
1

STATE-OF-THE-ART REVIEW OF OPTIMIZATION METHODS

FOR SHORT-TERM SCHEDULING OF BATCH PROCESSES

Carlos A. Méndez 1, Jaime Cerdá 2, Ignacio E. Grossmann 1
 Department of Chemical Engineering - Carnegie Mellon University - Pittsburgh, USA1

INTEC (UNL – CONICET), Guemes 3450, 3000 Santa Fe, Argentina2

 Iiro Harjunkoski, MarcoFahl
ABB Corporate Research Center, Ladenburg, Germany

 July 2005

Abstract

There has been significant progress in the area of short-term scheduling of batch processes,

including the solution of industrial-sized problems, in the last 20 years. The main goal of this

paper is to provide an up-to-date review of the state-of-the-art in this challenging area. Main

features, strengths and limitations of existing modeling and optimization techniques as well as

other available major solution methods are examined through this paper. We first present a

general classification for scheduling problems of batch processes as well as for the corresponding

optimization models. Subsequently, the modeling of representative optimization approaches for

the different problem types are introduced in detail, focusing on both discrete and continuous time

models. A comparison of effectiveness and efficiency of these models is given for two

benchmarking examples from the literature. We also discuss two real-world applications of

scheduling problems that cannot be readily accommodated using existing methods. For the sake

of completeness, other alternative solution methods applied in the field of scheduling are also

reviewed, followed by a discussion related to solving large-scale problems through rigorous

optimization approaches. Finally, we list available academic and commercial software and briefly

address the issue of rescheduling capabilities of the various optimization approaches.

Keywords: short-term scheduling, optimization models, batch processes

2

1. INTRODUCTION

Scheduling is a critical issue in process operations and is crucial for improving production

performance. For batch processes, short-term scheduling deals with the allocation of a set of

limited resources over time to manufacture one or more products following a batch recipe. There

have been significant research efforts over the last decade in this area in the development of

optimization approaches, and several excellent reviews can be found in Reklaitis (1992), Pekny

and Reklaitis (1998), Pinto and Grossmann (1998), Shah (1998), Kallrath (2002), Floudas and Lin

(2004). Despite significant advances there are still a number of major challenges and questions

that remain unresolved. For instance, it is not clear the extent to which general methods aimed at

complex network structures (see Figure 1), can also be effectively applied to commonly

encountered structures such as the multistage structure shown in Figure 2. There are also many

detailed questions related on the specific capabilities of the methods for handling a large number

of operational issues (e.g. variable or fixed batch size, storage and transfer policies, changeovers),

as well as different objectives (e.g. makespan, earliness, or cost minimization). Finally, there are

also questions on the limitations and strengths of the various optimization models that have been

reported in the literature and the size of problems that one can realistically solve with these

models.

It is the objective of this paper to provide a comprehensive review of the state-of-the art of

short term batch scheduling. Our aim is to try to provide answers to the questions posed in the

above paragraph. The paper is organized as follows. We first present a classification for

scheduling problems of batch processes, as well as of the features that characterize the

optimization models for scheduling. We then present the major equations for representative

optimization approaches for general network and sequential batch plants, focusing on the discrete

and continuous time models. Computational results on two specific case studies (general network

and sequential plants) are presented in order to compare the performance of several of the

methods, particularly discrete and continuous models. We also discuss two examples of real

world industrial scheduling problems to demonstrate difficulties that are faced by existing

methods in accommodating complex process requirements. Other alternative solution approaches

are briefly discussed, followed by a discussion on the solution of large-scale problems with exact

methods. We briefly describe academic and commercial software available in the batch

3

scheduling area, and finally address the issue of rescheduling capabilities of the various

optimization approaches.

Figure 1. Batch process with complex network structure.

1

2

3

4

5

6

7

8

9

job

reaction packingdrying

Figure 2. Batch process with sequential structure.

2. CLASSIFICATION OF BATCH SCHEDULING PROBLEMS

There are a great variety of aspects that need to be considered when developing scheduling

models for batch processes. In order to provide a systematic characterization we present first a

general roadmap for classifying most relevant problem features. This roadmap is summarized in

Figure 3 and considers not only equipment and material issues, but also time and demand-related

constraints. As can be seen, the main features involve 13 major categories, each of which are

linked to central problem characteristics. These significantly complicate the task of providing a

unified treatment that can address all the cases covered in Figure 3.

First, the process layout and its topological implications have a significant influence on

problem complexity. In practice many batch processes are sequential, single or multiple stage

processes, where one or several units may be working in parallel in each stage. Each batch needs

to be processed following a sequence of stages defined through the product/batch recipe.

4

However, increasingly as applications become more complex, also networks with arbitrary

topology must be handled. Complex product recipes involving mixing and splitting operations

and material recycles need to be considered in these cases. Closely related to topology

considerations are requirements/constraints on equipment in terms of its assignment and

connectivity, ranging from fixed to flexible arrangements. Limited interconnections between

equipment impose hard constraints on unit allocation decisions.

Another important aspect of process flow requirements is reflected in inventory policies. These

often involve finite and dedicated storage, although frequent cases include shared tanks as well as

zero-wait, non-intermediate and unlimited storage policies. Material transfer is often assumed

instantaneous, but in some cases like in pipe-less plants it is significant and must be accounted for

in corresponding modeling approaches. Another major factor is the handling of batch size

requirements. For instance, pharmaceutical plants usually handle fixed sizes for which integrity

must be maintained (no mixing/splitting of batches), while solvent or polymer plants handle

variable sizes that can be split and mixed. Similarly, different requirements on processing times

can be found in different industries depending on process characteristics. For example

pharmaceutical applications might involve fixed times due to FDA regulations, while solvents or

polymers have times that can be adjusted and optimized with process models.

Demand patterns also can vary significantly ranging from cases where due dates must be

obeyed to cases where production targets must be met over a time horizon (fixed or minimum

amounts). Changeovers are also a very important factor, which is particularly critical in cases of

transitions that are sequence dependent on the products, as opposed to simple set-ups that are only

unit dependent.

Resource constraints, aside from equipment, e.g. labor, utilities, are also often of great

importance and can range from pure discrete to continuous. Practical operating considerations

often give rise to time constraints such as non-working periods on the weekend or maintenance

periods. Also, while scheduling is often regarded as a feasibility problem, costs associated to the

use of equipment, inventories, changeovers and utilities can have a significant impact in defining

an optimal schedule. Finally, there is the issue of the degree to which uncertainty in the data must

be accounted for, which is particularly critical for demands as longer time horizons are used.

The classification in Figure 3 shows that there is a tremendous diversity of factors that must be

accounted for in short term batch scheduling, which makes the task of developing unified general

5

methods quite difficult. At the same time, there might be the trade-off of having a number of

specialized methods that can address specific cases of this classification in a more efficient way.

