a Markov
blanket for each individual task ¢ € T, thus:

Vi:l<i<|T|:3X,C (X\{X}): mb(X], X)

If a feature is redundant for only some tasks, this is denoted as partially redundant.

Definition 4.3.7. A feature X € X is partially redundant if it contains a Markov
blanket for some task ¢t € T

Ji:1<i<|T|:3X C (X\{X}) : mb(X], X)

Note, that these Markov blankets are not necessarily the same for all tasks.

Finally, we can define redundancy against the accumulated feature set.

97

Definition 4.3.8. A feature X € X is redundant with respect to the accumulated feature
set X if
3X4 C (Xr\{X}) : mb(Xp, X)

How are these definitions related? Obviously, if a feature is globally redundant, it is also
locally redundant. Furthermore, we can show the following relationship.

Lemma 4.3.9. If a feature X € X is partially redundant, then it is also redundant with
respect to X .

Proof. There is a task t; € T and a X! C X;\{X} such that mb(X!, X). X! is also a
Markov blanket for X in X, as X! C X; C Xr. O

Therefore, being redundant with respect to X is the weakest possible restriction.

It is easy to show that if X1 does not contain any redundant features, none of the
individual feature sets can contain redundant features.

Lemma 4.3.10. If a feature X € X is non-redundant in X, then it is non-redundant
for all tasks in T.

Proof. By definition, there is no X'C X\ {X}, such that mb(X’, X) (there is no Markov
blanket in X). Then, there cannot be a Markov blanket for X in any Xj, because for
all tasks t; € T, X; € X7 holds.]

Please note that the other direction does not hold. The fact that all local feature sets
do not contain any redundant features does not entail that the accumulated feature set
does not contain redundant features.

Given these definitions, we can now define optimal feature sets for more than one task.

Definition 4.3.11. A set of optimal feature sets selects for each task t; € T a set of
features X; C X in a way that ¢* is maximized and the accumulated feature set X does
not contain any features that are redundant or irrelevant with respect to Xp and 7.

Again, this can be strengthened to the concept of an optimal minimal set of feature sets.

Definition 4.3.12. A set of optimal, minimal feature sets selects for each task t; € T' a
set of features X; C X in a way that ¢* (X4, ..., X|r|) is maximized and that there does
not exist another set of features Xll"'XTT| for each task, such that ¢*(Xj, ...,X|T|) =

¢" (X}, ..., X)) and [Xy'| < [Xr|, where X4 = /2 X!,

Why should we bother to find a minimal optimal feature set? Assume an example
in which a first agent tries to induce the binary concept given by fi (X, Xp, X, Xy) =
Xa+Xp > 4 from the data, a second agent tries to induce f1(Xg, Xp, Xe, Xg) = Xp+Xg <
2. We assume that X = X, (Vo € D : Xp(x) = Xc(z)). In this case, it would

98

be perfectly reasonable, from an accuracy point of view, to select X; = {X,, Xp} and
X9 = {X., X4}. Both feature sets are locally optimal and do not contain redundant
features. The accumulated feature set X1 = {X,, Xp, X¢, X4} does, however, contain
redundancy. This is not desirable for several reasons. First, if the feature sets are
inspected by a human user, it is hard for her to see the relationship between the tasks.
Assume an analyst that tries to discovery patterns in several branches of a large company.
It is much easier to recognize patterns or influence factors known from another case than
being faced with completely new features. Second, selecting different features can lead
to a higher storage requirements. Finally, as we will see, selecting redundant features
leads also to higher communication costs if features are shared among agents. Thus, it
would be much better if both agents chose Xj (or X,) leading to an accumulated feature
set X/ = {Xa, Xp, X} or X/ = {Xq, X, X4} respectively, both of which do not contain
any redundant features.

4.4 Distributed Feature Extraction

In this section, several approaches for distributed feature extraction are proposed, that
all aim at finding optimal subsets of features for each task in a set of tasks. We use
single-task feature selection as point of departure and discuss how these methods can be
extended to be applicable to the case of several data mining tasks. A key point is to
share features among agents in order to improve the efficiency of the data mining process.
The idea is that features found to be successful for some of the tasks, can be promising
for new tasks as well. Tasks can be heterogeneous. Therefore, a crucial optimization of
this approach is not to regard all features that were extracted or generated by any other
agent, but to retrieve only the relevant ones.

4.4.1 The Problem of Distributed Feature Extraction

In the following, we will analyze how methods for single task feature extraction can be
generalized to the problem of feature extraction given several tasks. As described above,
existing solutions to multi-task learning make restrictive assumption on the underlying
model classes, the data mining tasks and how they are related. In the following, we seek
general solutions that do not depend on these assumptions. These solutions should be
especially applicable to different models and data mining tasks, and they should not force
all tasks to use the same features (indeed they should allow to construct special features
for individual tasks).

This leads to the basic problem of distributed feature extraction.

Definition 4.4.1. Distributed feature extraction denotes the task of finding for each task
t; € T, an optimal feature set X; C A, such that ¢* (X4, .., X;,..X7|) is maximized and
|X 7| is minimized.

99

A very obvious way to do distributed feature extraction would be to simply use any
optimization or feature transformation algorithm to optimize the feature set for each
task individually. There are two reasons why not to do so:

1. It would not necessarily yield an accumulated feature set that is optimal and min-
imal. This is, however, a desirable property, as was shown above.

2. Solving several learning tasks in a sequence or in parallel can be computationally
less expensive than solving them independently if it is possible to share information
among tasks. In the remainder of this chapter we will show different methods of
how to do so.

In this section we present a simple, generalized forward selection algorithm that will be
the point of departure for further optimizations. First, however, we must further specify
the scenario we are talking about in terms of the temporal order in which tasks are solved.
While for stating the distributed representation problem the order in which the tasks are
solved did not have any significance, this order plays an important role for solving it.

In the following, we assume an order relation on tasks that denotes that one task must
be solved before another one is solved. In many applications, such an order is implicit.
Assume, for instance, the media organization examples. Usually, not all user will classify
their media items in parallel. Still, the system has to deliver a solution for the first users,
even if the tasks that will be submitted by other users are still not known. This can be
regarded as constraint on the order in which the tasks must be solved.

Definition 4.4.2. The temporal order relation for tasks <C T? represents constraints
on the order in which the tasks have to be solved, i.e. t; < t;, denotes that task ¢;
must be solved before t; is solved, which, as a consequence, means that the feature set
X; € X must be chosen before X; C X' is chosen. < is assumed to be transitive and
anti-symmetric.

In many applications, < can be assumed to be a total order as well, which leads to the
concept of a sequence of tasks.

Let us first consider the option of performing optimal feature selection at each agent
independently. If we do not consider the restriction of minimality, this would already
solve the problem.

Lemma 4.4.3. Given a set of tasks T, selecting X; C X by optimal feature selection for
each t; € T yields an overall optimal set of feature sets X ;... X).

Proof. The accuracy is measured by ¢* (X1, .., Xj, .., Xj|) = Zgl ¢i(X;) and optimizing
each ¢; also optimizes ¢*. O

Obviously, optimal feature selection for several tasks inherits its computational complex-
ity from optimal feature selection for single tasks and is therefore NP-complete as well.

100

Also, different agents may select different weakly relevant features, making the accumu-
lated set of features larger than necessary. Thus, this procedure does not yield solutions
that fulfill the minimality condition.

It may seem that this problem can be solved by simply imposing some kind of total
priority order on the features in X', and then to select features that are equally well
suited to solve the data mining task always according to this preference order. This,
however, does not solve the problem of minimality.

Lemma 4.4.4. Given a set of tasks T, selecting X; C X by optimal feature selection for
each t; € T does not yield a minimal accumulated feature set X, in general.

Proof. We give a counterexample. Consider the following two learning tasks: fi (X, Xp) =
(Xa < 4) and fo(X4, Xp) = Xp > 10. Also assume, that X, = Xy, for X, < 4and X, = 4,
else. For the first task, it does not make any difference if we choose X, or X;. For the
second learning task, we must choose Xjp. Let us assume that for the first task X, is
selected, because this feature has a higher priority than X;. For the second task Xj has
to be chosen. The resulting feature set is {X,, X3}, which is suboptimal, because {X}}
would lead to the same performance with a smaller feature set. O

A simple approach to find a minimal subset of accumulated features is to solve all tasks at
once. Let us assume an agent that enumerates all possible subsets X CX. For each subset
X, optimal feature selection is applied for each task separately and the accumulated
accuracy and the size of the accumulated feature set is measured. Similar to optimal
feature selection for a single task, this would also lead to an optimal and minimal feature
set for several tasks (although it would be computationally extremely expensive).

However, in many applications we cannot assume that all tasks are solved at once. Mostly,
tasks are solved in some kind of a temporal order. Again, assume the collaborative media
organization example which is the focus of this work. Usually not all users organize their
items at the same time. Also, in a real world scenario, new tasks are added continu-
ously. The same holds for business intelligence applications. Data to be analyzed usually
emerges over time and is not available at once. Still, the system has to output some
result for the first task it faces.

Given constraints on the order in which task are solved, can we still find an optimal
and minimal feature set? Surprisingly, the answer is no, in general. In fact, there is no
algorithm that guarantees to find such a set in general, given at least two tasks #;,t; € T'
that are in temporal relation to each other.

Theorem 4.4.5. There is no algorithm that can guarantee to find an optimal, minimal
set of feature sets, given that 3t;,t; € T : t; < ;.

Proof. We construct a counter example. Assume that the feature selection algorithm
would first face ¢;, for which the concept f;(X,, Xp) = (X, < 4) should be induced.
Again assume that X, = Xp, for X; < 4 and X, = 4, else. For this task, either {X,}

101

or {Xp} can be chosen to optimize it. Let us assume that {X,} is chosen. The second
task is t; and the concept fj(X4, Xp) = X > 10 is to be captured. In this case, {Xj}
must be chosen. This leads to a non-minimal overall feature set Xp = {X,, X;}. If for ¢;
{X3} would have been chosen, then we could construct a similar example leading to the
non-minimal subset X1 = {X,, X3}. Thus any choice for the first task can later turn
out to be suboptimal. Therefore, no algorithm that solves ¢; and ¢; in sequential order
can guarantee to yield a minimal and optimal set of features Xr.]

4.4.2 Prioritized Forward Selection

While this is somewhat discouraging, it still allows us to look for heuristic approaches. In
the following, an extension to forward selection is proposed, that is denoted as prioritized
forward selection. If we solve a task ¢, we first take a look at all tasks 7" C T that are
already solved. This leads to the accumulated feature set X = Uti e X containing all
features used in at least one task, already solved or currently solved. Then we perform
forward selection twice. First, we perform forward selection using only the features
in X7>. Only after no further improvement is possible, we perform a second forward
selection on the remaining features in X'. This can be combined with a threshold € € R,
such that new features are only added if this increases the performance above a certain
level.

Figure 4.4.1 shows the algorithm. The computational complexity of this algorithm is the
following.

Lemma 4.4.6. The computational complexity of prioritized forward selection is O(|X|?|T|)
in the number of inner evaluations.

Proof. For each task, two forward selection problems are solved, one on the feature set
accumulated so far, the other one on the remaining features in X. This leads to the
following upper bound |[Xp[? + |[X¥\Xp|? < (| Xp| + [X\X[)2. Trivially, (|X7| +
|X\X1:[)2 = |X|? for all X1+ C X. This procedure is repeated exactly once for each
task, and therefore has the complexity given above.]

Prioritized forward selection serves two purposes. First, it helps to find small accumulated
feature sets, which is an important property when facing feature extraction for several
tasks. A second purpose, at least equally important, is that efficiency and even accuracy
can be increased.

The idea is the following. We assume that in most application areas some of the tasks
in T resemble each other to some extend and require similar feature sets to be solved
optimally. If good solutions for some tasks were already identified, applying these ,know-
to-work-well features on new tasks seems quite promising, because if the new task is
similar to an existing one, the set X will already contain all relevant features. Selecting
features from X is always more efficient than selecting from a set of possible features
X, because X C X. Especially, if we consider feature construction, where X might

102

Input:
A set X of features from which to select and a set X g C X of candidate features
A task t; with evaluation function g;

Output:
A subset of features X; C X for task ¢;

X; = 0;
Xopen = Xcand;
mazx = q(0);
repeat
improve = false;
for X € X,pen do
score = ¢;(X; U{X});
if score > max then
mazx = score; Xmazr = X;
improve = true;
end if
end for
if improve then
X;=X;U {Xmax};
Xopen = Xopen \ {Xmaar};
end if
until (Xopen = 0) V —improve)
maxr = max + €;
Xﬁ,pen =X \ Xcand;
repeat
improve = false;
for X € X{,,, do
score = q;(X; U{X});
if score > max then
max = score; Xmazr = X;
improve = true;
end if
end for
if improve then
X; =X;U {Xmaa:};
Xi)pen = Xgpen \ {Xmaaz };
end if
until ((Xg,,.,, = 0) V —improve)

Figure 4.4.1: Prioritized Forward Selection for task ¢;: In a first forward selection, only
the candidate features are tried. Only if no further improvement is reached,
the algorithm tries additional features from the set X' \ X qnq. A threshold
€ can be used to allow only to add features that lead to an improvement of
at least € over selecting the features from X.4,q only.

103

contain millions of possible features, this can make the problem for subsequent tasks
much easier to solve.

Furthermore, it may even lead to better solutions. As stated above, users often terminate
the feature extraction process after a given amount of time, or after the performance is
»good enough”, thus a given accuracy threshold is exceeded. Finding relevant features
as early as possible is therefore crucial, because it can speed up the process of finding a
good solution. Given a maximum number of evaluations a user is willing to allow, it can
even improve the solutions. If good solutions are evaluated late in the feature extraction
process, they might not be found at all if the process is terminated early on.

4.4.3 Feature Filtering

In the last section, prioritized forward selection was presented as a way to speed up (and
even improve) feature selection if at least some of the tasks in 7' resemble each other.
This is achieved, because the agents first perform feature selection on a set of features
that are at least known to work for some tasks. Still, if the number of tasks already
solved T C T is very large, the set X can be very large as well, which would decrease
its utility, because in the worst case X = X, which would lead to the traditional feature
extraction problem.

The key to solve this problem is to share only some feature among tasks, i.e. not to
use all features in X in the forward selection process but only a subset X 4ng € X
of them. This process will be denoted as feature queries in the following. Given a yet
unsolved task ¢ € T', the idea is to query already solved tasks for features X.,,q that are
promising for ¢.

Definition 4.4.7. A feature query for task t € T yields a subset of features X angC X
that are assumed to be relevant to solve task ¢ from the set of features X used to solve
a set of tasks T C T

In the following, several approaches of how to select such ,promising* features will be
discussed. The first group of approaches is based on efficiently identifying feature subsets
Xeand € X directly by evaluating the features against the current task t. The second
approach is based on imposing a similarity relation on tasks. Based on this similarity,
a set of tasks T.qnq that are similar to ¢ are identified and X7 is used for prioritized
forward selection instead of X.

d

Both approaches are targeted mostly at classification tasks.

Selecting Features based on Relevance

In this approach, first, each feature is weighted by a score. Then, the subset of features
with the highest scores are selected and used as input into forward selection. This leads to
a combination of filter and wrapper approach. Any filter approach can easily be applied

104

to this problem. This works, however, only for classification. Also, using filters to select
promising features inherits some of the problems of the corresponding filter approaches,
such as selecting redundant features and not regarding feature interaction. There is also
a more subtle but important limitation when it comes to the distributed scenario. Some
of the feature values might be, while being defined in general, not known to a given a
given agent. This will be discussed below.

Selecting Features based on Task Similarity

Task relatedness The filter approach selects features individually. A very promising
alternative is not to analyze each feature in X> on whether it is relevant for a new task
t € T, but to analyze tasks in 7" C T whether they are similar to task ¢.

Definition 4.4.8. A task similarity measure is defined as function sim : T? — R, that
measures the similarity of two data mining tasks.

In contrast to item similarity, as defined in definition 1.3.2, we assume here that the
similarity of tasks is expressed by values in R. Again, larger values of this function
denote higher similarity.

Given a task similarity measure sim, we obtain a set of candidate features X angC X
by the following procedure.

Definition 4.4.9. We select a candidate set of features X.ing € X7 based on task
similarity selection by assigning Xcang = X1, with 7" = {¢' € T'|sim(t,t') > (3}, where
t is the task that we are facing and [is a threshold.

Thus, we select tasks with a maximal similarity to the given task ¢ and use the corre-
sponding features as input to prioritized forward selection.

The open question is how to compare two data mining tasks. In the following, we will
only regard classification tasks.

Most approaches to multi-task learning define an implicit task similarity measure by
assuming distributions on the underlying model parameters. Unfortunately, these meth-
ods are only applicable if we assume that all learners use the same model class and if
learning happens in parallel at each agent. One exception is the task clustering approach
proposed in [181]. While the application to different model classes is not mentioned in
this work, the basic method proposed there could be extended in this way.

The similarity of two learning tasks ¢ and ¢’ is calculated as follows. First, for each task a
hypothesis h, respectively A’ is identified individually. Then the hypothesis h is applied
to the examples of ¢, leading to the expected loss E; ¢ (L).

Definition 4.4.10. Given two data mining tasks ¢,t’ € T. The expected loss of applying
a classification model optimized for t to t’ is denoted as

105

Ep(L) =) L(h(z), f'(2)) - p()

zeD

where f’ is the assumed true relationship underlying classification task ¢’ and h is an
hypothesis that minimizes the expected loss for task ¢ assuming a true relationship f.
p(z) is the probability of an item z € D.

Based on this expected loss, a task similarity function can be defined.

Definition 4.4.11. The relatedness of two tasks t and t’ is defined as

sim(t,t/) = _Et,t’(L)

Please note that this similarity measure is not symmetric in general.

In a second step, tasks can be clustered into groups of similar tasks. It is assumed that
the number of such task clusters is fixed. The algorithm thus yields a partition {7}, ..T,,}
of the overall set of tasks T'. The following objective function is used to find an optimal
task clustering.

;zz®z@m>

=1 teT; t'eT;

This denotes the average loss if models are pairwise applied to the training data of
other tasks in the same cluster. Obviously, this quantity should be minimized. The
optimization problem can be solved, for instance, by using the k-medoids algorithm (see
section 1.4.3).

Once such a solution is identified, a model is searched that minimizes the loss for all
tasks in a task cluster.

Just as for incremental clustering in general, clusters need to be adapted from time
to time. For this reason, a complete re-clustering is performed at regular intervals.
Clustering tasks has two advantages. Learning a hypothesis based on a small training
set can easily lead to overfitting. If several tasks are grouped together, this problem less
severe, because information is shared among the tasks in one cluster. Second, finding
an optimal hypothesis for new tasks can be achieved very efficiently, because it is only
necessary to select among m solutions.

Applying this approach leads to the following computational effort applied to all tasks
in 7', where we assume that the underlying model is derived by a SVM [73] on a set of
features that is common to all tasks and denoted as Xp (see below).

Lemma 4.4.12. Feature queries based on task relatedness for all tasks in T can be
achieved in O(|Xp||D||T|? + |Xp||T||DJ?)

106

Proof. Generating base feature weights for each task in 7T has to be performed exactly
once for each task, leading to |Xg||T||D|3. The weight vector corresponding to each task
has to be applied to each other task, leading to |Xg||T|?|D|. O

This approach has, however, several severe drawbacks. First, the similarity measure for
tasks is not metric and not even symmetric. Many optimization strategies can therefore
not be applied. Second, similar tasks cannot be found in a query-like way easily. We
will come back to this problem, when we will discuss the implementation of distributed
feature sharing in p2p networks in section 4.5.

Comparing Tasks by Base-Weights In the following a method is proposed that com-
pares feature weights directly, without using the underlying training data. We assume a
set of features that is common to all tasks in 7. This common set of features Xg C X
will be denoted as base features. Also, we assume a weighting function that assigns a
weight to each base feature, given a specific task t; € T .

Definition 4.4.13. A feature weighting function is a function

wy : X — R

that assigns a weight to each feature in Xp reflecting its relevance for a task ¢t € T.
We assume the features in Xpg to be totally ordered in an arbitrary way, thus Xg =
{X1,.., X1, .., Xk}. Then, w; denotes the weight of feature X; € Xp for task t;.

The weights assigned to these features are denoted as base feature weights. Two learning
tasks are compared by directly comparing their base feature vectors. This representation
of learning tasks is motivated by the idea that a given learning scheme approximates
similar constructed features by a set of base features in a similar way. The approach
works as follows: for a given learning task ¢; € T" we first calculate the relevance of all
base features Xp concerning t;. This vector is used to compare this task to other tasks.
We use a distance function d (¢;,t;) to decide whether two learning tasks are similar.

Still, there are two problems to be solved. First, how to assign the base weights given a
set of labeled examples and second, how to compare two base weights?

We assume that for a modified set of base features Xj; = {X;... X}, Xj41} the function
w’ denotes the weighting function for X}; and d’ denotes the distance measure for Xj.

In a first step, we define a set of conditions which must be met by feature weighting
schemes. In a second step, a set of conditions for learning task distance is defined which
makes use of the weighting conditions.

Condition 4.4.14. Assume a task t; € T, a set of base features Xp = {X1,.., Xj, .., X}
and an altered set of base features X3 = {X1, .., Xj, .., Xg, Xp41}. Also assume that Xp
does not contain any pairwise alternative features. Then the following must hold:

(W1) If X; € Xp is irrelevant for task ¢;, then w;; = 0 and w; > 0, otherwise

107

(W2) If there is a 1 <1 < k such that Xj,1 ~ X, then wj; +wj; | = wy

(W3) If there is a 1 <1 < k such that X1 ~ Xj, then wj; = wi,

(W4) For all 1 <1 <k holds that if not X; ~ X1, then w}, = wy

These conditions state that irrelevant features have weight zero (W1) and that the sum of
weights of alternative features must be constant (W2). Also, alternative features should

get equal weights (W3). Condition (W4) states that the weight of a feature is not affected
if any features are added that are not alternative to it.

We can now define a set of conditions which must be met by distance measures for
learning tasks which are based on feature weights only.

Condition 4.4.15. Assume two task t;,t; € T, aset of base features Xp = { X1, .., Xi, .., Xi}
and an altered set of base features X3 = {X1, .., Xj, .., Xg, Xp41}. Also assume that Xp
does not contain any pairwise alternative features. Then the following must hold:

D1) d(ti t;) =0 t; =t

) d(ti, t;) = d(t;,t;)

D3) d(ts, ty) < d(ts, tj) +d(tj, tr)
)
)

(
(
(
(D4 If X1 is irrelevant to both tasks ¢; and ¢;, then d(t;,t;) = d'(t;, t;)
(
(

»,
N

If there is a 1 <[< k such that X1 ~ Xj, then d(t;,t;) = d'(t;, ;)

D1) - (D3) represent the conditions of a metric. These conditions are required for
efficient case retrieval and indexing, using e.g. M-Trees [36]. (D4) states that irrelevant
features should not have an influence on the distance. Finally, (D5) states that adding
alternative features should not have an influence on distance.

In this section, we will show that many feature weighting approaches do not fulfill condi-
tions (W1) - (W4). Furthermore, one of most popular distance measures, the Euclidean
distance, cannot be used as a learning task distance measure introduced above.

Lemma 4.4.16. No feature selection fulfills the conditions (W1) - (W4), in general.

Proof. For feature selection methods, weights are by definition binary, i.e. wy € {0,1}.
We assume a learning task t; € T and an Xg = { X1, .., Xi, .., X3} with no alternative and
irrelevant features. We add a feature Xjy1 which is alternative to a feature X; € Xp,
obtaining a feature space Xy = {X1,.., Xj, .., Xp, Xpy1}. Then, either wj; = wj, | =
w;y = 1, leading to a contradiction with (W2), or w}; # w}, ., leading to a contradiction
with (W3). O

Lemma 4.4.17. Any feature weighting method for which wy; is calculated independently
of all other features does not fulfill the conditions (W1) - (W4).

Proof. We assume a learning task ¢; € T and a Xg = {X1,.., X}, .., Xx} with no alter-
native and irrelevant features. We add a feature Xy, which is alternative to a feature

108

X, € Xp, obtaining the feature space X = {X1, .., X, .., Xj, Xp+1}. If w is independent
of other features, then adding Xj1 would not change the weight w;; in the new feature

space X, thus w}; = wy. From (W3) follows that wj, , = wj, which is a violation of

(W2). O

This lemma essentially covers all feature weighting methods that treat features indepen-
dently, such as information gain [147] or Relief [96].

The next theorem states that the Euclidean distance cannot be used as a distance measure
based on feature weights.

Theorem 4.4.18. Euclidean distance does not fulfill the conditions (D1) - (D5).

Proof. We give a counterexample. We assume that a weighting function w is given
which fulfills the conditions (W1) - (W4). Further assume that learning tasks t;,t; € T'
are given, as well as Xp = {X1, .., X, .., X} with no alternative and irrelevant features.
We add a feature Xj; which is alternative to a feature X; € Xp, obtaining a feature
space X5 = {X1, .., Xy, .., Xi, X1}
We infer from conditions (W2) and (W3) that
A "y
wz/'k+1 = wgz — and w}k+1 = w}z =2
2 2
and from condition (W4) that

V1<m <km#1: (W, = Wim) A (W, = Wjm)

In this case the following holds for the Euclidean distance

2 wi wj)?
d/(ti,tj):\/9—|—2<w;k+1—w;.k+1>):\/9_|_2<2_2>

1
=4/0+ 5 (wil — ’lUjl)Q 7& \/0 + (wil — wjl)2
with
k) k
0= Z (w;m w;m) = Z (Wim — wjm)2
m=1,m##l m=1,m##l

O]

Theorem 4.4.19. The feature weight calculation of SVMs with linear kernel function
meets the conditions (W1) - (W4).

Proof. See [121, 120]. O

In order to calculate the distance of learning tasks based only on a set of base feature
weights we still need a distance measure that met the conditions (D1) - (D5).

109

Theorem 4.4.20. Manhattan distance does fulfill the conditions (D1) - (D5).

Proof. The conditions (D1) - (D3) are fulfilled due to basic properties of the Manhattan
distance. We assume that a weighting function w is given, that fulfills the conditions
(W1) - (W4). Further, we assume that learning tasks t;,t; € T are given, as well as
Xp = {X1,.., X, .., Xp} with no alternative and irrelevant features. We add a feature
Xj+1 obtaining a feature space Xy = {X1,.., Xy, .., Xp, Xi11}-

We prove (D4) by observing, that w)
This yields the following:

il — 3k+1 = 0 if X4, is irrelevant to ¢; and ¢;.

k
d(tity) = > |wh, — w}r!> + [Wik g1 — Wikt
—

0

from (W4).
We prove (D5) by assuming that X1 is alternative to a feature X; € Xp.
We infer from conditions (W2) and (W3) that

Wy

/ o / R
Wik+1 = Wa = = and wy g = wy = 9

and from condition (W4) that

Vi<r<kr#l:(w), =wqy) AW =wj)

Then we can show, that

r=1,r#l

k
Z |wir — wjr| | + |wi — wji
r=1,r#l

k
d'(tit;) = (Z wi, — wie| | + 2w — Wiy

= d(t;, t;

N>

from (W4) and (W2). O

SVM feature weights in combination with Manhattan distance fulfill the necessary con-
straints for a learning task distance measure based on feature weights.

How efficient is feature pre-selection based on this approach?

110

Lemma 4.4.21. Feature selection for all tasks in T can be achieved in O(|Xpg||T|* +
X 5[T||DF).

Proof. Generating base feature weights for each task in T" has to be performed exactly
once for each task, leading to |Xg||T||D|?. The weight vector corresponding to each task
has to be compared to each other, leading to |Xg||T|*. O

This approach is very appealing for its efficiency. While training the SVM can be costly
in some cases, it has only to be performed once for each task. Comparing the vectors is
then very efficient.

4.5 Distributed Feature Extraction in Peer-to-Peer Networks

In the application scenarios on which this work focuses, tasks are not solved at a central
place but are distributed in a network. In collaborative media organization, users might,
for instance, apply their handhelds or cell phones to share their information in a fully
distributed way.

