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Abstract 

In this paper, we present a new decomposition algorithm for solving large-scale multistage 

stochastic programs (MSSP) with endogenous uncertainties. Instead of dualizing all the initial 

non-anticipativity constraints (NACs) and removing all the conditional non-anticipativity 

constraints to decompose the problem into scenario subproblems, the basic idea relies on keeping 

a subset of NACs as explicit constraints in the scenario group subproblems while dualizing or 

relaxing the rest of the NACs. It is proved that the algorithm provides a dual bound that is at least 

as tight as the standard approach. Numerical results for process network examples and oilfield 

development planning problem are presented to illustrate that the proposed decomposition 

approach yields significant improvement in the dual bound at the root node and reduction in the 

total computational expense for closing the gap. 

Keywords: multistage stochastic programming; endogenous uncertainties; non-anticipativity 

constraints; Lagrangean decomposition; process networks; oil & gas exploration  

1. Introduction 

Stochastic programming is typically used to model problems where some of the parameters are 

random (e.g. uncertain reservoir size, product demand, yields, prices), Birge and Louveaux 

(1997). In general, multiperiod industrial planning, scheduling, supply-chain etc. problems under 

uncertainty are formulated as stochastic programs since it allows to incorporate probability 

distribution of the uncertain parameters explicitly into the model while making investment and 
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operations decisions, and provides an opportunity to take corrective actions in the future 

(recourse) based on the actual outcomes (see Ierapetritou and Pistikopoulos, 1994; Clay and 

Grossmann, 1997; Iyer and Grossmann, 1998; Schultz, 2003; Ahmed and Garcia, 2003; 

Sahinidis, 2004; Ahmed et al. 2004; Li and Ierapetritou, 2012). Discrete probability distributions 

of the uncertain parameters that give rise to scenarios are widely considered to represent 

scenarios that are given by combinations of the realization of the uncertain parameters. 

Depending on the number of decision stages involved in the model, the stochastic program 

corresponds to either a two-stage or a multistage problem. The main idea behind two-stage 

stochastic programming is that we make some decisions (stage 1) here and now based on not 

knowing the future outcomes of the uncertain parameters, while the rest of the decisions are 

stage -2 (recourse actions) decisions are made after uncertainty in those parameters is revealed. 

In this paper, we focus on more general multistage stochastic programming models where the 

uncertain parameters are revealed sequentially, i.e. in multiple stages (time periods), and the 

decision-maker can take corrective actions over a sequence of the stages. In the two-stage and 

multistage case the cost of the decisions and the expected cost of the recourse actions are 

optimized. 

 Based on the type of uncertain parameters involved in the problem, stochastic 

programming models can be classified into two broad categories (Jonsbraten, 1998): exogenous 

uncertainty where stochastic processes are independent of decisions that are taken (e.g. demands, 

prices), and endogenous uncertainty where stochastic processes are affected by these decisions 

(e.g. reservoir size and its quality). Our decisions can affect the stochastic processes in two 

different ways (Goel and Grossmann, 2006): either they can alter the probability distributions 

(type 1) (see Viswanath et al., 2004; and Held and Woodruff, 2005), or they can determine the 

timing when uncertainties in the parameters are resolved (type 2) (see Goel et al., 2006; Gupta 

and Grossmann, 2011). A number of planning problems involving very large investments at an 

early stage of the project have endogenous (technical) uncertainty (type 2) that dominates the 

exogenous (market) uncertainty. In such cases, it is essential to incorporate endogenous uncertain 

parameters while making the investment decisions since it can have a large impact on the overall 

project profitability. Surprisingly, these problems have received relatively little attention in the 

literature despite their practical importance.  
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 In this paper, we focus on the type 2 of endogenous uncertainty where the decisions are 

used to gain more information, and resolve uncertainty either immediately or in a gradual 

manner. Therefore, the resulting scenario tree is decision-dependent that requires modeling a 

superstructure of all possible scenario trees that can occur based on the timing of the decisions. 

In this context, we present a multistage stochastic programming framework to model the 

problems in this class in which special disjunctive constraints with propositional logic are 

considered to enforce the conditional non-anticipativity constraints that define the decision-

dependent scenario tree. Recently, few practical applications that involve multistage stochastic 

programming with endogenous uncertainty have been addressed: Goel and Grossmann (2004), 

and Goel et al. (2006) for gas field development planning; Tarhan et al. (2009), and Gupta and 

Grossmann (2013) for oil/gas field investments and operations; Tarhan and Grossmann (2008), 

and Gupta and Grossmann (2011) for process networks planning; Solak (2007) for project 

portfolio optimization; Boland et al. (2008) for open pit mine scheduling; and Colvin and 

Maravelias (2008) for pharmaceutical testing. 

 In general, these multistage stochastic programs become very difficult to solve directly as 

deterministic equivalent since the problem size (constraints and variables) increases with the 

number of scenarios, whereas the solution time increases exponentially. Therefore, special 

solution techniques are used to solve problems in this class. Several fullspace based approaches 

for the medium-size problems exploiting the properties of the model and the optimal solution 

have been proposed. In particular, Colvin and Maravelias (2010) developed a branch and cut 

framework, while Gupta and Grossmann (2011) proposed a NAC relaxation strategy to solve 

these MSSP problems under the assumption that only few non-anticipativity constraints be active 

at the optimal solution.  

 Lagrangean decomposition is a widely used technique to solve large-scale problems that 

have decomposable structure as in stochastic programs (Fisher, 1985; Ruszczynski, 1997; Caroe 

and Schultz, 1999; Guignard, 2003; Conejo et al. 2006). It addresses problems where a set of 

constraints links several smaller subproblems. If these constraints are removed by dualizing 

them, the resulting subproblems can be solved independently. In the case of multistage stochastic 

programs with endogenous uncertainty initial and conditional non-anticipativity constraints are 

the linking constraints, while each subproblem corresponds to the problem for a given scenario. 

Therefore, the model has the decomposable structure that is amenable to Lagrangean 
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decomposition approaches. In this context, a Lagrangean decomposition algorithm based on 

dualizing all the initial NACs and relaxing all the conditional NACs that allow parallel solution 

of the scenario subproblems has been proposed by Gupta and Grossmann (2011). An extended 

form of this decomposition approach relying on the duality based branch and bound search is 

also presented in Goel and Grossmann (2006), Tarhan et al. (2009), and Tarhan et al. (2011) to 

close the gap between the upper and lower bounds. Solak (2007) used a sample average 

approximation method for solving the problem in this class, where the sample problems were 

solved through Lagrangean relaxation and heuristics. However, there are several limitations with 

these methods including a weak dual bound at the root node, a large number of iterations to 

converge at each node, and many nodes that may be required during the branch and bound search 

to close the gap depending on the branching rules and variables. Moreover, the number of 

subproblems to be solved during each iteration at every node grows linearly with the number of 

scenarios. In this work, we propose a new decomposition scheme for solving these multistage 

stochastic programs that overcomes some of the limitations of the standard approaches.  

   The outline of this paper is as follows. First, we introduce the problem statement with 

particular focus on the problems where timing of uncertainty realization depends on the 

optimization decisions. Then, a generic mixed-integer linear multistage stochastic disjunctive 

programming model for endogenous uncertainty problems is presented. Several Lagrangean 

decomposition approaches that have been used and their limitations are identified next. To 

overcome these limitations, we propose a new Lagrangean decomposition scheme that relies on 

the concept of scenario group partitions. Numerical results of process networks and oilfield 

planning problems are presented for the various decomposition approaches. 