(1) Process topology
 Sequential Network

 (arbitrary)
 Single stage Multiple stages

 Single Parallel Multiproduct Multipurpose
 unit units (Flow-shop) (Job-shop)

(2) Equipment assignment
Fixed Variable

(3) Equipment connectivity
Partial Full

 (restricted)

(4) Inventory storage policies
 Unlimited Non-Intermediate Finite Zero

 Intermediate Storage (NIS) Intermediate Wait (ZW)
 Storage (UIS) Storage (FIS)

 Dedicated Shared

 storage units storage units

(5) Material transfer
 Instantaneous Time-consuming
 (neglected)

 No-resources Pipes Vessels
 (Pipeless)

(6) Batch size

Fixed Variable
 (Mixing and Splitting)

(7) Batch processing time

 Fixed Variable
 (unit/batch-size dependent)

 Unit independent Unit dependent

(8) Demand patterns
Due dates Scheduling horizon

 Single product multiple product Fixed Minimum / maximum
 demand demands requirements requirements

(9) Changeovers

None Unit dependent Sequence dependent

Product dependent Product and unit dependent

(10) Resource Constraints
None (only equipment) Discrete Continuous

(11) Time Constraints

None Non-working periods Maintenance Shifts

(12) Costs
Equipment Utilities Inventory Changeover

(13) Degree of certainty

Deterministic Stochastic
Figure 3. Roadmap for scheduling problems of batch plants

6

3. CLASSIFICATION OF OPTIMIZATION MODELS FOR BATCH SCHEDULING

Having presented the general features of typical batch scheduling problems we introduce a

roadmap that describes the main features of current optimization approaches. This section is of

particular importance because alternative ways of addressing/formulating the same problem are

described. These usually have a direct impact on the computational performance, capabilities and

limitations of the resulting optimization model. Each modeling option that is presented is able to

cope with a subset of the features described in Figure 3.

(1) Time representation
Discrete time Continuous time

(2) Material Balances

Network flow equations Lots
 (order or batch oriented)

 STN RTN

(3) Event representation

 Global time Global time Unit-specific Time slots Precedence-based
 intervals points time events
 Synchronous Asynchronous Immediate General

(4) Objective function

Makespan Earliness Tardiness Profit Inventory Cost

Figure 4. Roadmap for optimization models for short-term scheduling of batch plants

The roadmap for optimization model classification (Figure 4) focuses on four main aspects that

are described in more detail in the remainder of this section.

• Time representation: The first and most important issue is the time representation. Depending

on whether the events of the schedule can only take place at some predefined time points, or can

occur at any moment during the time horizon of interest, optimization approaches can be

classified into discrete and continuous time formulations. Discrete time models are based on: (i)

dividing the scheduling horizon into a finite number of time intervals with predefined duration

and, (ii) allowing the events such as the beginning or ending of tasks to happen only at the

boundaries of these time periods. Therefore, scheduling constraints have only to be monitored at

specific and known time points, which reduces the problem complexity and makes the model

structure simpler and easier to solve, particularly when resource and inventory limitations are

7

taken into account. On the other hand, this type of problem simplification has two major

disadvantages. First, the size of the mathematical model as well as its computational efficiency

strongly depend on the number of time intervals postulated, which is defined as a function of the

problem data and the desired accuracy of the solution. Second, sub-optimal or even infeasible

schedules may be generated because of the reduction of the domain of timing decisions. Despite

being a simplified version of the original problem, discrete formulations have proven to be very

efficient, adaptable and convenient for a wide variety of industrial applications, especially in

those cases where a reasonable number of intervals is sufficient to obtain the desired problem

representation.

In order to overcome the previous limitations and generate data-independent models, a wide

variety of optimization approaches employ a continuous time representation. In these

formulations, timing decisions are explicitly represented as a set of continuous variables defining

the exact times at which the events take place. In the general case, a variable time handling allows

obtaining a significant reduction of the number of variables of the model and at the same time,

more flexible solutions in terms of time can be generated. However, the modeling of variable

processing times, resource and inventory limitations usually needs the definition of more

complicated constraints involving big-M terms, which tends to increase the model complexity and

the integrality gap and may negatively impact on the capabilities of the method.

• Material Balances: The handling of batches and batch sizes gives rise to two types of

optimization model categories. The first category refers to monolithic approaches, which

simultaneously deal with the optimal set of batches (number and size), the allocation and

sequencing of manufacturing resources and the timing of processing tasks. These methods are

able to deal with arbitrary network processes involving complex product recipes. Their generality

usually implies large model sizes formulations and consequently their application are currently

restricted to processes involving a small number of processing tasks and rather narrow scheduling

horizons. These models employ the state-task network (STN), or the resource-task network

(RTN) concept to represent the problem. The STN-based models represent the problem assuming

that processing tasks produce and consume states (materials). A special treatment is given to

manufacturing resources aside from equipment. In contrast, the RTN-based formulations employ

a uniform treatment for all available resources through the idea that processing tasks consume and

release resources at their beginning and ending times, respectively.

8

The second category comprises models that assume that the number of batches of each size is

known in advance. These solution algorithms can indeed be regarded as one of the modules of a

solution approach for detailed production scheduling, widely used in industry, which decomposes

the whole problem into two stages, batching and batch scheduling. The batching problem converts

the primary requirements of products into individual batches aiming at optimizing some criterion

like the plant workload. Afterwards, the available manufacturing resources are allocated to the

batches over time. This approximate two stage approach permits to address much larger practical

problems than monolithic methods, especially those involving a quite large number of batch tasks

related to different intermediates or final products. However, they are still restricted to processes

comprising sequential product recipes.

1 2 3 4 5 6 7 8 9 10

a c

e b

d

J1

J2

1 2 3 4 5

a c

e b

d
1

a c

e b

d

1

2

2

3

a c

e b

d
t1
t2J1

J2

t3
t1
t2
t3

a c

e b

d

Immediate precedence
- e precedes b ; a precedes c ; c precedes d
General precedence
- Immediate precedence relationships +
a precedes d

(a) Global time intervals (discrete) (b) Global time points (continuous) (c) Unit specific time events (continuous)

(d) Time slots (continuous) (e) Immediate and general precedence (continuous)

Figure 5. Different concepts for representing scheduling problems

• Event representation: In addition to the time representation and material balances, scheduling

models are based on different concepts or basic ideas that arrange the events of the schedule over

time with the main purpose of guaranteeing that the maximum capacity of the shared resources is

never exceeded. As can be seen in Figures 4 and 5, we classified these concepts into five different

types of event representations, which have been broadly utilized to develop a variety of

mathematical formulations for batch scheduling problems. Particularly, Figure 5 depicts a

schematic representation of the same schedule obtained by using the alternative concepts. The

9

small example given involves 5 batches (a, b, c, d, e) allocated to two units (J1, J2). To represent

this solution, the different alternatives require: (a) 10 fixed time intervals, (b) 5 variable global

time points, (c) 3 unit-specific time events, (d) 3 asynchronous times slots for each unit, (e) 3

immediate precedence relationships or 4 general precedence relationships. Although some event

representations are more general than others, they are usually oriented towards the solution of

either arbitrary network processes requiring network flow equations or sequential batch processes

assuming a batch-oriented approach. Table 1 summarizes the most relevant modeling

characteristics and problem features related to the alternative event representations. Critical

modeling issues refer to those aspects that may seriously compromise the model size and hence

the computational effort. In turn, critical problem features remark certain problem aspects that

may be awkward to consider through specific basic concepts.

For discrete time formulations, the definition of global time intervals is the only option for

general network and sequential processes. In this case, a common and fixed time grid valid for all

shared resources is predefined and batch tasks are enforced to begin and finish exactly at a point

of the grid. Consequently, the original scheduling problem is reduced to an allocation problem

where the main model decisions define the assignment of the time interval at which every batch

task begins, which is modeled through the discrete variable Wijt as shown in Table 1. A significant

advantage of using a fixed time grid is that time-dependent problem aspects can be modeled in a

relatively simple way without compromising the linearity of the model. Some of these aspects

comprise hard time constraints, time-dependent utilities cost, inventory cost and multiple product

demands and/or raw material supplies taking place during the scheduling horizon.