4.5.1 Existing Approaches to Data Mining in Peer-to-Peer Settings

Our aim is to enable distributed feature extraction in a loosely coupled network. Two
important paradigms for such systems are global computing (GC) and p2p computing.
GC aims at distributing computational demanding tasks to a high number of nodes over
a network. An example is Xtreme Web [29], that uses a coordination service to actively
distribute computation tasks among nodes. P2p networks are well known for file sharing
applications but are applicable in many other scenarios as well.

P2p and GC systems can be centralized (all communication is routed through a server),
brokered (resource discovery is centralized, service invocation is distributed) or fully dis-
tributed. Fully distributed systems are further devised into structured and unstructured
p2p networks. Structured networks employ a reference space that allows for efficient
resource discovery. Examples are Distributed Hash Table (DHT) systems, such as Chord
[169]. They often become suboptimal in the presence of a high fluctuation of peers [34].
Also sophisticated search strategies are not supported directly. Therefore, virtually all
approaches to p2p data mining focus on unstructured networks.

In unstructured systems, resource discovery and propagation is based on range limited
broadcast. The most popular example is the Gnutella network. There are several ap-
proaches to make (unstructured) p2p systems more scalable through the use of explicit
super nodes or, as in Gia [34], by a combination of topology adaptation, flow control and
look-aheads.

Current approaches to p2p data mining are based on epidemic dissemination protocols
that use simple base operations, such as distributed majority vote or averaging. In

111

[103] an approach based on the ,newcast model of computation is presented. It is
based on the dissemination of information by probabilistic broadcast [53]. In [193] an
algorithm for distributed averaging in p2p networks is proposed that is used to evaluate
locally generated rules under the global distribution. [41] proposes a distributed k-
means algorithm that uses this strategy to obtain globally valid centroids from local ones
by distributed averaging. These approaches aim at establishing an equilibrium among
the nodes, such that all peers share the global model (or its approximation). While
dissemination is well suited in a homogeneous settings, it can produce a considerable
overhead in heterogeneous settings, in which each peer aims at developing an own local
model.

Therefore, we propose an approach that is rather based on a ,pull‘ paradigm than on a
,push” paradigm. Agents query other agents to obtain a set of candidate features as input
for prioritized forward selection. This approach leads to much fewer communication costs
than a dissemination approach, because only agents with relevant features respond.

4.5.2 Differences to the Non-distributed Case

In the following, we will use term ,distributed feature extraction” to denote approaches
that solve the distributed representation problem in a distributed scenario. The basic
procedure is still the one of a prioritized forward selection. The only difference is that we
propose methods on how the set of candidate features X anq is actually collected from
different agents in a p2p network in an efficient way.

Each agent is assumed to perform the following steps to solve its local data mining task
tel:

1. Query other agents for features to solve task ¢.

2. Integrate the features that were received from different agents into a set of candidate
feature Xeand-

3. Apply prioritized forward selection based on Xcang.

The third step was presented and analyzed above. Feature integration (step 2) is trivial,
because we assume that features are static and have globally unique names. The open
question is how to query other agents for features in an efficient way.

In section 4.4.3, we already introduced several possibilities to query other tasks for fea-
tures: filter approaches, task relatedness and base features weights. All of these three
approaches and their variants can be used to retrieve features in a distributed system.

How does the distributed scenario differ from the non-distributed one?

First, if all tasks are solved at the same node, then feature sharing among tasks comes
without any additional costs. If tasks are solved at different nodes of a network, this is
no longer the case. On the one hand, communication itself can be expensive. On the
other hand, if communication channels are slow, it might be possible that it is faster to

112

perform feature selection only locally, because waiting for candidate features delivered
by other agents may take much longer.

Overall, we face a trade-off between three quantities:

1. The response time
This time is constituted by the time used querying for features and performing
feature selection.

2. The accuracy of the feature sets
This criterion denotes the overall accuracy ¢* by which the tasks are achieved.

3. The communication costs
The communication costs of feature sharing are measured as the number of values
that are transferred over the network.

These criteria are pair-wise conflicting. In order to obtain a response quickly, heuristic
optimizations must be used, that, however, on average lead to an inferior accuracy (just
as for the traditional representation problem). An optimal performance can be reached
by exhaustive search, which in turn leads to high response times. If no features are ob-
tained from other agents (feature selection is performed locally only), then there are no
communication costs but possibly a higher response time, because local feature selection
may take longer without input from the other nodes. Note that while we are facing a
multi-objective optimization problem, it is not possible to apply multi-objective opti-
mization methods here, because the process is executed in a decentralized way without
any central control over the actions of individual agents.

A second aspect that distinguishes the distributed scenario from the non-distributed one
is that feature values maybe known only to certain agents of a network. An important
example is collaborative media organization. If a user tags an item with a textual de-
scription, then this can be perceived as an important feature of this item. Initially, the
value of this feature is only known to the agent at which this tagging takes place. To
make this feature applicable for other agents as well, the feature values have to be shared
with other agents.

In this sense, distributed feature extraction can actually be seen as a kind of dynamic
p2p data warehousing, where relevant data (in this case the feature values) is shared and
aggregated just-in-time to process a task.

Third, some feature values may not be known to all agents, even if these feature values
are defined. Assume the following example.

A first user has a music collection consisting only of 70’s music. Another user only owns
current chart entries. Even if some of the features of the 70’s collector would be relevant
for the second user, the feature values for these features may not be extracted from the
audio files of the second user yet. To apply any of the filter approaches proposed above,
these feature values would have to be determined first, before we can decide whether the
feature is promising.

113

Thus, some of the feature query approaches presented above are only efficiently applicable
among nodes that share the same items with the same features.

To capture the notion of communication costs in a formalized way, we define the following
message types and state the costs connected with sending them from one node to another
node in a network.

Definition 4.5.1. A feature vector message is a message that contains the values of k
different features for a subset of items in D’ C D. The communication costs are assumed
to be in O(k - |D'|).

In many cases it is sufficient to transfer only the name of a feature, respectively a de-
scription of how it can be obtained from the raw data.

Definition 4.5.2. A feature name message is a message that contains the unique name
of a feature. The communication costs of transferring k feature names are assumed to
be in O(1 - k).

Finally, we will regard messages that contain only item identifiers.

Definition 4.5.3. An item id message is a message that contains a set of identifiers for
items in D’ C D. The communication costs of a message containing ids for the items in
D’ are assumed to be in O(|D’]).

Finally, to analyze the base-weight approach presented in section 4.4.3, we define a feature
weight message.

Definition 4.5.4. A feature weight message is a message that contains a vector of feature
weights. The communication costs of a message containing k weights are assumed to be
in O(k).

For the sake of simplicity, we assume that each agent faces exactly one data mining task
t € T and that each node in the network v € V' contains exactly one agent.

4.5.3 Sharing Features in a Peer-to-Peer Scenario

In this section, we propose two frameworks for feature sharing as solutions to the dis-
tributed representation problem. The first one is based on a fully distributed p2p system
and a second one is based on a client/server architecture.

In the fully distributed model, an agent sends a query for features to all its neighboring
agents. This query is then distributed within the network by range limited broadcast.
Each agent that stores feature information that is relevant to a query, responds to the
requesting agent. The requesting agent incorporates all feature information and performs
prioritized forward selection.

114

We also propose a simplified model. It is not based on a fully distributed p2p network
but on a central server that facilitates communication and acts as a cache for feature
information. The overall procedure is the same, the difference is that agents actively push
their locally stored features to the server and that all queries are sent to and responded
by the server.

Orthogonal to the network topology are the different ways of pre-selecting candidate
features that are then used for prioritized forward selection. First, this can be achieved
by any filter approach. The queries contain a set of item ids, possibly together with class
information (a label for each item id). The response to such a query can either be a
set of feature names or a matrix of feature values. Feature names can be applied if the
requesting agent is able to extract the feature values locally from the data. If this is
not possible, feature values must be sent. A third possibility for feature pre-selection are
base-weights. The request contains a base-weight feature vector. The response contains
a set of feature names. This approach is only applicable to binary classification tasks. In
this case, feature names are returned in any case, as the query does not contain any item
information. These three approaches can be applied in the p2p and in the centralized
model, which leads to six different approaches, that will be analyzed below.

In the following, we first present the client/server based framework. We then analyze
how this framework can be altered to be applicable in the fully distributed scenario.

The Feature Facilitator Approach

We first describe how features can be shared based on a central agent that collects these
features. We then discuss how this approach can be combined with the feature filtering
methods proposed in section 4.4.3.

Features can be shared easily by using a central shared data space or blackboard archi-
tecture [190]. Each agent stores all features that were selected for a data mining task in
a local database (step 1).

The agent sends these features (or the corresponding feature names) to a centralized
service called feature facilitator (step 2).

The facilitator stores the information, indicating the agent that provided them.

When an agent encounters a new data mining task, it queries the facilitator and receives
a set of features names or feature vectors (step 4).

Then, the agent uses these features in a prioritized forward selection to accomplish the
given data mining task (step 5).

Any new features created or selected during this process are stored in the local database
and are sent to the feature facilitator (step 1’). After a modification (items or features
were added or the label structure was changed), agents upload these changes only. The
feature facilitator does not perform any processing that is specific to a data mining task.
It merely collects feature information.

115

This approach can be combined with candidate selection based on a filter approach. In
this case, an agent that encounters a new data mining task sends a vector containing all
ids of corresponding items to the feature facilitator. For classification based filters, also
the class labels for these items are included. The facilitator applies the filter to rank all
features in the database with respect to the new task and selects the k best features.
These features are then returned to the agent that initiated the query, either as feature
values or as features names. This leads to the following communication costs.

Lemma 4.5.5. The accumulated message size of the filter-based feature candidate se-
lection for a set of tasks T wusing a feature facilitator is in O(|T|(|D'| + |X|)) if feature
names are shared and D' C D is the set of query items.

Proof. Each agent sends at most one item id message (possibly with class information).
The size of this message is in O(|D’|). Also, each agent receives at most one feature
name message with a size in O(|Xcana|) and sends one with size in O(|X|) to the feature
facilitator. O

Lemma 4.5.6. The accumulated message size of the filter-based feature candidate se-
lection for a set of tasks T using a feature facilitator is in O(|T| - |D'| - |X|)) if feature
vectors are shared and D' C D is the set of query items.

Proof. Each agent sends at most one item id message (possibly with class information).
The size of this message is in O(|D’|). Also, each agent receives at most one feature
vector message as result with a size in O(|Xcand| - |D']). Uploading feature vectors to the
facilitator is in O(|D’| - |X|) for each task. O

For the base weight approach, each agent uploads the selected feature set, together with
the base weight vector. The feature facilitator stores both in a central database. On
a request, an agent first calculates the base weights corresponding to ¢ and sends them
to the feature facilitator. The feature facilitator selects the k most similar tasks and
responds with the set of feature names that are used in these tasks.

Note that the feature facilitator cannot respond with feature values in this case, because
the set of items D’ C D is not known at this point.

The communication costs are in this case the following.

Lemma 4.5.7. The accumulated message size of base weight feature candidate selection
for a set of tasks T using a feature facilitator is in O(|T|-|X|) if feature names are shared.

Proof. Each agent sends at most one base weight message of size |Xg| as query. Also,
each agent receives at most one feature name message with size in O(|X|). Uploading
features to the feature facilitator consists of a base weight message and a feature name
message with size at most O(|X]). O

116

Fully Distributed Feature Sharing

The feature facilitator approach is not fully satisfying. Depending on the scenario, agents
may not be connected to a global network, such as the Internet, but only to diverse local
networks. In such scenarios, a more flexible solution is needed. We do not make strict
assumptions about the underlying network and simply assume that each agent keeps
reliable bidirectional communication channels to a set of neighbors.

Distributed feature extraction in a fully distributed setting is much more challenging
than by using a central server in several respects:

1. Search cannot be directed to one single agent but has to be performed in a dis-
tributed way. Therefore, traditional search or brokering strategies cannot be ap-
plied.

2. Redundancy cannot be controlled easily (agents partially store the same informa-
tion). This leads to potential inconsistencies and inefficiency, because the same or
similar information is returned by several agents on a request.

3. Agents join and leave the network very often. This can lead to a considerable
overhead, as agents frequently need to detect new neighbors in the network.

4. Communication is often more expensive and latency is higher, because messages
are routed through several nodes.

A straightforward way to share features would be a dissemination approach, such as used
in current p2p data mining applications. Each agent would send feature information to
each neighbor until the system (temporarily) converges. While such an approach is well
suited for some applications, such as the ones described in [41] or [193], it is not well
suited for the given setting. The basic difference is that these approaches assume that
a single global model is approximated by distributed data mining. In contrast to this
problem, we assume that we face different data mining tasks locally. This leads to two
problems. First, nodes must in this case store and forward information on items that are
not relevant to them. Second, features can be filtered at the processing node only and
not at the sender. This leads to a high communication overhead that a typical user will
not accept.

We therefore propose a request-based approach. Instead of sending queries to a central
server, agents broadcast a query to their direct neighbors (step 1).

Each agent that receives a query forwards this query to its own neighbors. A time-to-live
tag, mapeps, is used to limit the number of times a query can be forwarded. If the
network is a connected graph, then a query is received by all agents that can be reached
with at most maxyp.ps hops. All agents that receive a query evaluate it and reply to the
requesting agent directly if this is possible, or by routing the response back along the
way the query was received (step 2).

A response message from a peer has the same format as a response from the feature
facilitator. The information received from several peers is aggregated in each individual
agent (step 3).

117

An agent uses this extended feature set in a prioritized forward selection to solve the
given data mining task (step 4) and stores the features selected to solve the task locally.

Again, this algorithm can be combined with all filter-based feature candidate selection
approaches and with base feature weights.

In the filter-based approach, each agent disseminates an item id message to all agents
in the maximum range. Each agent that receives such a message responds with relevant
features, if there are any. The agent then performs prioritized forward selection. Instead
of sending the features to a facilitator, they are stored locally.

We assume that an optimal broadcast strategy is used. The following holds (see [113]).

Lemma 4.5.8. Broadcast in a synchronous network can be achieved in O(|V|sizejoqq +
|E|sizecontror), where V- denotes the nodes in the network and E the edges. sizejpqq de-
notes the size of the message content distributed with the message and sizeconirol denotes
the size of the administrative messages used to distribute the query.

Proof. see [113]. O

We assume that the control messages are negligible, and that disseminating a message
leads to an accumulated message size that is linear in the message size and the number
of receivers.

Lemma 4.5.9. The accumulated message size of the filter-based feature candidate selec-
tion for a set of tasks T using a p2p approach is in O(|T|?(|D'| + |X|)) if feature names
are shared and D' C D 1is the set of query items.

Proof. Each agent sends at most one item id message (possibly with class information)
to all other agents. The size of this message is in O(|D’|). Also, each agent receives at
most one feature name message with a size in O(|X|) from all other agents. O

Lemma 4.5.10. The accumulated message size of the filter-based feature candidate se-
lection for a set of tasks T using a p2p approach is in O(|T|?-|D’|-|X|)) if feature vectors
are shared and D' C D is the set of query items.

Proof. Each agent sends at most one item id message (possibly with class information)
to all other agents. The size of this message is in O(]D’|). Also, each agent receives at
most one feature vector message from each other agent with a size in O(|X|- |D’|). O

Base weight queries can be applied in a similar way. Again, base weights can only return
feature names, not values.

In this case, we obtain the following accumulated message sizes.

Lemma 4.5.11. The accumulated message size of base weight feature candidate selection
for a set of tasks T using a p2p approach is in O(|T|*|X|) if feature names are shared.

118

‘ Message size (facilitator) Message Size (p2p)

BW fnames | O(|T]-|X]) O(|TP-|x])
Filter+names | O(|T|(|D'| + |X])) O(|T|*(|D'| + |X1))
Filter+values | O(|T|- |D'| - |X|) O(|T)*- |D'| - |X])

Table 4.2: This table compares the message size complexity of the base weight approach
(BW) and the filter approach (Filter) in combination with sharing features
names (-+names) or feature values (+values).

Proof. Each agent sends at most one base weight message of size | Xp| as query to each
other agent. Also, each agent receives at most one feature name message with size in
O(]X|) from all other agents. O

4.5.4 Comparison of the Approaches

The approaches presented above behave quite differently concerning communication costs
and computational complexity. Tables 4.2 and 4.3 give an overview.

The approach that produces the smallest amount of communication costs is querying for
relevant features using task similarity with base feature weights. A disadvantage of the
approach is that only feature names can be returned, not feature values (at least not at
a reasonable price). The reason is that the set of query items D’ C D is not transmitted
in the query and the server would not know for which items to return feature values.
Returning feature values for all items in D is in almost all cases not a reasonable option.

For filter approaches, we have the choice of returning feature values or feature names.
The choice depends mostly on whether the feature values can be extracted at the client
node (which is the case, for instance, for features extracted from raw multimedia data,
if agents share the same items), or whether this is not possible (which is the case, for
instance, for features derived from different user annotations/tags). Returning feature
names leads to much lower communication costs in almost all cases.

Comparing the p2p and the facilitator approach, disseminating a query based on broad-
cast leads to communication costs that is squared in the number of tasks (as we assume
that each node contains one task). The computation time is the same for facilitator and
p2p approach for the base weight approach. For the filter approach, the facilitator leads
to higher computation costs, because possibly (the same) features are filtered at each
node.

4.5.5 Further Optimizations
The above algorithm is basically the same as the Gnutella algorithm for search in un-

structured networks (see e.g. [34]). A difference is that the algorithm does return feature
information directly, instead of first returning a set of search results and then querying

119

‘ Computation (facilitator) Computation (p2p)
BW tnames | O(IXg|[T]* + [Xg[ITIID?) O(Xp||T* + [X5||TI[D'F)
Filter+names | O(|T||X||D’|) O(|T?|x||D'))
Filter+values | O(|T||X||D'|) O(|T*|1x||D'))

Table 4.3: This table compares the computational complexity of the base weight approach
(BW) and the filter approach (Filter) in combination with sharing features
names (+names) or feature values (+values).

individual agents for the actual data. This is motivated by the constraint that feature
information should be made available as quickly as possible. Second, feature information
produces much smaller message sizes than encountered in usual p2p file sharing sys-
tems. Several standard techniques from the area of distributed systems can be applied
to improve this framework.

Supernodes can be used to distribute queries more efficiently. Every two agents that are
connected directly to a super node have a distance of at most three hops if all supernodes
are fully interconnected.

Other optimizations, not discussed here, but possibly relevant in practice, are compres-
sion and and topology adaptation. Compression helps to reduce the size of query and
response messages. Topology adaptation helps to restructure the network in an optimal
way [34]. Such approaches, as studied in the area of distributed systems, are beyond the
scope of this work. The same holds for the use of structured p2p networks, such as Chord
[169] or Pastry [152]. A basic limitation of such systems is that they use keys to identify
items. These keys do not allow to search for items content based (e.g. by substring).
However, such approaches could be easily combined with the methods proposed here.

4.6 Empirical Results

4.6.1 Overview

In the following, the methods proposed above will be evaluated using different criteria.
To guide the evaluation, we derive several assertions from the first part of this chapter,
that are then empirically validated. The first set of assertions corresponds to the general
framework of the distributed representation problem and the prioritized forward selection
(PFS) algorithm:

(P1) In general, there is a conflict between the overall accuracy and the size of
the accumulated feature set. Thus, sacrificing some accuracy can lower the
overall number of features.

(P2) PF'S is able to reduce the size of the accumulated feature set.

120

(P3) PFS leads to a faster increase in accuracy compared to traditional forward
selection. This is essentially means that if the algorithm is invoked in a best
effort manner, good results are achieved faster.

(P4) The number of times the inner learning and evaluation procedure is invoked
is smaller for PF'S than for traditional forward selection. This in general also
entails that the running time is smaller in this case.

(P5) The above effects become stronger with an increasing amount of irrelevant
and alternative features.

These properties concern the basic version of PFS. A second set of assertions can be posed
for the pre-selection of candidate features by a filter approach and by task similarity.

(F1) Pre-selecting features based on a filter approach reduces the number of invo-
cation of the inner learning and evaluation procedure and leads to a faster
increase in accuracy.

(F2) Pre-selecting features using base-weight task similarity reduces the number
of invocation of the inner learning and evaluation procedure and leads to a
faster increase in accuracy.

(F3) The performance and accuracy of base-weight task similarity does not de-
crease in the presence of many alternative and irrelevant features.

The last set of properties concerns the distributed algorithms and their properties:

(D1) Feature pre-selection by filters reduces the amount of communication costs
compared to actively disseminating features.

(D2) Feature pre-selection by task similarity reduces the amount of communication
costs compared to actively disseminating features and over pre-selection by
filters.

In the following, the experimental setup used to validate these assertions will be de-
scribed.

4.6.2 Experimental Setup

For all datasets, the evaluation procedure is the following. The tasks in a data set
are solved one by one in a random order. To solve them, traditional forward selection,
prioritized forward selection and prioritized forward selection with feature pre-selection
is used.

Each feature set is evaluated by applying 10-fold stratified cross-validation to the corre-
sponding task. As learning algorithm, nearest neighbor is used. This choice is motivated
by the fact that nearest neighbor can handle multi-class problems very easily and does
not perform implicit feature selection.

121

The following properties were measured for each set of tasks:

e The average accuracy over all tasks
e The number of times the inner evaluation procedure was invoked
e The size of the accumulated feature set

e The average increase in performance depending on the number of steps performed
in the selection procedure

The last property yields a graph, with the number of steps on the x-axis and the current
best accuracy on the y-axis. This graph is created by first creating a graph for each task
in a set of tasks. Then these graphs are averaged.

For the evaluation of the distributed algorithms, an additional criterion was used, namely
the accumulated message size. We assume that each task is assigned to exactly one agent
or node in a network. This network is assumed to be connected such that each agents
can exchange messages with each other agent. For the running time an abstract value
was used instead of actual message sizes, to avoid effects of operating system or network
type, which are not in the focus of this work. Therefore, a value of 1 was amounted for
transferring a single, atomar value. The cost for a vector of values was set correspondingly
equal to the length of the vector. The transfer of a feature names/feature construction
description was set to 10. This reflects that unique feature names and construction
descriptions are usually much larger than atomar values. All administrative messages
were neglected. Especially, the cost for a full broadcast is assumed to be the size of the
broadcasted message multiplied by the number of receivers.

All experiments were performed with Rapid Miner 4.0 and the distributed data mining
simulator, both of which can be obtained as open source software'

The following methods were used in the evaluation:

1. Traditional Forward Selection
For traditional forward selection, the features are arranged in an arbitrary total
order.

2. Prioritized Forward Selection, as proposed above
The parameter € was varied. Below, this value is always indicated explicitly.

3. Prioritized Forward Selection with a filter-based approach
The one-attribute rule learner was used [77] as filter method. This learner generates
a rule from each attribute and scores them according to their expected performance.
The threshold for feature selection was set to zero. Thus only features were omitted
for which a single rule performed worse than always choosing the majority class
(the one with the most examples).

4. Prioritized Forward Selection with task-similarity
The base weight approach above was applied by using a random subset of the

"http://www.rapid-i.de and http://www-ai.cs.uni-dortmund.de/SOFTWARE/ddm _simulator

122

tasks examples classes feat. rel. feat. funct. ref.

synthl 5 93-108 2 7 4 1
synth2 5 90-111 2 20 4 1
synth3 10 86 -112 2 15 10 3
synth4 10 87-116 2 30 10 3
garageband 39 16-674 2-9 49 7 (78]
register 9 92-777 2 26 7 [189]

Table 4.4: Overview of the datasets: the number of examples for each task (examples),
the number of different classes for the tasks (classes), the number of features
(feat.), the number of relevant features (rel. feat.), the number of underlying
generic functions (funct.) and a reference of the datasets (ref.). The number
of relevant features and the number of generative functions are only known
for the synthetic datasets.

available features. The task similarity threshold was optimized semi-automatically
by analyzing the distribution of task similarity values. It is indicated below for
each dataset.

These algorithms were combined with the two feature sharing strategies in distributed
systems described above:

1. Feature facilitator
Each agent is assumed to send the features it selected to a centralized data space.
Subsequent agents query this centralized data space for features using an empty
query, for simple PFS, or corresponding queries for task-similarity and filter-based
pre-selection.

2. Fully distributed feature sharing
For simple PFS, we assume that each agent disseminates all features it selected for
a task to all other agents. For task-similarity and for filter-based pre-selection, the
methods described in section 4.5.3 are applied.

The algorithms are thus applied always in two variants: in combination with the feature
facilitator and with the fully distributed feature sharing.

A combination of synthetic and real datasets is used for evaluation. This allows to
validate the applicability of the proposed methods in real-world applications and to
analyze the influence of irrelevant and alternative features.

The most important properties of the individual datasets are described in table 4.4.

o Synthetic Dataset I (synthl)
This dataset was created by the following procedure. First, an arbitrary, multidi-
mensional, polynomial function was chosen. This function was applied to 200 exam-
ples with random attribute values, each of which based on a Gaussian-distribution

123

with zero mean and standard deviation one. Of 6 attributes, 4 are relevant to the
function, two are irrelevant. Using a threshold, a binary label for each example was
inferred. This threshold was chosen such that the amount of positive and negative
examples was about equal. Then, each individual data set (each task) was created
by first selecting a random subset of examples. The probability of selecting an
example was set to 0.5. For each data set, a noise term was applied to the label
attribute by flipping a label value with probability 0.05. Five tasks were generated
in this way.

Synthetic Dataset 11 (synth2)

For the second dataset, the same procedure was used as for the first one, but 4
irrelevant and 3 alternative features were added. An alternative feature is generated
by first choosing a random feature that was already generated and then applying
additively a Gaussian noise term to the feature value with zero mean and standard
deviation 0.1.

Synthetic Dataset 111 (synthS3)

For the third dataset, the same procedure was applied as for the first one. However,
instead of using a single function, three generative functions were used, depending
on different subsets of 10 attributes. Of these 10 attributes, 9 were relevant for at
least one of the three generative functions. There were no alternative attributes.
Datasets (tasks) are generated by first randomly choosing a generative function
and then applying the same procedure as for the first dataset.

Synthetic Dataset IV (synth4)
The forth data set is generated just as the third one, but there were 4 irrelevant
and 3 alternative features added.

The two real-world datasets are the following:

124

e The Garage Band Benchmark Dataset (garageband)

This dataset contains the 39 tag structures on 1886 audio files. Each tag structure
is a hierarchical taxonomy in which each inner node or leaf node may contain
references to a subset of the underlying audio files. These tag structures reflect the
ways in which the students organized their files. Each audio file is described by
a set of 49 features. These features were extracted from the raw wave data using
the method described in [119] and were shown to work well in a wide variety of
applications. For the given experiments, only the top level of each taxonomy was
used. This leads to 39 tasks. The number of classes is, in this case, not two, as for
the synthetic datasets, but varies between 2 and 9. The number of examples varies
from 5 to 200. A histogram of dataset sizes is depicted in figure 4.6.1. The dataset
is publicly available. Details can be found in [78].

The Register Classification Dataset (register)

This dataset contains 9 different tasks. Each tasks corresponds to a single musical
instrument and contains examples for notes played in alto and bass. The aim is
to separate high and low notes for each instruments without taking the pitch into

ooooo

zzzzz

(a) garageband (b) register

Figure 4.6.1: This plot shows the distribution of the number of examples per task for the
garageband and for the register dataset. The synthetic datasets contain
about the same number of examples for each task by construction.

avg. acc. Ffeatures Fcycles

FS 0.79 5 127
PFS € =0.0 0.79 5 91
PFS task sim ¢ = 0.0 0.79 5 91
PF'S filter e = 0.0 0.78 6 83

Table 4.5: Feature sharing results for synthl

account. All notes are stored as wave forms. From these waveforms 26 features
were extracted. The distribution of the number of examples to tasks is depicted in
figure 4.6.1. The dataset is described in detail in [189] and can be obtained from
the corresponding authors.

All methods were applied to all six datasets, with the single exception of the garageband
dataset to which the base weight approach could not be applied, because it contains more
than two classes in general.

4.6.3 Results

In the following, first the results for accuracy, number of cycles and number of features
are presented. Then the results for communication costs concerning the two models of
distributed feature sharing are discussed.

Table 4.5 to table 4.10 show the results for each of the six datasets concerning average
accuracy, number of features and number of inner cycles. Figure 4.6.2 shows the averaged
performance curves for all six datasets.