 

2. Problem Statement 

We focus here on multiperiod planning problems that have endogenous uncertainty in some the 

parameters, i.e. where timing of uncertainty realization depends on our decisions. In particular,   

the time horizon is represented by the discrete set of time periods T = {1, 2, . . . , T }. The set of 

endogenous uncertain parameters ,....},{ 21   is considered where each parameter has a 

discrete set of possible realizations. Therefore, a scenario s represents the possible combination 

of the realizations of these uncertain parameters with a probability 
sp . Note that when some of 



 
 

5 
 

the parameters p  are correlated as they may belong to a particular uncertainty source, then the 

resulting scenario set will be smaller. The timing of uncertainty resolution in each uncertain 

parameter depends on the decisions 
s

tx (both discrete and continuous) that have been 

implemented so far. Furthermore, the uncertainty resolution rule can be immediate (Goel and 

Grossmann, 2006; and Gupta and Grossmann, 2011) or gradual (Tarhan et al., 2009) depending 

on the problem at hand. Therefore, the resulting scenario tree is decision-dependent, and hence 

we need to use a superstructure of all possible scenario-trees that can occur based on the 

decisions. In particular, we use logic propositions and disjunctions as in Goel and Grossmann 

(2006) and Gupta and Grossmann (2011) to represent the scenario-tree for the problems in this 

class. The uncertainty realizations for each parameter p   are assumed to be time invariant. In 

the next section, we present a MSSP model corresponding to this description. 

  

3. Model 

A mixed-integer linear disjunctive multistage stochastic program with endogenous uncertainties 

can be represented in the following compact form: 
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The objective function (1) in the above model (MD) minimizes the expectation of an 

economic criterion over the set of scenarios Ss , and over a set of time periods Tt . For a 

particular scenario s, inequality (2) represents constraints that govern decisions s

tx  in time period 

t and link decisions across time periods. Non-anticipativity (NA) constraints for initial time 

periods TTI   are given by equations (3) for each scenario pair (s,s’) to ensure the same 

decisions in all the scenarios. The conditional NA constraints are written for the later time 

periods TTC   in terms of logic propositions (4) and disjunctions (5). Notice that the set of 

initial time periods IT  may include first few years of the planning horizon until uncertainty 

cannot be revealed, while CT  represents the rest of the time periods in the planning horizon. The 

function )....,( 121

s

t

ss xxxF  in eq. (4) is an uncertainty resolution rule for a given pair of scenarios s 

and s’ that determines the value of the corresponding boolean variable ',ss

tZ based on the 

decisions that have been implemented so far. The variable ',ss

tZ is further used in disjunction (5) 

to ensure the same decisions in scenarios s and s’ if these are still indistinguishable in time 

period t. Eqs. (6)-(7) define the domain of the discrete and continuous variables in the model. 

 Notice that the model with reduced number of scenario pairs (s,s’) that are sufficient to 

represent the non-anticipativity constraints can be obtained from model (MD) after applying the 

three properties presented in the paper by Gupta and Grossmann (2011). These properties are 

defined on the basis of symmetry, adjacency and transitivity relationship among the scenarios. 

The reduced model (MDR) can be formulated as follows, where 3P  is the set of minimum 

number of scenario pairs that are required to represent non-anticipativity in each time period t,  
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 We then define the following sets, 

   pkkkkp ssssspssDsssSssssssL ),...,,()',(}{)',(,...,,...,,),...,,( 21212121
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 'ˆˆ,)',( s
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Notice that the minimum scenario pair set 3)',( Pss  can be obtained by first defining a 

scenario group set pk Lsss ),....,,( 21 for each uncertain parameter p  with  k  realizations (eq. 

8) such that the  k  scenarios in each of these ),....,,( 21 ksss set can only be realized at the same 

time irrespective of the other realizations during the given time horizon.  The basic idea to 

identify such scenario sets ),....,,( 21 ksss  is that all the scenarios in each of these sets only differ 

in the realization of the uncertain parameter θp for which the corresponding set is defined. 

Therefore, for any scenario pair ),....,,()',( 21 ksssss  , the value of  pssD )',(  where 

)',( ssD represents the index of the uncertain parameter p  in eq. (9) that distinguish the 

two scenarios s and s’ having values 
s

p̂ and 
'ˆ s

p , respectively. The required minimum scenario 

pair set 3P  (eq. 10) then corresponds to the consecutive elements in the scenario group sets 

pk Lsss ),....,,( 21   for each uncertain parameter p . The cardinality of the set 3P  is 

)(
/1 

 SS  as shown in Gupta and Grossmann (2011). 

For instance, if there are 2 uncertain parameters, i.e. (θ1, θ2). Each of these uncertain 

parameters has three realizations (L, M, H) which give rise to a total of 9 scenarios shown in 

Table 1. The original model (MD) requires a total of 72 scenario pairs (Table 2a) to represent the 
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non-anticipativity, while the reduced model (MDR) only requires 12 scenario pairs (Table 2b), 

i.e. 123 P  in each time period t (see Gupta and Grossmann (2011) for details). 

   Table 1: 2 uncertain parameters, 9 scenarios  

  

 

 

Table 2: Scenario pairs for the original and the reduced model 

D(s,s’)  1 2 3 4 5 6 7 8 9 

1   1  1  2  1,2 1,2 2 1,2 1,2 

2 1   1 1,2 2  1,2 1,2 2  1,2 

3 1  1    1,2 1,2 2  1,2 1,2 2  

4 2 1,2  1,2    1  1  2  1,2 1,2 

5 1,2 2 1,2 1   1 1,2 2  1,2 

6 1,2   1,2 2  1  1    1,2 1,2  2  

7 2  1,2 1,2 2  1,2 1,2   1  1  

8 1,2 2  1,2 1,2 2  1,2 1   1 

9 1,2 1,2 2  1,2 1,2 2  1  1    

                                                                                                                          

 

The mixed-integer linear disjunctive model (MDR) can further be converted to a mixed-

integer linear programming model (MLR). First, the logic constraints (4a) are re-written as the 

mixed-integer linear constraints eq. (4b) based on the uncertainty resolution rule, where 
',ss

tz is a 

binary variable that takes a value of 1 if scenario pair (s,s’) is indistinguishable in time period t, 

and  zero otherwise. The disjunction (5a) can then be converted to mixed-integer linear 

constraints (5b) and (5c) using the big-M formulation. The resulting mixed-integer linear model 

(MLR) includes constraints (1), (2), (3a), (4b), (5b), (5c), (6) and (7).  
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Figure 1 represents the block angular structure of model (MLR), where we can observe 

that the initial (eq. (3a)) and conditional (eqs. (4b), (5b) and (5c)) non-anticipativity constraints 

Scenario (s) 1 2 3 4 5 6 7 8 9 

θ1 L M H L M H L M H 

θ2 L L L M M M H H H 

D(s,s’)  1 2 3 4 5 6 7 8 9 

1   1    2            

2     1   2          

3           2        

4         1  

 

2      

5           1   2    

6                 2  

7               1  

 8                 1 

9                   

(a) 72 Scenario pairs in the original model (MD)             (b) 12 Scenario pairs in the reduced model (MDR) 
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link the scenario subproblems (eq. (2)), i.e. these are the complicating constraints in the model. 

However, this structure allows decomposing the fullspace problem into smaller subproblems by 

relaxing the linking constraints. It should be noted that the NACs (especially conditional NACs) 

represent a large fraction of the total constraints in the model.   

 

Figure 1: Structure of a typical Multistage Stochastic Program with Endogenous uncertainties 

 

4. Conventional Lagrangean Decomposition Algorithms 

The reduced model (MLR) is composed of scenario subproblems connected through initial (eq. 