In contrast to the discrete time representation, continuous time formulations involve extensive

alternative event representations which are focused on different types of batch processes. For

instance, for general network processes global time points and unit-specific time events can be

used, whereas in the case of sequential processes the alternatives involve the use of time slots and

different batch precedence-based approaches. The global time point representation corresponds to

a generalization of global time intervals where the timing of time intervals is treated as new

model variable. In this case, a common and variable time grid is defined for all shared resources.

The beginning and the finishing times of the set of batch tasks are linked to specific time points

through the key discrete variables reported in Table 1. Both for continuous STN as RTN based

models, limited capacities of resources need to be monitored at a small number of variable time

10

points in order to guarantee the feasibility of the solution. Models following this direction are

relatively simple to implement even for general scheduling problems. In contrast to global time

points, the idea of unit-specific time events defines a different variable time grid for each shared

resource, allowing different tasks to start at different moments for the same event point. These

models make use of the STN representation. Because of the heterogeneous locations of the event

points, the number of events required is usually smaller than in the case of global time points.

However, the lack of reference points for checking the limited availability of shared resources

makes the formulation much more complicated. Special constraints and additional variables need

to be defined for dealing with resource-constrained problems.

The usefulness and computational efficiency of the formulations based on global time points

or unit-dependent time events strongly depends on the number of time or events points

predefined. For instance, if the global optimal solution of the problem requires the definition of at

least n time or event points, fewer points will lead to suboptimal or infeasible schedules whereas a

larger number will result in significant and unnecessary computational effort. Since this number is

unknown a priori, a practical criterion is to determine it through an iterative procedure where the

number of variable points or events is increased by 1 until there is no improvement in the

objective function. This means that a significant number of instances of the model need to be

solved for each scheduling problem which may lead to a high total CPU time. It is worth

mentioning that this stopping criterion cannot guarantee the optimality of the solution and in some

cases may also stop with a poor feasible schedule.

The previous continuous-time representations are mostly oriented towards arbitrary network

processes. On the other hand, different continuous-time formulations were initially focused on a

wide variety of sequential processes, although some of them have been recently extended to also

consider general batch processes. One of the first developments following this direction was

based on the concept of time slots, which stands for a set of predefined time intervals with

unknown durations. The main idea is to postulate an appropriate number of time slots for each

processing unit in order to allocate them to the batch tasks to be performed. The selection of the

number of time slots required is not a trivial decision and represents an important trade-off

between optimality and computational performance. Slot-based representations can be classified

into two types: synchronous and asynchronous. The synchronous representation, which is similar

to the idea of global time points, defines identical or common slots across all units in such a way

11

that the shared resources involved in network batch processes are more natural and easier to

handle. Alternatively, the asynchronous representation allows the postulated slots to differ from

one unit to another, which for a given number of slots provides more flexibility in terms of timing

decisions than its synchronous counterpart. This representation is similar to the idea of unit-

specific time events and results more appropriate for dealing with sequential batch processes.

Other alternative approaches for sequential processes are based on the concept of batch

precedence. Model variables and constraints enforcing the sequential use of shared resources are

explicitly employed in these formulations. As a result, sequence dependent changeover times can

be treated in a straightforward manner. In order to determine the optimal processing sequence in

each unit, the concept of batch precedence can be applied to either the immediate or any batch

predecessor. The immediate predecessor of particular batch i is the batch i´ that is processed right

before in the same processing unit whereas the general precedence notion extends the immediate

precedence concept to not only consider the immediate predecessor but also all batches processed

before in the same processing sequence. Three different types of precedence-based mathematical

formulations are reported in Table 1. When the immediate precedence concept is applied,

sequencing decisions in each processing unit can be easily determined through a unique set of

model variables Xii’j. However, in order to reduce the model size and consequently, the

computational effort, allocation and sequencing decisions are frequently decoupled in two

different sets of model variables Wij and Xii’, as described in Table 1. In contrast to the immediate

precedence-based models, the general precedence concept needs the definition of a single

sequencing variable for each pair of batch tasks that can be allocated to the same shared resource.

In this way, the formulation results simpler and smaller than those based on the immediate

predecessor. In addition, this approach can handle the use of different types of renewable shared

resources such as processing units, storage tanks, utilities and manpower through a single set of

sequencing variables without compromising the optimality of the solution. A common weakness

of precedence-based formulations is that the number of sequencing variables scales in the number

batches to be scheduled, which may result in significant model sizes for real-world applications.

• Objective function: Different measures of the quality of the solution can be used for scheduling

problems. However, the criteria selected for the optimization usually has a direct effect on the

model computational performance. In addition, some objective functions can be very hard to

implement for some event representations, requiring additional variables and complex constraints.

12

Table 1. General characteristics of current optimization models
Time

representation
 DISCRETE CONTINUOUS

Event
representation

Global time intervals Global time
points

Unit-specific
time events

Time slots* Unit-specific
immediate

precedence*

Immediate
precedence*

General
precedence*

Main decisions ------------------- Lot-sizing, allocation, sequencing, timing ------------------ -------- Allocation, sequencing, timing ----------

Key discrete
variables

Wijt defines if task I
starts in unit j at the
beginning of time

interval t.

Wsin / Wfin
define if task
i starts/ends
at time point

n.
Winn’ defines
if task i starts
at time point
n and ends at
time point n’.

Wsin /Win /
Wfin define if

task i
starts/is

active/ends at
event point n.

Wijk define if
unit j starts
task i at the
beginning of
time slot k.

Xii’j defines if
batch i is
processed

right before of
batch i’ in unit

j.
XFij defines if
batch i starts

the processing
sequence of

unit j.

Xii’ defines if
batch i is
processed

right before
of batch i’.
XFij / Wij
defines if

batch i
starts/is

assigned to
unit j.

X’ii’ define if
batch i is
processed
before or

after of batch
i’. Wij

defines if
batch i is

assigned to
unit j

Type of
process

---------------------------------- General network --------------------------------- ----------------------- Sequential ---------------------

Material
balances

Network flow
equations

(STN or RTN)

Network flow
equations
(STN or
RTN)

--- Network flow equations ---
(STN)

-------------------- Batch-oriented ------------------

Critical
modeling

issues

Time interval
duration, scheduling

period (data
dependent)

Number of
time points
(iteratively
estimated)

Number of
time events
(iteratively
estimated)

Number of
time slots

(estimated)

Number of
batch tasks

sharing units
(lot-sizing)
and units

Number of
batch tasks

sharing units
(lot-sizing)

Number of
batch tasks

sharing
resources

(lot-sizing)

Critical
problem
features

Variable processing
time, sequence-

dependent
changeovers

Intermediate
due dates and
raw-material

supplies

Intermediate
due dates and
raw-material

supplies

Resource
limitations

Inventory,
resource

limitations

Inventory,
resource

limitations

Inventory

 * Batch-oriented formulations assume that the overall problem is decomposed into the lot-sizing and the short-term scheduling issues. The lot-
sizing or “batching” problem is solved first in order to determine the number and size of “batches” to be scheduled.

4. MODELING ASPECTS OF ALTERNATIVE APPROACHES

Having introduced a general road map for classifying problems and models for batch

scheduling, we present in this section the specific model equations and variables that are involved

in the most relevant work developed for the different types of event representations shown in

Table 1. Some formulations were slightly modified from their original version in order to use

similar nomenclature and model structure.

4.1. GLOBAL TIME INTERVALS (DISCRETE TIME)

The event representation based on the definition of global time intervals employs a predefined

time grid T that is valid for all shared resources involved in the scheduling problem, such as

processing units J (see Fig 5.a). Relevant modeling features of discrete models based on the STN

and RTN process representation are described below.