We can see the following. Traditional forward selection produces the largest sets of
aggregated features over all six datasets. Also, the number of invocations of the inner
learning and evaluation procedure was the highest among all methods on all datasets.
Simple PFS selects on five of six datasets less features than traditional forward selection.

125

126

avg. acc. Ftfeatures cycles

FS 0.79 6 284
PFS € =0.05 0.79 4 179
PFS task sim € = 0.05 0.79 4 179
PF'S filter e = 0.05 0.72 4 176

Table 4.6: Feature sharing results for synth2

avg. acc. #features cycles

FS 0.76 15 789
PES e=0.0 0.74 9 493
PFS task sim ¢ = 0.02 0.78 10 396
PFS filter e = 0.02 0.74 8 432

Table 4.7: Feature sharing results for synth3

avg. acc. #features cycles

FS 0.79 24 1863
PFS € =0.0 0.79 20 1533
PF'S task sim € = 0.03 0.79 15 966
PFS filter e = 0.0 0.76 12 952

Table 4.8: Feature sharing results for synth4

avg. acc. #features cycles

FS 0.61 43 7302
PFS ¢=0.0 0.59 27 3009
PFS task sim - - -
PFS filter € = 0.02 0.58 23 3767

Table 4.9: Feature sharing results for garageband

avg. acc. #features cycles

FS 0.96 16 742
PFS e=0.0 0.96 11 580
PFS task sim € = 0.01 0.96 6 482
PFS filter e = 0.0 0.96 13 071

Table 4.10: Feature sharing results for register

The number of cycles is always smaller. Concerning accuracy, PFS mostly performs
equally well or only slightly worse. This supports propositions (P2) and (P4). In figure
4.6.2 we see that the increase in performance is much faster for PFS than for traditional
forward selection, just as claimed in (P3). Later tasks can exploit the work done on
preceding tasks by directly focusing on promising features. This works even if the tasks
are heterogeneous. With an increasing number of alternative and irrelevant features, the
difference between PFS and traditional forward selection may become even stronger, as
can be seen on the dataset synth2.

Pre-selecting features with a filter approach mostly leads to small feature sets and fewer
invocations of the inner learning and evaluation procedure. This comes, however, at
the price of a reduced accuracy on almost all datasets. The reason for this behavior is
the same as the reason why simple filter approaches in general lead to reduced accuracy
compared with wrappers, namely that feature interactions are not taken into account.
Somewhat surprising is the fact that on several datasets, simple PFS performed better
than PFS with pre-selection. By greedily selecting only few features in the first step
of PFS, more features have to be selected in the second step, which may lead a higher
number of features and decreased accuracy. This supports that assertion (F1) does not
hold.

While pre-selecting features with a filter approach suffers from the limitation of ignoring
feature interactions, this is not the case for pre-selection based on task similarity. In this
case, features are rather selected in blocks of features that were selected together. This
is also reflected in the results. Using pre-selection based on task similarity never leads
to a lower accuracy than simple PFS. Indeed, it may lead to higher accuracy. The same
holds for the number of features and the number of invocations of the inner learning and
evaluation procedure. The reason is that PFS, just as traditional forward selection, works
greedily. This may lead to sub-optimal solutions, because there is no ,,backtracking” step.
By selecting promising features in blocs, the search for optimal features is guided in a
more effective way. This supports claim (F2). Alternative and irrelevant features do not
have a negative effect on this result (see datasets synth2 and synth4), which supports
assertion (F3).

A critical step for the use of task similarity is to adjust the task similarity threshold. In
this work, this was done semi-automatically based on the similarity histogram. Figure
4.6.3 shows this histogram for dataset synth3. There is a clear gap between 2.3 and
3.5, which is then the choice for an optimal split point. In this case, the threshold was
therefore chosen to 3.

Another parameter that plays an important role is €. This parameter can be used to
trade-off accuracy and the size of the aggregated feature set. Figure 4.6.4 shows this
exemplarily for the dataset garageband. This supports claim (P1), namely that the size
of the accumulated feature set and the overall accuracy are in conflict to each other.

In a second step, the communication costs produced by the feature facilitator and by the
p2p feature sharing approach were analyzed. Table 4.11 and table 4.12 show the results.

127

Figure 4.6.2: The development of the accuracy in the course of feature selection. PFS
helps to increase the accuracy quickly. Later, traditional feature selection
usually leads to a slightly better final accuracy, because PFS additionally
tries to reduce the size of the accumulated feature set, sacrificing some

128

avg. accuracy

avg. accuracy

avg. accuracy

0.8
R
P
078 o
g goed |
0.76 ookl
. =
074 Fp
7
ok |
0.72 ; 1
I
07 Lpa !
0.68 % /
Hpt |
P
0.66 f
c
o6a it Forward Selection —+—
’ WJ PFS filter -
062 _ PFStasksim =
’ 5 10 15 20 25 30 35 40 45 50
steps
(a) synthl
08
oea DDDD ee
075 RE8ET e
vx*xv—x%k%j/’f/‘—;
I I
0.7 e - W - ettt
o x x
065 bt ard,
EEs i
21" x
06 %
0.5 Forward Selection ——
[
PFS filter ----x--
PFS task sim &
05 . n |
5 10 15 20 25 30 35 40 45 50
steps
(c) synth3
0.96
wpertd)
o HHHK
0.95 =5
[T ress
094 /o
[/ ¥ia
0.93 %
¥
0.92
001 Forward Seiection
O L L e
PFS filter -
PFS task sim &
0.9 . L L
5 10 15 20 25 30 35 40 45 50
steps

(e) register

accuracy.

avg. accuracy

avg. accuracy

avg. accuracy

il

Forward Selection —+—

PFS filter -~
PFS le‘lsk sim @

25 40 45 50

steps

(b) synth2

15 20 30 35

Forward Selection ——
PF!

PFS filter ---x--
, PFStasksim =
10 20 30 40 50 60 70 80 920 100
steps
(d) synth4
F——
e
el
T
P
A
Pl
]
1
Forward Selection —— |
. PES filter T
20 40 60 80 100 120 140 160 180 200
steps

(f) garageband

1.50E1

1.00E1

5.00E0

.00E
° 000.%0EO 1.00E0 2.00E0 5.00E0 7.00E0

Figure 4.6.3: The histogram of task similarities for synth3. This graph can be used as a
way to find a suitable task similarity threshold.

0.6

0.59

0.58

0.57

avg. accuracy

0.56

0.55

0.54

0.53

10 15 20 25 30 35 40 45
num. features

Figure 4.6.4: A plot of Pareto optimal points for the garageband dataset that shows that
accuracy and the number of features in the accumulated feature set can be
balanced using the parameter e.

synthl synth2 synth3 synth4 garageband register

FS 0 0 0 0 0 0
PFS 400 220 1420 2930 840 8400
PF'S task sim 406 226 1045 1560 314 -
PF'S filter 923 727 3348 3233 3293 11584

Table 4.11: Communication costs of the different approaches for the feature facilitator
case. The parameter settings are the same as indicated above.

129

synthl synth2 synth3 synth4 garageband register

FS 0 0 0 0 0 0
PFS 410 200 3050 4830 1270 20380
PF'S task sim 500 290 2515 4170 1046 -
PF'S filter 1349 1212 12336 13232 7364 110848

Table 4.12: Communication costs of the different approaches for the p2p case. The
parameter settings are the same as indicated above.

We can see the following. In general, costs are much higher for the p2p approach. This is
inherent to this approach, because usually all agents have to communicate with all other
agents, such that the communication costs increase non-linearly with the number of
tasks (which is here assumed to be the number of agents). Communication costs are also
higher for datasets that involve more attributes, which is also inherent to the approach.
More precisely, the costs increase with the number of selected attributes. These are,
for instance, less for synth2 than for synthl. This explains why synth2 requires less
communication costs than synthl, although synthl contains fewer attributes.

The filter approach produces very high communication costs, because values have to be
transferred for each example. Pre-selection based on task-similarity, on the other hand,
produces very few costs. This is because the overhead of broadcasting a single vector
(the base weights) is quite small. On the other hand, only the features of a subset of
agents have to be transferred. This approach is only slightly worse compared to PFS on
synthl and synth2, because in these cases, all other tasks are relevant, such that there is
no advantage over simple PFS.

Based on these results, (D1) is supported, however, in case that all other tasks are
relevant there will be no savings. (D2) is not supported by these results. Filter-based
pre-selection leads to higher costs than actively disseminating features in almost all cases.

4.6.4 Summary

To summarize the evaluation, we can say that if the total number of features and the time
in which an optimal feature set is found play a role, then PFS should be used instead
of traditional forward selection. The performance of PFS can be further increased by
pre-selecting features using task-similarity. Especially in fully distributed settings, this
may lead to a substantial decrease of communication costs.

4.7 Conclusion

Data representation is a key to successful and accurate data mining. In some special cases,
there is a representation that works for a wide range of tasks in a domain. An example
is text classification, where tf/idf weighting yields high accuracy for many different tasks

130

[85]. In most application areas, this is not the case. Mostly, optimal features depend
on the characteristics of a specific task and a specialized representation has be found for
each task individually in order to increase the accuracy. Still, one can often expect that
some tasks in a domain are related to each other.

Based on existing research on the feature extraction problem for classification, a gener-
alization was given, that treats the data mining task as black-box, assuming only that
it is possible to asses the accuracy by which this task is achieved. This extension makes
feature extraction applicable not only to classification but to other tasks as well. Notions,
such as feature relevance or redundancy, were generalized accordingly.

In a next step, the case of several learning tasks was analyzed. Again, the notion of
feature relevance and redundancy were generalized. Then, the problem of finding an
optimal and minimal set of feature sets for several tasks was formulated. Features for
each task should be selected in such a way that the sum of accuracies is maximized while
the union of the features used for each task is as small as possible. It was shown that this
problem is solvable but in the worst case exponential in the number of potential features.
Furthermore, if we assume constraints on the order in which tasks are solved, then we
can show that there is no algorithm that can guarantee to yield an optimal solution.

Based on this analysis, a heuristic algorithm was proposed, called prioritized forward
selection. This algorithm first selects features that were already selected by other tasks
and adds novel features only if they lead to a considerable improvement. This algorithm
serves two purposes. First, it helps to find a minimal set of feature sets, second it can
make the process of feature extraction more efficient, because features that are known to
work well for other tasks are tried early in the extraction process.

The basic prioritized forward selection algorithm was optimized by pre-selecting only
relevant features or only features from similar data mining tasks. To this end, a similarity
measure for data mining tasks was developed, that allows for efficient implementation.

Finally, it was shown how the proposed methods can be implemented in a p2p net-
work. The first approach to do so is based on a central node, called feature facilitator,
that collects feature information from the individual nodes. The second approach is
fully distributed and based on range limited broadcast. Both approaches were analyzed
concerning computational effort and network traffic. They were empirically compared
to active information dissemination, which is the current state-of-the art in p2p data
mining.

Distributed feature extraction is directly related to collaborative structuring. In both
cases, the representation of items is essential, and, in both cases, we must assume that
this representation is different for each user or each task. Still, we would like to share
information among tasks and users. Therefore, this chapter provides the theoretical
and practical foundation for implementing collaborative structuring in the subsequent
chapters.

131

132

5 Social Annotation and Feature
Extraction

5.1 Introduction

In the last chapter, we analyzed the general problem of finding an optimal representa-
tion for several, partially related data mining tasks. In this chapter, we will focus more
specifically on a special kind of features, namely social annotations. Most current web
based information systems allow users to annotate items with arbitrary textual descrip-
tions, called tags. These tags complement structured meta data. A system for audio
organization, for instance, would usually store artist names and song titles as part of the
meta data. Users could then additionally assign tags, such as ,rock”, ,party*, ,smooth*
etc., to the audio items. These tags can be highly personal and situation dependent. The
simplicity to add tags in an ad hoc manner, without having to obey an existing ontology,
makes tagging systems extremely successful.

While tagging is very attractive for its simplicity, tags quickly become chaotic and hard
to manage as the size of an information collection and the number of tags grow. This
motivates the development of new formalisms and intelligent methods that help users to
create, organize and maintain tag structures in a semi-automatic way. As we will see
below, this can best be achieved by exploiting tags and tag structures created by other
users. This approach is denoted as collaborative structuring in this work. This term is
derived from collaborative filtering, just that collaborative structuring does not focus on
recommending items but on recommending structure on items.

In the following, we will first give a short introduction to tagging and discuss why tagging
offers some unique advantages from a user point of view (Section 5.2). We will then
discuss the limitations of current tagging formalisms, and present an extended formalism,
called aspect-based tagging (Section 5.3). We will argue that social annotations can be
seen as features extracted by users and discuss how social annotations can be transformed
into sets of binary or continuous features (Section 5.4). These features could be used in
any data mining task, just as described in more general in chapter 4. For the case of social
annotations, we identify two especially interesting tasks. The first one is to assign existing
tags to new items automatically, based on supervised classification (Section 5.5). The
second task is to structure items, not sufficiently structured yet, in an unsupervised way
(Section 5.6). As will be shown, this problem can be formulated as a variant of cluster
ensembles described in section 1.4.6. Both methods can be applied in a peer-to-peer
network as specializations of the approach proposed in chapter 4 and show superior results

133

to using only content-based features. We will, however, argue that defining clustering in
the traditional way is still not sufficient to support social annotations. Therefore, we will
give a novel definition of the clustering problem, based on existing social annotations in
chapter 6. The chapter is concluded by an empirical evaluation of the classification and
the clustering approach (Section 5.7) and a summary (Section 5.8).

5.2 Social Bookmarking vs. the Semantic Web

Both collaborative filtering and link analysis are limited in their ability to capture se-
mantic properties of underlying resources. There are two major approaches to overcome
this limitation, the semantic web and web 2.0 based tagging systems.

5.2.1 Social Bookmarking Systems

Social bookmarking is an approach that allows users to semantically annotate items in
a very loosely coupled way. The idea is that users tag items, such as webpages or music,
with arbitrary chosen textual descriptions. These descriptions might be highly personal,
such as ,music for work“. Tags are globally assigned to items, such that other users can
see them and exploit them to search for specific items or to browse them. Also, items
are shown in conjunction with all tags that were assigned to them. In this way, a user
can survey under which tags an item was classified by other users. Social bookmarking
systems are widely used for two reasons. The first one is rather selfish. Users want
to organize their own item collection in a convenient and intuitive way on the Internet
(across different hardware or software platforms). The second one is benevolent. Users
want to contribute to the common knowledge about web resources in order to help other
users to find interesting information. Often, both processes are mixed up in a system,
or even in the tags of a single user [70]. It is, for instance, quite usual that tags reflect
rather personal concept, e.g. ,music_for michael‘. Such tags are not of direct value for
other users. If we apply corresponding data mining methods, still such tags can be used
to support other users. This will be discussed below.

Many systems have emerged since the first tagging systems became popular around 2004.
Currently the most popular system is del.icio.us!. It allows users to save their bookmarks
on a central server, making them available from any Internet enabled computer. The main
feature of the system is, however, the ability to annotate links with tags and descriptions.
Both can be chosen arbitrarily. Entering tags is supported by an auto completion feature,
based on tags that have already been entered. The system allows to classify links as public
or private. The default is public, thus other users can see all tags and notes on a link.
Users can search the global set of tags for keywords or, alternatively, just their personal
collection of tags. Del-icio.us also allows users to directly recommend links to other users.
Furthermore, users can be grouped into networks. It is then possible to share bookmarks

"http://www.del.icio.us

134

computer correlation critical crvstal: denstty
diffusion disorder disordered distribution dana gynamic

dynamical dynamics energy entropy

equation evolution easct field flow fuctustion
fluctuations s formation factwe function
functionsl glass glasses granular gou growth
invited ising lattice liquid e method

model models molecular montecarlo

network NEtWOIKS rs= non-equilibrium
nonequilibrium noninear optimization ~ pattern

percolation phase phenomena polymer

Figure 5.2.1: Tag clouds are used to visualize tags. The bigger the font, the more users
assigned this tag.

only with the members of this group. Another interesting feature is a subscription and
notification service. Users can subscribe for bookmarks in a network but also for very
specific bookmarks, e.g. all links tagged with ,kdd“ by a colleague. Del.icio.us also offers
a back-end API for access by external programs, making it very convenient to link it to
other applications.

Many other social bookmarking systems build upon this basic functionality. They do,
however, provide some additional features. The Wink? system, for instance, aggregates
results from several external sources in a mash-up like way. This usually leads to search
results that are better than the results found by only searching tags. Furthermore,
Wink uses a relevance feedback mechanism, allowing users to rate results. On future
searches for the same tags, results are ranked according to this feedback. This approach
is sometimes referred to as ,PeopleRank".

The Furl® system allows users to edit additional meta information on links, such as
author, source, etc. Also, it allows users to leave comments on other peoples bookmarks.
This can be convenient if the user wants to annotate links with information of the kind
Lif you liked this, be sure to take a look at that page too“. Also, Furl provides a page
cache, such that there is copy of the original page. This can be very helpful for pages
that change quickly. Finally, Furl offers to export bookmarks to different formats, e.g.
for local backup.

While the systems mentioned so far focus on managing and searching bookmarks, Stum-

http://wink.com
Shttp:/ /www.furl.net

135

bleUpon? directly recommends web pages to the user, based on the tags the user entered
and on explicit categories provided through a preferences dialog. Items are categorized
by their type, e.g. audio, video, etc. They can also be filtered, e.g. by criteria, such as
how the user found the page, whether it is a page the user liked, etc.

Other systems provide even more features, such as thumbnails of pages and support
for blogs. One feature that is missing in many systems is the ability to create folders.
In a recent Wired review of social bookmarking systems®, this is found one of the most
unsatisfying points. An exception is the Spurl® system, allowing for the creation of simple
categories. An overview on the functionality of different social bookmarking systems can
be found on the social bookmarks’ charts”.

Besides tagging bookmarks, there are systems that support sharing and annotating mul-
timedia data. Examples are flickt® for sharing images and YouTube? for sharing video
clips. They differ from other tagging systems in that the provider of the content is usually
the same person as the one that creates the (initial) tags. This focus on very personal
content also leads to more personal description of the content in terms of tags.

From a point of view of information structuring and retrieval, tags are not a new concept.
In digital libraries, for instance, documents can often be annotated by ,open keywords*
in addition to a predefined classification scheme.

Indeed, on a formal level, a tag is nothing more than a concept ¢ € C such that ext(c)
contains exactly all items that were tagged with c. The set of all tags C' may contain
tags that overlap in any possible way. Therefore, tagging is more flexible than partitions
or taxonomies.

The major difference to traditional approaches is the availability of tagging systems, al-
lowing a wide range of users to tag items in a very convenient way. The ease of use and
the ability to create arbitrary descriptions without the need of explicit coordination with
other users make them very appealing for ,ad hoc* use. On the other hand, social struc-
ture is made explicit, such that users can see what tags other users assigned, subscribe
for tags, form user groups, etc. The simplicity and the social aspects make the rather
simple concept of tags a powerful tool for collaborative information organization.

5.2.2 Key Advantages of Social Bookmarking Systems

The most important approach to a formal representation of Internet resources is the
semantic web [20]. It is mostly based on Description Logics, as described in section
1.5. The semantic web has shown to be not well suited as representation mechanism for

“http://www.stumbleupon.com

Shttp://wired.com /news/technology /Internet /0,72070-0.html

Shttp:/ /www.spurl.net

"http:/ /www.roxomatic.de/archives/985/Social-bookmarks-review-version-3.5
Shttp://www.flickr.com

“http:/ /www.youtube.com

136

collaborative information organization. It is quite complex and requires explicit coor-
dination among users. The co-existence of views and emerging views is supported only
indirectly. Also, because the representation mechanism is quite powerful, operations may
become inefficient. It is based on logical entailments that are not always comprehensible
for regular users.

Furthermore, many operations provided by DL are not fully relevant for information
organization. First, the representation of complex relationships is not of essential im-
portance. Regular users are not capable of dealing with such complex relationships (the
large majority of Google users never even apply simple logical operators in their search
requests). Also, the domains in question do often not contain complex relations. Most
properties can be simply expressed by pairs of attribute and value (artist, year of publi-
cation, ...). Furthermore, sophisticated logical inference is often not useful because most
users express their knowledge rather ad hoc and do not accept logical entailment of what
they expressed. We do not claim, however, that these properties are irrelevant in general,
we only claim that they are not essential for user-driven web information organization.

In the following, we will argue why social bookmarking systems are very well-suited
for collaborative media organization, which in turn also explains their success in this
application domain.

We can identify the following key advantages of social bookmarking systems over logic-
based approaches:

1. No explicit coordination
The growth of the Internet can be attributed largely to its loosely-coupled character.
If, for instance, every owner of a site would have to agree that someone else links
to her site, the Internet would probably not have grown as fast as it did, nor would
approaches like link analysis be as powerful as they are. Tags can be assigned, just
as weblinks, without any coordination with other users or existing tags.

2. Co-existence of different views

Often, users do not agree on how to structure a certain set of items. Moreover, a
single user may structure the same set of items using different aspects. It is therefore
essential that different representations of the same items may co-exist. In the
extreme, each user should be allowed to create views completely independently of
all other users. This allows for bottom-up innovation, because each user is capable
of creating novel views. Which views become popular should emerge automatically,
just like popular web pages emerge automatically if many other pages link to them.
Tagging supports arbitrary views on item collections by not constraining the tags
users choose.

3. Support for data mining and mediation
While using loosely coupled representations is very attractive, the question is how
to derive useful information from such heterogeneous views and to allow users to
profit from what other users did. A representation mechanism should therefore
allow for the successful application of data mining and mediation methods. Tags

137

can be incorporated into data mining easily. This will be shown in the remainder
of this chapter.

4. Efficiency
Relevant operations must be executable efficiently. For information management,
the most important operations are the retrieval of items, basic consistency checks
and the application of data mining methods, such as automatic classification. Tags
are very efficient to manage, even if their number grows to several billions. This is
not true for DL based mechanisms.

5. Ubiquitous environments
The mechanism must be applicable in highly distributed environments. It must not
expect that all nodes are connected to the network all the time. Also, distributed
data mining and retrieval methods must be applicable in a way that keeps the
overall effort in communication time and cost low, because information is often
organized on computationally poor devices connected by loosely-coupled networks
(such as p2p or ad hoc network).

Still, tagging approaches must be extended to make them maximally useful. First, users
should be supported in creating and maintaining tag structures. Tagging some items is
usually fun, but tagging large sets of items can be rather labour intensive. Automatic
support includes, for instance, tagging new items automatically with user defined tags
or with tags obtained from other users. This will be described in section 5.5 and section
5.6. Another extension, helping users to organize large tag collections, is to allow users
to arrange tags into groups of tags. This approach will be described in the next section.

5.3 Aspect-Based Tagging

A major drawback of tagging as a formalism is that tags tend to become rather chaotic
and hard to manage as the number of tags and the number of items increases. We
therefore describe two extensions to the basic tagging formalism that help to make tags
more manageable:

1. We allow tags to be arranged hierarchically. Such a hierarchical structure enables
users to overview even large numbers of tags without getting lost.

2. We allow to group tags into sets of tags called aspects. An aspect could, for instance,
be ,genre” for audio organization. Tags can be overviewed much easier if they are
filtered by individual aspects. Also data mining methods profit from this concept
(as will be shown below).

We denote the resulting mechanism as aspect-based tagging. Figure 5.3.1 depicts the

differences between both approaches. A formal description of aspect based tagging will

be given in the next section'?.

ORecently, some social bookmarking system came up with similar ideas. del.icio.us
(http://www.del.icio.us) supports, for instance, tags of tags, that are similar to aspects. Some sys-

138

Driving indie hard
pop rock working

pop rock

driving working

hard indie

Figure 5.3.1: Aspect-based tagging allows to structure tags hierarchically into different
aspects. This makes them easier to overview and organize.

5.3.1 (Personal-) Hierarchical Tag Structures

As described in section 1.2, we assume a set of items D. These items can be annotated by
features and can be grouped into item collections. Also, we assumed a globally uniquely
identified set of users. Users assign tags to items in order to structure them. These tags
are arbitrary textual descriptions. Furthermore, users assign exactly one aspect to each
tag (see figure 5.3.1). In the following, we will formalize these notions and show how
they relate to traditional description logics and current web 2.0 tagging applications.

All tags are assumed to be private, thus even if two tags have the same syntactic name,
they are assumed to be different if they are owned by different users.

Definition 5.3.1. A tag is a uniquely identified term that is owned by exactly one user.
The set of all possible tags is denoted as C. At each point in time, we assume a finite set
of actually existing tags C' C C.

A tag is assigned to a set of items by a tag mapping function.

Definition 5.3.2. A tag mapping function ext assigns a set of items to a tag c € C":

ext: C — 2P

Beside assigning tags, users are allowed to create hierarchical relations among tags.

Definition 5.3.3. A sub-tag relation is a transitive, strict partial ordering

<CCxC

where ¢ < ¢ denotes, that ¢’ is a super-tag of ¢ (and ¢ is a sub-tag of).

For tags that are in subset relation, the following additional conditions must hold.

tems, such as bibsonomy (http://www.bibsonomy.org), introduced hierarchical relations.

139

Condition 5.3.4. All items that belong to a sub-tag must be assigned to the super-tag as
well.

Ve,d € C e < = ext(c) Cext(d)

Note that the other direction must not hold, in general. Thus, the fact that two extensions
are in subset relation does not yet entail that they are in sub-tag relation. Note that this
assumption is weaker than the one made for general taxonomies in chapter 1.

We also assume a set of aspects. For these aspects, the same holds as for tags. They
are assumed to be private. If two aspects share the same name, they are still treated
distinctly if they are owned by two different users.

Definition 5.3.5. An aspect is an uniquely identified entity that is assigned to exactly
one user. The set of all aspects is denoted as 2. At each point in time, we assume a
finite set of actually existing aspects A C 2.

Each tag is assigned to exactly one aspect by an aspect mapping function.

Definition 5.3.6. An aspect mapping function is a function that assigns each tag c € C
to exactly one aspect in A:

asp:C — A
As an inverse to this function we define

C(a) ={c € Clasp(c) = a}
thus the set of all tags belonging to a given aspect.

We require tags to fulfill some additional conditions.

Condition 5.3.7. Given an aspect a € A, the tags belonging to this aspect, C'(a), must
form a tree concerning the sub-tag relation.

Thus, all tag structures must form tag trees.

Condition 5.3.8. There may not be any cross links among tags belonging to different
aspects.

Ve, € C e < = asp(c) = asp(c)
Thus, only such subset relations among tags are allowed that belong to the same aspect.

This condition has an important implication. Relations among tags of different users are
not allowed, aspects are private to users. This condition is essential to ensure the loosely

140

coupled character of the approach. Coupling tags of different users would entail coupling
network nodes, which leads to severe problems as pointed out above.

Aspects partition the set of tags C into several sets of tags. Given the above restrictions,
each such set forms a tree of tags under the sub-tag relation. We will refer to these trees
as tag trees or tag structures. An individual tag in such a tree is denoted as tag node.
From the above it is obvious that each tag structure belongs to exactly one user. A user
may, however, own more than one tag structure.

Below, we will need still another concept, the one of a tag tree covering an item.

Definition 5.3.9. An aspect or tag structure a € A covers an item x € D if any tag
node in the tag tree covers the item

xCa=3ceC(a):x € ext(c)

Then we can define the set S, C D, as S, = {z € D|x C a}, thus the set of all items
covered by an aspect.

As each tag tree must have a root node, this is equivalent to saying that the item must
be assigned to the root node of a tag tree.

A stricter restriction is that if two tags have a common predecessor (are in the same tag
structure) and overlap (there are items assigned to both) they must be in relation to
each other.

Condition 5.3.10. Tag nodes ¢, ¢’ € C may not overlap, unless they are in sub-tag relation:

Ve,d € C:asp(c) = asp(d) Next(c) Next(d) #0 = (c <)V (d <¢)

This condition expresses that if two tags belonging to the same aspect have overlapping
extensions, they must be in relation to each other. This is not a severe restriction,
because users are allowed to create arbitrary many aspects.