(3a)) and conditional (eq. (4b), (5b) and (5c)) NA constraints. If these NA constraints are either 

relaxed or dualized using Lagrangean decomposition, then the problem decomposes into smaller 

subproblems that can be solved independently for each scenario within an iterative scheme for 

the multipliers as described in Caroe and Schultz (1999) and in Gupta and Grossmann (2011). In 

this way, we can effectively decompose the large scale problems in this class. However, there are 

several decomposition schemes that can be used for this structure (Figure 1) as described below:     

4.1.1 Lagrangean Decomposition based on relaxing conditional NACs 

(Standard approach): In the decomposition algorithm of Figure 2 for MSSP with 

endogenous uncertainties as proposed in Gupta and Grossmann (2011), the lower bound (LB) is 

obtained by solving the Lagrangean problem with fixed multipliers
',ss

t ,  

Scenario Constraints
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Conditional NACs
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 In particular, the Lagrangean problem (L1-MLR) is formulated from the mixed-integer 

linear reduced model (MLR) by relaxing all the conditional NA constraints (4b), (5b) and (5c) 

and dualizing all the initial NA constraints (3a) as penalty terms in the objective function.  Figure 

3 represents the structure of the resulting model (L1-MLR).  Notice that the each sub-problem 

(L1-MLR
s
) in the Lagrangean problem (L1-MLR) corresponds to a scenario that can be solved 

in parallel. 

The upper bound (UB) is generated by using a heuristic based on the solution of the 

Lagrangean problem (L1-MLR). In this heuristic, we fix the decisions obtained from the above 

problem (L1-MLR) in the reduced problem (MLR) such that there is no violation of NA 

constraints and solve it to obtain the upper bound. The sub-gradient method by Fisher (1985) or 

an alternative update scheme (see Mouret et al., 2011; Oliveira et al., 2013; and Tarhan et al. 

2013) is used during each iteration to update the Lagrangean multipliers. The algorithm stops 

when either a maximum iteration/time limit is reached, or the difference between the lower and 

upper bounds, LB and UB, is less than a pre-specified tolerance. Notice that the extended form 

of this method relying on duality based branch and bound search has also been proposed in Goel 
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and Grossmann (2006); Tarhan et al. (2009), and Tarhan et al. (2011) to close the gap between 

the upper and the lower bounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Lagrangean Decomposition based on relaxing conditional NACs 

4.1.2 Limitations: We can observe from Figure 3 that the major limitation of this 

Lagrangean Decomposition algorithm for endogenous uncertainty problems (Gupta and 

Grossmann, 2011; Goel and Grossmann, 2006; Tarhan et al., 2009; and Tarhan et al., 2011) is 

that all the conditional non-anticipativity constraints (4b), (5b) and (5c) are removed while 

Scenario

Subproblems

Dualize all 

Initial NACs

Remove all 

Conditional NACs

Initial Multipliers (λ0)                     

and iteration no. k = 0 

LB = -∞              

UB = ∞ 

Yes 

Solve Lagrangean subproblem 

with fixed multipliers to get LB 

 

 

Gap < ε             

or k > kmax 

Stop 

Find UB (Feasible Solution)                               

by using a heuristic 

 

 
No 

Update Lagrangean multipliers 

using Sub-gradient method 

 

 

Figure 2: Lagrangean Decomposition algorithm 
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formulating the scenario subproblems at the root node. These constraints represent a large 

fraction of the total constraints in the model and can have significant impact on the decisions. 

For instance, in Figure 4, the scenario tree for the later time periods CT  (conditional NACs) can 

be constructed in several ways even though the initial NACs (for time periods IT ) are satisfied.   

 

  Figure 4: Impact of conditional NACs on the scenario tree structure 

 Therefore, there can be several undesired consequences that can occur with this 

relaxation approach: 

1. The dual bound at root node can be significantly weaker since a large amount of information 

from the conditional NACs is ignored. In particular, only the initial NAC are considered 

(dualized) while formulating the subproblems at the root node, which represent only a first 

few time periods in the model. This means that the dynamics of the problem corresponding to 

the later periods is completely relaxed. 

2. It is theoretically impossible to obtain a dual bound that is stronger than the optimal solution 

of the model without all conditional NACs at the root node. 

3. The total number of nodes in the branch and bound search tree and the number of iterations 

required at each node can be very large. 

4. Since many constraints are relaxed form the model, a good heuristic is needed to generate a 

feasible solution based on the solution of the dual problem.   

5. The number of subproblems grows with the number of uncertain parameters and their 

realizations in an exponential manner. 

6. It is problem specific and non-intuitive to define the branching rules/variables in the tree 

search since there are several alternatives. 

 

TI

TC

1 2 3,4 3,41,2 1,2 3 4 1 2 3 4
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4.2.1 Lagrangean Decomposition based on Dualizing all the NACs: 

(i) In this decomposition approach, we dualize all the NACs (both initial (3a) and 

conditional (5b) and (5c)) in the objective function directly while formulating the lower 

bounding Lagrangean problem (L2-MLR), which is still decomposable into individual scenarios. 

Notice that since (5b) and (5c) are inequality constraints, the corresponding Lagrangean 

multipliers 
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 Figure 5 represents the structure of the model (L2-MLR) where L2-MLR
s
 correspond to 

the scenario sub-problems in this decomposed model.  
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    '\, JJjtRxs

jt     (7a) 

It is important to observe that we assign the shared binary variable 
',ss

tz and its 

corresponding constraints (4b) and objective function term to the scenario problem s for all 

3)',( Pss  where (s < s’). This allows to decompose the problem into independent scenarios. For 

instance in the case of 4 scenarios, the minimum scenario pair set )}4,3(),4,2(),3,1(),2,1{(3 P  

and, therefore, the corresponding shared variables 
3,12,1 , tt zz are assigned to scenarios 1; 

4,2

tz to 

scenario 2; and 
4,3

tz to scenario 3. As an alternative, one can also create a copy of the shared 

variable 
',ss

tz as 
ss

tz ,'
 and its corresponding constraints (4b), (5b) and (5c) for all 3)',( Pss  , that 

will allow to keep these variables in both the sub-problems s and s’. However, the performance 

of the two alternative decomposition approaches should not be very different.   

 

 Figure 5: Lagrangean Decomposition based on dualizing all NACs directly 
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Dualize all 
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(ii)  Another way to decompose the model (MLR) while considering all the NACs, is based on 

first reformulating the constraints (3a), (5b) and (5c) as (3b), (5d) and (5e) respectively, where 

',~ ss

tx represents the value of the variable 
's

tx  for 3)',(, PssTt  .  

 3

', )',(,~ PssTtxx I

ss

t

s

t        (3b) 

 3

',', )',(,~)1( PssTtxxzM C

ss

t

s

t

ss

t      (5d) 

 3

',', )',(,~)1( PssTtxxzM C
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t
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t      (5e) 

 ',)',(,~
3

',' ssPssTtxx ss

t

s

t        (5f)  

 In addition, eq. (5f) is required to ensure that all the copy variables 
',~ ss

tx  for 
's

tx  have the 

same values in all the scenario pairs it occurs. Notice that the reformulated model (MLR
C
) 

includes constraints (1), (2), (3b), (4b), (5d), (5e), (5f), (6) and (7). Model (MLR
C
) can now be 

decomposed into individual scenarios by dualizing only constraints (5f) as can be seen in Figure 

6. L3-MLR
C
 and L3-MLR

Cs
 represent the Lagrangean problem and scenario sub-problems for 

this indirect decomposition approach, respectively.   