13

(a) STN-based discrete formulation

The most relevant contribution for discrete time models is the State Task Network

representation proposed by Kondili et al., 1993; Shah et al., 1993 (see also Rodrigues et al.,

2000). The STN model covers all the features that are included at the column on discrete time in

Table 1. The general constraints and variables included in these models are introduced below.

Allocation constraints: Constraint (1), which is expressed in terms of the binary variables Wijt

to denote the start of task i in equipment j at time t, states that at most one task i can be processed

in unit j during time interval t. To do that, this constraint makes use of a full backward

aggregation that takes into account the implications for previous allocations. Fig 6 illustrates the

application of that constraints at t=4, for the case of two tasks of duration 2 and 3 time units. The

dots represent that not more than one of them can be started at those fixed time points. In

comparison with the original STN MILP formulation by Kondili et al. (1993), constraint (1)

requires much fewer equations and reduces the integrality gap by eliminating any type of big-M

constraint, which significantly enhances the computational performance of the solution procedure.

Thus, a longer scheduling horizon can be addressed. It should be noted that this constraint

requires that fixed and known processing times are predefined for all tasks to be scheduled. In

addition, it is implicitly assumed that all tasks must release the allocated processing equipment

when they finish, i.e. processing units are not allowed to be used as temporary storage devices.

tjW
j ijIi

t

pttt
ijt ,1

1'
' ∀≤∑ ∑

∈ +−=

 (1)

1 2 3 4

p1 = 2

p2 = 3

Figure 6. Illustration of the inequality in (1) for two tasks at t=4.

14

Capacity limitations: Constraints (2) and (3) account for variable batch size Bijt for each task i

at unit j and limited storage capacities Sst for each state s. The amount of material that starts to be

processed by task i in unit j at time t is bounded by the minimum and maximum capacities of that

unit. In addition, constraint (2) forces the batch size variable Bijt to be zero if Wijt = 0.

tJjiWVBWV iijtijijtijtij ,,maxmin ∈∀≤≤ (2)

Constraint (3) denotes that the amount of state s at time t must always satisfy minimum and

maximum inventory requirements. It should be noted that dedicated storage units are assumed to

be available for each state s.

tsCSC ssts ,maxmin ∀≤≤ (3)

Material balances: Constraint (4) computes the amount of state s stored at time t by

considering the amount of state s (i) stored at time t – 1, (ii) produced at time t, (iii) consumed at

time t, (iv) received as raw material at time t and, (v) delivered at time t. Parameters ρp
is and ρc

is

define the proportion of state s produced/consumed by task i.

tsDBBSS
p
s i c

s i

ij

Ii Jj Ii Jj
ststijt

c
ispttij

p
istsst ,)()(1 ∀−∏+−+= ∑ ∑ ∑ ∑

∈ ∈ ∈ ∈

−− ρρ (4)

Resource balances: Limited availability of resources R other than processing units can be

explicitly modeled by constraint (5) and (6). Constraint (5) computes the total requirement of

resource r at every time interval t. Taking advantage of the predefined time grid as well as the

fixed processing times, this constraint is able to deal with variable resource requirements along

the task execution. Whenever the binary variable Wij(t-t’) takes the value one, it means that task i is

being performed in unit j at time t and has been started t’ time intervals earlier than t.

Additionally, the value of continuous variable Bij(t-t‘) define the corresponding batch size of the

task. Coefficients µirt’ and νirt’ are used to specify the fixed and variable requirement of resource r

of task i.

15

() trBvWR
r i

ij

Ii Jj

pt

t
ttijirtttijirtrt ,

1

0'
)'(')'(' ∀+= ∑∑∑

∈ ∈

−

=

−−µ
(5)

Besides, the maximum availability of resource r can not be exceeded at any time during the

time horizon, as expressed by constraint (6).

trRR rtrt ,0 max ∀≤≤ (6)

Sequence-dependent changeovers: Changeover requirements can be modeled by ensuring that

adequate time is left for a unit to be cleaned between uses. In this way, constraint (7) guarantees

that if the unit j starts processing any task of family f at time t, i.e. Wijt = 1, no task i’ of family f’

can start at least clf’f + pti’j units of time before time t.

tffjWW
f
j

f
j jiffIi Ii

t

ptcltt
jtiijt ,',,1

' ''' 1'
'' ∀≤+∑ ∑ ∑

∈ ∈ +−= −

(7)

We should note however that implementing constraint (7) is rather awkward because it

requires a finer discretization of time in order to accommodate smaller changeover times.

Moreover, the number of constraints (7) quickly becomes extremely large when problems

involving a significant number of changeovers are solved.

(b) RTN-based discrete formulation

A simpler and general discrete time scheduling formulation can also be derived by means of

the Resource Task Network concept proposed by Pantelides (1994). The major advantage of the

RTN formulation over the STN counterpart arises in problems involving identical equipment.

Here, the RTN formulation introduces a single binary variable instead of the multiple variables

used by the STN model. The RTN-based model also covers all the features at the column on

discrete time in Table 1. In order to deal with different types of resources in an uniform way, this

approach requires only three different classes of constraints in terms of three types of variables

defining the task allocation Wit, the batch size Bit, and the resource availability Rrt. In few words,

16

this model reduces the batch scheduling problem to a simple resource balance problem carried out

in each predefined time period. It is worth mentioning that the elimination of the unit sub-index

from the allocation variable Wit relies on the assumption that each task can be performed in a

single processing unit. Task duplication is always required to handle alternative equipment and

unit-dependent processing times.

Resource balances: Constraint (8) expresses in terms of the variables Rrt, the fact that the

availability of resource r changes from one time interval to the next one due to the interactions of

this resource both with active tasks i and with the environment. The new binary variable Wi(t-t’)

takes the value 1 if task i starts t’ units of time earlier than time t. In this way, the model is able to

easily deal with variable resource requirement during the task execution. The parameter ∏rt

defines the amount of resource r provided (positive number) or removed (negative number) from

external sources at time t. As expressed by constraint (8), the amount of resource r consumed or

released by task i is defined as a combination of a constant and a variable term depending on the

task activation and the batch size, respectively. Parameters µirt’ and νirt’ indicate fixed and variable

proportion of production (positive value) or consumption (negative value) of resource r for a task

i at interval t’ relative to start of processing of the task. For instance, if r corresponds to a

processing unit in which task i requires pti units of time, µir0 is equal to -1 and µir(pti) is equal to 1,

which means that the task consumes the processing unit at its starting time and releases the unit at

the end of its processing. All other parameters for this task and resource will be zero. Moreover,

the maximum availability of resource r has to be limited by constraint (6). In the case of unary

resources such as processing units the maximum capacity is always equal to 1.

() trBvWRR rt
Ii

pt

t
ttiirtttiirttrrt

r

i

,
0'

)'(')'('1)(∀∏+++= ∑ ∑
∈ =

−−− µ
(8)

Operational constraints: Different types of constraints can be imposed on the operation of a

task. For instance, a typical constraint is the minimum and maximum batch size with respect to

the capacity of the processing equipment r, which can simply be written as:

17

tRriWVBWV J
iitirititir ,

maxmin , ∈∀≤≤ (9)

Sequence-dependent changeovers: Although resource-task network formulations are able to

deal with sequence-dependent changeovers, they need to explicitly define additional tasks

associated to each type of cleaning requirement as well as different states of cleanliness for each

processing unit. Since changeover tasks must be performed in a specific unit, the definition of

many identical processing equipment as the same resource can no longer be used. The available

processing resources must be defined individually. In this way, different equipment states allow

the model to guarantee that the corresponding cleaning task has been performed before starting a

particular processing task. The definition of cleaning tasks significantly increases the model size

and the computational requirements, making the problem intractable even if a modest number of

changeovers need to be considered.