5.3.2 Classification Functions

Based on the above assumptions and conditions, we can write tag structures in another
way, that will be more convenient for the presentation of data mining algorithms in the
second part of this chapter. Instead of considering tags that are assigned to aspects,
we now consider aspects built up by tags. All tags belonging to an aspect form a tree
structure. We can now rewrite an aspect as classification function.

Definition 5.3.11. A classification function is a function ¢ : S — G that maps items
S C D to one member of a (finite) set of groups G.

141

Groups are very similar in notion to tags or concepts. They must, however, not necessarily
obey the same restrictions that were defined for tags and are therefore more general. In
the following, we will usually deal with groups that are in a hierarchical relation to each
other.

Definition 5.3.12. A classification function ¢ : S — 2 induces a group hierarchy
<C G? on the groups in G, withVg,¢ € G: (9 < ¢') < (Vo €S : g € p(x) = ¢ € ¢(x)).
(G, <) must be a tree.

The function ¢ is then called a hierarchical function.

Definition 5.3.13. A hierarchical classification function is a classification function ¢ :
S — 2¢ that maps items S C D to a subset of groups in a group hierarchy G.

Now, we can rewrite aspects as hierarchical classification functions.

Definition 5.3.14. An aspect function is a hierarchical classification function that maps
items to tags associated with an aspect a € A. Thus, ¢, : S, — 2C(a),

Regarding tag trees as classification functions helps to link them to more traditional data
mining tasks, such as clustering or classification, which is the main intent of this work.

5.3.3 Aspect-based Tagging and Description Logics

As argued above, social bookmarking is much better suited and more successful for
collaborative media organization than the semantic web, that is based on Description
Logics.

On a formal level, a very interesting question is how both formalisms are connected.

It is easy to see that traditional tagging approaches, such as described in section 1.5,
are basically a subset of Description Logics (DL). They simply support only atomar
ABox entries of the form c¢(z), denoting that x € D is tagged with the concept ¢ € C.
A TBox is not supported. In this sense, a DL with an empty TBox could be used to
implement a tagging system, it would, however, not make much sense to do so, because
some operations can be quite expensive in DL, that are trivial if we face only a set of
overlapping, atomic concepts.

For aspect-based tagging, the situation is slightly different. There is no simple way to
implement aspect-based tagging using a DL. The reason is the co-existence of assertions
like:

x € ext(c)

denoting that x is tagged with ¢, and propositions like

142

asp(c) = a
denoting that ¢ belongs to aspect a.

The only possibility to denote this in an traditional DL is to use two pairs of TBox and
ABox. A first one using the set of items D as universe of discourse and the second one
using the set of possible tags C' as universe of discourse. The second TBox would contain
meta-logic expressions, thus terminological constraints on terminology.

5.4 Feature Extraction from Social Annotations

User implicitly define features on items by assigning tags. These features will be denoted
as collaborative features in the following. Such features are very powerful for many tasks,
because they directly describe items from a point of view of the user. In this section,
we will analyze how user annotations can be converted into feature spaces to be used in
various data mining tasks.

5.4.1 (Mixed) Collaborative Feature Spaces

Definition 5.4.1. Given a tag c € C, a collaborative feature is a vector
X.:D—-R

Note that D is assumed to be finite.

Given more than one concept, we derive a collaborative feature space.

Definition 5.4.2. Given a set of tags C' C C, the set

Xc={X.:D —Rlce C}
is called a collaborative feature space derived from C.

Naturally, features extracted from tag structures can be combined with features obtained
from other sources, e.g. meta data. We refer to such a feature space as mized collaborative
feature space.

Definition 5.4.3. Given a set of tags C' C C and a set of features X, the set

Xc*={X.:D—-RlceC}UX
represents a mized collaborative feature space.

In the following, we will discuss how to derive collaborative features from a given set of
tag structures.

143

5.4.2 Representation Axioms

A mapping from a set of tags C' to a set of collaborative features can be seen as a
representation function. A representation function is a mapping from one language £q
to another language Lo. Usually, such a function should fulfill certain constrains, such
as being bijective. But there are also additional restrictions possible.

Restrictions on the source language (together with assumptions on the representation
function) lead to restrictions of what constructs can occur in the target language. If
we know, for example, that every tag structure will include only one tag assigned to all
items, this certainly constraints the possible values of the features.

Restrictions on the target language work just the other way round. If the target language
should fulfill some constraints, then some other constraints have to be fulfilled by the
source language. A famous example are the rationality axioms [127]. The task is to map
ordinal preferences to an interval scale. To ensure that the target is actually interval
scaled, the ordinal relations in the source language have to fulfill the rationality axioms.

In the following, some basic conditions are assumed that constrain the possible represen-
tation functions for tag structures.

Condition 5.4.4. A representation for tags must fulfill the following conditions given a
tag ¢ € C and a corresponding feature X,:

1. x ¢ ext(c) = Xc(z) =0
2. z € ext(c) = Xe(x) >0
3. 0< Xo(z) <1

The third condition ensures that extracted features have a range between zero and one,
which is an important property for the application of many methods to the extracted
features. The second assumption is important to ensure reversibility of the interpretation
(see below). Finally, the first condition encodes the closed world assumption. If a user
does not assign a tag to an item, this tag is not considered relevant for the item. The
underlying assumption is that the user knows all items in D. While this is often not
true, the closed world assumption was shown to be useful in many applications, such as
in the well-known vector space model [154] for text processing, an area closely related to

tagging.

In the following, several mappings fulfilling these basic conditions will be presented and
analyzed.

5.4.3 Extracting Binary Features

A simply representation function fulfilling the above constraints is the extension function
itself.

144

Artificial Intelligence P2P

Planning Data Mining

Rule Learning

Figure 5.4.1: Topics that are positioned lower in the tree are assumed to be more spe-
cific. Data Mining, for instance, can be considered a subtopic of Artificial
Intelligence and is thus more specific.

Definition 5.4.5. A binary representation function maps all tags in C' to binary features
on items x € D

1,z € ext(c)
0, else

X.ta) = {

Lemma 5.4.6. Assuming that every tag has an extension larger than one and that ev-
ery inner tag node has at least two children with different extensions, then the binary
representation function is bijective.

Proof. (Idea) With the assumed properties for tags and aspects, the above mapping is
injective. An inverse function can be constructed as follows. Given a set of collaborative
features, construct C' such that there is exactly one concept for each feature, containing
all items for which this feature has value one. The sub-tag relations can then be derived
from the subset relations on ext for each aspect separately. Please note that the aspect
information is crucial in this process.]

A restriction of this simple interpretation function is that it does not make use of the

relative position of items and tags in the tag tree. The relation between a tag and an
item might be more or less strong, depending on how close they are.

5.4.4 Making Use of the Position in the Tag Tree
Items, as well as tags, can be more or less general. A general scientific document, for

instance, would give an overview on a whole research area, while a specialized one only
focuses on a very specific problem.

Definition 5.4.7. The specificy of a tag is defined as function

spec: C — Rar

145

This notion is rather abstract in general. For an illustration, take a look at figure 5.4.1.
Instantiations will be given below. Similar to tag specificy, we can define a degree of
specificy for items

Definition 5.4.8. The specificy of an item is defined as function

specp : D x A — RJ

Items can be covered by more than one aspect. Thus, the specificy of items, in general,
depends on the aspect. In the following, we assume that the specificy of an item x is
equal to the one of the most specific tag that is assigned to it, given a tag structure
a€ A

specp(z,a) = MAT ey, (z) {spec(c)}

We assume the following condition about tag specificy.

Condition 5.4.9. For each pair of tags ¢, ¢ € C the following must hold

c < = spec(d) < spec(c)

Thus, the specificy must increase monotonically with the tree depth of a tag in the tag
tree.

There are two popular measures of the specificy of nodes in a subset hierarchy: tree
depth and information content.

Definition 5.4.10. The tree depth based specificy of a tag ¢ € C' is defined as

spec(c) =|{cd € Cle <} +1

The tag specificy axioms are trivially fulfilled. The assumption is that the specificy rises
linearly with the tree depth. A tag node twice as distant from the root is twice as specific.

Definition 5.4.11. The information content based specificy of a tag ¢ € C' is defined as

|ext(c)|

spec(c) = —log(T E—T

where c¢,o,¢ denotes the root tag of the tag structure that belongs to the same aspect as
c¢. Furthermore it is assumed that Ve € C': ext(c) # 0.

The idea of information content based specificy is that a tag is more specific if it is
assigned to less items. The root node reaches a minimum of specificy, as it is assigned
to all items. See [111] or [150] for further discussion of information based measures in
information organization.

146

Lemma 5.4.12. The information content measure fulfills the tag specificy azioms.
Proof. From ¢ < ¢ we obtain ext(c) C ext(c’) and thus |ext(c)| < |ext(d)]. O

This measure may also fail. If, for example, a given topic is very general, but there are
only few items available for this topic, then users can only assign the corresponding tag
to few items and it will seem very specific, while it actually is not.

Based on specificy, the binary interpretation can be refined in several ways, two of which
will be discussed in the following.

1. Tag Weighting
| spec(c),x € ext(c)
Xe(w) = { 0, else

Only the specificy of the tag is regarded as weight for the degree of relevance. The
consequence is the following: If an item is specific, a specific tag gets a higher weight
than a general one. If the tag is general, then a specific item gets the same weight
as a general one. This measure is derived from the family of similarity measures
discussed in [150].

2. Tag/Item Weighting

_ spec(e)
Xc(x) = SPECD(I,aSp(C))’x S ext(c)
0, else

We assume that spec(c) < specp(x,asp(c)) and specp(x,asp(c)) > 0. This mea-
sure reaches its maximum if the specificy of both, the tag and the item, are the
same. If the specificy is measured by information content, this measure can be
derived from the axioms stated in [111]).

For the special case spec(c) = specp(z,asp(c)) = 0 it is assumed that X.(z) = 1 if
tag c is assigned to =x.

Lemma 5.4.13. If spec(c) > 0 for all tags, both representation functions are bijective
under the same conditions as described above.

Proof. See above. O

Lemma 5.4.14. Tag based weighting does in general not fulfill the third condition for
representation functions

Proof. Counter example: Assume an item is assigned a most specific tag c¢. Unless
spec(c) = 1, the third condition is violated. O

147

There is a problem of scale variance in collaborative filtering systems. Different users
exploit the scale of possible ratings in different ways. A similar problem exists for the
interpretation of tag structures.

1. Tag structures as a whole can be specific or general
One user could create a tags covering the whole area of computer science, while
another user creates tags denoting sub-topics of artificial intelligence. Both tag
structures may have the same number of tags and the same depth.

2. Tag structures can be more or less detailed
Even if tag structures start on the same level of specificy, they can still be more or
less detailed. One tag structure could contain many layers between root and leafs,
while another one may contain only few.

It would be desirable to use methods that are invariant against such effects. Using
tag/item based weighting, at least the following holds:

Lemma 5.4.15. Given two concepts c,c’ € C for which spec(c) = Bspec(d) and ext(c) =
ext(c') holds, with 3 > 0. Then, for features extracted by tag/item based weighting,
Xc(x) = X (x) holds, for arbitrary items x € D.

_ Bepecld) _specld) _
Proof. Xe/(2) = Gapecy asp(eym) = wpecpasp(@a) — (@) =

Thus, a tag that is more detailed than another one may still deliver the same feature
values and is thus invariant concerning the second problem. This does not hold for tag
based weighting.

5.4.5 Tag Aggregation

Up till now, tags were treated as independent, private structures. This is, however, often
not appropriate. If two users both create tags labeled ,computer science”, then they will
probably not have exactly the same concept in mind, though both tags will be usually
somewhat related. We capture this relation by allowing to merge two or more features
derived from different tags as to replace them by an aggregated feature.

Feature aggregation has been applied successfully in many applications. For text clus-
tering, generalizing terms by adding superordinate terms can improve the quality of the
result significantly [80]. The same holds for association rule mining. Adding generalized
features, that combine individual items to classes, enables the algorithm to find patterns
that would not be valid in the original data space [165]. A similar approach can be
applied to merge features derived from tags. Again, the idea is to summarize several tags
to create a more general tag.

The constructed feature space should still be easily interpretable in order to allow for a
quick inspection of the results.

148

Definition 5.4.16. A feature aggregation function is a function aggr : R? — R that
maps two features to a new feature.

Please note that the newly aggregated feature replaces the arguments.

In [123] a simple and intuitive axiomatic is given that constraints feature aggregation
functions. The maximum function is the only function that fulfills all of the conditions.
This is very intuitive, because maximum is a fuzzy t-co-norm [27| and represents an ,or*
operation. Summarizing tags by maximum makes tags more general in the sense that
the new tag covers more items than the original ones.

An open question is, however, which tags should be merged. In the following, we will
distinguish between supervised and unsupervised feature aggregation.

Supervised Feature Aggregation

Supervised feature aggregation is based on a wrapper approach. Features are merged
if this increases the performance of an inner data mining scheme, e.g. the estimated
accuracy of a classification algorithm. As the number of possibilities to merge features
grows exponentially with the number of features, usually efficient optimization algorithms
will be applied for this task (as e.g. genetic algorithms).

Unsupervised Feature Aggregation

Unsupervised feature aggregation does not take any data mining task into account. Fea-
tures are merged based on heuristics. We assume the following two heuristics:

1. Features derived from tags with the same syntactic name are merged. This assumes
that all users have the same notion of the concepts connected to a tag. This is
often to a large degree fulfilled, may, however, be misleading in some cases (e.g.
concerning homonyms).

2. Two features are only considered for merging if they are derived from tags that
have aspects with the same name. This is essentially the same assumption as for
the first heuristic, but on an aspect level. As we assume the number of aspects
usually much smaller than the number of tags, this heuristic can be applied in more
cases in general.

Unsupervised feature aggregation is heuristic. Its applicability depends on the domain
and has to be evaluated for each new domain. On the other hand, it is much more
efficient than supervised feature aggregation.

Lemma 5.4.17. Features can be aggregated by unsupervised aggregation in O(|C||D|)
Proof. Adding a feature value requires an access to the hash and exactly one maximum

calculation. As the number of features is bound by |C| and the number of items by |D|,
the assertion holds. O

149

5.5 Collaborative Classification With Social Annotations

While tagging some items is often perceived as ,fun“ by the users, tagging a complete
collection of items is often rather seen as ,work“. Automatic tagging is a solution to this
problem. Users may only tag a small number of items and then leave it to the system to
assign tags to the rest of the items. This is especially useful because items arrive one-by-
one and are automatically added to the existing tag structures. This functionality can
be easily achieved by creating one classification model per aspect. These functions can
then be applied to any new item. The fact that tags are arranged into aspects is essential
at this point, as we do not have to deal with one classification problem per tag but one
per aspect.

5.5.1 Problem Definition

In the following we give a definition of the task of collaborative classification.

Definition 5.5.1. Assume that we are given a set of aspects A and a corresponding
(mixed) collaborative feature space X¢. Also assume a set of aspects A’ (e.g. all aspects
of a given user), with ¢, : S, — 2@ for each a € A’. The task of collaborative
classification is to yield for each a € A’ a function ¢}, : D — R ON

Thus collaborative classification uses a set of tagged examples for each given aspect a
and a (mixed) collaborative feature space to derive for each a € A" a function ¢/, that is
able to assign the tags associated with a to any item in D.

Note that if we were not given any aspect information, we would be forced to create a
classification model for each user tag, instead of one for each aspect.

5.5.2 Collaborative Classification

Thus collaborative classification can simply be mapped to the known problem of hier-
archical classification, just as described in section 1.4.4. As the classification problems
induced by user tags are supervised, we can apply all available methods for feature ex-
traction. Especially, methods for distributed feature extraction and feature sharing, as
proposed in chapter 4, are directly applicable to the problem. Thus, an agent can profit
in two ways from the presence of other agents. First, by querying other agents for col-
laborative features, it can extract new, mostly highly relevant collaborative features to
enrich the item representation. Second, by using methods for feature filtering, agents can
solve the representation problem connected with each classification task more efficiently.

Decision tree learners [147] are especially well suited to deal with data of the kind de-
scribed above. Partially missing data can be handled easily. If, e.g., a given feature is
only applicable to jazz music, and a first globally defined criterion separates these jazz
items from the rest of the items, the specific jazz features can be applied even if they are

150

rock(v1,v2)
yes

pop rock

pop rock

Figure 5.5.1: Decision trees to deal with disjoint concepts

undefined for the remainder of the items. Thus, decision trees are able to accommodate
to local properties of the item space.

A second important advantage of decision trees is their ability to learn with disjunctions
to some extent. Tags often cover different items belonging to the same underlying concept
from the perspective of the classification. E.g. ,rock(vl)* defined by a first user might
cover some of the items and ,rock(v2)* the remainder of the items in the training set. A
decision tree, such as the one shown in figure 5.5.1 on the left, could deal with this problem
directly. The decision tree on the left is based on two user defined tags rock(vl) and
rock(v2) that are combined. The decision tree on the right is a simplified tree, obtained
if rock(v1) and rock(v2) are aggregated into a new combined feature rock(v1,v2). This
kind of aggregation is constructed in a data driven way that is described in section 5.4.5.

5.6 Clustering with Social Annotations

Features derived from tags may not only be used for classification but also for clustering.
In this section, we show that doing so results in a natural extension of the co-association
cluster ensemble approach described in section 1.4.6.

Clustering items can serve several purposes:

1. Tagging a set of unstructured items
Given a set of items for which no tags are available, collaborative clustering can
yield new tag structures for these items. This is very useful if no personal tags are
available yet.

2. Finding alternative descriptions of a set of items
Even if a set of items is already tagged, the user might want to explore additional
possibilities to structure these items.

3. Top-down refinement of tag structures
Users often implicitly adopt a top-down approach in structuring items. They start
out with a set of items and then devise them recursively into subsets by assigning
hierarchical tag structures. This process is supported by allowing to cluster items
in a tag leaf by collaborative clustering.

151

In the following, we adapt the traditional clustering problem, as introduced in section
1.4.3, to the application on social features.

5.6.1 Problem Definition

We can define the task of collaborative clustering as follows.

Definition 5.6.1. The task of collaborative clustering is, given a set of aspects A, a
corresponding collaborative feature space X¢ and a set of items to cluster .S, to produce
a set of concepts C’ that covers the items in S (|J.ccv ext(c) = S) and optimizes some
objective function cq(C") with respect to the feature space Xc.

Thus the aim of collaborative clustering is defined just as usual clustering with the
exception that the feature space used is derived from social annotations.

As for classification, this is directly combinable with distributed feature extraction as
proposed in chapter 4. In this case, however, we do not assume that candidates are
selected or that prioritized forward selection is applied, because assessing the accuracy of
a feature set given a clustering task is non-trivial (see section 4.2.2). Distributed feature
extraction is in this case only used to build-up the collaborative feature space X¢ in a
distributed way.

If we use only collaborative features, then collaborative clustering should intuitively
deliver a result that reflects the input clusterings. More precisely, we would expect that
all input clustering are somehow merged into the output clustering. In the following, we
will show that collaborative clustering can be seen as an intuitive kind of cluster ensemble
for hierarchical clusterings.

Cluster ensembles based on co-association count for every pair of items in how many input
clusterings they appear in the same cluster. The resulting matrix is used as similarity
measure for any similarity based clustering algorithm. As tag structures are hierarchical,
this idea must be extended. A natural extension of the co-occurrence of two items in
a cluster is the tree distance. It allows for a smooth transition between being in the
same cluster and not being in the same cluster. The resulting distance measure could
be chosen, for instance, as the average tree distance of each pair of items over all input
cluster trees. While this would be a sound approach, it has the disadvantage that we
have to deal with a matrix that has |D|? entries. Furthermore, there is few reason to
assume that this matrix is sparse (a zero entry only occurs if two items are in the same
cluster in every input clustering).

In the following, we show that we can achieve something similar by first extracting
features using the approach presented in the last section and then to apply a standard
similarity measure to the resulting collaborative feature space (section 5.6.2). We then
show how this can be used for collaborative clustering (section 5.6.3).

152

5.6.2 Collaborative Similarities

Many clustering and classification schemes are based on distance or similarity measures
on the underlying items. We can apply such a measure to a collaborative feature space
as well. The question is whether this results in a sound measure, from the point of
view of collaborative structuring. In the following, we will analyze this question for two
particularly popular measures, namely squared Euclidean distance and inner product.

Euclidean Distance

Many algorithms for classification and clustering (such as k-means) are based on the
squared Euclidean distance. If the squared Euclidean distance is applied to a collabora-
tive feature space, the following is obtained.

Lemma 5.6.2. Given a set of tag structures A that all cover exactly the same set of items
S (thusVa € A: S ={x € Dz C a}). C=J,c1Cl(a) is the set of tags belonging to
the aspects in A. Then, the squared Euclidean distance applied to the binary collaborative
feature space X (denoted as dx) is identical to the sum of tree distances d, over all
tag trees a € A for any pair of items x,y € S.

V»”Uay €S: ch(wvy) = Zda(xay)
a€A

where dq(x,y) is the distance of x and y in the tag tree associated with a.

Proof. We first show that this property holds for a single tag tree. Given two items z,y €
S, tags in a single tag tree a € A can be classified into four sets. The ones that contain
both items, Cyy € C(a), the ones that contain x only, denoted as (Cy \ Cyy) C C(a), the
ones that contain only y denoted as (Cy, \ Cyy) C C(a) and the nodes containing neither
x nor y. Features derived from the first and from the last set of tags are equal for x and
y. They do not contribute to the distance. Features derived from the other two sets lead
to a difference of 1 each, such that all features derived from the tag structure a lead to a
distance of |Cy \ Cyy|+|Cy \ Cgy|. This is exactly the tree distance. As features that are
derived from different tag structures in A are independent and the Fuclidean distance
is additive, it can easily be shown by induction over the set of tag structures that the
resulting distance is the sum of all individual tree distances. O

Squared Euclidean distance leads to a result that is very close to the idea of using the
average tree distance as similarity measure to cluster a set of items. More precisely, we
can normalize the above distance measure by the number of aspects and obtain exactly
the average tree distance.

153

Inner Product

Another popular similarity measure is the inner product. What happens if we apply this
measure to a binary collaborative feature space?

Lemma 5.6.3. Given a set of tag structures A that all cover exactly the same set of items
S (thusVa € A: S ={x € Dz C a}). C = J,c4Cl(a) is the set of tags belonging to
the aspects in A. Then the inner product applied to the binary collaborative feature space
X (denoted by simx) is identical to the sum of the tree depths of the most specific
common tag node in each tag tree a € A for any pair of items x,y € S.

Ve,y € S simx(z,y) = Z simg(x,y)
acA

where simg(z,y) = |{c € C(a) | z € ext(c) Ny € ext(c)}|(tree depth of the most specific
common node).

Proof. The proof of this property works similar to the one for the Euclidean distance.
We divide the tags in a tag tree into four sets. In the case of the inner product, only
the set C'zy C C(a) contributes to the similarity concerning a single tag structure a € A.
This is exactly the tree depth of the most specific tag that is assigned to both items x
and y. Again, as features obtained from different tag structures are independent and the
inner product is additive, the lemma above can be shown by induction. O

Using the inner product on a collaborative feature space leads to another sound similarity
measure, which is a natural extension of tag based weighting method (based on tree
depth) for individual tag structures.

Inner product has, however, the disadvantage of not being metric and thus being less
efficient to be used for clustering and classification.

5.6.3 Hierarchical Cluster Ensembles

Applying the inner product and Euclidean distance to a collaborative feature space both
lead to reasonable notions of a collaborative similarity measure. Both similarity measures
can be used to create cluster ensembles, just as the co-occurrence measure is used to create
ensemble partitions.

The application of top-down k-means seems especially attractive, as this algorithm is
very efficient and produces good results in the similar context of text clustering [167].
Any other hierarchical clustering scheme that is based on the above similarity measures
can be applied as well.

However, there is still one problem. Above, we assumed that all tag structures cover the
same set of items. In practice, this is seldom true. There are two ways to deal with this
problem. Either, it can be ignored, hoping that any imbalances cancel each other out.

154

The other possibility is to classify the missing items into all tag structures in order to
ensure that all tag structures cover the same set of items. This approach is feasible,
because we usually have a query set S of items to cluster. Only these items have to be
inserted into all tag structures. Actually, this problem reflects an underlying problem
of cluster ensembles as such, namely that they aim at a global consensus, such that
each input clustering decides for all items how they are structured. For collaborative
structuring, this is unnatural, as, for instance, some input clustering could be well suited
to structure jazz music, while another one could be well suited for rock music. Applying
the jazz structure to rock items and vice versa would not make much sense. Another
disadvantage of cluster ensembles is that they destroy the underlying structure of the
input tags including the labels associated with the tags. Also, if there are opposing
opinions of how to structure a set of items, they are not returned both, but an average of
them, which could be completely meaningless. An approach that preserves the structure
of the underlying tags and may return different, conflicting tag structures is presented in
the next chapter.

5.7 Evaluation

5.7.1 Overview

The aim of the evaluation is to validate a central hypothesis of this work: that exploiting
user assigned tags and tag structures helps to increase the accuracy of clustering and
classification algorithms in the context of information structuring. Based on the defi-
nitions and findings above, the following hypothesis can be formulated for the task of
classification:

(C1) Using tags improves the average classification accuracy.

(C2) Weighting tags leads to superior accuracy than using binary values to repre-
sent tags.

(C3) Feature selection on tags improves the accuracy.

(C4) Tag aggregation improves the accuracy.

(C5) Supervised tag aggregation improves the accuracy even further.

For the task of clustering, the following hypothesis can be stated:

(C6) Cluster ensembles perform better than content-based clustering.

(C7) Unsupervised aggregation improves the accuracy of tag clustering.

To validate these hypothesis, we introduce a novel evaluation procedure called ,leave-
one-structure-out”. This strategy works similar to ,cross-validation* evaluation for clas-

sification (see chapter 1). Given a set of tag structures A, this set is split into a training
set Agrain and a test set Ajesr, With Agpgin N Agest = 0. From the training set, features are

155

extracted, that are then used to enrich the feature space for classification or clustering.
The latter leads to hierarchical cluster ensembles, as presented above.

In the given case, Agest is chosen such that it contains exactly one tag structure and
Atrain contains all remaining tag structures. Evaluation is the performed n-times, such
that each tag structure in A is used exactly once for testing. The result for all test sets is
then averaged to produce an estimation for the expected accuracy of the algorithm. The
evaluation of a given test or training set is based on traditional methods of evaluating
classification and clustering algorithms, as presented in chapter 1. As evaluation criteria
for classification the expected accuracy, as measured by 10-fold cross-validation, is used.
Clustering is evaluated by comparing the tag structure in the test set to the tag structure
produced by the clustering algorithm using FScore and the correlation and distance of
the tree distances.

5.7.2 The Datasets

The above procedure was applied to two datasets. The first one is the garageband dataset
already used in chapter 4. Again, we use only the top-level of the tag structure to obtain
a flat classification problem. For clustering, the full hierarchical tag structures were used.
The second dataset was obtained from the Awake system (see chapter 7). In this case,
users structured conference papers. The dataset contains 70 tag structures. For each
of the underlying conference papers, textual features were extracted from the abstracts.
These features are calculated using standard stopword filtering, a stemmer for English
language texts and tf/idf weighting [154].

Beside these two datasets, that directly contain tag structures, a third data set was
used. This dataset was derived from the Bibsonomy!! system. Bibsonomy is a social
bookmarking system for BibTEX entries and for web pages. Users can tag URLs and
BibTEX keys with arbitrary tags and optionally with a textual description. For some
of the BibTEX entries, an abstract exists. For the experiments in this chapter, each
resource was represented by all tags that were assigned to it. Additionally, a word
vector representation was calculated from the textual description associated with each
resource. These latter features are again calculated using standard stopword filtering,
a stemmer for English language texts and tf/idf weighting. As this dataset does not
contain any tag structures in the sense of this work, the evaluation procedure slightly
differs from the one used for the first two datasets. We first create three classification
problems using tag pairs. These tag pairs are ,software vs. education” (bibl), ,research
vs. education* (bib2) and ,web vs. software* (bib3). These pairs were chosen as the
corresponding tags are among the most popular ones (and thus contain many examples).
The tags ,software”, ,education”, ,research* and ,web“ were removed from the datasets.
The three classification problems are solved using a classification algorithm and evaluated
by traditional cross-validation.