  

  

  Figure 6: Structure of the Reduced Model after reformulation (MLR
C
) 

Scenario constraints

with corresponding 

NACs ((3b),(5d),(5e))

Equality 

constraints (5f)
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Notice that once the scenario subproblems L2-MLR
s
 and L3-MLR

Cs
 corresponding to the 

direct and indirect approaches, (i) and (ii), are formulated, the rest of the algorithmic steps are 

similar to as we have seen in the previous section (Figure 2).  
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4.2.2 Limitations: Based on the computational experiments, approach (ii) performs slightly 

better than the approach (i). However, the main limitation with both of these decomposition 

approaches (i) and (ii) is that the number of Lagrangean multipliers becomes very large since the 

conditional NACs represent a very large fraction of the total constraints in the problem. In 

addition, these constraints appear as big-M constraints in the model where only a small fraction 

of these constraints become active at the optimal solution, so the improvement in the resulting 

lower bound is usually very slow and one may need several iterations to converge. Overall, the 

performance with the decomposition approaches that rely on considering all the conditional 

NACs can even be worse than the decomposition approach presented in section 4.1.1 which 

relaxes all of these constraints.   

 However, for the problems with exogenous uncertainties, there is no big-M involved in 

the NACs. Therefore, on dualizing these NACs (all time periods) for scenario decomposition, the 

quality of the lower bound is usually strengthened. 

 

5 Proposed Lagrangean Decomposition Algorithm 

The decomposition approaches presented in the previous section may perform reasonably well 

for a certain class of problems with a given set of data. However, as we mentioned these methods 

also have some limitations. To overcome them, we propose a new decomposition scheme that 

neither relaxes nor dualizes all the conditional NACs. The basic idea relies on decomposing the 

fullspace model into scenario group subproblems instead of individual scenarios. This allows 

keeping a subset of the NACs in the subproblems as constraints, while dualizing and relaxing the 

rest of the NACs. Therefore, it can be considered as a partial decomposition approach. Since, the 

formulation of the scenario groups is a key element in the proposed decomposition algorithm, we 

first describe the methodology to construct these scenario groups for the MSSP with endogenous 

uncertainties.    

5.1.1 Formulating the Scenario Groups: The proposed algorithm divides the reduced 

model (MLR) into scenario group subproblems as explained in this section. Let us consider that 

there are two endogenous uncertain parameters },{ 21  where each one has 2 possible 

realizations (L, H). Therefore, there are 4 scenarios (1: LL, 2: HL, 3: LH, 4: HH). The scenario 

pairs (s,s’) required to represent the NA constraints in each time period t based on the three 
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properties in Gupta and Grossmann (2011) are {(1,2),(1,3),(2,4),(3,4)} as can be seen in Figure 

7(a). Notice that the double line between scenario pairs is used to emphasize the fact that there 

are initial as well as conditional NACs between each of these scenario pairs, whereas each node 

represents the index of an individual scenario.  

 

Figure 7: An illustration for the 4 Scenarios and its scenario group decomposition (top view) 

 

Figure 8: An illustration for the 4 Scenarios and its scenario group decomposition (front view) 
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 The Lagrangean decomposition scheme corresponding to the section 4.1.1 is represented 

by Figure 7(b) where we remove all the conditional NACs and dualize all the initial NACs. 

Figure 7(c) corresponds to the scenario decomposition scheme presented in section 4.2.1 that 

relies on dualizing all the NACs (initial and conditional) either directly (i) or after reformulation 

(ii).  In contrast, the proposed algorithm decomposes the fullspace model into scenario groups as 

shown in Figures 7(d) or 7(e). In particular, Figure 7(d) corresponds to the two scenario group 

problems {g1: (1,2),  g2: (3,4)} where 7(e) represents the scenario group problems { g1: (1,3), g2: 

(2,4)}. Notice that Figures 7(a)-(e) correspond to the top view of the scenario-tree representation 

in Figures 8(a)-(e), respectively. Each node in Figures 8(a-e) represents the state of the system in 

a given time period t while the linking lines correspond to the NA constraints. 

 The rules to formulate the scenario groups for the proposed algorithm are as follows: 

1. Each scenario s occurs in only one of the scenario group gS and every scenario is included in 

at-least one of the groups. All the scenario groups GSg  have equal number of scenarios. 

Therefore, the total number of scenarios equal to the number of scenario groups times the 

number of scenarios in each group i.e., gSGS  . Notice that here we assume the 

symmetry of the scenario groups to formulate the subproblems that have almost similar 

complexity. However, we can always consider an asymmetric approach as shown in Figure 9 

for the 4 scenario instance described above. Specifically, Figure 9(a) and 9(b) decompose the 

problem into two scenario groups {g1: (1,2,3),  g2: (4)} and {g1: (1,3,4),  g2: (2)}, 

respectively, where the subproblems with 3 scenarios should be more expensive to solve than 

the one with a single scenario.  

 

Figure 9: Asymmetric scenario group decomposition 

2. Scenario groups gS are formulated by first selecting an endogenous uncertain parameter and 

then taking those scenarios in a group which differ in the realization of only that particular 
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uncertain parameter.  For instance, in Figure 7(a), we first select parameter }{ 1 and write 

only those scenario groups that differ in the realization of this uncertain parameter, i.e.  

{(1,2),(3,4)}  which results in the scenario groups as in Figure 7(d). Similarly, the uncertain 

parameter }{ 2 leads to the scenario groups {(1,3),(2,4)} in Figure 7(e). Notice that these 

scenario groups are nothing but the scenario sets pk Lsss ),....,,( 21  (eq. 8) that are required to 

formulate the reduced model (MLR).   

3. Since there can be many uncertain parameters }{ p  each with its own scenario set

pk Lsss ),....,,( 21 , the selection of a particular set of scenario groups is not unique.  

(i)  Ideally, one may consider selecting a scenario group set that provides the tightest 

initial bound compared to the others. However, in general unless all the combinations 

are tested, it is not obvious how to select such a scenario group set.  

(ii) A relatively simpler approach can be to first solve each scenario independently, and 

selecting the scenario group set corresponding to that uncertain parameter, which has 

the largest total difference in the objective function values of the corresponding 

scenarios. This is due to the fact that most likely the corresponding NACs for those 

scenarios will be active at the optimal solution. Therefore, keeping these NACs in the 

subproblem as constraints should yield a tighter bound. For instance, select 7(e) if 

scenario group set corresponding to 2  exhibits larger total variation in the objective 

function value than the scenario group set for uncertain parameter 1 . In other words, 

this idea relies on the sensitivity of the objective function value for an uncertain 

parameter and its possible realizations. 

4. Even after selecting a scenario group set that corresponds to an uncertain parameter }{ p , it 

may still be difficult to solve the resulting scenario group subproblems. For instance if a 

parameter has many realizations, then each scenario group subproblem will have that many 

scenarios which may increase the computational expense. Therefore, one may further divide 

the scenario groups into subgroups and solve the resulting smaller problems.  
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Figure 10: 2 parameters, 16 scenarios and its scenario/scenario group decomposition  

 As an example, say if we have 2 uncertain parameters and 4 realizations of each 

parameter, there are a total of 16 scenarios. There are two possibilities of the scenario groups 

{(1,2,3,4), (5,6,7,8), (9,10,11,12), (13,14,15,16)} (Figure 10(c)) and {(1,5,9,13), (2,6,10,14), 

(3,7,11,15), (4,8,12,16)}  (Figure 10 (d)) according to the rules 1-3.  Based on the problem 

characteristics, it may be difficult to solve each scenario group subproblem with 4 scenarios. 

Therefore, these groups can be further decomposed into a total of 8 scenario groups each 

with 2 scenarios, respectively (Figure 11(a) and 11(b)). However, the quality of the bound 

may deteriorate since the corresponding conditional NACs need to be relaxed. Therefore, 

there is a trade-off between the quality of the bound and the complexity of solving a scenario 

group problem. 

 

Figure 11: Decomposition of the scenario groups into subgroups 
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5. In general, if the problem is expensive to solve for each scenario, it is better to use scenario 

groups each with only few scenarios. On the other hand, if individual scenarios are not expensive 

to solve, then one may consider more scenarios in each group to improve the quality of the 

bound.   