We can then conclude that while the discrete time STN and RTN models are quite general and

effective in monitoring the level of limited resources at the fixed times, their major weakness is

the handling of long time horizons and relatively small processing and changeover times.

Regarding the objective function, these models can easily handle profit maximization (cost

minimization) for a fixed time horizon. Other objectives such as makespan minimization are more

complex to implement since the time horizon and, in consequence, the number of time intervals

required, are unknown a priori (see Maravelias and Grossmann, 2003).

4.2. GLOBAL TIME POINTS (CONTINUOUS TIME)

(a) STN-based continuous Formulation

A wide variety of continuous-time formulations based both on the STN-representation and the

definition of global time points have been developed in the last years (see Figure 5b). Most of the

work falling into this category is represented by the approaches proposed by Schilling and

Pantelides (1996), Zhang and Sargent (1996), Mockus and Reklaitis (1999a,b). Lee et. al. (2001),

Giannelos and Georgiadis (2002), Maravelias and Grossmann (2003).

In this section, we describe the formulation by Maravelias and Grossmann (2003), which is

able to handle most of the aspects found in standard batch processes (see first column for

continuous models in Table 1). This approach is based on the definition of a common time grid

18

that is variable and valid for all shared resources. This definition involves time points n occurring

at unknown time Tn, n=1, 2 .. |N|, when N is the set of time points. To guarantee the feasibility of

the material balances at any time during the time horizon of interest, the model imposes that all

tasks starting at a time point n must occur at the same time Tn. However, in order to have more

flexibility in terms of timing decisions, the ending time of tasks does not necessarily have to

coincide with the occurrence of a time point n, except for those tasks that need to transfer the

material with a zero wait policy (ZW). For other storage policies it is assumed that the equipment

can be used to store the material until the occurrence of next time point. Given that the model

assumes that each task can be performed in just one processing unit, task duplication is required

to handle alternative equipment and unit-dependent processing times. General constraints for this

model are introduced below.

Assignment constraints: Constraints (10) and (11) define that at most one task i can start

(Wsin=1) or finish (Wfin=1) at the corresponding unit j at any time n whereas constraint (12)

enforces the condition that all tasks that start must finish. In addition, constraint (13) forces that at

most one task can be performed at unit j at any time n. This constraint makes use of a full

backward aggregation that takes into account the number of tasks that has been started and

finished before or at time point n.

njWs
Iji

in ,1 ∀≤∑
∈

 (10)

njWf
Iji

in ,1 ∀≤∑
∈

 (11)

iWfWs
n

in
n

in ∀=∑∑ (12)

njWfWs
jIi nn

inin ,1)(
'

'' ∀≤−∑∑
∈ ≤

 (13)

Batch size constraints: Minimum and maximum batch sizes are imposed at the beginning as

well as at the end of each task through constraints (14) and (15). Additionally, the batch size of

each task is also defined for each event where the task is active, as expressed by constraint (16).

19

To guarantee that the batch size does not change during the processing of a task, constraint (17) is

also required.

niWsVBsWsV iniinini ,maxmin ∀≤≤ (14)

niWfVBfWfV iniinini ,maxmin ∀≤≤ (15)

niWfWsVBpWfWsV
nn

in
nn

iniin
nn

in
nn

ini ,
'

'
'

'
max

'
'

'
'

min ∀⎟
⎠

⎞
⎜
⎝

⎛
−≤≤⎟

⎠

⎞
⎜
⎝

⎛
− ∑∑∑∑

≤<≤<

 (16)

1,)1(1 >∀+=+ −− niBfBpBpBs ininniin (17)

Material balances: For each state s and time point n, the mass balance and the maximum

storage capacity are considered by constraints (18) and (19). In this way, the amount of state s

stored at time n will depend on the amount of state s that is (i) stored at time point n-1; (ii)

consumed at time n and; (iii) produced at time n. The amount of state s consumed/produced at the

start/end of a task i at time point n depends on the batch size and the mass balance coefficients ρp
is

and ρc
is.

1,)1(>∀+−= ∑∑
∈∈

− nsBfBsSS
p
s

c
s Ii

in
p

is
Ii

in
c
isnssn ρρ (18)

nsCS ssn ,max ∀≤ (19)

Utility constraints: By using this formulation, it is also possible to easily take into account

limited resources other than processing units. To do that, constraint (20) carries out a resource

balance in each time point n considering the amount of resource r available at time point n-1 as

well as the amount of resource r consumed/produced by those tasks starting/ending at time point

n. Moreover, the model is able to deal with resource requirements that depend not only on the task

activation but also on the batch size. The maximum availability of resource r is enforced by

constraint (21).

20

nrBfWfBsWsRR
i

ni
p

irni
p

ir
i

ni
c
irni

c
irnrrn ,)1(∀+++−= ∑∑− νµνµ (20)

nrRR rrn ,max ∀≤ (21)

Timing and sequencing constraints: The first time point corresponds to the start T1=0 and the

last to the end Tn=H of the time horizon whereas the ascending ordering of times points is

enforced by constraint (22). Also, the ending time of a task i started at time point n is calculated

through constraints (23) and (24) by considering the task activation Wsin=1, the batch size Bsin

and the starting time of the task Tn. Thus, the ending time is computed by big-M constraints which

are active only if task i starts at time point n. Since a common time grid is used for all shared

processing units, the continuous variable Tn defines the time at which all tasks i starting at time

point n will begin.

nTT nn ∀≥+1 (22)

niWsHBsWsTTf ininiininin ,)1(∀−+++≤ βα (23)

niWsHBsWsTTf ininiininin ,)1(∀−−++≥ βα (24)

Once the ending of a task i is defined at the time point n where the task is started, constraint

(25) defines that the ending time of a task i remains unchanged from its starting time until the

next occurrence of the task (Wsin = 1). To guarantee that constraint (25) works properly, we must

enforce the condition that Tfin is always greater or equal to Tfi(n-1). In this way, it is possible to

know the ending time of a task i not only at the time point where the task starts, but also at any

time point n where the task is activated. This information is used in constraint (26) to express that

the ending time of a task i finishing at time point n must be lower or equal than the time at which

time point n takes place, i.e. Tn. On the other hand, if task i produces a material for which a zero

wait (ZW) storage policy applies, the finish time must coincide with the time point n, which is

forced by constraint (27).

1,)1(>∀≤− − niWsHTfTf inniin (25)

21

1,)1()1(>∀−+≤− niWfHTTf innni (26)

1,)1()1(>∈∀−−≥− nIiWfHTTf ZW
innni (27)

Sequence-dependent changeover times: Assuming that changeover times are shorter than

processing times, which is a reasonable assumption, constraint (28) can be added to account for

sequence-dependent changeovers between task i and task i’. Although this constraint does not

require additional variables to handle changeover times, the use of a common grid for all shared

resources requires that a larger number of time points be defined in order to consider exact

transition times. Otherwise, most of the changeovers required may be overestimated. It should be

noted that due to the definition of additional time points the model may become intractable even

for small or medium size problems. In addition, the number of constraints (28) will quickly grow

when a large number of tasks can be performed in the same unit j.