"http://www.bibsonomy.org

156

avg. accuracy
garageband awake

audio/text 0.45 0.64
tags binary 0.68 0.78
tag depth 0.67 0.78
tag inf. 068 0.80
tag/item depth 0.68 0.78
tag/item inf. 0.69 0.80
audio/text + tags 0.71 0.81

Table 5.1: Comparison of content and tag based classification for the garageband and
the awake datasets. The numbers show the average accuracy over all tasks in
each dataset.

5.7.3 Collaborative Classification

For the evaluation of collaborative classification, three basic approaches were compared:
classifying items using content related features, using tags and using both, tags and
content features. Additionally, different weighting schemes for extracting features from
tags were used. ,tag depth” and ,tag inf.“ denote tag based weighting with tree depth and
information content respectively. ,tag/item depth* and ,tag/item inf.“ denote tag/item
based weighting with tree depth and information content respectively. For ,audio/text
+ tags* content-based features and tags were used. Tags are weighted by tag/item
weighting using information content in this case. As learning algorithm for the awake
and the garageband dataset, nearest neighbor was used, for the bibsonomy dataset the
support vector machine [85] was used. The result is presented in tables 5.1 and 5.2.

We can see the following. Using tags clearly improves the result over using content
related features only. This improvement is stronger for the garageband dataset, that
is based on audio features, than for the other two datasets that are based on textual
features. This confirms hypothesis (C1). The way tags are weighted has some influence
on the result. This influence is not very strong, however. Information based weighting is
slightly superior to depth based weighting and tag/item weighting is slightly superior to
tag weighting (hypothesis (C2)).

In a second set of experiments, the influence of tag selection and tag aggregation was
evaluated. Tag selection is performed using traditional forward selection on a mixed col-
laborative feature space. While PFS could have been used as well here, the focus of this
chapter is on the role of tags in collaborative classification. Feature aggregation is per-
formed unsupervised and supervised, as described above. Finally, a decision tree learner
[147] is used, which implicitly performs feature selection and some kind of aggregation,
as argued in chapter 1. The results are depicted in table 5.3. Feature selection clearly
improves the result, as expected (hypothesis(C3)). Unsupervised tag aggregation does
improve the result only for garageband. For the awake dataset, accuracy decreases. Thus
hypothesis (C4) is not fully supported. This approach remains valid as a heuristic that

157

avg. accuracy

bibl bib2 bib3

text 0.87 0.73 0.75
tags binary 0.92 0.82 0.84
tag depth 0.92 0.82 0.84
tag inf. 0.93 0.85 0.84

tag/item depth 0.92 0.82 0.84
tag/items inf. 093 0.85 084
text + tags 0.93 0.79 0.81

Table 5.2: Comparison of content and tag based classification for the three tasks in the
bibsonomy dataset. The numbers show the average accuracy over all tasks in
a dataset.

avg. accuracy
garageband awake

forward tag selection 0.84 0.90
unsupervised tag aggr. 0.69 0.70
supervised tag aggr. 0.85 0.92
C4.5 0.80 0.74

Table 5.3: Influence of tag selection and aggregation on the accuracy of collaborative
classification

has to be evaluated on new datasets. Supervised tag aggregation improves the result, is,
however, computationally extremely expensive (hypothesis (C5)). Decision trees work
well on the garageband dataset. On the awake dataset they produce inferior results.

5.7.4 Collaborative Clustering

To evaluate the hypothesis on collaborative clustering, we use two algorithms, namely
top-down k-means and bottom-up agglomerative clustering, both in conjunction with
Euclidean distance. For top-down clustering, the number of child nodes was set to
five for both datasets. The maximal number of items in a leaf node was set to 10 for
garageband and to 5 for the awake dataset.

These algorithms are applied to three different features spaces: one consisting of content
related features only, one derived from tags only (hierarchical cluster ensembles) and
one with a mixture of both. Tags are weighted always binary here, as suggested by the
theoretical findings above (see lemma 5.6.2). The accuracy is measured by comparing the
tag structure in the test set with the one produced by the algorithm in terms of symmetric
FScore and the correlation and absolute distance of tree distances (as presented in section
1.4.5).

Tables 5.4 and 5.4 show the result. As can be seen, collaborative features (thus hierar-

158

Correlation Absolute distance FScore
TD audio 0.13 1.9 0.40
TD ensemble 0.22 1.7 0.54
TD ensemble (aggr.) 0.23 1.9 0.55
TD mixed 0.15 1.9 0.41
single-link audio 0.065 28 0.35
single-link ensemble 0.11 25 0.39
single-link ens. (aggr.) 0.12 28 0.39
single-link mixed 0.086 30 0.35

Table 5.4: Comparison for the garageband of top-down (TD) and bottom-up (single-
link) clustering based on audio features (audio), based on tags (hierarchical
ensemble) and based on both (mixture). The table also shows the influence of
using aggregation on hierarchical cluster ensembles (aggr.).

Correlation Absolute distance FScore
TD text 0.41 0.65 0.67
TD ensemble 0.55 0.62 0.71
TD ensemble (aggr.) 0.56 0.58 0.73
TD mixed 0.57 0.54 0.72
single-link text 0.46 3.9 0.79
single-link ensemble 0.60 3.9 0.81
single-link ensemble (aggr.) 0.59 3.9 0.81
single-link mixed 0.60 3.9 0.82

Table 5.5: Comparison for the awake dataset of top-down (TD) and bottom-up (single-
link) clustering based on text features (text), based on tags (hierarchical en-
semble) and based on both (mixture). The table also shows the influence of
using aggregation on hierarchical cluster ensembles (aggr.).

159

chical cluster ensembles) perform mostly better than clustering based on content-related
features only, which confirms hypothesis (C5). Tag aggregation does improve the result
for garageband, but not for the awake dataset. For the text based awake dataset, a mixed
collaborative feature space outperforms both, content based and collaborative features.
For the garageband dataset this is not the case. Using audio features in addition to
collaborative features decreases the accuracy.

5.8 Conclusion

Current tagging system, such as last.fm or flickr, are very promising in enriching web
resources with semantic information. In contrast to more complex approaches, such as the
semantic web, they are widely used and accepted. The major reason for this popularity is
the loosely coupled way in which items can be tagged. However, as the number of items
and tags grows, they become hard to manage. The user should therefore be assisted in
the task of organizing tags.

This chapter gave a survey of current social bookmarking systems and their relation
to the semantic web. It was argued why social bookmarking is very well-suited for
collaborative media organization and in which way current social bookmarking systems
are still limited. Based on this analysis, an extended formalism for tagging was given,
called aspect-based tagging. This formalism allows users to create hierarchical tags and
to group tags into aspects.

In a second step, it was shown that social bookmarking and annotations can be seen
as a very powerful kind of feature extraction for items. Based on these collaborative
features, methods for collaborative classification and collaborative clustering were for-
mulated. Collaborative classification allows users to automatically annotate new items
with predefined tags. Users may only tag a small amount of their items and the system
then tags the remaining items automatically. Exploiting tags of other users is essential
in this process, as tags often contain highly personal views, that are not reflected in the
content or the meta data of these items. Collaborative clustering allows to assign tags if
the user did not assign any tags yet. In this case, the tags that were assigned by other
users can be used to structure these items. It was shown that applying traditional clus-
tering algorithms to a collaborative feature space leads to cluster ensembles that merge
all tag information into an average cluster structure.

Both collaborative clustering and classification were empirically compared to their tradi-
tional counterparts on several datasets. We applied a novel evaluation procedure, called
leave-one-structure-out. In this procedure, we temporarily delete a tag structure from a
set of test structures and try to reconstruct it, using the remaining tag structures. This is
done for each tag structure in the test set and the result is the average over all individual
results. It was shown that exploiting tag structures of other users leads to a superior
result for both tasks, as compared to using content-based features only.

160

Exploiting tags created by other users through collaborative feature spaces has the ad-
vantage that all methods for distributed feature extraction can be directly applied to
collaborative structuring. This makes collaborative structuring applicable in any kind of
network.

While collaborative clustering yields good results, the output is not fully satisfying from
a user’s perspective. Especially, the fact that the resulting clustering can be hard to
interpret and non-concise is a major problem. Also, from a point of view of aspect based
tagging, it would be desirable to output more than one solution. In the next chapter, we
will give an alternative problem definition for collaborative clustering that regards these
constraints and propose a clustering algorithm that solves this problem.

161

162

6 Localized Alternative Cluster
Ensembles

6.1 Introduction

The last chapter discussed the use of features gathered from user annotations for classifi-
cation and clustering. It was argued why applying traditional clustering methods to such
a collaborative feature space would lead to results that can be interpreted as hierarchical
cluster ensembles. This approach was shown to be superior to clustering items based on
content features only, in that it reflects the view of the users on a given domain.

Still, this approach shows several weaknesses, that correspond to the definition of collab-
orative clustering given in chapter 5:

1. Only a single cluster model is returned. Following the paradigm of aspect-based
tagging, the algorithm should return several, alternative solutions, from which the
user can pick one or several that best suit her needs and preferences.

2. User-created structures are not preserved. A major issue with automatically created
cluster structures is that they are hard to interpret (the clusters have no labels)
and can be non-concise (merging several heterogeneous cluster structures that are
concise in themselves may lead to an average non-concise cluster structure)

3. The features space used is not adapted to items that are clustered. In cluster
ensembles, it is expected that all input clusterings and the output clustering share
the same set of items. This is, however, almost never true for collaborative media
organization, because personal item collections may have very different extensions.

4. The algorithm is not directly applicable if some of the items were not yet tagged.
Cluster ensembles do not allow to cluster items that are not yet tagged by anybody.

In the following, we will convert this into a set of conditions that a clustering scheme
should fulfill to be applicable to collaborative structuring.

6.2 Problem Definition

Reflecting the problem identified above, we give the following extended definition of the
collaborative clustering task.

163

Definition 6.2.1. The task of collaborative clustering is, given a set of aspects A (with
associated aspect functions ¢, : S — 2€(@) for each a € A) and a set of items to cluster
S, to produce a set of aspect functions O C {4 : Sy — QC(a/)}, with § C S,/. Thus,
the aim is to deliver several functions that are at least defined on the set of items that
should be clustered.

This definition states that a set of tag structures (aspects) A are used as input and a
set of hierarchical classification functions O is returned that are defined at least on the
items to cluster S. Note that the input clusterings are not required to be defined on S.

An important constraint from a user’s point of view is the preservation of structure.
By merging several heterogeneous cluster or tag structures the outcome maybe a mix of
different tag structures that does not make up a sound clustering. We therefore require
that the inner structure beneath any tag that is used in the output is preserved.

In the following, we will review several existing approached concerning their ability to
yield clusterings that fulfill these conditions.

6.3 Applicability of Existing Clustering Approaches

6.3.1 Cluster Ensembles and Constrained Clustering

In section 1.4.6, the problem of merging partitions was presented. This problem was
generalized to the problem of merging hierarchical cluster structures in section 5.6.

Cluster ensembles do not comply with the problem definition above for three reasons.
First, they yield only one solution, while we require the clustering algorithm to produce
several alternative solutions. Second, they require that all input clusterings are defined
on at least the set of items S to be clustered. Such input functions do possibly not exist.
Third, they do not necessarily preserve the structure of the input clusterings.

For distributed clustering approaches (see section 3.2) the same holds because they deliver
a hierarchical cluster ensemble just only in a distributed way.

While this was not discussed in detail so far, the same holds for constrained clustering.
Instead of using the input clusterings in an ensemble like way, they could be used to
constraint the output clustering. Constraints usually include must-link and cannot-link
constraints. We could now define must-link constraints for all pairs of items that have at
least one tag in common and cannot-link constraints for all items that do not have any
tag in common.

While this would be an interesting variant to cluster ensembles, it has the same weak-
nesses concerning the conditions stated above: it yields a single, global cluster structure,
that is not guaranteed to preserve the structure of the input clusterings. We will therefore
not discuss this possibility further here.

164

6.3.2 Subspace Clustering

As seen in section 1.4.8, subspace clustering applied to binary features is equivalent to
frequent itemset mining. A first reason why this does not fulfill the conditions above
is that the algorithm returns individual clusters and not classification functions. The
lattice formed by the frequent itemsets could be seen as a result clustering. This result
clustering would, however, not fulfill the above conditions. First, it is a DAG and not a
classification function (which is technically a tree). Second, it mixes concepts of different
aspects into one structure, violating the structure preservation condition.

We could extend this approach by constraining the subspace clusters in a way that does
not allow to mix concepts of different aspects. This would deliver several lattices, one
for each aspect. These lattices are, however, DAG and do not fulfill the requirement
of a classification function. Also, it would be trivial, as instead of using the lattices
corresponding to each input aspect, we could directly use the classification function
associated with each aspect, not performing subspace clustering at all. In this case, the
number of solutions would be much to high.

6.3.3 Non-redundant Clustering

Non redundant clustering is a good candidate to produce alternative clustering solutions.
The idea is to start by using a traditional clustering algorithm, say k-means based on
collaborative features. This delivers a first result. Then, we may invoke this algorithm a
second time, this time searching for solutions that are maximally different from the first
result.

While the original algorithm described in [65] supports only one reference clustering,
the algorithm could be extended to find clusterings that are maximally different to two
or more reference clusterings. In this way, the algorithm could be invoked iteratively
delivering a sequence of non-redundant solutions.

Unfortunately, non-redundant clustering does not deliver hierarchical solutions. Just as
cluster ensembles, it does not guarantee to preserve the structure of the input clusterings.

6.3.4 Ontology Learning

The assignment of items to concepts by the extension function ext can be seen as entries
in an DL ABox. Therefore, it would be possible to apply ontology learning to derive a
TBox for these items.

In the following, we assume the KLUSTER algorithm. As we do not have any roles in our
application, KLUSTER is mostly reduced to a substep, the Sort Taxonomy Tool (STT).
KLUSTER would first collect all possible concept extensions into a lattice Cyj; by set
inclusion. From this lattice Cyy, we can remove all concepts ¢ € Cyy : ext(c) NS = 0,
thus all concepts that are disjoint with the items to cluster, as these clusters would not

165

contribute to a final classification function anyway. The resulting structure Cg is not
guaranteed to be a tree, however.

The next step would be to find MDCs, thus partitions of the items in .S on the top level.
Let us assume that in addition to what KLUSTER does, we restrict the MDCs such that
they must be disjoint on S. Thus an MDC C C Cg must fulfill the additional condition,

Ve,d € Ciext(c) Next(d)NS =10

KLUSTER does not enforce this condition, it is needed, however, to generate clusterings
that are disjoint at each level.

For each of these MDCs, we could now learn a classification function. There are no roles
or relations, in our case. We can, however, apply an attribute based learner to obtain
discriminative descriptions. This learner can now be applied to classify the items in S,
not yet covered by top level MDCs, into the result structure. Then, each MDC forms a
classification function on at least the items in S.

These MDCs can be returned as result. There are, however, still some problems.

The concepts of different user created aspect could be mixed up if their extensions are
identical. This could be easily fixed, however, by introducing additional constraints.

A second problem is that the number of MDCs could exceed the number of desired
results. In this case, a ranking on MDCs would be desirable, such that the k best ones
could be returned only.

A third problem is that the algorithm is not applicable in cases in which all concepts are
disjoint with S. This could happen if the input space is very sparse.

In the next section, we present the LACE algorithm that resolve these issues.

6.4 Localized, Alternative Cluster Ensembles

In the following, we describe a method for collaborative clustering that is based on the
idea of bags of clusterings. The idea is to derive a new tag structure from existing ones
by extending existing tag structures and combining them such that each of them covers
a subset of the items to be clustered. As this method is applicable in a more general
context as well, we will refer to input and output clusterings and functions instead of
tag structures. In section 6.4.4, we explain why this method is especially well suited for
collaborative structuring.

6.4.1 Bags of clusterings

We define the extension of functions ;.

Definition 6.4.1. Given a function ¢; : S; — Gj, the function ¢} : S; — G; is an
extended function for ¢;, if S; C S, and Vx € S; : pi(x) = ¢l(z).

166

oA Bl g

e o
pop hip hop
Iy

Figure 6.4.1: A bag of clusterings composed of two input clusterings

Extended functions allow us to define a bag of extensions of non-overlapping originally
labeled subsets that covers the entire collection:

Definition 6.4.2. Given a set I of functions. A bag of clusterings is a function

(gpgl(a:), itz e S

pi(x) = ¢ii(x), ifxesS)

(Pim (@), ifz € Siy,
where each ¢, is an extension of a ¢;; € I with ¢;; : Sjj — Gy and {S};,..., S} is

partitioning S with S;; C S},

Figure 6.4.1 shows an example.

Now, we can define the objective function for our bag of clusterings approach to local
alternative clustering ensembles.

Definition 6.4.3. The quality of an individual output function ;, with respect to a set
of input functions I and a set of items S to be clustered, is measured as

q (I, p;,S) = max sim(z, ') with j = h;()
z€S o'E5

where sim is a similarity function sim : D? —]Rar and h; assigns each example to the
corresponding function in the bag of clusters h; : S — {1,...,m} with

hi(x) =j & x € S8}
The quality of a set of output functions now becomes

Q(IvaS) = Z q*(Iv 901'75)'
;€O

167

Input:
A set of items S
A set of input functions I

Output:
A set of output functions O

O =1
I' =1,
while (I' # 0) A (|O| < mazg;) do
S =S;
B=1;
step = 0;
while ((S' # 0) A (I' # 0) A (step < mazsteps)) do
* 7\.
i = argmax g (Zy,5");
I'=1I"\{pi};
B =BU{¢i};
S'=5"\{z e SN Cqpi};
step = step + 1;
end while
O =0 U{bag(B,S)};
end while

Figure 6.4.2: The sequential covering algorithm finds bag of clusterings in a greedy man-
ner. mazy; denotes the maximum number of alternatives in the output,
MaTsteps denotes the maximum number of steps that are performed during
sequential covering. The function bag constructs a bag of clusterings by
assigning each item z € S to the function ¢; € B that contains the item
most similar to x.

Besides optimizing this quality function, we want to cover the set S with a bag of clus-
terings that contains as few clusterings as possible.

Note the connection to the KLUSTER algorithm. A bag of clusterings serves a similar
aim as a MDC. It is, however, not required that the individual members of a bag of
clusterings do not overlap. Also, it is not assumed that there is a perfect extensional
match, but rather a similarity-based match is sufficient. Finally, bags of clusterings are
rated by a quality function that allows to rank them, such that only the top k results
are returned.

6.4.2 The LACE Algorithm

In the following, we present a greedy approach to optimizing the bag of clusterings
problem. The main task is to cover S by a bag of clusterings ¢. The basic idea of this

168

approach is to employ a sequential covering strategy. In a first step, we search for a
function ¢; in I that best fits the set of query items S. For all items not sufficiently
covered by ;, we search for another function in I that fits the remaining points. This
process continues until either all items are sufficiently covered, a maximal number of
steps is reached, or there are no input functions left covering the remaining items. All
data points that could not be covered are assigned to the input function ¢; containing
the item which is closest to the one to be covered. Alternative clusterings are produced
by performing this procedure several times using each input function at most once.

We now have to formalize the notion of a function sufficiently covering an item and a
function fitting a set of items such that the quality function is optimized. When is a data
point sufficiently covered by an input function so that it can be removed from the query
set S7 We define a threshold based criterion for this purpose.

Definition 6.4.4. A function ¢ sufficiently covers an item = € S (written as x Cq ¢),
iff max,rez, sim(z,2’") > «, where Z, C D is a set of points that represent function ¢
(see below).

The set Z, of items represents . This concept will be discussed below. The threshold
a allows us to balance the quality of the resulting clustering and the number of input
clusters. A small value of « allows a single input function to cover many items in .S. This,
on average, reduces the number of input functions needed to cover the whole query set.
However, it may also reduce the quality of the result, as the algorithm covers many items
in a greedy manner, which could be covered better using an additional input function.

Turning it the other way around: when do we consider an input function to fit the items
in S well? First, it must contain at least one similar item for each item in S. This
is essentially what is stated in the quality function ¢*. Second, it should cover as few
additional items as possible. This condition follows from the locality demand. Using only
the first condition, the algorithm would not distinguish between input functions which
span a large part of the data space and those which only span a small local part. This
distinction, however, is essential for treating local patterns in the data appropriately. The
situation we are facing is similar to that in information retrieval. The target concept .S,
the ideal response, is approximated by ¢ delivering a set of items, the retrieval result. If
all members of the target concept are covered, the retrieval result has the highest recall.
If no items in the retrieval result are not members of S, it has the highest precision. We
want to apply precision and recall to characterize how well ¢ covers S. We can define

prec(Zy,;, S) = Z max {sim(z, z)|z € S}

| %|z€Z

and

rec(Zy,,S) = 5] Zmaac {sim(z,2)|z € Z,,}.
z€S

169

Please note that using a similarity function which maps identical items to 1 (and 0
otherwise) leads to the usual definition of precision and recall. The fit between an input
function and a set of items now becomes a continuous f-measure:

(ﬂz + 1)’1"66(2%, S’)prec(Z@i, S)
52T€C(Z<Piv S) + prec(ngi, S)

QT’(ZLPN S) =

Recall directly optimizes the quality function ¢*, precision ensures that the result captures
local structures adequately. The fitness q}Z(Z%.,S) balances the two criteria using a
parameter 3 € RJ. A smaller value of 3 gives a stronger weight on the recall, a higher
value gives a stronger weight on the precision. Note that for 3 = 1 we receive the original
f-measure.

Deciding whether ¢; fits S or whether an item = € S is sufficiently covered requires to
compute the similarity between an item and a cluster. If the cluster is represented by
all of its items (Z,, = S;, as usual in single-link agglomerative clustering), this central
step becomes inefficient. If the cluster is represented by exactly one point (|Z,,| = 1,
a centroid in k-medoids clustering), the similarity calculation is very efficient, but sets
of items with irregular shape, for instance, cannot be captured adequately. Hence, we
adopt the representation by ,well scattered points‘ Z,, as representation of ¢; [66], where
1 < |Z,,| < |Si|. These points are selected by stratified sampling according to G.

We can compute the fitness q}i of all p; € I with respect to a query set S in order to
select the best ¢; for our bag of clusterings. The whole algorithm works as depicted in
figure 6.4.2. We start with the initial set of input functions I and the set S of items
to be clustered. In a first step, we select an input function that maximizes q}(Z%., S).
;i is removed from the set of input functions leading to a set I’. For all items S’ that
are not sufficiently covered by ¢;, we select a function from I’ with maximal fit to S’.
This process is iterated until either all items are sufficiently covered, a maximal number
of steps is reached, or there are no input functions left that could cover the remaining
items. All input functions selected in this process are combined to a bag of clusters, as
described above. Each item x € S is assigned to the input function containing the item
being most similar to x. Then, all input functions are extended accordingly, again by
nearest-neighbor classification (cf. definition 6.4.1). We start this process anew with the
complete set S and the reduced set I’ of input functions until the maximal number of
alternatives is reached.

Lemma 6.4.5. The number of similarity calculations necessary to perform LACE is in

O(111511Z¢.1)-

Proof. Each function is represented by a fixed number of representative points Z,,. For
each input function, the algorithm must compare all items in S with the representative
points of all input function in I.]

170

6.4.3 Hierarchical Matching

A severe limitation of the algorithm described so far is that it can only combine com-
plete input clusterings. In many situations, a combination of partial clusterings or even
individual clusters would yield a much better result. This is especially true if local pat-
terns are to be preserved being captured by maximally specific concepts. Moreover, the
algorithm does not yet handle hierarchies. Our motivation for this research was the
structuring of media collections. Flat structures are not sufficient with respect to this
goal. We cannot use a standard hierarchical clustering algorithm since we still want to
solve the new task of local alternative cluster ensembles. In the following, we extend our
approach to the combination of partial hierarchical functions.

It should be possible to match functions that correspond to only a partial group hierarchy.
We formalize this notion by defining a hierarchy on functions that extends the set of input
functions such that it contains all partial functions.

Definition 6.4.6. Two hierarchical functions ¢; : S; — 2% and wj S — 2G5 are in
direct sub function relation p; < ¢;, iff G; C G4, Vo € S; = pi(z) = ¢j(z) N G;, and
—E|g0;- :G; C G; C Gj.

Let the set I* be the set of all functions which can be achieved following the direct sub
function relation starting from I and the function in [itself, thus

I" ={pilFp; €I :p; < p;UT

where <* is the transitive hull of <. While it would be possible to apply the same algo-
rithm as above to the extended set of input functions I*, this would be rather inefficient,
because the size of I* can be considerably larger than the one of the original set of input
functions I. We therefore propose an algorithm which exploits the function hierarchy
and avoids multiple similarity computations. Each function ¢; € I* is again associated
with a set of representative items Z,,. We additionally assume the standard taxonomy
semantics:
i X pj = Lo © Zy,

Now, the precision can be calculated recursively in the following way:

zZE Zy,
prec(Zy,,S) = | gDl|prec(Z;‘7i,S) + Z | %|prec(Z@j,S)
. 212,

where Z3 = Z,, \ U‘pj <p; ;- For recall a similar function can be derived. Note that
neither the number of similarity calculations is greater than in the base version of the
algorithm nor are the memory requirements increased.

Moreover, the bottom-up procedure also allows for pruning. We can optimistically esti-
mate the best precision and recall that can be achieved in a function hierarchy using all
representative items Z, for which the precision is already known. The following holds:

’Ze’ 'PTeC(ZwS) + ’Z@z’ \Ze|

prec(Zy,,,S) <
? |Zil

171

Tag
frequency

rock

party

free jazz polka

Tag rank

Figure 6.4.3: Long tail in the tag distribution

with Z, C Z,,. An optimistic estimate for the recall is one. If the optimistic f-measure
estimate of the hierarchy’s root node is worse than the current best score, this hierarchy
does not need to be processed further. This is due to the optimistic score increasing with
|Zy;| and |Z,,| > |Z,,| for all sub functions ¢; < ¢;. No sub-function of the root can
be better than the current best score if the score of the root is equal or worse than the
current best score.

6.4.4 Using LACE for Collaborative Clustering

The LACE approach is very well suited for collaborative structuring for several reasons.
First, it leads to a comprehensible, sound result, as the structure and labels of the
input tags are preserved. Second, it accommodates to the local properties of the item
space, returning only such tags that are relevant to the items that should be clustered.
Third, it allows new structures to emerge from existing ones, which was one of the aims
of collaborative structuring and corresponds to the mash-up paradigm of the web 2.0.
Furthermore, it allows for evolving tag spaces. Users copy tag structures they like, which
are then more likely recommended. Still, as several solutions are returned, this does not
lead to only one dominant tag structure but to a set of several popular tag structures for
a given set of items.

The claim is that by recommending tag structures we achieve both, accuracy (in the sense
of performance as defined in section 5.7) and diversity. Both are essential properties for
a collaborative structuring algorithm. To show this relationship, we assume a fixed set S
for which the users try to find an optimal tag structure. We further assume that the set
S can be covered by a single input cluster. In principle, each user could prefer an own
structure on S that is completely uncorrelated to the structures all other users would
choose. In this case, the approach would not work. In reality, this does not happen. On
contrary, structures and tags are all but equally distributed. Figure 6.4.3 shows a typical
distribution of tags in a tagging system. As can be seen, there are few tags preferred
by many users and many tags that are somewhat preferred by only a small number of
users. How does this distribution affect the accuracy of the approach? As tag structures

172

are more likely recommended if many users share them, for the large majority of tag
structures, LACE will deliver a perfect result. Only for the content of the long tail, this
result maybe inferior. As, however, the expected error is weighted by the number of users
that share a tag structure, this long tail will affect the result to a much lower extent.
Returning several solutions still enables several structures to co-exist and users can freely
choose among them. This was one of the most important properties that we derived for
a desirable representation and recommendation mechanism for structures in section 5.2.

Please note that the above scenario assumes a fixed set of items. Actually, we face two
long tail distributions, one concerning items and the second concerning tags (given a
fixed set of items). The locality of LACE allows to adequately cluster items even if they
are not globally popular (thus even if they are part of the long tail). The long tail of tag
structures can be supported by increasing the number of alternative solutions that are
returned, at the price of an increased effort for the user to evaluate these alternatives.