 The above rules are generic and can be applied to a problem with any number of 

uncertain parameters and many realizations of each uncertain parameter. For instance, Figure 

12(a) represents the extension to three uncertain parameter case where each parameter has 2 

realizations (total 8 scenarios).  

 

 

Figure 12: 3 parameters, 8 scenarios and its scenario/scenario group decomposition  

 There are 6 possibilities to formulate the scenario groups in symmetric form:  

(a) Taking 4 scenarios in each group:      {(1,2,3,4), (5,6,7,8)} i.e. Figure 12(c)  

     {(1,2,5,6), (3,4,7,8)} i.e. Figure 12(d) 

     {(1,3,5,7), (2,4,6,8)} i.e. Figure 12(e) 

(b) Taking 2 scenarios in each group:   {(1,2),(3,4), (5,6),(7,8)} i.e. Figure 12(f)  

     {(1,5),(2,6), (3,7),(4,8)} i.e. Figure 12(g) 

     {(1,3),(2,4), (5,7),(6,8)} i.e. Figure 12(h) 
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5.1.2 Decomposition Algorithm: Based on the scenario groups that are constructed in the 

previous section, we now first present the corresponding reformulated Reduced (MILP) model. 

Notice that these scenario group partitions will be used to decompose the resulting reduced 

model into scenario group subproblems during the proposed Lagrangean decomposition 

algorithm.   

 Let us consider that G  is the set of scenario groups GS g   that are selected based on the 

rules presented in the previous section, where each of these scenario groups gS may have 1 or 

more scenarios. The reduced model (MLR) can now be represented as an equivalent model 

(MLR
G
) in terms of the scenario groups GS g   where we disaggregate the total NACs for the 

scenario pairs that corresponds to the same scenario group gSss )',(  (i.e. eqs. (3i), (4i),(5i),(5j)) 

with those which belong to the different scenario groups )'()( gg SsSs  (i.e. eqs. (3j), 

(4j),(5k),(5l)). 
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   '\,, JJjGSstRx g

s

jt     (7i) 

  The Lagrangean problem (L4-MLR
G
) corresponding to the model (MLR

G
) can be 

formulated by dualizing only those initial NAC constraints for the pairs of scenarios (s,s’) that 

link the two scenario groups, i.e. eq. (3j), and removing the corresponding conditional NACs 

(eqs. (4j),(5k) and (5l)). Therefore, the initial and conditional NACs (eq. 3(i), 4(i), 5(i) and 5(j)) 

among the scenario pairs (s,s’) that belong to the same scenario group remain in the Lagrangean 

problem as explicit constraints.  
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 In contrast to the previous approaches, we can observe that the main idea in the proposed 

decomposition approach is that instead of removing all the conditional NACs from the model (as 

in section 4.1.1) or dualizing all the conditional NACs either directly or in an indirect manner (as 

in section 4.2.1), we only remove a subset of conditional NACs from the model and dualize a 

subset of the initial NACs in the objective function instead of dualizing all the initial NACs 

while formulating the Lagrangean problem (L4-MLR
G
). This results in the decomposition of the 

reduced model (MLR) into scenario group subproblems (L4-MLR
Gs

) rather than individual 

scenarios in the previous cases. Therefore, we also refer it as a partial decomposition approach. 
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 The structure of model (L4-MLR
G
) can be seen in Figure 13, where each scenario group 

subproblem that contains its corresponding initial and conditional NACs can be solved 

independently, and where only a small fraction of the total initial and conditional NACs are 

dualized and removed, respectively. Since, the resulting subproblems capture the more relevant 

information, i.e. the one corresponding to the later time periods, the dual bound should be tighter. 

We can then state the following proposition: 

 

Proposition 1: The dual bound obtained from the proposed Lagrangean problem (L4-MLR
G
) 

at root node is at-least as tight as the dual bound obtained from the standard Lagrangean 

decomposition approach (L1-MLR) i.e. the model (L1-MLR) is a relaxation of the model (L4-

MLR
G
). 

Proof: To prove this proposition it is sufficient to establish that,  

(a) The feasible region of the proposed Lagrangean problem (L4-MLR
G
) is contained within 

the feasible region of the model L1-MLR.  

(b)  The objective function value of the proposed Lagrangean problem (L4-MLR
G
) over its 

feasible solutions
s

tx is at-least as large (assuming minimization case) as the objective 

function value of the model L1-MLR.  
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For (a), since scenario constraints (2) in L1-MLR are equivalent to constraints (2i) in L4-MLR
G
. 

Therefore, the only difference between both of these models is that L4-MLR
G
 has the additional 

constraints (3i), (4i), (5i) and (5j) in the model. Hence, the feasible region of the model L4-

MLR
G 

is contained within the feasible region of the standard Lagrangean problem L1-MLR 

which has more feasible solutions.  

For (b), we first rewrite the model L1-MLR as L1-MLR’ where 0', ss

t  represent the 

Lagrangean multipliers corresponding to the dualized inequalities )0( '  s

t

s

t xx and multipliers 

0', ss

t  correspond to the inequalities )0( '  s

t

s

t xx . We use the inequality format of the 

initial NACs (eq. (3a)) to dualize them in the objective function.    
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Similarly, model L4-MLR
G
 can be rewritten as follows:  
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 s.t. (2i), (3i), (4i), (5i), (5j), (6i) and (7i) 

On subtracting the objective functions (1l) and (1m), we have the following summation,  
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To prove that the objective function value of the model L4-MLR
G
 over its feasible solutions

s

tx is 

at least as large as the objective function value of the model L1-MLR, it is sufficient to prove 

that, 
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For any feasible solution 
s

tx  to the model L4-MLR
G
 and for any 0', ss

t  and 0', ss

t

TtPss  ,)',(
3 , the penalty terms )( '', s

t

s

t

ss

t xx   and )( '', s

t

s

t

ss

t xx   in the objective 

function are less than or equal to zero. Hence, their summation in inequality (1o) also holds true. 

In other words, we can also state that the model L1-MLR is a Lagrangean relaxation of the 

model L4-MLR
G
 and therefore, it provides a valid lower bound on the objective function value 

of the model L4-MLR
G
.                           □  

 

 

Figure 13: Scenario decomposition approach in the proposed Lagrangean Decomposition 

  

 The rest of the steps of the algorithm are similar to the standard Lagrangean 

decomposition (Figure 2) where scenario group subproblems L4-MLR
Gs

 are solved during each 

iteration, and multipliers are updated using either subgradient method (Fisher, 1985) or an 

alternative scheme as in Mouret et al. (2011); Oliveira et al. (2013), and Tarhan et al. (2013). 

Moreover, the algorithm can be further extended within a duality based branch and bound search 

(as proposed in Goel and Grossmann, 2006; Tarhan et al., 2009; and Tarhan et al., 2011) if the 
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gap between the lower and upper bound is still large. As will be shown in the results, the main 

advantage with the proposed approach is that the resulting dual bound is significantly 

strengthened at the root node itself since a large fraction of the NACs are included as explicit 

constraints in the subproblems. This will eventually reduce the number of iterations required to 

converge at each node and the total number of nodes in the branch and bound search.  

 

5.2.1 Alternate Proposed Lagrangean Decomposition Algorithm 

It should be noted that few conditional NACs (eqs. (5k) and (5l)) still need to be removed while 

formulating the scenario group subproblems (L4-MLR
Gs

) in the above method. Therefore, the 

best lower bound at the root node cannot be better than the optimal solution of the model without 

these conditional NACs. To further close the gap at the root node, we also propose an alternate 

Lagrangean decomposition approach that may provide a stronger bound at the root node. 