1,',,')1(' >∈∈∀+≥ − nIiIijclTfTs jjiinini (28)

Shared storage tanks: In order to consider the fact that a storage tank can be shared among

many states, constraints (29) – (31) have to be added to the model together with a new binary

variable Vjsn that is 1 if state s is stored in tank j during period n. In this way, allocation constraint

(29) allows that at most one state s can be stored in tank j at time n, whereas inequality (30)

forces the amount of state s not to exceed the maximum capacity of the tank j. Finally, the total

amount of state s available at time n is computed through constraint (31).

nJjV T

Ss
jsn

j

,1 ∈∀≤∑
∈

 (29)

nSsJjVCS j
T

jsnjsjn ,, ∈∈∀≤ (30)

nSsSS T

Jj

sjnsn
T
s

,∈∀= ∑
∈

 (31)

22

(b) RTN-based continuous formulation

In this section we focus our attention to the most recent continuous-time formulations based

on the RTN concept initially proposed by Pantelides (1994). The work developed by Castro et. al.

(2001) which was then improved in Castro et. al. (2004) falls into this category and is described

below. Major assumptions of this approach are: (i) processing units are considered individually,

i.e. one resource is defined for each available unit, and (ii) only one task can be performed in any

given equipment resource at any time (unary resource). These assumptions increase the number of

tasks and resources to be defined, but at the same time allow reducing the model complexity. This

model also covers all the features given at the column on continuous time and global time points

in Table 1.

Timing constraints: In the same way as in the previous STN-based continuous-time

formulation, a set of global time points N is predefined where the first time point takes place at

the beginning T1=0 whereas the last at the end of the time horizon of interest Tn=H. However, the

main difference in comparison to the previous model arise in the definition of the allocation

variable Winn’ which is equal to 1 whenever task i starts at time point n and finishes at or before

time point n’>n. In this way, the starting and finishing time points for a given task i are defined

through only one set of binary variables. It should be noted that this definition on the one hand

makes the model simpler and more compact, but on the other hand it significantly increases the

number of constraints and variables to be defined. Constraints (32) and (33) impose that the

difference between the absolute times of any two time points (n and n’) must be either greater

than or equal to (for zero wait tasks) than the processing time of all tasks starting and finishing at

those same time points. As can be seen in the equations, the processing time of a task will depend

on the task activation as well as on the batch size.

())'(,',,''' nnnnRrBWTT J

Ii

inniinninn
r

<∈∀+≥− ∑
∈

βα (32)

())'(,',,1 '''' nnnnRrBWWHTT J

Ii

inniinni

Ii

innnn
ZW
r

ZW
r

<∈∀++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≤− ∑∑

∈∈

βα (33)

23

Batch size constraints: Considering the assumption that one task can only be performed in a

processing unit, limited capacity of equipment is taken into account through constraint (34).

)'nn(,'n,n,iWVBWV 'inn
max

i'inn'inn
min

i <∀≤≤ (34)

Resource balances: The resource availability is a typical multiperiod balance expression, in

which the excess of a resource at time point n is equal to the excess amount at the previous event

point (n-1) adjusted by the amount of resource consumed/produced by all the tasks starting/ending

at time point n, as expressed by constraint (35). A special term taking into account the

consumption/releasing of storage resources is included for any storage task IST. Here, negative

values are used to represent consumption whereas a positive number defines the production of a

resource. Also, the amount of resource available is bounded by constraint (36)

() ()
() 1,)1()1(

'
''

'
'')1(

>∀+

+⎥
⎦

⎤
⎢
⎣

⎡
++++=

∑

∑ ∑∑

∈

+−

∈ ><

−

nrWW

BWBWRR

ST

r

Ii

nin
c
irnni

p
ir

Ii nn
inn

c
irinn

c
ir

nn
nin

p
irnin

p
irnrrn

µµ

νµνµ

(35)

n,rRRR max
rrn

min
r ∀≤≤ (36)

Storage constraints: Assuming one storage task per material resource, the definition of

constraint (36) in combination with equations (37) and (38) guarantee that if there is an excess

amount of the resource at time point n, then the corresponding storage task will be activated for

both intervals n-1 and n.

|)|(,,)1(
max

)1(
min NnnIiWVRWV ST

nini
Rr

rnnini
ST
i

≠∈∀≤≤ +

∈

+ ∑ (37)

)1(,,)1(
max

)1(
min ≠∈∀≤≤ −

∈

− ∑ nnIiWVRWV ST
nnii

Rr

rnnnii
ST
i

 (38)

We can conclude that the continuous time STN and RTN models based on the definition of

global time points are quite general. They are capable of easily accommodating a variety of

objective functions such as profit maximization or makespan minimization. However, events

24

taking place during the time horizon such as multiple due dates and raw material receptions are

more complex to implement given that the exact position of the time points is unknown.

4.3. UNIT-SPECIFIC TIME EVENT

In order to gain more flexibility in timing decisions without increasing the number of time

points to be defined, an original concept of event points was introduced by Ierapetritou and

Floudas (1998), which relaxes the global time point representation by allowing different tasks to

start at different moments in different units for the same event point (see Figure 5c).

Subsequently, the original idea was implemented in the work presented by Vin and Ierapetritou

(2000) and Lin et. al. (2002) and recently extended by Janak et. al. (2004). In this section we

present the work presented in Janak et. al. (2004), which represents the most general STN-based

formulation that makes use of this type of event representation and covers all the features reported

at the corresponding column in Table 1. Due to the fact that the entire formulation involves a very

significant number of constraints, only central ones will be reported in this review whereas the

remainder can be found in the original work.

Assignment constraints: In order to determine at which event points each task i starts (Wsin), is

active (Win) and finishes (Wfin), constraints (39) – (43) enforce the following conditions over the

model allocation variables: (i) at most one task i can be being performed in unit j at event time n,

(ii) task i will be active at event time n whenever this task has been started before or at event n

and has not been finished before that event, (iii) all tasks that start must finish, (iv) one task i can

only be started at event point n if all tasks i beginning earlier have finished before event point n

and, (v) one task i can only finish at event point n if it has been started at a previous event point n’

and has not ended before event point n. It should be noted that equipment index is not used in

model variables because this formulation assumes that each task can only be performed in one

unit. Task duplication is required to deal with multiple equipment working in parallel.

n,jW
jIi

in ∀≤∑
∈

1 (39)

niWWfWs in
nn

in
nn

in ,
'

'
'

' ∀=−∑∑
<≤

 (40)

25

iWfWs
n

in
n

in ∀= ∑∑ (41)

n,iWfWsWs
n'n

'in
n'n

'in
n

in ∀+−≤ ∑∑∑
<<

1 (42)

niWfWsWf
nn

in
nn

inin ,
'

'
'

' ∀−≤ ∑∑
<<

 (43)

Batch size constraints: Minimum and maximum batch sizes on all active tasks are imposed

through constraint (44). Also, since the formulation allows tasks to extend over several event

points, constraints (46) – (47) force batch sizes at these consecutive event points to be consistent.