6.5 Empirical Evaluation

Beside this qualitative evaluation of the approach, an empirical evaluation was performed
on the two real world datasets garageband and awake that were already described in the
last chapters.

6.5.1 Evaluation Criteria

The evaluation criterion used for simple collaborative clustering must be extended to
reflect the fact that several solutions are returned. As described above, the idea of
returning more than one result is that the user may choose the clustering that most suits
her needs and preferences. Therefore, a natural choice is to assume that the quality of a
set of solutions O is the quality of the best solution in O.

Definition 6.5.1. The quality of a set of clustering solutions O is the maximum quality
of any member of O, thus

q"(¢a, 0) = mazy, ,co{sim(Pa; ar)}

where sim is any measure to compare two clusterings (see section 1.4.5). For the absolute
distance of tree distances, this maximum is replaced by the minimum, as in this case the
distance between two cluster models should be minimized.

The overall performance is the average performance over all tag structures a € A.

The number of clusterings returned should be, however, small, such that the user can
easily evaluate all of them. In the remainder of this work, a maximum of |O| < 5 result
structures is used, if not stated differently.

173

Correlation Absolute distance FScore

LACE 0.45 0.65 0.74
TD audio 0.13 1.9 0.40
TD ensemble 0.22 1.7 0.54
single-link audio 0.065 28 0.35
single-link ensemble 0.11 25 0.39

Table 6.1: Results of LACE on the garageband dataset

6.5.2 Empirical Evaluation

We use two datasets for the evaluation of LACE: the garageband dataset and the awake
dataset. Both datasets have already been described in the evaluation sections of the last
chapters. To guide the evaluation, we formulate some hypothesis:

(L1) LACE yields an accuracy that is better or at least comparable to the one produced
by traditional, content-based clustering algorithms.

(L2) LACE yields an accuracy that is better or at least comparable to the one produced
by hierarchical cluster ensembles.

(L3) The number of representative points has an influence on the accuracy, which is,
however, not severe.

(L4) The number of results returned by LACE has an influence on the accuracy.

In the following, LACE is compared with single-link agglomerative clustering using Eu-
clidean distance, top down divisive clustering based on recursively applying k-means
(TD). The results for these clustering algorithms were already reported in section 5.7
and are here only shown to ease the comparison. LACE was applied using Euclidean
distance as inner similarity measure. The LACE parameter 3 was set to 1.

The overall evaluation procedure is the same as in chapter 5. We use all but one tag
structure for training LACE (or for creating a hierarchical cluster ensemble). Then
the items covered by the remaining tag structure are clustered using LACE. The result
is compared to the tag structure that was left out using symmetric FScore and the
correlation and the absolute distance of tree distances. As LACE delivers several results,
the best of these results is used. The rationale behind this procedure is that a user would
be able to choose the ,best“ among five results manually without major problems.

Table 6.1 and table 6.2 show the results for the garageband and for the awake dataset.
As can be seen, LACE performs best in all cases.

A second experiment inspects the influence of the representation on the accuracy. The
results of LACE with different numbers of instances at a node are shown in tables 6.3 and
6.4. Representing functions by all points performs best. Well scattered points perform
well. We obtain good results even for a very small number of representative items at
each node of the cluster model.

174

Correlation Absolute distance FScore
LACE 0.75 0.26 0.89
TD text 0.41 0.65 0.67
TD ensemble 0.55 0.62 0.71
single-link text 0.46 3.9 0.79
single-link ensemble 0.60 3.9 0.81

Table 6.2: Results of LACE on the awake dataset

Representation Correlation Absolute distance FScore
all points 0.45 0.65 0.74
|Z] =10 0.41 0.70 0.74
|Z] =5 0.39 0.71 0.74
|Z] =2 0.39 0.72 0.73

Representation Correlation Absolute distance FScore
all points 0.75 0.26 0.89
|Z] =10 0.75 0.26 0.89
|Z] =5 0.74 0.28 0.89
|Z] =2 0.73 0.28 0.89

Table 6.3: Influence of the concept representation in LACE for the garageband dataset.

Table 6.4: Influence of the concept representation in LACE for the awake dataset.

175

Alternatives Correlation Absolute distance FScore

) 0.45 0.65 0.74
3 0.40 0.70 0.73
1 0.33 0.80 0.68

Table 6.5: The influence of response set cardinality in LACE for the garageband dataset

Alternatives Correlation Absolute distance FScore

) 0.75 0.26 0.89
3 0.70 0.30 0.89
1 0.61 0.42 0.86

Table 6.6: The influence of response set cardinality in LACE for the awake dataset

We also evaluated how the number of output functions influences the quality of the result.
The result should be clearly inferior with a decreasing number. Tables 6.5 and 6.6 show
the results. On one hand, we observe that even with just one model, ie. |O] = 1,
LACE still mostly outperforms the other methods. On the other hand, the results are,
indeed, getting worse with less alternatives. Providing alternative solutions seems to
be essential for improving the quality of results, at least in heterogeneous settings as
the one discussed here. Probably, the performance would increase even further for more
output clusterings. Although a user still would select the best available clustering from
all alternatives, which motivates this form of evaluation, the number of solutions should
be rather small and was restricted to 5 in this setting.

6.6 Implementing LACE in a Peer-to-Peer Environment

In the last section, we showed that collaborative classification and hierarchical cluster
ensembles can easily be combined with distributed feature extraction, as both assemble
a set of features from user annotations. This makes both approach directly applicable in
a peer-to-peer setting, using the methods proposed in chapter 4.

A crucial question is whether this is true for the LACE algorithm as well. In the following
we show that this is the case. The key to this problem is the fact that the representation
functions for user annotations proposed in section 5.4 are bijective. Thus given a set of
collaborative features X, we can retransform these features into a set of concepts C.
We assume that the aspect a concept belongs to is encoded in the feature name. As
concepts cannot be shared among aspects, it is always possible to name features in such
a way. This reduces the problem to recovering a tag structure from features belonging
to exactly one aspect. It was shown in section 5.4 that this is always possible, given the
restriction of tag structured introduced in section 5.3.1.

In this sense, LACE can be seen as a feature selection algorithm, selecting all the features
that represent the concepts that make up the bags of clusterings returned as a result.

176

6.7 Conclusion

Cluster ensembles show several weaknesses when it comes to clustering items based on
existing tag structures. In this chapter, these weaknesses were analyzed. First, cluster
ensembles are not able to produce more than one solution. This, however, is essential, as
the same domain can usually be described from different perspectives. Second, they do
not preserve the structures created by other users. This often leads to average clusterings,
that are not concise and hard to comprehend.

Based on this analysis, a new definition of the collaborative clustering task was given. In
this definition, a set of given tag structures and a set of items to cluster is taken as input,
and a set of proposed tag structures on the items in question is delivered as output.
This learning task was defined in a formal way and it was shown that existing clustering
approaches are not able to solve this task adequately. Then, a greedy algorithm was de-
veloped, called Localized Alternative Cluster Ensembles (LACE). LACE combines given
tag structures without altering their inner structure. Several enhancements for hierar-
chical structures were proposed as optimization of LACE. The algorithm was analyzed
and it was shown that it works linear in the number of items and given tag structures.
Also, it was shown that LACE can be interpreted as a special form of feature selection
from X¢c. This allows us to apply the algorithm in the general p2p feature extraction
framework proposed in chapter 4.

The accuracy of algorithms solving the collaborative clustering problem can be measured
by a leave-one-structure-out approach, as proposed in the last chapter. The LACE
algorithm outperforms standard clustering schemes on two real-world datasets. We also
investigated the influence of the number of representative points and the influence of
response set cardinality on the result.

Collaborative classification, as proposed in the last chapter, and localized alternative
cluster ensembles complement each other. They provide two powerful tools to enable
users to fully profit from what other users have already done. Integrated into the frame-
work of distributed feature extraction, they allow to perform collaborative structuring in
an ubiquitous way.

177

178

Part Il

Application and Integration

179

7 Supporting Heterogeneous Expert
Communities

7.1 Introduction

The widespread use of the Internet enables radically new forms of collaboration. Maybe
the most prominent ones concern managing and sharing knowledge and information.
Knowledge management is a very broad area. It is often mentioned in the context of
enterprises and intellectual capital. So far, almost all approaches focus explicitly or
implicitly on sharing knowledge within groups of similar users. This is however not ap-
propriate. Expert work requires a constantly growing degree of specialization. Many
practical problem on the other hand can only solved by intensive collaboration across
domain boundaries. A mutual understanding and awareness among experts from differ-
ent domains is a prerequisite for this kind of collaboration. While this fact is widely
acknowledged, there is a need to enable knowledge management in an interdisciplinary
context on a technical level.

This chapter shows how aspect based tagging and collaborative structuring can be used
to achieve this goal. The basic idea is the following. Individual experts are allowed to
create personal tags as representation of their view on a topic. By recommending and
copying such tags, communities of users with similar views emerge. These views can
be made explicit by analyzing them using data mining. These data mining algorithms
are modified in a way that recommendations correspond to certain modes of knowledge
sharing, such as inner-community or cross-community knowledge sharing. This helps
users to structure and navigate complex information spaces either according to their own
views and terminology or to explore views on a topic that correspond to experts from
other domains.

First, we give a very brief overview of knowledge management and sharing in section
7.2. In section 7.3 we discuss the problem of heterogeneous user groups, together with
benefits, challenges and approaches. Section 7.4 provides a more focused discussion on
the problem of how data mining relates to the problem of heterogeneity. It is shown that
traditional data mining approaches, applied in most knowledge management systems
lead to results that support only within community knowledge sharing. In section 7.6,
the basic concepts of the Knowledge Explorer are discussed, a collaborative platform for
knowledge sharing in heterogeneous expert communities. Section 7.6 provides details on
how collaborative structuring is applied in the Knowledge Explorer.

181

7.2 Information and Knowledge Management

The key idea of knowledge management and sharing is that a very valuable part of an
organization is its knowledge and that this knowledge should be maintained and applied
optimally.

According to a popular definition, the of goal knowledge management is to

“Improve organizational performance by enabling individuals to capture, share
and apply their collective knowledge to make optimal decisions” [163|

This definition covers several aspects:

Sharing knowledge refers to communicating knowledge among several people.

A very important concept of knowledge management is a community, thus a group
of people that work together or have similar interests and goals.

Knowledge is applied, thus it leads to decisions.

The goal of knowledge management is to improve performance at the given task.
In fact, the success of knowledge management often depends on improving the
performance not only globally but for each participant, as otherwise people refuse
to use the system. Performance and evaluation are of significant importance for
knowledge management.

To capture knowledge indicates that knowledge is often implicit, and in order to
share it, it has to be made explicit first.

Knowledge Management consists of many different processes that make up the so called
wknowledge life cycle” [116]

182

o Capturing and formalizing knowledge

Having an explicit representation of knowledge is often a prerequisite for sharing
it in a formal and systematic way, as well as for any kind of automatic processing.
Therefore, the process of knowledge externalization is of special importance for
many (technical) knowledge management solutions.

Structuring knowledge

Knowledge that should be shared in a formal and systematic way must be rep-
resented using a common formalism. This representation determines the ways in
which the knowledge can be added and retrieved. Representation mechanisms range
from text documents to highly structured data, such as data and knowledge bases.

Sharing knowledge

Users can share knowledge asynchronously through a common repository or by di-
rect communication. The actual mode depends on the task at hand and knowledge
management systems will usually provide several modes of communication.

Applying knowledge
Knowledge is usually applied to support some problem solving or decision making

task. Applications may range from very unstructured tasks, such as writing an
essay, to very structured decisions, e.g. whether or not to buy a certain cellphone.

e Fwaluating knowledge
Measuring the performance of any technical system is a key to improve it. The same
is true for knowledge management. Beside evaluating a system globally, individual
pieces of knowledge can be evaluated. In many help desk applications, for example,
users have the possibility to rate individual articles on solutions according to how
helpful they are.

e [ntroducing and maintaining knowledge management in an organization
The whole process of choosing, installing, maintaining and administrating a knowl-
edge management system is an important practical issue for successful knowledge
management. This task includes choice of technology, teaching, nominating knowl-
edge managers and similar tasks.

This enumeration of basic knowledge- and information management processes cannot
claim to be exhaustive. Though, it covers the essential aspects relevant for this work.

7.3 Heterogeneous Expert Communities

7.3.1 The Problem of Heterogeneity

From the point of view of knowledge sharing, heterogeneity is first of all a problem.
Heterogeneity has many aspects in this context: technological ones (e.g. different hard-
ware and software platforms), syntactical ones (different data formats and terminology),
semantical ones (different concepts) and pragmatical ones (different use of concepts,
workflows, etc.). Heterogeneity on lower levels can often be resolved by enabling global
standards. The use of web based technology (as presented in section 2.3.3) is an im-
portant example for such a solution. Syntactical heterogeneity can often be resolved by
schema or ontology mapping approaches (as discussed in section 3.3.4).

While standards and ontology mapping work well on a syntactical level, the semantical
and pragmatical level are often much more complicated to handle. First, the semantic
of concepts is often not explicitly formalized. Second, concepts often do not differ only
by their label but semantically as well.

The lack of explicit formalization and semantical differences make a mapping on a seman-
tical level very difficult or even impossible. This is especially true for expert communities,
in which the members are strongly influenced by an educational background that deter-
mines these concepts. To enable knowledge sharing in heterogeneous expert communities
novel approaches are needed.

183

7.3.2 The Importance of Heterogeneity

While heterogeneity is a problem on a technological level, it is of essential importance
on a user level for several reasons.

First, heterogeneity is often the key to user acceptance. If users have to obey a formalism
that does not fully reflect their needs, they will not use it. Actually, they tend to use
highly suboptimal channels of knowledge sharing instead (as e-mail), just as they do not
like the representation mechanism of a given knowledge management system.

Second, many current knowledge sharing scenarios are inherently heterogeneous, such
as systems in which experts from different domains collaborate. Heterogeneity here is a
prerequisite to solve complex problems.

Third, heterogeneity is an important source of innovation [24]. Often, knowledge cre-
ation and technical development can be structured in two phases: innovation and con-
solidation. While traditional knowledge management solutions support communities in a
consolidated phase, they do not support innovation. Actually, a successful system should
support both, consolidation and innovation.

Forth, heterogeneity often improves quality, as the co-existence of different views natu-
rally leads to a competition, and only such views will be adopted on the long run that
are accepted by many users.

To fully profit from these benefits, a knowledge management system must support het-
erogeneous user groups adequately. In the next section, we give an overview on existing
approaches to this problem.

7.3.3 Approaches to Cross Community Knowledge Sharing

The model of perspective making and perspective taking provides a theoretical founda-
tions for dealing with cross community knowledge sharing. This model describes the
processes of knowledge exchange between different ,communities of knowing* [23]. Per-
spective making refers to intra-community development and refinement of knowledge,
whereas perspective taking refers to making the thought worlds of different communities
visible and accessible to each other. [23| propose that these processes are intrinsically
connected: a community develops new knowledge both through social exchanges and
knowledge discourses between its members, as well as by taking on perspectives of oth-
ers. The interplay of these two processes then provides the ground for allowing knowledge
to be exchange between different communities.

Another model related to the problem of cross community knowledge sharing are ,,bound-
ary objects [166]. Boundary objects are knowledge artifacts that embody different per-
spectives and can be interpreted in different ways. Such boundary objects are seen as
essential means for supporting cooperation between different communities in a way that
allows each community to retain local perspectives and yet these perspectives to become
interconnected.

184

Different authors have emphasized the largely tacit nature of human knowledge [23]
and the difficulties of codifying and formalizing socially distributed knowledge in com-
munities. Existing solutions to this problem can be roughly classified into three main
approaches: the ,internalization“ model based on individual reflection on the commu-
nity discourse, the ,socialization” model based on direct interaction mediated by CSCW
technologies and the ,externalization model based on the explicit construction of shared
conceptualizations.

The internalization model is the only model supported by basic community technologies
such as mailing lists, bulletin boards and discussion forums. The development of a shared
context requires members’ extensive and active participation in the community exchange.
There is no mode for the shared understanding of the community to be expressed, and
the repository of the collective memory is an unstructured space of many interrelated
but rather isolated pieces of information. Context is very difficult to establish.

The socialization model is connected to approaches that aim at supporting the sharing of
social knowledge through a shared virtual space (e.g. [51]). This is the so-called awareness
and knowledge socialization approach, which can be related to two basic premises. The
first is that by providing mutual awareness of spatially distributed but contextually
related users (e.g. working on same task, or belonging to same community) by means
of a shared virtual space, the cognitive distance between them is bridged. The second
is that once this cognitive distance is bridged, the conditions are established for the
users to enter into conversations through which they exchange otherwise inaccessible
personal knowledge. There are several variants of this basic model. Some of them are,
for example, connected to the constructionist theory of learning [142], others focus on
the establishment of identity and the self-organizing of social norms (e.g. [183]). The
main shortcoming of computer-mediated socialization approaches is that the sharing of
implicit knowledge requires extensive manual interaction between individual members,
and the resulting exchange still resides only in individual users. There is no possibility to
visualize or access the resulting structure of shared understanding or to use it to support
new users.

The externalization model is addressed by approaches aiming at supporting the explicit
formulation of shared conceptualizations in form of knowledge ontologies. Ontologies
represent models for formal descriptions of concepts and named relationships between
them, that describe how a given individual or a group of people understands a particular
domain of knowledge. Ontologies often have to be created explicitly by hand and require
a process of explicit community negotiation for achieving a consensus about the shared
understanding that is to be expressed (corresponding tools of collaborative ontology en-
gineering are described in section 3.3.1). Once created they can be used to access and
navigate the community information pool, as well as to visualize the semantic structure
of the shared community understanding. An example of existing efforts for building such
ontologies in different disciplines but interrelated to each other is the DublinCore initia-
tive (http://www.dublincore.org). The Open Directory Project aims at a collaborative
definition of a somewhat simpler taxonomy for manually mapping the content of the
whole Web (http://dmoz.org). Such approaches to creating externalized representations

185

of a shared conceptual structure require explicit negotiation for achieving consensus be-
tween the members. There is no or little support for expressing the personal points of
view of individual users and putting them in relation to the shared structure. At the
same time, one of the essential mechanisms of knowledge creation is the ability to change
perspective and see the world with ,different eyes”. Finally, the challenge remains of
how to provide insight into the underlying values and beliefs shared by a group of users,
as fundamental elements influencing their thinking, judgment and the creation of new
knowledge.

While the aim of ontologies and other forms of knowledge externalization usually is
to create a formalized common understanding, a radically different approach is to allow
different knowledge structures to co-exist and to mediate between them automatically by
means of a mapping between different taxonomies, categorization structures or ontology
schemes (as described in section 3.3.4). These approaches offer the benefits of allowing
a decentralized creation and maintenance of knowledge (and thus personal views on
a domain) with little explicit coordination. Finding an intentional mapping between
conceptualizations is, however, far from being trivial and usually depends on a logical
description of concepts. Thus ontology mapping also depends on the assumption that
the meaning of concepts and thought worlds of communities can be codified in a formal
representation and therefore suffers from the same basic problem as the other knowledge
externalization approaches.

While explicit externalization is often costly and unsuitable for capturing tacit and social
knowledge, an alternative is to infer the common understanding of groups of users from
their interactions. This is the approach taken here. The basic idea is to operationalize
the concepts of perspective taking and perspective making and of boundary objects by
means of data mining.

7.4 Cross Community Knowledge Sharing and Data Mining

The aim of this work is to support users in organizing and searching information across
community boundaries. Basically, the collaborative structuring approach is very well
suited for this task, as it allows for emerging concepts, such that communities with
different views can co-exist in a single system. Recommendations help to consolidate
the system, as popular views within a community automatically become dominant. This
corresponds to the perspective making metaphor. Applying tag structures to arbitrary
sets of items corresponds to the perspective taking metaphor. In this way, knowledge
within one community becomes accessible to members of other communities. Boundary
objects are tag structures covering items stemming from different communities. As users
may combine arbitrary tag structures, such boundary objects can be easily identified by
collaborative structuring. To fully profit from this idea, we extend the basic mechanism
presented in part two of this work in one point.

Collaborative filtering systems [160] are designed to enable knowledge sharing exactly
among users with similar preferences. A cineaste probably does not want to be even

186

aware of all the action film fans that also utilize the system. Most collaborative filtering
algorithms therefore apply a measure that decides which users are similar to a given user.
Only ratings of these similar users (or predictors) are applied to make recommendations.
For sharing knowledge in heterogeneous expert communities the situation is different.
The idea is often the other way around: we want to enable experts to find connections
between domains, relevant research in another domain, basic relationships of one domain
to another, etc. In the following, we describe how the methods presented in the second
part of this work must be extended to support this kind of exploration.

We assume a set of communities B, each consisting of a set of users, thus for all B; € B :
B; C U. Each user belongs to a least one community, users may however belong to more
than one community. Following the idea of collaborative filtering, each user has a set of
predictors. To make recommendation for a user, only information provided by this set
of predictors is employed. Let again IN; denote the set of predictors of a users w;. Then,
knowledge sharing can easily be characterized by the following definition.

Definition 7.4.1. User u; shares knowledge with user u;, denoted by w; =<y, u;, iff
u; € Nj.

This definition captures the notion of knowledge sharing from a point of view of (instance-
based) data mining. For collaborative structuring this means that only the tag structures
of users are applied that are in the set of predictors corresponding to the current user.

Now, the partial order denoting knowledge sharing can be classified into different modes
of knowledge sharing, depending on the membership of users to communities:

1. Reflexive “knowledge sharing”
Uq jKS’,r Uj iff U; = Uj and Uq jks Uj
Only information by the active user herself is employed for learning. This form of
knowledge sharing is useful to get an overview of one’s own structures.

2. Inner-community knowledge sharing
U; jK&p Uy iff vB € B : (Uj S B) = (uz c B) and u; <ps Uj
Sharing knowledge is only allowed between members of the same community. As
described before, this is useful if users want to ignore users from other communities
altogether. This will be also denoted as restrictive personalization.

3. Cross community knowledge sharing
Up ZKS,f Uj iff ~IAB € B: u; EB/\Uj € B and u; <4 Uj
This form of knowledge sharing is useful if users want to gain insight in how other
communities label and structure items, as to find, e.g., relevant research and ter-
minology in other domains.

4. Knowledge sharing by cross domain users
U; 2K S cross Uy iff {B e B]uj' € B}| > 1 and u; <ps Uy
Users belonging to more than one community are of special importance, as they
can serve as bridges between domains, highlighting boundary objects and bringing
into relation item and topics that have no obvious connection.

187

Usually the set of predictors is determined automatically by some kind of optimization
procedure (as for collaborative filtering) and we can only analytically determine to which
mode of knowledge sharing this corresponds. In the approach presented in this chapter,
we turn this relationship around. We start with a desired mode of knowledge sharing
and then select the set of predictors correspondingly. If; for instance, knowledge should
be shared within a given community only (mode 2), then we use only tags created by
members of this community in the data mining process.

This procedure enables us to support different modes of knowledge sharing without alter-
ing the actual data mining algorithms presented in part two. We simply impose additional
constraints on the subset of features that can be selected during feature selection.

7.5 The Knowledge Explorer

7.5.1 Basic Concepts

The main aim of the Knowledge Explorer is to allow heterogeneous expert communities
to collaboratively navigate and explore cross community document collections. Scientific
publications are the most important carrier of knowledge in this context. In the following,
we assume that documents are uniquely identified items from which textual features (us-
ing the bag of words approach [154]) can be extracted. They correspond to the concept of
items as introduced in section 1.2. Additionally, there are document pools, corresponding
to item collections. Document pools are sets of documents connected by their common
origin. Typical examples are proceedings of conferences, journals, announcements of a
given institutions and so on. Additionally, documents can be annotated by user specific
tags, called personal concepts. These tags are assigned by creating personal knowledge
maps, which are described in the next section.

7.5.2 The Knowledge Map Metaphor

The most important concept in the Knowledge Explorer system is the knowledge map
metaphor. A knowledge map is a two dimensional area on which items are arranged.
We distinguish two kinds of knowledge maps, document maps and concept maps (see
Fig. 7.5.1). Document maps contain individual documents each represented by a point
in a two-dimensional space. Similar items are located close to each other. Concept maps
contain tags. Similar tags are located close to each other.

A document map displays each document together with its meta data and descriptive
terms. These terms are derived either from the text itself or from user tags. As the user
selects a document, particularly similar documents are highlighted. Additionally, areas
of a document map can be tagged with a label, denoting that the documents in this area
belong to a concept.

188

8O00 [} awake_basis-modell.der

[ai EE | NDE R
FEE

Hinery
BT e Parsonal Han

LR

SE]ONEE

Figure 7.5.1: The interface of the knowledge explorer. The upper left window shows a
document map, the upper right window shows a concept map.

Document maps can be created by the system automatically or manually by the user. In
the latter case, they are denoted as personal document maps. These personal document
maps allow users to express their view on a set of documents by arranging the documents
and by assigning them to personal concepts. Each user may create several personal
document maps.

System generated document maps are created automatically by applying a SOM algo-
rithm [101]. The underlying feature space initially consists of text features extracted
from the documents. Later, this feature space can be enriched with features extracted
from personal document maps. Enriching the feature space can be performed in different
ways, depending on the desired mode of knowledge sharing (see below).

Concept maps are always automatically generated and correspond to one or several doc-
ument maps. They show the major concepts that underlie the document map and how
they are related. The following types of concept maps are supported:

e Personal Concept Map
The map corresponds to a single, personal document map.

e Gesamt Personal Concept Map
The map corresponds to all maps created by a given user.

o Community Concept Map
The map corresponds to all maps created by users that exactly belong to a given
community.

189

e Quverall Concept Map
The map corresponds to all document maps.

The creation of concept maps is described below.

How does this model relate to the basic model presented in section 5.3.17 As described
above, the concept of users and items is a special case of the general model. Personal
concepts correspond to the user assigned tags. Personal document maps correspond to
aspects. Personal concepts are not allowed to overlap. This entails that only flat tag
structures can be created. The Knowledge Explorer model is richer in that each item
does not only have user assigned tags but also a user assigned position for each knowledge
map it appears on. We discuss the consequences of this extension below.

7.5.3 Operations on Knowledge Maps

Beside interactive browsing, the system supports the following operations on knowledge
map:

1. Generating a document map
Given a set of documents, such as a document pool, a document map can be created
automatically. This is usually a point of departure if no additional information is
available.

2. Generating a concept map
For each document map, a concept map can be created. Additionally, the system
allows to create concept maps that correspond to all maps created by a single user,
by a community or by all users.

3. Applying a document map
Documents can automatically be classified into any document map by learning a
classifier function. This operation serves two purposes. First, a personal document
map can be populated with additional relevant documents automatically. Second,
users may view arbitrary documents collections through the eyes of other users or
communities by applying a foreign personal document map. They can even take a
look at their own personal document maps from a different perspective.

4. Searching for documents
The Knowledge Explorer supports standard keyword based search for documents.
Result documents are highlighted in all knowledge maps. User tags are considered
as well.

5. Searching for personal document maps
Users may not only search for individual documents but for complete personal
document maps. This enables them for instance to discover alternative contexts in
which a document is used.

Operation 1 corresponds to the basic clustering task (possibly based on a collaborative
feature space). Operation 3 corresponds to a classification task and operation 5 cor-
responds to the LACE approach (as described in section 6.4). These operations were

190

m hoen
Clustering Map Agent

Search Editor
Agent Map Agent
Personalization
Agent

Personalized

Navigation
(online)
********************* Shared Data Space ettt -
Dat_a Analysis Heterogeneous
(offline) Document
Dynamic Feature Preprocessin.
Extraction P J

Sources
Agents Agents

Figure 7.6.1: The Knowledge Explorer architecture: The lower part depicts the feature
extraction and preprocessing agents that work asynchronously with the user
interaction agents depicted in the upper part.

already covered in the second part of this work and are therefore not discussed here in
detail. Operation 4 is a standard information retrieval task and will not be discussed
either. The only specific functionality is the concept map creation, which will be cov-
ered below. In the following we also discuss how these operations can be combined with
different modes of knowledge sharing by community specific feature selection.