However, it involves solving more subproblems, and it may be computationally more expensive 

than the proposed approach in the previous section. Therefore, it is only useful for a certain class 

of problems.  

 The main idea is that we select all the scenario groups instead of a subset of the scenario 

groups as we did in the previous section 5.1.1. However, since a scenario can appear in more 

than one of these scenario groups, we need to equate the decisions for this scenario in all of these 

scenario groups where it occurs. In other words, we create a copy of each scenario for every 

scenario group problem where it can appear and equating the decisions corresponding to all time 

periods for that scenario for each of these scenario groups. The resulting model (Figure 14(b)) 

will be equivalent to the reduced model (MLR) (Figure 14(a)) where {1’,2’,3’,4’} are the copy 

of the scenarios {1,2,3,4} and the connections between them are the added equality constraints.  

 Therefore, to decompose the resulting problem (Figure 14(b)) into 4 scenario group 

subproblems {(1,2),(1’,3’),(2’,4’), (3,4)}, we dualize the equality constraints correspond to each 

scenario and its copy variables, instead of dualizing or removing the NAC constraints. This 

yields a set of 4 scenario group subproblems (Figure 14(c)) i.e. {(1,2),(1’,3’),(2’,4’), (3,4)}. 

Since, none of the conditional and initial NAC constraints are removed from the subproblems, 

the bound is in general stronger. We can compare this decomposition with the proposed one in 

Figure 7 where we obtain 2 scenario group problems.  
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Figure 14: Alternate proposed Lagrangean decomposition approach for 4 scenario problem 

 Qualitatively, this decomposition can be considered as the decomposition of the reduced 

model (Figure 14(a)) at vertices as compared to the arcs in standard/proposed decomposition 

described earlier. Notice that although this alternate decomposition is computationally expensive 

since more subproblems are involved than in the previous method, it can however be used in a 

hybrid scheme with the proposed decomposition to improve the quality of lower bound. For 

instance in Figure 10, we can first select the 4 scenario groups based on the rules that are defined 

earlier, and then use this approach to further decompose each group into subgroups by creating a 

copy of the scenarios in each of these groups instead of the partitions used in Figure 11. 

 

6.  Numerical Results  

6.1 Process network planning under uncertain yield  

 

Figure 15: 3 Process Network Example 

Case (i): Planning of 3 process network over 10 years 

To illustrate the application of the various decomposition approaches for multistage stochastic 

programming with endogenous uncertainties, we consider the following problem from Goel and 

Grossmann (2006). Given is a process network (Figure 15) that is used to produce product A. 

Currently, the production of A takes place only in Process III with installed capacity of 3 

tons/hour and yield of 0.70, that consumes an intermediate product B which is purchased. If 

needed, the final product A can also be purchased so as to maintain its inventory. The demand 

for the final product, which is known, must be satisfied for all time periods over the given time 
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horizon. Two new technologies (Process I and Process II) are considered for producing the 

intermediate B from two different raw materials C and D. These new technologies exhibit 

uncertainty in the yields. The yield of Process I and Process II can take 2 discrete values each 

with equal probability of 0.5. These two realizations of yield for each of Process I and Process II 

give rise to a total of 4 scenarios (Table 3).  

The problem consists of finding the expansion and operation decisions for this process 

network for a 10 year planning horizon so as to minimize the total expected cost of the project. 

The size of the resulting fullspace model (MLR) and each individual scenario can be seen in 

Table 4 where the optimal expected cost of the problem is $379,070. Notice that there is a 

significant increase in the total number of constraints for the fullspace MSSP model due to the 

non-anticipativity requirements.   

Table 3: 3 Process Network Example (4 Scenarios) 

Scenario s1 s2 s3 s4 

Process I yield 0.69 0.81 0.69 0.81 

Process II yield 0.65 0.65 0.85 0.85 

Scenario Probability 0.25 0.25 0.25 0.25 

  

 Table 4: Model statistics for the 3 Process Network Example   

After applying the various decomposition approaches, we obtain the results shown in 

Figure 16 and Table 5, where an optimality tolerance of 1% and maximum of 30 subgradient 

iterations (whichever comes first) are used as the termination criteria. It can be observed that the 

proposed approach (section 5.1.2) using SG2 scenario groups {(1,3),(2,4)} outperforms the other 

approaches since it yields the tightest lower bound ($378,710) within 2 iterations (see Table 5). 

The lower bound at the root node from the standard approach (section 4.1.1) after many 

iterations is worse than the initial bound with the proposed approach ($375,880 vs. $377,290). In 

addition, the best upper bound from the proposed approach is same as the optimal solution 

($379,070) whereas the standard approach could only yield the feasible solution with expected 

Problem Type 

Number of 

Constraints 

Continuous 

Variables 

Binary 

Variables 

Reduced Model (MLR) 1,869 845 120 

Individual Scenario 192 202 30 



 
 

31 
 

cost of $380,880 even after 30 iterations (see Table 5). The decomposition approaches based on 

dualizing all the initial and conditional NACs do not yield good bounds (especially the direct 

approach (i) in section 4.2) compared to the proposed approach with SG2 partitions.  

The alternate decomposition (section 5.2.1) using all the 4 scenario groups also performs 

reasonably well. Since, the total variations in the scenario costs for the scenario group set SG2 

{(1,3),(2,4)} is large compared to the scenario group set SG1 {(1,2),(3,4)} ($69,990
 
vs. $44,590), 

it yields tighter bounds and faster convergence (see Table 6). Notice that the scenario groups in 

SG1 represent the sensitivity of the Process I yield with respect to the cost, whereas SG2 

correspond to the sensitivity of the Process II yield that has a large variance (Table 3) and a 

larger impact on the scenario costs. The MILP models for all the process network examples are 

implemented in GAMS 23.6.3 and run on Intel Core i7, 4GB RAM machine using XPRESS 

21.01 solver. 

 

Table 5: Comparison of the various decomposition schemes for 3 Process Network Example 

 Standard All Dualized 

(i) direct 

All Dualized 

(ii) indirect 

Proposed 

SG1 

Proposed 

SG2 

Proposed 

Alternate 

 UB ($10
3
) 380.88 380.88 380.88 380.88 379.07 379.07 

LB ($10
3
) 375.88 371.88 376.27 376.42 378.71 375.75 

Solution Time (s) 8.89 5.24 9.51 5.86 0.94 2.12 

% Gap 1.33% 2.42% 1.22% 1.19% <1% <1% 

# iterations 30 30 30 30 2 4 

 

 

Table 6: Variations in the objective function value with uncertain parameters 

 (a) Individual Scenario Costs   (b) Scenario groups cost variations 

 

 

 

 

 

 

  Cost ($10
3
) 

s1 410.32 

s2 365.73 

s3 353.03 

s4 353.03 

  SG1 SG2 

s1-s2 44.59 -  

s3-s4 0  - 

s1-s3  - 57.29 

s2-s4  - 12.70 

Total cost variations 
($10

3
) 44.59 69.99 
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Figure 16: Comparison of the various decomposition schemes for 3 process network example 

 

Case (ii): Planning of 5 process network over 10 years 

 

 

 

  

 

 

 

 

 In this instance, we consider a 5 process network (Figure 17) having 3 uncertain 

parameters, i.e. yield of Process I, Process II, and Process V. Here we consider 2 new additional 

processes compared to the previous example in which Process IV converts E into B with a yield 

of 0.75, and Process V that converts B into final product A. Each of the uncertain yields has 2 

realizations and gives rise to a total of 8 scenarios with equal probabilities as shown in Table 7.  
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The problem consists of finding the expansion and operation decisions for this process network 

over a 10 year planning horizon to minimize the total expected cost of the project (see Gupta and 

Grossmann (2011) for details). 