In this way, if a task is active and does not finish at event n-1, then the same amount of material

will be processed at both event points.

n,iWVBWV in
max
iinin

min
i ∀≤≤ (44)

() 1, 1)1()1(
max

)1(>∀+−−≤ −−− niWfWVBB niniiniin (46)

() 1, 1)1()1(
max

)1(>∀+−−≥ −−− niWfWVBB niniiniin (47)

Constraints (48) – (50) determine the batch size at the beginning of a task Bsin, which will be

equal to the batch size Bin whenever task i starts at event point n. Otherwise, these constraints

become redundant. In a similar way, the batch size at the end of task Bfin is defined through

constraints (51) – (53).

niBBs inin , ∀≤ (48)

niWsVBBs iniinin , max ∀+≤ (49)

() niWsVBBs iniinin , 1 max ∀−−≥ (50)

n,iBBf inin ∀≤ (51)

niWfVBBf iniinin , max ∀+≤ (52)

26

() niWfVBBf iniinin , 1 max ∀−−≥ (53)

To deal with scheduling problems involving finite intermediate storage capacity, constraint

(54) simply represents the maximum amount of material s that can be stored through storage task

ist at any event point n.

nIisCB st
s

st
snist ,,max ∈∀≤ (54)

Material balances: The amount of material of state s available at event n is equal to that at

event n-1 increased by any amounts produced or stored at event n-1 and decreased by any

amounts consumed or stored at event n.

nsBBsBBfSS
st
s

st
st

c
s

ST
s

st
st

p
s Ii

ni
Ii

in
c
is

Ii
ni

Ii
ni

p
isnssn ,)1()1()1(∀−−++= ∑∑∑∑

∈∈∈
−

∈
−− ρρ (55)

Timing and sequencing constraints (Processing tasks): These constraints represent the

relationship between the starting and finishing times of task i at event point n. Then, if task i is not

active at event point n, constraint (56) along with (57) makes the processing time equal to zero by

setting the finishing time equal to the starting time. In addition, if task i is active and must extend

to the following event n, i.e. it does not finish at event n-1, constraint (58) along with the

sequencing constraint (61) forces the ending time at n-1 to be equal to the starting time at n.

Otherwise, these constraints are relaxed.

niTsTf inin , ∀≥ (56)

niH WTsTf ininin , ∀+≤ (57)

() 1, 1)1()1()1(>∀+−+≤ −−− niWfWH TfTs nininiin (58)

Constraints (59) and (60) define the processing time of a task i starting at event n (Wsin=1) and

ending at a later event point n’ (Wfin’=1). In this way, the two constraints force the ending time at

27

n’ to be equal to the starting time at n plus the batch-size dependent processing time. This hard

condition is only imposed for those tasks requiring a zero wait storage policy, as expressed in

constraint (60). To account for other storage policies, constraint (59) relaxes the processing time

in order to consider not only the processing time itself but also the storage time of the material in

the processing unit. Constraint (61) defines that the starting time of a task i at event n must be

greater than the finishing time of a task i ending at the previous event point.

() ()

)'(,',,

 1 1
'''

''''

nnnni

WfH WfH WsH BWsTsTf
nnn

ininininiiniinin

≤∀

⎟
⎠

⎞
⎜
⎝

⎛
+−+−++≥− ∑

≤≤

βα

(59)

() ()

)'(,',,

 1 1
'''

''''

nnnnIi

WfH WfH WsH BWsTsTf

ZW

nnn
ininininiiniinin

≤∈∀

⎟
⎠

⎞
⎜
⎝

⎛
+−+−++≤− ∑

≤≤

βα

(60)

1,)1(>∀≥ − niTfsT nini (61)

Different types of sequencing constraints are proposed for tasks that are performed in the

same unit j or in different units j and j’. Then, constraint (62) defines that if task i’ ends at event

n-1 and task i starts at event n in the same unit j, i.e. they are consecutive, task i must start after

both task i’ and the required cleaning operation have finished. On the other hand, constraints (63)

– (64) impose certain sequencing conditions on those tasks that are performed in different units

but take place consecutively according to the process recipe. In this way, if a task i’ producing a

state s finishes at event n-1, then any task i consuming that state at event n must start after the

ending of task i’ at the previous event point. This condition is enforced as equality for those tasks

involving a material s that requires a zero wait storage policy, as expressed by constraint (64).

() 1,,',', 1 ')1('')1(' >∈≠∀−−++≥ −− nJjiiiiWsWfHclTfsT iiinniiinini (62)

() 1,',',,',, 1 ')1(')1(' >≠∈∈∈∈∀−+≥ −− njjJjJjIiIisWfHTfsT ii
p

s
c
sninini (63)

() 1,',',,',, 2 ')1(')1(' >≠∈∈∈∈∈∀−−+≤ −− njjJjJjIiIiSsWsWfHTfsT ii
p

s
c
s

ZW
inninini (64)

28

Storage constraints: In contrast to global time interval based models, the unit specific time

event representation needs to explicitly define a set of storage tasks ist for dealing with those

materials that can be stored in a tank, i.e. where a FIS policy is required. Therefore, a new set of

constraints is included into the model to manage related processing and storage tasks. The

corresponding starting and ending times of storage tasks at consecutive event points are modeled

through additional model variables.

Resource constraints: In order to account for resource limitations other than processing units,

the unit-specific-time-event based formulation requires a new set of constraints and variables

which monitor the level of resources at every time event. Due to the fact that the same time event

can take place at different times for different units, these constraints are significantly more

complex and numerous than in the case of global time points. A larger number of event points as

well as additional continuous variables for timing of resources are also needed.

We can conclude that continuous time STN formulations based on the definition of unit-

specific time events are quite general. They are capable of modeling different scheduling aspects

and objective functions. This particular idea proves to be very powerful for those scheduling

problems where a few or no shared resources are taken into account, i.e. those cases where

reference points for checking resource limitations are barely used. For problems where resources

are strongly shared and limited or hard inventory constraints must be satisfied, the use of time

events may result less attractive because much more complex models are required. Also, a larger

number of event points, similar to the idea of global time points, are usually needed for generating

feasible schedules. In this way, the main advantage of this particular idea is lost and larger

computational effort may be needed because of the complex structure of the model.

4.4. TIME SLOTS

One of the first contributions focused on batch-oriented processes is based on the concept of

time slots, which stand for a set of predefined time intervals with unknown durations (Pinto and

Grossmann, 1995). A set of time slots is postulated for each processing unit in order to allocate

them to the batches to be processed. Relevant work on this area is represented by the formulations

developed by Pinto and Grossmann (1995, 1996), Chen et al. (2002), Lim and Karimi (2003).

More recently, a new STN-based formulation that relies on the definition of synchronous time

29

slots and a novel idea of several balances was developed to also deal with network batch

processes (Sundaramoorthy and Karimi, 2005). In order to describe the main model constraints

and variables, let us consider the original slot-based model proposed in Pinto and Grossmann

(1995), assuming a multistage sequential scheduling problem with multiple equipment working in

parallel in each stage.

Allocation constraints: Constraint (65) defines that every processing stage l of batch i must

be allocated to exactly one time slot k of a unit j belonging to the set of units that can perform the

batch task, i.e. Jil. In turn, each time slot k of unit j can at most be assigned to one batch

processing task corresponding to the stage l of batch i, which is defined through constraint (66).

i
Jj Kk

ijkl LliW
il j

∈∀=∑ ∑
∈ ∈

, 1 (65)

j
i Ll

ijkl KkjW
i

∈∀≤∑ ∑
∈

, 1 (66)

Time matching constraints: Slot-based formulations employ two different time coordinates for

processing units and batch tasks. The binary variable Wijkl which defines the assignment of stage l

of batch i to time slot k of unit j is used to enforce both coordinates to coincide. In this way, when

a batch i is allocated to unit j (Wijkl = 1), the big-M constraints (67) and (68) become active and

the starting times of the unit and the batch are forced to be the same. Otherwise, these constraints

are relaxed.

() ijjkilijkl LlKkjiTsTsWM ∈∈∀−≤−− ,,, 1 (67)

() ijjkilijkl LlKkjiTsTsWM ∈∈∀−≥− ,,, 1 (68)

It should be noted that (67) and (68) can be replaced by a set of fewer constraints that involve

disaggregated variables and that are tighter as discussed in Pinto and Grossmann (1995).