7.6 Knowledge Explorer Data Mining

7.6.1 Basic Architecture

The Knowledge Explorer data mining system consists of two different kinds of agents (Fig
7.6.1). One group of agents is concerned with responding to user requests. These agents
have to work very efficiently, as interactive work requires very short response times. To
achieve this, we use a second group of agents, which asynchronously preprocess data and
stores it in intermediate data structures. These agents take much of the work load from
the first group of agents. Using this strategy, we can use sophisticated and costly data
and interaction analysis methods and even so have short response times. In the following,
we will roughly describe some of the system’s components.

Data Preprocessing and Feature Extraction Agents

Preprocessing agents allow the user to create a pool of documents by connecting data-
sources to the system. The user can either choose between readily available data sources
or manually connect other structured data-sources (such as databases and semi-structured
document repositories).

191

Feature extraction includes a text-analyzer for encoding semantic properties of texts into
a vector space model [154| and the extraction of meta data, such as information about
the author or the year of publication.

Dynamic Feature Extraction Agents

This layer contains agents for semantic processing of user created, personal maps. While
preprocessing is performed only once for an item, interaction analysis is performed at
regular intervals, as the set of personal maps changes.

Personal Information Agents

Personal information agents perform all data mining tasks that are directly related to
user requests. This includes all functionality described above, such as classification,
clustering, key word extraction, etc.

Visualization Agents

The visualization agents provide post-processing of the data and of the interaction-
analysis done by the personal information agents. They take care of collecting all nec-
essary information from different agents, needed to construct all the information layers
of the document map and the concept map described in the previous section. Based on
the selected visualization model, the visualization agents then retrieve information stored
by the data integration assistant and preprocessing agents in order to fill in additional
information (e.g. titles, abstracts, term-document frequencies etc.).

Agent Communication and Coordination

We use two simple techniques for agent communication and coordination. The exchange
of data between agents is realized as feature facilitator described in section 4.5.3.

This approach allows that on the one hand there are possibly several agents working
on preprocessing in parallel. On the other hand, the preprocessing agents can provide
data for the request processing agents asynchronously, without direct communication or
coordination. Though within each group of agents, there is a need for a tighter form of
coordination. In the Knowledge Explorer framework, this is achieved by a simple event
service based on XML and SOAP.

7.6.2 Knowledge Sharing and Feature Engineering

As described above, almost all intelligent operations provided by the Knowledge Explorer
can be reduced to data mining tasks presented in chapter 4 and chapter 5. The most im-

192

portant addition to this basic framework is the support for different modes of knowledge
sharing. How this can be achieved by feature selection will be described in the following.

As described above, we start with a mode of knowledge sharing and then select a set
of predictors for a user accordingly. This selection is based on the information which
user belongs to which communities. In many applications, this information is part of
the available domain knowledge. If this is not the case, it can easily be extracted by
data mining. The following procedure is proposed. First, the documents in all available
pools are clustered using k-means. Users are then assigned to a community if they have
selected documents from the corresponding document cluster. In many applications, the
step of document clustering can be omitted, as documents are assigned to communities
by their origin, e.g. as conference proceedings, journals, etc., which are in most cases
community specific.

Given the information which users belong to which communities, feature selection can
be applied to extract features from only a subset of personal maps, corresponding to the
desired mode of knowledge sharing.

This functionality can be added easily to the feature facilitator. The feature selection
according to the community and the mode of feature sharing is very efficient and does
not affect the response time, as features are selected without analyzing their values.

Using community memberships offers an additional benefit concerning distributed feature
extraction. Unsupervised feature aggregation (see section 5.4.5) can be performed more
selectively by only aggregating tags provided by users that belong to the same community.
This helps to save storage space and computation time at a lower chance of adding false
information to the system.

7.6.3 Personal Agents

In the following, the most important intelligent functions of the Knowledge Explorer are
briefly discussed. As they mostly correspond to operations covered in detail in the second
part of this work, only specific issues are discussed here.

Classification

Classification is used to add new items to a given personal map. This function is used to
allow users to view arbitrary document collections ,through the eyes of a personal map
(perspective taking). Also, new documents can be added to a personal map automatically,
such that the user does not have to insert these items manually.

The classification algorithm is based on nearest neighbor (see section 1.4.4). For each
document, a set of similar documents is selected. An item is assigned the class that a
majority of predictors is labeled with. This choice is motivated by two characteristics
of nearest neighbor. First, it is easy to explain to the user the result of a classification,
especially as similarity information is displayed in the user interface anyway. Second,

193

items do not only need a class label, they need a position on the two dimensional map
as well. Using nearest neighbor, this position is calculated easily as the component-wise
average of the positions of all predictors.

The similarity measure used for classification is derived by applying cosine similarity to
the corresponding feature space, as described above.

Clustering

Clustering is achieved by applying a Self Organizing Map [101] to a set of items. These
items are again described by a feature space selected according to the mode of feature
sharing. Additionally, for each point on the SOM, representative tags are selected to
support the navigation |79].

Concept Map Creation and Similarities

A concept map contains terms, each represented by a point. These terms are connected
to relevant documents and to related terms.

In a first step, a set of main concepts is derived from the document maps that corre-
spond to the concept map (depending on the type of concept map). This is achieved by
calculating for each tag to how many documents it is assigned. If a tag is assigned to
a document twice (by two different users), both occurrences are counted. The tags that
achieve the highest number of assigned documents are selected as root concepts.

In a second step, similarities among the root concepts and between root concepts and
other tags are determined using cosine measure on the corresponding collaborative feature
space. In a third step, relevant document are determined for each term on the map by
document frequency (the number of times a document is assigned a given term).

Matchmaking

Matchmaking is based on the LACE algorithm (see section 6.4). Results are limited to
the personal maps that correspond to the feature set that is used. In this way, users
may search for maps in other communities or maps created by interdisciplinary users.
Another restriction of the Knowledge Explorer system is that only individual maps are
recommended. A combination of maps is not supported.

7.7 Conclusion

Sharing knowledge in heterogeneous expert communities is important and highly chal-
lenging. Current knowledge management systems ,naively” apply standards data mining

194

algorithms for search and navigation in document collections. These algorithms implic-
itly support only within community knowledge sharing. To enable knowledge sharing
between different communities, novel algorithms are needed. In this chapter, it was
shown that collaborative structuring can be easily extended to allow for different modes
of knowledge sharing. The key is to filter tags and tag structures from which features
are derived according to these modes. In this way, existing algorithms do not need to be
modified.

195

196

8 Collaborative Media Organization

8.1 Introduction

The aim of data mining in general is to find useful patterns in large data collections. Data
mining was applied to multimedia data in diverse areas ranging from robotics to multime-
dia information retrieval. Distributed computing plays an important role in this process
for several reasons. First, mining multimedia data often requires huge amounts of re-
sources in storage space and computation time. To make systems scalable, it is important
to develop mechanisms that distribute the work load among several sites in a flexible way.
Second, multimedia data is often inherently distributed into several databases, making
a centralized processing of this data very inefficient and prone to security risks. In this
chapter, we discuss a particular interesting application of distributed multimedia process-
ing: the organization of private media collections. Popular file sharing applications allow
user to search and to exchange media files in loosely coupled domains. Media organizers
as iTunes! or amaroK? offer some limited intelligent functionality through the creation
of intelligent playlists. However, these playlists basically are dynamic database views.
Applying data mining methods to the field of personal music management offers many
new opportunities. Typical applications include the classification of music items accord-
ing to predefined schemes like genres [68, 99, 109, 145, 184, 208, 67|, automatic clustering
and visualization of music [126, 139, 141, 157], recommendations of songs [168, 15|, as
well as the automatic creation of playlists based on audio similarity and user feedback
[140, 112].

A general lack of these approaches is that they do consider media items and views on these
items as global entities. In fact, media items are usually highly personal and subjective
and must thus rather be considered as local entities [90]. Therefore, users should be
allowed to manage items in a personal way using own tags. Still, they should profit from
what other users did, such that the effort to develop and maintain a personal view is
minimized. Collaborative structuring allows for this balance between creating structures
by hand and copying them from other users.

We created Nemoz, a prototypical system that applied collaborative structuring in the
context of media organization. The aim of Nemoz, as application, is to support users
in organizing their media files in a distributed, collaborative way. Peers in the Nemoz
system are assumed to be connected over a loosely-coupled p2p network.

"http://www.apple.com/itunes
2http:/ /amarok.kde.org

197

666 Nemoz alpha 0.5
File Edit Taxonor my Folder Song Window StreamViz Help

> b B [\Onc:uzu(i)—:\li:aTiKnaw‘(nu J 2 &% a4 <00 @
Fﬂwulu = (j[@Taxunumy 4 [=8)

ur Rica
What Is thi..
. u

B@x &L B8 a§ &4 B = ml ‘ @ £ 52 Tracks, 48 Hours.

Ready. =

Figure 8.1.1: The interface of the Nemoz application

8.2 Challenges for Distributed Multimedia Mining

Distributed multimedia data occurs in many current applications, ranging from media
organizer applications, such as Nemoz, over mobile robots to sensor networks. Apply-
ing data mining to such data is very challenging for several reasons. Multimedia data,
such as images, audio, video or general time series, are hard to handle with traditional
data mining techniques. The underlying data representation is very complex and large.
Furthermore, different data mining tasks require completely different preprocessing. For
example, the characteristics needed to separate different jazz styles from each other dif-
fer completely from the ones needed to separate styles of rock music. The data volumes
in multimedia applications are usually huge. Distributed analysis of such data is very
restricted, as even efficient networks usually do not allow to transfer large amounts of
data just for the purpose of analyzing it [41]. Unlike business data, multimedia data is
typically stored and processed on computationally weak devices that do not necessarily
have a high speed Internet connection. Examples are wearable media players, cell phones
or distributed sensor networks. Processing in such settings cannot rely on expensive cal-
culations and on reliable high speed Internet connections. Typical network architectures
are rather based on ad hoc or p2p networks.

P2p and ad hoc networks are characterized by a low reliability of individual nodes that
usually leave or join the system at high pace. Also, such networks contain many nodes
that are only loosely connected. Traditional distributed algorithms, that are based on
global agreements, will likely fail in such a setting. Other characteristic of p2p and ad
hoc networks require special treatment. The structure of p2p networks is usually such
that there are few nodes with rich resources and many connections and many nodes with

198

few resources and few connections. Data mining algorithms must respect this natural
unbalance instead of forcing the work load to be equally distributed. Free riders are nodes
that only consume services without providing any. Such nodes have a negative influence
on performance of the whole system [149]. Traditional data mining applications are
usually based on a data warehouse specially built for data analysis. Distributed data
mining application must, on the other hand, operate incrementally. As, for instance,
users of the Nemoz system add new items, these items must be analyzed as they arrive.

Connected to this issue is the problem that the system must perform data mining in near
real time. This is obvious for sensor networks that must react on unexpected events as
quickly as possible. However, even a typical Nemoz user is not willing to wait for data
mining process more than some seconds. Many traditional data mining methods are not
able to deal with such tight restrictions on processing time.

Collaborative structuring and distributed feature extraction are promising approaches
to cope with several of the above challenges. The complex nature of media data can be
handled by user assigned tags, that employ the common knowledge of a user base instead
of extracting semantic information from the media data itself. Such tags can be extracted
and shared on a wide variety of devices by the distributed feature extraction methods
proposed in chapter 4. These methods save computation time and can easily be applied
even in networks that allow only minimal assumptions concerning connectivity. Even
if user tags are not sufficient, content based features can be shared efficiently, without
actually sharing any data. The proposed methods make use of the natural unbalance of
nodes in computational power by allowing each node to decide locally which features to
extract and to share. The simplicity of the feature sharing approach allows for simple,
general protocols that do not make any assumptions on the underlying system and data
mining methods. This approach is well suited to create a general platform that allows
the interoperability of a large variety of devices. Incremental processing is supported,
as new items can be annotated with existing tags or can be structured from scratch.
Features for new items can be obtained easily by querying only for the subset of items
that is actually new.

In the following, we show how these methods are actually implemented in Nemoz.

8.3 Nemoz Concepts

8.3.1 Basic concepts

Items in Nemoz are media files. We assume that these items are globally, uniquely iden-
tified and static over time. We further assume that arbitrary features can be extracted
from these files. Such features can be content-based, as audio features from music files.
They may also stem from other sources, as web pages or user reviews [15, 157|. This
corresponds to the basic model introduced in part two of this work. The same holds for
the concept of users in Nemoz. The most important concept in Nemoz are user tags,
that will be described in the next section.

199

8.3.2 Nemoz Tagging

Nemoz tagging basically works as introduced in section 5.3.1. Users may assign arbitrary
tags to media items. Such tags can be organized hierarchically. Furthermore, we assume
a set of aspects that are used to arrange and manage tags.

8.3.3 Nemoz (Intelligent) Operations

The aim of Nemoz, as an application, is to support users in organizing and exploring
media collections. Nemoz clients offer a user friendly, state of the art interface that
allows users to organize media collections very conveniently. Nemoz offers basic player
and file sharing operations. Users can browse media collections of other peers, download
files or play them remotely.

The major focus of Nemoz is, however, on operations that help users to create and
maintain personal tag structures. Nemoz supports the following intelligent operations on
personal tags:

1. Assign tags automatically

Given an item and a set of user defined tags, the system can assign tags to these
items automatically. This process is guided by the aspects. For each aspect, exactly
one most specific concept is selected. This kind of classification has two aims. First,
it helps the user to maintain her tag structures. She might only label a small part
of all items explicitly and then the system assigns the remainder of the items
automatically. Second, assigning tags to items temporarily allows a user to browse
a remote media collection using the own tags.

2. Automatically structure a set of items
Given a set of items without a tag, this set of items can be structured automatically
by exploiting tags created by other users and/or content related features. The
system provides several solutions (aspects). A very common application of this
function is to refine overfull nodes in a hierarchy. In this way, a user can iteratively
structure a set of items in a top-down manner.

3. Search
The systems provides extended search functionality. Users may, for example, search
for a tags, users, meta data and any combination of this information. Also, sim-
ilarity search is supported. This search can be based on any feature space. This
allows to search for similar items according to an aspect by applying exactly the
feature space that is associated with this aspect.

4. Visualization
Based on a feature set, visualization methods can be invoked, that, for instance,
map all items to a two dimensional space. As the feature space may correspond
to an aspect, items can be visualized according to several different, user defined
aspects in this way.

200

These functions largely correspond to the basic functions of collaborative structuring as
proposed in chapter 5. Operation 1 is simply achieved by classification. Operation 2 is
achieved by clustering and especially the by the LACE approach (see chapter 6). Search
is based on traditional information retrieval methods and visualization on dimensionality
reduction methods.

8.4 The Nemoz Framework

8.4.1 Data Mining

Nemoz uses a query-based cooperation pattern, as presented in chapter 4. As Nemoz is a
p2p system, we assume the fully distributed approach to feature sharing, based on range
limited broadcast.

This approach is very well-suited for two reasons. First, an important restriction in
Nemoz is that active task distribution (distributing data mining tasks among nodes in
some optimal way) is not applicable. This is due to the fact that media items cannot be
sent easily over a network. Second, many features are only relevant to a subset of nodes.
Disseminating them to all nodes would be highly suboptimal.

In our approach, each node decides which calculations to perform and which features
to store, depending on its resources and the current work load. This especially includes
local feature aggregation and the extraction of new features using sophisticated but costly
methods, as e.g. described in [119]. Nodes shares the results of their calculations with
other nodes. If a node encounters a new data mining task, it first queries the other nodes,
to find useful features for this task. These features are then obtained and incorporated
into the local feature space.

The actual data mining is performed using standard methods. Again, nearest neighbor is
used for classification. Collaborative clustering is based on the LACE approach, presented
in section 6.4. Similarities are calculated using Euclidean measure on mixed feature space
of (aggregated) user tags and other features (as described in section 5.4).

8.4.2 System Architecture

Nemoz, as a framework, offers the basic building blocks to develop and evaluate dis-
tributed data mining methods for collaborative media organization. The architecture of
the framework is depicted in figure 8.4.1.

The Graphical User Interface is responsible for all human computer interaction. The
application layer contains basic functionality of the system that is part of the Nemoz
core. Plugin and scripts can be added on top of this layer to extend the system. The
data mining service backs the intelligent functionality. It makes use of RapidMiner (Yale)
[124], an extendable platform for data mining, offering diverse classification, clustering

201

User Interface Layer

Scripting and Plugins

Core Application Layer

Data

Mining

Yale XML

Yale Security || other
System | Network | Se€rvices

Figure 8.4.1: The Nemoz architecture

and preprocessing operators. RapidMiner is accessed by a scripting layer that allows to
represent complex processing trees in an open XML format. The network service offers
all necessary functionality to communicate with other nodes, using data access objects to
allow for a flexible XML serialization. The privacy layer allows to restrict access to the
local resources. Users can define the accessibility and visibility of items and structures
to other users and which information can be used for data mining. Finally, there are
several other local services responsible for playing files, persistency, etc.

Nemoz as a platform allows for the combination of different components, connected over
a common cooperation protocol. This makes the whole system extensible on a node
level. It would be for example easy to add new nodes performing additional forms of
multimedia analysis.

8.5 Conclusion

Processing multimedia data is very challenging. This is especially true if this data is
distributed over a loosely coupled network, as it is the case in many current media
organization applications. Media items are stored locally on devices that differ strongly
in their capabilities. Tagging and collaborative structuring allow to annotate multi-media
items in a very flexible way making only minimal assumptions about the computational
power or the network connection of the devices. This helps to solve the problem of
automatic annotation of such data. The co-existence of different aspects and views
is very natural for media organization and therefore essential of the acceptance of the
system. Distributed feature extraction allows to share tags and features easily. As it is
based on standard queries, it can be combined with state-of-the-art p2p resource location
software, such as distributed hash tables. This makes the Nemoz approach scalable and
applicable in a very broad range of underlying networks.

202

9 Conclusion

Every new technology raises the question whether it simply makes some aspects of our
life more convenient, or whether it actually opens completely new possibilities. This is
especially true for the Internet. On a very basic level, the Internet is a mechanism to
provide access to information in a transparent, location independent way. However this
might not look very impressive on a first sight, the implications are enormous. The ability
to exchange any kind of data and information, independent of one’s current geographical
location, paves the way for patterns of cooperation that have not been possible before.
Although the Internet, as mass medium, is relatively young, a huge range of applications
stands evidence for these achievements. The collaborative dictionary Wikipedia contains
more articles than the Encyclopedia Britannica. On the Usenet, each day 3 Terabyte
of information is exchanged in more than 60.000 discussion groups. The number of
World Wide Web pages is growing too fast to even be measured accurately. People share
knowledge, experiences, news, recommendations. If someone faces a problem, e.g. which
cell phone to buy, she can profit from the experience users made world wide. The same
holds for many technical or scientific problems.

Successful navigation, search and collaboration on the Internet depend on mechanisms
that allow users to access large and complex information spaces in a structured way. A key
to this problem is to respect and reflect the natural heterogeneity of users and information
on the Internet. Heterogeneity is a very broad concept, including differences in topic,
language, preferences and interests, pre-knowledge and use context. Actually, the ability
to serve very heterogeneous user groups and interests is one of the main achievements
of the Internet and one of the reasons for its current success. It is often expressed by
the term ,long tail“, denoting that all ,less-popular* resources together can make up an
at least equally important part of the content as the popular ones. Still, when it comes
to information structuring, this heterogeneity is very challenging. Imposing a globally
agreed upon structure on all information is not very promising. First, it does not reflect
the very fine grained, partially quickly emerging (and vanishing) topics and resources that
make up the long tail. Second, there are often different, diverging views on the same
topic, that cannot be captured by a global structure. The other extreme, namely leaving
the structuring to individual users and small user groups, is also not very promising. It
leads to a high work load and possibly to poorly annotated resources. Moreover, it may
cause that unnecessarily different names for the same underlying concept are introduced.
The paradigm of collaborative structuring allows to combine the best of both worlds.
By finding patterns in user annotations, it allows to recommend not only resources but
structure on these resources. This enables users to position themselves between two
extremes. Either, they can simply use the annotations and structures recommended by

203

the system, or they can create a new structure completely from scratch. New concepts are
then only introduced if the existing concepts or concept structures do not fit to a given
domain or to the preferences of the current user. In contrast to other approaches, such
as ontology matching, collaborative structuring does not require a one-to-one matching
among concepts but is able to recombine existing concepts into new ones dynamically.

Based on this analysis and aims, the given work developed for the first time several strate-
gies and algorithms for collaborative structuring that go byeond what current methods are
able to achieve. These algorithms are based on the fact that most structuring operations
can be mapped to the well-known data mining tasks of classification and clustering. The
accuracy of clustering and classification (especially when applied to multi-media data)
strongly depends on the representation of the underlying data. In this way, collaborative
structuring could be mapped to a more general problem, namely the problem of finding
adequate representations, not for a single, but for a set of data mining tasks. This prob-
lem, labeled distributed feature extraction, is not limited to information structuring but
appears in many different domains ranging from robotics to business intelligence. In this
work, this problem was analyzed from a combinatorial point of view. Given a (possibly
infinite) set of features, select for each task in a set of tasks a subset of these features in
such a way that the overall accuracy is optimized. Additionally, the union of all feature
sets should have a minimal size. It was shown that constraints on the order in which
the data mining tasks are solved have an influence on whether it can be guaranteed that
an optimal result can be found. In fact, it turned out that no algorithm can guarantee
to find an optimal solution if there is an order constraint between any two tasks. Still,
a heuristic algorithm, called prioritized forward selection, was proposed, together with
several optimizations. This algorithm helps to find minimal global feature sets and can
speed up the process of feature extraction considerably. As most problems that include
several data mining tasks appear in distributed environments, a p2p implementation of
the approach was presented, that allows to apply the algorithms efficiently in networks
with only minimal assumption on the network capabilities.

Distributed feature extraction provides the theoretical and practical base for collaborative
structuring methods. Exploiting social annotations can be interpreted as a sophisticated
feature extraction method and can be integrated into the general distributed feature
extraction framework. The key is to regard user annotations, applied in many social
bookmarking systems, as features. Based on these collaborative features, classification
and clustering algorithms can be applied. It was shown that applying traditional cluster-
ing algorithms to user annotations efficiently yields hierarchical cluster ensembles. While
the proposed methods outperform methods that apply clustering only to content based
features, the result is still not fully satisfying from a user perspective. The reason for
this is that traditional clustering algorithms return only a single solution and that cluster
ensembles are not local. This led to a reformulation of the clustering problem and to the
development of the localized, alternative cluster ensembles approach.

The proposed methods are inspired and applied in two application areas. The first one
are heterogeneous expert communities. Collaborative structuring enables experts from
different domains to cooperate and gain a mutual understanding of the other domains.

204

This is achieved by using an additional feature selection model, based on community
membership. Users can either receive recommendations from other members of their own
community or from members of other communities. This can be implemented easily as
a filtering step for collaborative features. It allows to switch between a more restrictive
personalization mode and an explorative mode of knowledge sharing in heterogeneous
domains.

The second application area is distributed media organization. This application area is
very interesting, as media organization naturally integrates many heterogeneous areas
of interest, preferences and backgrounds. Also, processing multi-media by data mining
methods is very challenging. Distributed feature extraction can help to speed-up the
process of finding an adequate representation for multi-media items for the application
of data mining. Collaborative structuring allows users to collectively organize their media
items in a very loosely-coupled way. The proposed methods can be applied, for instance,
in any p2p or ad hoc network. They do not require users to be connected to a global
network.

Collaborative information organization is a very promising but also challenging approach.
In order to make this approach applicable in large scale information systems, data mining
methods are needed. Collaborative structuring tries to bridge the gap between current
social media systems and data mining methods in a way that respects the natural diversity
in such systems.

205

206

Acknowledgements and Joint Work

Some parts of this work are adapted versions of joint publications. In the following, the
individual contributions are described in detail.

Chapter 4

The concept of distributed feature extraction was developed in cooperation with Katha-
rina Morik [197, 196]. The generalization of feature relevance and corresponding defini-
tions and proofs are sole work of the author, published in [195].The approach to query
for features by base weights (paragraph 4.4.3) is joint work with Ingo Mierswa [121, 120].
The weighting axioms and the corresponding proofs are sole work of Ingo Mierswa. The
distance axioms and all corresponding proofs are sole work of the author. The remainder
of the paragraph was developed by the author and Ingo Mierswa to equal parts. Multi-
objective feature selection and construction for clustering (as mentioned and referenced
in Section 4.2.2 and published in [122, 123|) is joint work with Ingo Mierswa. All other
parts of chapter 4 are sole work of the author, if not indicated otherwise in the text.

Chapter 5 and Chapter 6

The requirements for representation mechanisms (Section 5.2) are part of a common
publication with Andreas Kaspari, Oliver Flasch and Katharina Morik [57|. The list
of requirements is however sole work of the author. Feature aggregation (as mentioned
in section 5.4.5) is part of a common publication with Ingo Mierswa [123]. The LACE
approach (Section 6.4) is joint work with Ingo Mierswa and Katharina Morik [198]. The
(distributed) LACE algorithm, its implementation and evaluation are work of the author.
All other parts of chapter 5 and chapter 6 are sole work of the author, if not indicated
otherwise in the text.

Chapter 7

The work described in chapter 7 was developed partially in the project AWAKE, funded
by the BMBF 2001-2003. The conceptual model of the Knowledge Explorer (section 7.5)
and the related research (sections 7.3, 7.2) are joint work with Jasminko Novak. The
data mining architecture and the data mining methods, as well as their implementation
(Sections 7.4, 7.6) are the sole work of the author (with exception to the SOM clustering).
The content of this chapter is based on several common publications: [131, 132, 133, 134,
200, 199].

207

Chapter 8

The Nemoz system was initially developed in the course of a student project supervised
by Katharina Morik and the author. The data mining methods described in this chapter
(Section 8.4.1) are based on the methods described in part two of this work. Section 8.2
is the sole work of the author. The Nemoz interaction model and system architecture
(Sections 8.3, 8.4.2) were developed in cooperation with Katharina Morik, Oliver Flasch,
Andreas Kaspari [57] and the other members of student project Nemoz (Metin Aksoy,
Dominique Burgard, Matthias Liittgens, Maxim Martens, Biilent Moller, Umut Oztiirk
and Philip Thome) [3].

208

Bibliography

1]

2l

3]

4]

5]
(6]
17l

8]

9]

[10]

[11]

[12]

[13]

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. SIGMOD Record,
27(2):94-105, 1998.

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of

items in large databases. In Proceedings of the ACM International Conference on
Management of Data, 1993.

M. Aksoy, D. Burgard, O. Flasch, A. Kaspari, M. Liittgens, M. Mertens., B. Moller,
U. Oztiirk, and P. Thome. Kollaboratives Strukturieren von Multimediadaten fiir

Peer-to-Peer Netze. Technical report, Fachbereich Informatik, Universitat Dort-
mund, 2005. Endbericht der Projektgruppe 461.

R. Albert and A.-L. Barabasi. Topology of evolving networks: local events and
universality. Physical Review Letters, 85(24):5234-5237, 2000.

M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
C. Anderson. The long tail. Wired, 12(10), 2004.

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@home:
an experiment in public-resource computing. Communications of the ACM,
45(11):56-61, 2002.

R. K. Ando and T. Zhang. A framework for learning predictive structures from

multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817—
1853, 2005.

M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points
to identify the clustering structure. In Proceedings of the ACM International Con-
ference on Management of Data, 1999.

A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In Advances
in Neural Information Processing Systems, 2007.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider.
The description logic handbook: theory, implementation, and applications. Cam-
bridge University Press, 2003.

A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with bregman
divergences. JMLR, 6:1705-1749, 2005.

J. Bao and V. Honavar. Collaborative ontology building with Wiki@nt - a multi-
agent based ontology building environment. In Proceedings of the International
Workshop on Evaluation of Ontologybased Tools, 2004.

209

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]
[26]
[27]

28]

[29]

210

A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286:509-512, 1999.

S. Baumann and O. Hummel. Using cultural metadata for artist recommendations.
In Proceedings of the International Conference on WEB Delivering of Music, 2003.

F. Beil, M. Ester, and X. Xu. Frequent term-based text clustering. In Proceedings
of the International Conference on Knowledge Discovery and Data Mining, 2002.

R. Bekkerman, R. El-Yaniv, and A. McCallum. Multi-way distributional cluster-
ing via pairwise interactions. In Proceedings of the International Conference on
Machine Learning, 2005.