Table 7: 5 Process Network Example (4 Scenarios) 

Scenario s1 s2 s3 s4 s5 s6 s7 s8 

Process I yield 0.69 0.81 0.69 0.81 0.69 0.81 0.69 0.81 

Process II yield 0.65 0.65 0.85 0.85 0.65 0.65 0.85 0.85 

Process V yield 0.60 0.60 0.60 0.60 0.80 0.80 0.80 0.80 

Scenario Probability 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

 

 To use the proposed decomposition approach for this 8 scenario problem, we partition the 

scenarios into scenario groups where each one has either 2 or 4 scenarios as in Figure 12. These 

scenario groups are denoted as follows:  

(a) SG1: {(1,2),(3,4), (5,6),(7,8)};  SG2: {(1,5),(2,6), (3,7),(4,8)}; SG3: {(1,3),(2,4), (5,7),(6,8)}; 

(b) SG4: {(1,2,3,4), (5,6,7,8)}; SG5: {(1,2,5,6), (3,4,7,8)}, and SG6: {(1,3,5,7), (2,4,6,8)}  

 After applying the proposed decomposition approach (section 5.1.2) to these 6 scenario 

group sets, we can see from Figure 18 that the quality of the lower bound improves from 

$357,920 (SG1) to $361,500 (SG6) as the total cost variations for the corresponding scenario 

group set increases from $41,000 to $224,810 as in the previous instance. Moreover, the bound 

obtained from the larger subproblems having 4 scenarios (SG4, SG5, SG6) is tighter as 

compared to the subproblems having 2 scenario each as in SG1, SG2 and SG3.  This is due to the 

fact that larger subproblems need only few conditional NACs to be relaxed compared to the 

smaller subproblems. Table 8 and Figure 19 compare the progress of the lower bounds, number 

of iterations and solution time required to reach within 1% of optimality tolerance (or 30 

iterations) for the standard and proposed approaches with different scenario partitions. We can 

observe that scenario group set SG6 outperforms other approaches since it provides the strongest 

lower bound ($361,500) in just 2 iterations within 8.9s. Moreover, there is a trade-off between 

the computational cost per iteration and the quality of the bound obtained. It is interesting to note 

that in most of the cases, even the initial bound using proposed scenario decompositions is much 

better than the final bound from the standard approach ($355,180) and the rate of convergence to 

the best possible dual bound is faster.  
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Figure 18: Variations in the scenario costs vs. bound obtained for different scenario partitions 

 

 

Figure 19: Comparison of the standard vs. proposed approach for 5 process network example 
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Table 8: Comparison of the standard vs. proposed approach for 5 process network example 

 Standard Proposed 

SG1 

Proposed 

SG2 

Proposed 

SG3 

Proposed 

SG4 

Proposed 

SG5 

Proposed 

SG6 

 UB ($10
3
) 364.12 364.12 364.12 364.12 364.12 364.12 364.12 

LB ($10
3
) 355.18 357.92 358.08 358.62 360.82 361.35 361.50 

Solution Time (s) 16.32 24.59 15.38 20.40 7.63 12.44 8.9 

% Gap 2.52% 1.73% 1.69% 1.53% <1% <1% <1% 

# iterations 30 30 30 30 2 5 2 

 

6.2 Oilfield development planning under uncertain field parameters  

 

Figure 20: 3 oilfield planning example 

Case (i): Uncertainty in the field size only (4 scenarios) 

We consider the MILP model by Gupta and Grossmann (2013) for maximizing the expected 

NPV in the development planning of an offshore oilfield, which is an extension of the previous 

deterministic model presented in Gupta and Grossmann (2012). The model for all the oilfield 

planning instances are implemented in GAMS 23.6.3 and run on Intel Core i7, 4GB RAM 

machine using CPLEX 12.2 solver. In this particular instance, we consider 3 oilfields, 3 potential 

FPSO’s and 9 possible connections among field-FPSO (Figure 20).  A total of 30 wells can be 

drilled in the fields and the planning horizon is 10 years. Field 3 has a recoverable oil volume 

(field size) of 500 MMbbls. However, there is uncertainty in the size of fields 1 and 2 where each 

one has two possible realizations (low, high) with equal probability. Therefore, there are a total 
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of 4 scenarios each with a probability of 0.25 (see Table 9). The problem is to determine the 

investment (FPSO installations and expansions, field-FPSO connections and well drilling ) and 

operating decisions (oil production rate) for this infrastructure with an objective to maximize the 

total expected NPV (ENPV) over the planning horizon. The optimal ENPV for this problem is 

$11.50 x10
9
 when the reduced model (MLR) is solved in fullspace, and requires 1184s. Table 10 

represents the model statistics for this instance.  

Table 9: 3 Oilfield Example (4 Scenarios), case (i) 

Scenarios s1 s2 s3 s4 

Field 1 Size (MMbbls) 57 403 57 403 

Field 2 Size (MMbbls) 80 80 560 560 

Scenario Probability 0.25 0.25 0.25 0.25 

 

 Table 10: Model statistics for the 3 Oilfield Example, case (i)   

 

 

 

 

Figure 21 compares the performance of the upper bounds obtained at the root node using 

standard Lagrangean decomposition based on dualizing the initial NACs and removing the 

conditional NACs (section 4.1.1) with the decomposition approaches proposed in section 5. A 

termination criteria of either 1% gap or 20 iterations is used. The proposed algorithm based on 

scenario groups SG1: {(1,2),(3,4)} and SG2: {(1,3),(2,4)} yield stronger upper bounds, $11.59 

x10
9
 and $11.56 x10

9
 respectively, than the standard Lagrangean decomposition (section 4.1.1)  

($11.62 x10
9
). Additionally, the total computational effort is less with the proposed approach 

since only 2 subproblems need to be solved at each iteration, and only few iterations are needed 

to satisfy a 1% of optimality tolerance (Table 11). SG2 performs better than SG1 as can be 

observed from the total variations in the scenario NPVs with respect to the change in the field 

sizes as calculated in Table 12 ($6.63 x10
9
 vs. $4.77 x10

9
). This result is similar to the process 

network example in the previous section. We can also observe that the alternate proposed 

approach that considers 4 scenario groups (Figure 14(c)) performs well but it is more expensive 

to solve (429s). It is important to see that the quality of upper bound from SG2 is similar in the 

Problem Type 

Number of 

Constraints 

Continuous 

Variables 

Discrete 

Variables 

SOS1 

Variables 

Reduced Model (MLR) 16,473 9,717 876 240 

Individual Scenario 3,580 2,390 179 60 
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first iteration with the quality of UB obtained from the scenario subproblems (section 4.1.1) after 

20 iterations (see Figure 21). Moreover, for clarity we only plotted the progress of the upper 

bounds with iterations and the optimal NPV in Figure 21.  

 

Table 11: Comparison of the various decomposition schemes for oilfield example, case(i) 

 Standard Proposed SG1 Proposed SG2 Proposed Alternate 

 UB ($10
9
) 11.62 11.59 11.56 11.58 

LB ($10
9
) 11.50 11.50 11.50 11.50 

Solution Time (s) 466 382 172 429 

% Gap 1.02% <1% <1% <1% 

# iterations 20 5 2 3 

 

 

 

Figure 21: Comparison of the various decomposition schemes for oilfield example 1, case (i) 
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 Table 12: Variations in the objective function value with uncertain parameters, case (i) 

 (a) Individual Scenario NPV   (b) Scenario groups NPV variations 

 

 

 

 

 

 

Case (ii): Uncertainty in the field size, oil deliverability, WOR and GOR (4 scenarios) 

In this case we consider uncertainty in the field size, oil deliverability, water-oil ratio (WOR) and 

gas-oil-ratio (GOR) for oilfields 1 and 2. Notice that oil deliverability, WOR and GOR are 

represented by the univariate polynomials in terms of the factional oil recovery as shown in 

equations (11)-(13) respectively. The uncertainty in these parameters is characterized by the 

corresponding parameters o , w  and g . We assume that the uncertain parameters for a field 

are correlated and uncertainty in these parameters is resolved at the same time. This allows 

reducing a large number of scenarios. The two possible combinations of these parameters for 

each field results in a total of 4 scenarios each with a probability of 0.25 as can be seen in Table 

13. The data for the rest of the problem are as in case (i).   

     )( fcgQ o

d       (11) 

     )( fcgwor w       (12) 

     )( fcggor g       (13) 

 Figure 22 and Table 14 compare the performance of the upper bounds obtained at the 

root node using standard Lagrangean decomposition (section 4.1.1) with the proposed 

decomposition approaches and the similar trends can be observed as in the previous instance. 