A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. Support vector clustering.
Journal of Machine Learning Research, 2:125-137, 2001.

R. Bentley, T. Horstmann, and J. Trevor. The World Wide Web as enabling
technology for CSCW: The case of BSCW. Computer-Supported Cooperative Work:
Special issue on CSCW and the Web, 6:111-134, 1997.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web : A new form
of web content that is meaningful to computers will unleash a revolution of new
possibilities. Scientific American, 284(5):34-43, 2001.

S. Bickel and T. Scheffer. Multi-view clustering. In Proceedings of the International
Conference on Data Mining, 2004.

P. Bille. A survey on tree edit distance and related problems. Theoretical Computer
Science, 337(1-3):217-239, 2005.

J. R. Boland and R. V. Tenkasi. Perspective making and perspective taking in
communities of knowing. Organization Science, 6:350-372, 1995.

M. Bonifacio, A. Dona, G. Mameli, and M. Nori. A technological solution for
distributed knowledge management. In Proceedings of the I-Know Conference,
2004.

G. Brewka. Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cam-
bridge University Press, 1991.

R. A. Brooks. Intelligence without reason. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1991.

J. Buckley and E. Eslami. An Introduction to Fuzzy Logic and Fuzzy Sets. Springer,
2002.

I. Cantador, M. Fernandez, and P. Castells. A collaborative recommendation frame-
work for ontology evaluation and reuse. In Proceedings of the International ECAI
Workshop on Recommender Systems, 2006.

F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. Néri, and O. Lody-
gensky. Computing on large-scale distributed systems: Xtremweb architecture,
programming models, security, tests and convergence with grid. Future Generation
Computer Systems, 21(3):417-437, 2005.

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

R. Caruana. Multitask learning: A knowledge-based source of inductive bias. In
International Conference on Machine Learning, pages 41-48, 1993.

R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.

H. Chalupsky. Ontomorph: a translation system for symbolic knowledge. In Pro-
ceedings of the Seventh International Conference on Principles of Knowledge Rep-
resentation and Reasoning, 2000.

M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and
dynamic information retrieval. SIAM Journal on Computing, 33(6):1417-1440,
2004.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making
gnutella-like p2p systems scalable. In Proceedings of the Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications,
2003.

N. Choi, [.-Y. Song, and H. Han. A survey on ontology mapping. SIGMOD Records,
35(3):34-41, 2006.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for
similarity search in metric spaces. In Proceedings of International Conference on
Very Large Data Bases, 1997.

P. Cimiano, A. Hotho, and S. Staab. Learning concept hierarchies from text corpora
using formal concept analysis. Journal of Artificial Intelligence Research, 24:305—
339, 2005.

R. Cobos and X. Alaman. KnowCat: A knowledge crystallisation tool. In Proceed-
ings of the eBusiness and eWork Conference, 2000.

D. Cohn, R. Caruana, and A. McCallum. Semi-supervised clustering with user
feedback. Technical Report TR2003-1892, Cornell University, 2000.

D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scatter/gather:a
cluster-based approach to browsing large document collections. In Proceedings of
the International ACM SIGIR Conference, 1992.

S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta. Distributed data
mining in peer-to-peer networks. IEEE Internet Computing, 10(4):18-26, 2006.

S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harsh-
man. Indexing by latent semantic analysis. Journal of the American Society of
Information Science, 41(6):391-407, 1990.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society, Series B,
39(1):1-38, 1977.

I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering and

normalized cuts. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining, 2004.

211

[45]

[46]

[47]
48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]
[56]
[57]
[58]
[59]

[60]

212

A. Diaz, G. Baldo, and G. Canals. Co-Protege: Collaborative ontology building
with divergences. In Proceedings of the International Conference on Database and
Expert Systems Applications, 2006.

H.-H. Do and E. Rahm. COMA—a system for flexible combination of schema
matching approaches. In Proceedings of the International Conference on Very Large
Databases, 2002.

A. Doan, P. Domingos, and A. Halevy. Learning to match the schemas of data
sources: A multistrategy approach. Machine Learning, 50(3):279-301, 2003.

A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Handbook on Ontologies,
chapter Ontology matching: A machine learning approach, pages 385-404. 2004.

J. Domingue. Tadzebao and WebOnto: Discussing, browsing, and editing ontolo-
gies on the web. In Proceedings of the Workshop on Knowledge Acquisition for
Knowledge-Based Systems, 1998.

C. Emmanouilidis, A. Hunter, and J. MacIntyre. A multiobjective evolutionary
setting for feature selection and a commonality-based crossover operator. In Pro-
ceedings of the Congress on Evolutionary Computation, 2000.

T. Erickson and W. Kellogg. Knowledge communities: Online environments for
supporting knowledge management and its social context. In Beyond Knowledge
Management: Sharing Expertise. MIT Press, 2001.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the
International Conference on Knowledge Discovery and Data Mining, 1996.

P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Ker-
marrec. Lightweight probabilistic broadcast. ACM Transactions on Computer
Systems, 21(4):341-374, 2003.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. Journal of Machine Learning Research, 6:615-637, 2005.

A. Farquhar, R. Fikes, and J. Rice. The Ontolingua server: A tool for collaborative
ontology construction. Technical report, Stanford, 1996.

T. Finley and T. Joachims. Supervised clustering with support vector machines.
In Proceedings of the International Conference on Machine Learning, 2005.

O. Flasch, A. Kaspari, K. Morik, and M. Wurst. Aspect-based tagging for col-
laborative media organisation. In Proceedings of the ECML/PKDD workshop on
Ubiquitous Knowledge Discovery for Users, 2006.

K. F. Fogel. Open Source Development with CVS. Coriolis Group Books, 1999.

I. Foster and C. Kesselman. The globus toolkit. In The grid: blueprint for a new
computing infrastructure. 1999.

I. T. Foster. The anatomy of the grid: Enabling scalable virtual organizations. In
Proceedings of the International Euro-Par Conference on Parallel Processing, 2001.

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
73]

[74]

[75]

T. Froehner, M. Nickles, G. Weiss, W. Brauer, and R. Franken. Integration of
ontologies and knowledge from distributed autonomous sources. Kuenstliche Intel-
ligenz, 19(1):18-23, 2005.

B. C. M. Fung, K. Wang, and M. Ester. Hierarchical document clustering using
frequent items. In Proceedings of the SIAM International Conference on Data
Mining, 2003.

F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: an algorithm and an
implementation of semantic matching. In Proceedings of the Dagstuhl Seminar on
Semantic Interoperability and Integration, 2005.

C. A. Goble and D. De Roure. The semantic grid: Myth busting and bridge
building. In Proceedings of the European Conference on Artificial Intelligence, 2004.

D. Gondek and T. Hofmann. Non-redundant data clustering. In Proceedings of the
International Conference on Data Mining, 2004.

S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clustering algorithm for
large databases. In Proceedings of International Conference on Management of
Data, 1998.

G. Guo and S. Z. Li. Content-based audio classification and retrieval by support
vector machines. IEEE Transaction on Neural Networks, 14(1):209-215, 2003.

F. Guoyon, S. Dixon, E. Pampalk, and G. Widmer. Evaluating rhytmic descriptors
for musical genre classification. In Proceedings of the International AES Conference,
2004.

I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh. Feature Extraction: Founda-
tions and Applications (Studies in Fuzziness and Soft Computing). Springer-Verlag
New York, Inc., 2006.

T. Hammond, T. Hannay, B. Lund, and J. Scott. Social bookmarking tools (i) - a
general review. D-Lib Magazine, 11(4), 2005.

E.-H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering based on associa-
tion rule hypergraphs. In Proceedings of the Workshop on Research Issues on Data
Mining and Knowledge Discovery, 1997.

J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Applied Statistics,
28(1):100-108, 1979.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, 2001.

S. Hennig and M. Wurst. Incremental clustering of newsgroup articles. In Proceed-
ings of the International Conference on Industrial, Engineering and Other Appli-
cations of Applied Intelligent Systems, 2006.

T. Hofmann. Probabilistic latent semantic analysis. In Proceedings of the conference
on Uncertainty in Artificial Intelligence, 1999.

213

[76]
[77]

[78]

[79]

[80]
[81]
[82]
[83]

[84]

[85]
[86]

[87]

[38]

[89]

[90]

[91]

214

C. W. Holsapple and K. D. Joshi. A collaborative approach to ontology design.
Communications of the ACM, 45(2):42-47, 2002.

R. C. Holte. Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 11(1):63-90, 1993.

H. Homburg, I. Mierswa, B. Moller, K. Morik, and M. Wurst. A benchmark dataset
for audio classification and clustering. In Proceedings of the International Confer-
ence on Music Information Retrieval, 2005.

T. Honkela, S. Kaski, K. Lagus, and T. Kohonen. Exploration of full-text databases
with self-organizing maps. In Proceedings of the International Conference on Neural
Networks. 1996.

A. Hotho, S. Staab, and G. Stumme. Ontologies improve text document clustering.
In Proceedings of the International Conference on Data Mining, 2003.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 3(31):264-323, 1999.

J. E. Januza, H.-P. Kriegel, and M. Pfeifle. Towards effective and efficient dis-
tributed clustering. In ICDM Workshop on Clustering Large Data Sets, 2003.

T. Jebara. Multi-task feature and kernel selection for svms. In Proceedings of the
International Conference on Machine Learning, 2004.

N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and
development. Journal of Autonomous Agents and Multi-Agent Systems, 1(1):7-38,
1998.

T. Joachims. Learning to Classify Text using Support Vector Machines. Kluwer,
2002.

T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of
the International Conference on Knowledge Discovery and Data Mining, 2002.

T. Joachims, D. Freitag, and T. M. Mitchell. Web watcher: A tour guide for the
world wide web. In Proceedings of the International Joint Conference on Artificial
Intelligence, 1997.

G. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection
problem. In Proceedings of the International Conference on Machine Learning,
1994.

E. L. Johnson and H. Kargupta. Collective, hierarchical clustering from distributed,
heterogeneous data. In Proceedings of the Workshop on Large-Scale Parallel KDD
Systems, 2000.

S. Jones, S. J. Cunningham, and M. Jones. Organizing digital music for use:
an examination of personal music collections. In Proceedings of the International
Conference on Music Information Retrieval, 2004.

Y. Kalfoglou and M. Schorlemmer. Ontology mapping: The state of the art. The
Knowledge Engineering Review, 18(1):1-31, 2003.

[92]

(93]

[94]

[95]

[96]

[97]
98]

[99]

[100]

[101]
[102]

[103]

[104]

[105]
[106]

107]

R. Kashef and M. Kamel. Distributed cooperative hard-fuzzy document cluster-
ing. In Proceedings of the Annual Scientific Conference of the LORNET Research
Network, 2006.

J.-U. Kietz and K. Morik. A polynomial approach to the constructive induction of
structural knowledge. Machine Learning, 14(2):193-217, 1994.

Y. Kim, W. N. Street, and F. Menczer. Feature selection in unsupervised learning
via evolutionary search. In Proceedings of the International Conference on Knowl-
edge Discovery and Data Mining, 2000.

Y. Kim, W. N. Street, and F. Menczer. Evolutionary model selection in unsuper-
vised learning. Intelligent Data Analysis, 6:531-556, 2002.

K. Kira and I. A. Rendell. The feature selection problem: Traditional methods
and a new algoirthm. In Proceedings of the National Conference on Artificial In-
telligence, 1992.

K. Kira and L. A. Rendell. A practical approach to feature selection. In Proceedings
of the International Workshop on Machine Learning, 1992.

J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In Pro-
ceedings of the ACM Symposium on Theory of Computing, 2000.

P. Knees, E. Pampalk, and G. Widmer. Artist classification with web-based data.
In Proceedings of the International Conference on Music Information Retrieval,
2004.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intel-
ligence, 97(1-2):273-324, 1997.

T. Kohonen. Self-Organizing Maps. Springer, 1995.

V. Komulainen, A. Valo, and E. Hyvoenen. A tool for collaborative ontology

development for the semantic web. In Proceedings of International Conference on
Dublin Core and Metadata Applications, 2005.

W. Kowalczyk, M. Jelasity, and A. E. Eiben. Towards data mining in large and
fully distributed peer-to-peer overlay networks. In Proceedings of the Belgian-Dutch
Conference on Artificial Intelligence, 2003.

M. S. Lacher, W. Woerndl, M. Koch, and Brede H. Ontology mapping in com-
munity support systems. Technical report, Technische Universitaet Muenchen,
Lehrstuhl Informatik XI, 2000.

Y. Lashkari, M. Metral, and P. Maes. Collaborative interface agents. In Proceedings
of the National Conference on Artificial Intelligence. 1994.

A. Lazarevic and Z. Obradovic. The distributed boosting algorithm. In Interna-
tional Conference on Knowledge Discovery and Data Mining, 2001.

J. Li, B. Loo, J. Hellerstein, F. Kasshoek, D. Karger, and R. Morris. On the
feasibility of peer-to-peer web indexing and search. In International Workshop on
Peer-to-Peer Systems, 2003.

215

(108

[109]

[110]
[111]
[112]

[113]
[114]

[115]

[116]
[117]

[118]

[119]

[120]

[121]

[122]

[123]

216

L. Li, D. Alderson, J. C. Doyle, and W. Willinger. Towards a theory of scale-free
graphs: Definition, properties, and implications. Internet Mathematics, 2(4):431—
523, 2005.

T. Lidy and A. Rauber. Evaluation of feature extractors and psycho-acoustic
transformations for music genre classification. In Proceedings of the International
Conference on Music Information Retrieval, 2005.

H. Lieberman. Letizia: An agent that assists web browsing. In Proceedings of the
International Joint Conference on Artificial Intelligence, 1995.

D. Lin. An information-theoretic definition of similarity. In Proceedings of the
International Conference on Machine Learning, 1998.

B. Logan. Content-based playlist generation: Exploratory experiments. In Pro-
ceedings of the International Symposium on Music Information Retrieval, 2002.

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with Cupid.
In Proceedings of the International Conference on Very Large Data Bases, 2001.

A. Maedche, B. Motik, N. Silva, and R. Volz. Mafra - an ontology mapping frame-
work in the context of the semantic web. In Proceedings of the ECAI Workshop on
Knowledge Transformation for the Semantic Web, 2002.

R. Mayer. Knowledge Management Systems. Springer, 2004.

M. Meila. Comparing clusterings: an axiomatic view. In Proceedings of the Inter-
national Conference on Machine Learning, 2005.

S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In International Con-
ference on Data Engineering, 2002.

1. Mierswa and K. Morik. Automatic feature extraction for classifying audio data.
Machine Learning Journal, 58:127-149, 2005.

I. Mierswa and M. Wurst. Efficient case based feature construction for hetero-
geneous learning tasks. In Proceedings of the Furopean Conference on Machine
Learning, 2005.

I. Mierswa and M. Wurst. Efficient feature construction by meta learning — guiding
the search in meta hypothesis space. In Proceedings of the International Conference
on Machine Learning, Workshop on Meta Learning, 2005.

I. Mierswa and M. Wurst. Information preserving multi-objective feature selec-
tion for unsupervised learning. In Proceedings of the International Conference on
Genetic and FEvolutionary Computation, 2006.

1. Mierswa and M. Wurst. Sound multi-objective feature space transformation for
clustering. In Proceedings of the German Conference on Knowledge Discovery,
Data Mining, and Machine Learning, 2006.

[124]

[125]
[126]

[127]

[128]
[129]

[130]

[131]

[132]

[133]
[134]

[135]

[136]

[137]

[138]

I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALE: Rapid
prototyping for complex data mining tasks. In Proceedings of the International
Conference on Knowledge Discovery and Data Mining, 2006.

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
F. Moerchen, A. Ultsch, M. Thies, 1. Loehken, M. Noecker, C. Stamm,

N. Efthymiou, and M. Kuemmerer. Musicminer: Visualizing perceptual distances
of music as topograpical maps. Technical report, Department of Mathematics and
Computer Science, University of Marburg, Germany, 2004.

O. Morgenstern and J. Von Neumann. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

K. Morik. Balanced cooperative modeling. Machine Learning, 11:217-235, 1993.

M. Morita, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Unsupervised feature
selection using multi-objective genetic algorithms for handwritten word recogni-
tion. In Proceedings of the International Conference on Document Analysis and
Recognition, 2003.

M. Nickles, T. Froehner, and G. Weiss. Social annotation of semantically hetero-
geneous knowledge. In Proceedings of the International Workshop on Knowledge
Markup and Semantic Annotation, 2004.

J. Novak and M. Wurst. Discovering, visualizing and sharing knowledge through
personalized learning knowledge maps. In Agent Mediated Knowledge Management,
2003.

J. Novak and M. Wurst. Supporting communities of practice through personal-
isation and collaborative structuring based on capturing implicit knowledge. In
Proceedings of the International Conference on Knowledge Management, 2003.

J. Novak and M. Wurst. Supporting knowledge creation and sharing in communities
based on mapping implicit knowledge. j-jucs, 10(3):235-251, 2004.

J. Novak and M. Wurst. Collaborative knowledge visualisation for cross-community
learning. In Knowledge and Information Visualization. Springer, 2006.

N. Noy and M. Musen. SMART: Automated support for ontology merging and
alignment. In Proceedings of the Workshop on Knowledge Acquisition, Modeling
and Management, 1999.

N. Noy and H. Stuckenschmidt. Ontology alignment: An annotated bibliography. In
Proceedings of the Dagstuhl Seminar on Semantic Interoperability and Integration,
2005.

N. F. Noy, A. Chugh, W. Liu, and M. A. Musen. A framework for ontology evolution
in collaborative environments. In Proceedings of the International Semantic Web

Conference, 2006.

H.-L. Ong, A.-H. Tan, J. Ng, H. Pan, and Q.-X. Li. FOCI: Flexible organizer
for competitive intelligence. In Proceedings of the International Conference on
Information and Knowledge Management, 2001.

217

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]
[148]

[149]

[150]

[151]

[152]

[153]

[154]

218

E. Pampalk, S. Dixon, and G. Widmer. Exploring music collections by browsing
different views. In Proceedings of the International Symposium on Music Informa-
tion Retrieval, 2003.

E. Pampalk, T. Pohle, and G. Widmer. Dynamic playlist generation based on
skipping behavior. In Proceedings of the International Conference on Music Infor-
mation Retrieval, 2005.

E. Pampalk, G. Widmer, and A. Chan. A new approach to hierarchical cluster-
ing and structuring of data with self-organizing maps. Intelligent Data Analysis,
8(2):131-149, 2005.

S. Papert. Introduction: Constructionist Learning. Cambridge University Press,
1990.

D. M. Pennock, G. W. Flake, S. Lawrence, E. J. Glover, and C. L. Giles. Winners
don’t take all: Characterizing the competition for links on the web. Proceedings of
the National Academy of Sciences, 99(8):5207-5211, 2002.

H. S. Pinto, A. Gomez-Perez, and J. P. Martins. Some issues on ontology integra-
tion. In Proceedings of the Workshop on Ontologies and Problem Solving Methods,
1999.

T. Pohle, E. Pampalk, and G. Widmer. Evaluation of frequently used audio fea-
tures for classification of music into perceptual categories. In Proceedings of the
International Workshop on Content-Based Multimedia Indexing, 2005.

A. Prodromidis and P. Chan. Meta-learning in distributed data mining systems:
Issues and approaches. In Advances of Distributed Data Mining, 2000.

R. J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. The VLDB Journal, 10:334-350, 2001.

L. Ramaswamy and L. Liu. Free riding: A new challenge to peer-to-peer file sharing
systems. In Proceedings of the International Conference on System Sciences, 2003.

P. Resnik. Semantic similarity in a taxonomy. Journcal of Artificial Intelligence
Research, 11:95-130, 1999.

M. M. Richter. Classification and learning of similarity measures. Technical Report
SR-92-18, University of Kaiserslautern, 1992.

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Proceedings of the International
Conference on Distributed Systems Platforms (Middleware), 2001.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,
2003.

G. Salton. Automated Text Processing. Addison-Wesley, 1989.

[155]

[156]

157]

[158]

[159]
[160]
[161]
[162]
[163]
[164]
[165]

(166

167]

[168]

[169]

[170]

B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the International World

Wide Web Conference, 2001.

J. B. Schafer, J. A. Konstan, and J. Riedl. Recommender systems in e-commerce.
In Proceedings of the ACM Conference on Electronic Commerce, 1999.

M. Schedl, P. Knees, and G. Widmer. Discovering and visualizing prototypical
artists by web-based co-occurrence analysis. In Proceedings of the International
Conference on Music Information Retrieval, 2005.

M. Schultz and T. Joachims. Learning a distance metric from relative comparisons.
In Proceedings of the International Conference on Neural Information Processing
Systems, 2004.

B. Scholkopf and A. J. Smola. Learning with Kernels — Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2001.

U. Shardanand and P. Maes. Social information filtering: Algorithms for automat-
ing “word of mouth”. In Proceedings of ACM Conference on Human Factors in
Computing Systems, 1995.

C. Shirky. What is p2p ... and what isn’t. OpenP2P, 2000.

P. Shvaiko. A classification of schema-based matching approaches. Technical report,
Informatica e Telecomunicazioni, University of Trento, 2004.

R. G. Smith and A. Farquhar. The road ahead for knowledge management: An Al
perspective. Al Magazine, 21(4):17-40, 2000.

J. F. Sowa. Conceptual structures: information processing in mind and machine.
Addison-Wesley Longman Publishing Co., Inc., 1984.

R. Srikant and R. Agrawal. Mining generalized association rules. In International
Conference on Very Large Databases, 1995.

S. L. Star. The structure of ill-structured solutions: Boundary objects and heteroge-
neous distributed problem solving. In Readings in Distributed Artificial Intelligence.
Morgan Kaufman, 1989.

M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques. In Proceedings of the KDD Workshop on Text Mining, 2000.

R. Stenzel and T. Kamps. Improving content-based similarity measures by training
a collaborative model. In Proceedings of the International Conference on Music
Information Retrieval, 2005.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proceedings
of the Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, 2001.

S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. W. Fan, and P. K. Chan.
JAM: Java agents for meta-learning over distributed databases. In Proceedings of
the Internation Conference on Knowledge Discovery and Data Mining, 1997.

219

[171]

[172]

[173]

[174]

[175]

[176]
[177]
178

[179]

[180]

[181]

[182]
183
[184]

[185]

[186]

220

A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse framework for
combining partitionings. In Proceedings of the Conference on Artificial Intelligence,
2002.

H. Stuckenschmidt, F. van Harmelen, P. Bouquet, F. Giunchiglia, and L. Serafini.
Using C-OWL for the alignment and merging of medical ontologies. In Proceedings
of the International Workshop on Formal Biomedical Knowledge Representation,
2004.

G. Stumme and A. Maedche. FCA-merge: Bottom-up merging of ontologies. In
Proceedings of the International Joint Conference on Artificial Intelligence, 2001.

Y. Sure, J. Angele, and S. Staab. Ontoedit: Guiding ontology development by
methodology and inferencing. In International Conference on Ontologies, Databases
and Applications of Semantics for Large Scale Information Systems, 2002.

B. Swartout, R. Patil, K. Knight, and T. Russ. Toward distributed use of large-scale
ontologies. In Proceedings of the Workshop on Knowledge Acquisition, 1996.

A. S. Tanenbaum. Distributed Operating Systems. Prentice Hall, 1995.
A. S. Tanenbaum. Computer Networks, Fourth Edition. Prentice Hall, 2002.

I. J. Taylor. From P2P to Web Services and Grids — Peers in a Client/Server
World. Springer, 2005.

J. Tennison and N. R. Shadbolt. Apecks: a tool to support living ontologies. In
Proceedings of the Workshop on Knowledge Acquisition, Modeling and Management,
1998.

S. Thrun. Winning the DARPA grand challenge: A robot race through the mojave
desert. In Proceedings of the International Conference on Automated Software
Engineering, 2006.

S. Thrun and J. O’Sullivan. Discovering structure in multiple learning tasks: The
TC algorithm. In Proceedings of the International Conference on Machine Learning,
1996.

A. P. Topchy, A. K. Jain, and W. F. Punch. Combining multiple weak clusterings.
In Proceedings of the International Conference on Data Mining, 2003.

S. Turkle. Life on the Screen: Identity in the Age of the Internet. Simon and
Schuster, 1995.

G. Tzanetakis. Manipulation, Analysis and Retrieval Systems for Audio Signals.
PhD thesis, Computer Science Department, Princeton University, 2002.

A. Ultsch and F. Moerchen. ESOM-maps: tools for clustering, visualization, and
classification with emergent SOM. Technical Report 46, Deptartment of Mathe-
matics and Computer Science, University of Marburg, Germany, 2005.

K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering
with background knowledge. In Proceedings of the International Conference on
Machine Learning, 2001.

[187]

[188]

[189]
[190]
[191]
[192]
193]
[194]
[195]
[196]

[197]

(198

[199]

[200]

[201]

[202]

K. Wang, C. Xu, and B. Liu. Clustering transactions using large items. In Pro-
ceedings of the International Conceference on Information and Knowledge Man-
agement, 1999.

W. Wang, J. Yang, and R. R. Muntz. STING: A statistical information grid
approach to spatial data mining. In Proceedings of the International Conference
on Very Large Data Bases, 1997.

C. Weihs, G. Szepannek, U. Ligges, K. Luebke, and N. Raabe. Local models in
register classification by timbre. In Data Science and Classification, 2006.

G. Weils, editor. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, 1999.

D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions.
Journal of Artificial Intelligence Research, 6:1-34, 1997.

D. R. Wilson and T. R. Martinez. An integrated instance-based learning algorithm.
Computational Intelligence, 16(1):1-28, 2000.

R. Wolff and A. Schuster. Association rule mining in peer-to-peer systems. In
International Conference on Data Mining, 2003.

W. A. Woods. What’s in a link: foundations for semantic networks. In Represen-
tation and Understanding. 1975.

M. Wurst. Multi-agent learning by distributed feature extraction. In Adaptive and
Learning Agents and Multi-Agent Systems III, 2008 (to appear).

M. Wurst and K. Morik. Multi-agent learning by feature sharing. In Proceedings
of the European Symposium on Adaptive Learning Agents and MAS, 2006.

M. Wurst and K. Morik. Distributed feature extraction in a p2p setting - a
case study. Future Generation Computer Systems, Special Issue on Data Mining,
23(1):69-75, 2007.

M. Wurst, K. Morik, and 1. Mierswa. Localized alternative cluster ensembles for

collaborative structuring. In Proceedings of the European Conference on Machine
Learning, 2006.

M. Wurst and J. Novak. Knowledge sharing im heterogeneous expert communities
based on personal taxonomies. In Proceedings of the ECAI Workshop on Agent
Mediated Knowledge Management, 2004.

M. Wurst, J. Novak, and M. Schneider. Integrating different machine learning
methods to support search in cross-domain information sources - the project Awake.
In Proceedings of the FGML Workshop, 2002.

M. Wurst and M. Scholz. Distributed subgroup discovery. In Proceedings of the Eu-
ropean Conference on Principles and Practice of Knowledge Discovery in Databases,
2006.

E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning, with ap-
plication to clustering with side-information. In Proceedings of the International
Conference on Neural Information Processing Systems, 2002.

221

[203]
[204]
[205]
[206]
[207]

208

222

K. Yu, V. Tresp, and A. Schwaighofer. Learning gaussian processes from multiple
tasks. In Proceedings of the International Conference on Machine Learning, 2005.

L. Yu and H. Liu. Efficient feature selection via analysis of relevance and redun-
dancy. Journal of Machine Learning Research, 5:1205-1224, 2004.

S. Yu, V. Tresp, and K. Yu. Robust multi-task learning with t-processes. In
Proceedings of the International Conference on Machine Learning, 2007.

M. J. Zaki. Parallel and distributed association mining: A survey. IEEE Concur-
rency, 7(4):14-25, 1999.
R. Zhang and A. Rudnicky. A large scale clustering scheme for kernel k-means. In

Proceedings of the International Conference on Pattern Recognition, 2002.

T. Zhang and C. Kuo. Content-based classification and retrieval of audio. In
Proceedings of the Conference on Advanced Signal Processing Algorithms, Archi-
tectures, and Implementations, 1998.