SG2 {(1,3), (2,4)} performs best compared to the other approaches due to the stronger initial 

bound ($12.07x10
9
). Moreover, since the scenario group set SG2 has a larger total NPV 

variations ($8.70x10
9
) than set SG1 {(1,2), (3,4)} ($5.72x10

9
), it yields a stronger dual bound. 

Although, SG1 and the alternate approach are somewhat more expensive compared to the 

  NPV ($10
9
) 

s1 8.95 

s2 11.39 

s3 12.32 

s4 14.65 

  SG1 SG2 

s1-s2 2.44 -  

s3-s4 2.33  - 

s1-s3  - 3.37 

s2-s4  - 3.26 

Total NPV 

variations ($10
9
) 4.77 6.63 
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standard decomposition approach, they yield a stronger dual bound in a given amount of solution 

time. This will eventually reduce the total number of nodes in the branch and bound search tree.   

 Table 13: 3 Oilfield Example (4 Scenarios), case (ii) 

Scenarios s1 s2 s3 s4 

 

 

Field 1 

 

Size (MMbbls) 57 403 57 403 

o  0.75 1.25 0.75 1.25 

w  0.75 1.25 0.75 1.25 

g  0.75 1.25 0.75 1.25 

 

 

Field 2 

Size (MMbbls) 80 80 560 560 

o  0.75 0.75 1.25 1.25 

w  0.75 0.75 1.25 1.25 

g  0.75 0.75 1.25 1.25 

Scenario Probability 0.25 0.25 0.25 0.25 

 

 

Figure 22: Comparison of the various decomposition schemes for oilfield example, case (ii) 
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Table 14: Comparison of the various decomposition schemes for oilfield example, case(ii) 

 Standard Proposed SG1 Proposed SG2 Proposed Alternate 

 UB ($10
9
) 12.14 12.10 12.07 12.06 

LB ($10
9
) 11.94 11.94 11.94 11.94 

Solution Time (s) 438 1780 84 1045 

% Gap 1.66% 1.28% <1% <1% 

# iterations 20 20 1 5 

Case (iii) and (iv): Extension of the cases (i) and (ii), respectively, for 9 scenarios 

In these instances we consider 3 realizations for each uncertain parameter (low, medium, high) 

compared to two realizations (low, high) in the previous cases (i) and (ii) of oilfield development 

problem. This results in the corresponding 9 scenario cases (iii) and (iv). Figures 23 and 24 

compare the performance of the dual bounds at the root node from various decomposition 

schemes for these 3 oilfield and 9 scenario instances, whereas Table 15 summarizes the 

computational results. Since the alternate decomposition (section 5.2.1) is very expensive to 

solve for these cases, we only compare the proposed approach relying on the scenario groups 

SG1 {(1,2,3),(4,5,6),(7,8,9)} and SG2 {(1,4,7),(2,5,8),(3,6,9)} with the standard approach 

(section 4.1.1). We can observe that the initial bound with the proposed strategy ($11.93 x10
9
) is 

much better as compared to the final bound obtained from the standard Lagrangean 

decomposition at the root node ($11.96 x10
9
) for case (iii). It takes only 2 and 1 iterations in 

cases (iii) and (iv), respectively, for the proposed approach using set SG2 to reach within 1% of 

optimality tolerance. On the other hand, the standard and the proposed approach with set SG1 

cannot reach within this gap even after 20 iterations or a given time limit of one hour.   

Table 15: Comparison of the decomposition schemes for oilfield example, case (iii) and (iv) 

 Case (iii) Case (iv) 

 Standard Proposed 

SG1 

Proposed 

SG2 

Standard Proposed 

SG1 

Proposed 

SG2 

 UB ($10
9
) 11.96 11.92 11.88 12.31 12.26 12.23 

LB ($10
9
) 11.78 11.78 11.78 12.11 12.11 12.11 

Solution Time (s) 1327 >3,600 764 1542 >3,600 439 

% Gap 1.47% 1.15% <1% 1.62% 1.27% <1% 

# iterations 20 10 2 20 8 1 
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Figure 23: Comparison of the various decomposition schemes for oilfield example, case (iii) 

 

 

Figure 24: Comparison of the various decomposition schemes for oilfield example, case (iv) 
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Remarks:  

1. Based on the computational results, we can observe that the selection of a particular 

scenario group set is critical in the proposed approach such as set SG2 performs better 

than SG1 in all the instances.  

2. The increase in the solution time per iteration with the proposed approach is problem 

specific. For instance, the increase in the solution time per iteration for the process 

networks examples is not that significant as in the oilfield planning problem. Therefore, if 

the solution time per iteration for a given problem increases drastically using the 

proposed decomposition, then one may want to use the standard scenario based approach 

to explore more nodes quickly in the branch and bound search tree or use subproblems 

with smaller sizes in the proposed approach.  

3. In general, for a given amount of the solution time the proposed approach yields better 

dual bound and feasible solution as can be seen from the numerical experiments. This is 

due to the fact that the increase in the solution time per iteration is offset by the 

significant reduction in the total number of iterations resulting in the lesser total solution 

time.  

4. It should be noted that although the initial gap between lower and upper bounds for the 

examples presented is not very large for the given data set. However, based on 

Proposition 1 and computational experiments, we can conclude that the performance of 

the proposed approach should be similar for the large gap problems given that we select 

the scenario group sets as described.      

 

7. Conclusions 

In this paper, we have proposed a new approach for solving multistage stochastic programs 

(MSSP) with endogenous uncertainties using Lagrangean decomposition. The proposed 

approach relies on dividing the fullspace model into scenario groups. Since the number of these 

scenario groups can be large, there are several alternatives to select a particular set of scenario 

groups. Therefore, we also presented few rules to identify and formulate a reasonable scenario 

group set that can be used for the proposed partial decomposition approach within an iterative 

scheme to update the multipliers. Specifically, the resulting subproblems involve a subset of the 

NACs as explicit constraints while dualizing and relaxing the rest of these constraints, which 
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enhances the overall performance. An alternate decomposition scheme that may even yield a 

tighter bound, but usually becomes more expensive for the large cases, is also proposed.  

 The results on the process network and oilfield planning problems show that the dual 

bound obtained at the root node from the proposed approaches are stronger than the standard one 

since the impact of the later time periods is also considered in the subproblems. Moreover, there 

is a significant reduction in the number of iterations required to converge within a specified 

tolerance.  In most of the cases, even the initial bound with the proposed approach is stronger 

than the corresponding final bound in the standard approach. Given the tighter bound at the root 

node, the total number of potential nodes that will be required in the branch and bound search 

should be smaller and branching rules will be easier to identify. However, the solution time 

required per iteration in the proposed approach is usually larger as compared to the standard 

approach, but the difference is problem specific. Therefore, the comparison between the qualities 

of the bounds obtained within a given amount of solution time should also be considered while 

selecting a particular decomposition approach for the problems in this class.  
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