Constraints (69) and (70) force the ending times of the unit and the batch to coincide whenever

the allocation variable Wijkl is equal to one. To do that, the starting time, the batch processing time

30

pij and the setup time suij associated to the batch task are taken into consideration in both

constraints.

() j
i Ll

ijijijkljkjk KkjsupWTsTf
i

∈∀++= ∑∑
∈

, (69)

() j
j Kk

ijijijklilil KkjsupWTsTf
j

∈∀++= ∑∑
∈

, (70)

Since the postulated time slots are sequentially arranged over time, the starting time of slot

k+1 at every unit j requires that the processing of slot k be finished, which is expressed through

constraint (71). In this way, no overlap of time slots is allowed. Additionally, a time relation for

every pair of successive processing stages is considered in constraint (72). For instance, in the

case of an unlimited intermediate storage policy, the stage l+1 of batch i can be performed any

time after the completion time of stage l. For a zero wait intermediate storage policy, constraint

(72) must be transformed into equality.

jkjjk KkjTsTf ∈∀≤ + ,)1((71)

jliil KkjTsTf ∈∀≤ + ,)1((72)

4.5. UNIT-SPECIFIC IMMEDIATE PRECEDENCE

The concept of batch precedence can be applied to the immediate or the general batch

predecessor, which generates three different types of basic mathematical formulations. In this

section we present the general constraints and variables for the concept of immediate precedence

in each unit. For this particular case, the binary variable Xii’j becomes equal to 1 whenever batch i

is processed immediately before batch i’ in the processing sequence of unit j. It should be noted

that allocation and sequencing decisions are modeled through this variable. To illustrate the use of

this concept, let us consider the formulation of Cerdá et al. (1997) where a single-stage batch

plant with multiple equipment working in parallel is assumed.

Allocation and sequencing constraints: The set of constraints (73) – (76) aims at generating a

feasible processing sequence of batches in each available unit. Constraint (73) enforces the

31

condition that at most one batch i can start the processing sequence of unit j. Subsequently,

constraint (74) defines that a batch i can be processed either in the first place (WFij =1) or right

after another batch i’ (Xi’ij =1), here called its immediate predecessor. This implies that every

batch i must be processed in some unit j and have a single predecessor i’ at most. Moreover, every

batch i can be either allocated to the last position of the processing sequence, or right before

another batch i’, here called its immediate successor. This condition is enforced through

constraint (75). Finally, constraint (76) is employed to guarantee that the immediate predecessor

and successor of a given batch i are always assigned to the same processing unit j.

jWF
jIi

ij ∀≤∑
∈

 1 (73)

iXWF
i ji Jj Ii

iji
Jj

ij ∀=+∑ ∑∑
∈ ∈∈

 1
'

' (74)

iX
jIi

jii ∀≤∑
∈

 1
'

' (75)

()
i

jj
Jj IIi

jii
Ii

ijiij JjiXXWF
i jjj

∈∀≤++ ∑ ∑∑
≠
∈ ∪∈∈

, 1
'

' '
''

'
'

'

 (76)

It is worth mentioning that constraints (73) – (76) are not sufficient to prevent the generation

of subcycles and, in principle, a large number of subtour elimination constraints should be also

included in the model. However, the temporal aspect considered in constraints (73) – (76)

contributes to eliminate any possible subcycle from the feasible region and in consequence,

subtour elimination constraints are no longer required.

Timing constraints: The timing decisions of batches are modeled through constraints (77) and

(78). The first one derives the ending time Tfi of a batch i from its starting time Tsi and its

processing time tpij in the allocated unit j. Then, whenever batch i’ is the immediate predecessor

of batch i in unit j, i.e. Xi’ij = 1, constraint (78) imposes that the starting time of batch i must be

greater than the ending time of batch i’ plus the changeover time cli’ij in unit j. In this way, it is

possible to guarantee that no overlap will occur over time.

32

iXWFtpTsTf
ji Ii

ijiij
Jj

ijii ∀⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= ∑∑

∈∈

'

' (77)

', 1
''

'''' iiXMXclTfTs
iiii Jj

ijiiji
Jj

ijiii ∀⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+≥ ∑∑

∈∈

 (78)

4.6. IMMEDIATE PRECEDENCE

In this section we introduce the general constraints and variables of an alternative formulation

based on the concept of immediate batch precedence. In contrast to the previous model, allocation

and sequencing decisions are divided into two different sets of binary variables. To illustrate the

use of this idea let us consider the work presented by Méndez et al. (2000), where a single-stage

batch plant with multiple equipment in parallel is assumed. Relevant work following this

direction can also be found in Gupta and Karimi (2003). Key variables are defined as follows:

WFij denotes that batch i is the first processed in unit j; Wij denotes that batch i is allocated to unit j

but not in the first place and; Xii’ denotes that batch i is processed right before batch i’.

Allocation constraints: Constraint (79) defines that at most one batch i can be the first

processed in unit j whereas constraint (80) enforces every batch i to be allocated to the processing

sequencing of an available unit j.

jWF
jIi

ij ∀≤∑
∈

 1 (79)

iWWF
ii Jj

ij
Jj

ij ∀=+∑∑
∈∈

 1 (80)

Sequencing-allocation matching constraints: Whenever a pair of batches i, i’ are related

through the immediate precedence relationship, i.e. Xii’ = 1, both batches must be allocated to the

same unit j. This condition is imposed through inequalities (81) and (82) that relate allocation and

sequencing decisions among themselves. The former imposes the condition upon the set the units

that can perform both batches whereas the latter is applied to those units that can only process the

batch i.

33

''' ,', 1 iiiijiijij JjiiXWWWF ∈∀+−≤+ (81)

()'' ,', 1 iiiiiijij JJjiiXWWF −∈∀−≤+ (82)

Sequencing constraints: Every batch i should either be the first processed or directly preceded

by another batch i’, as expressed in constraint (83). In addition, constraint (84) defines that every

batch i can at most be directly succeeded by another batch i’, here called its immediate successor.

In this way, a feasible processing sequence for every unit is always generated.

iXWF
i

ii
Jj

ij
i

∀=+∑∑
∈

 1
'

' (83)

iX
i

ii ∀≤∑ 1
'

' (84)

Timing constraints: Constraint (85) computes the ending time Tfi of batch i from its starting

time Tsi and its processing time tpij in the allocated unit j. To prevent batch overlapping,

constraint (86) states that batch i directly succeeding batch i (Xii’ = 1) in the jth-unit processing

sequence must start after both the ending time of batch i and the corresponding unit and sequence-

dependent changeover tasks have taken place.

() iWWFtpTsTf ijij
Jj

ijii
i

∀++= ∑
∈

 (85)

() () ', 1 '''''
'

iiXMWsuclTfTs ii
Jj

jijiiiii
ii

∀−−++≥ ∑
∈

 (86)

4.7. GENERAL PRECEDENCE

The generalized precedence notion extends the immediate precedence concept to not only

consider the immediate predecessor, but also all batches processed before in the same processing

sequence. In this way, the basic idea is completely generalized which simplifies the model and

reduces number of sequencing variables. This reduction is obtained by defining just one

sequencing variable for each pair of batch tasks that can be allocated to the same resource.

Additionally, a major strength of this approach is that the utilization of different types of

renewable shared resources such as processing units, storage tanks, utilities and manpower can be

34

efficiently handled through the same set of sequencing variables without compromising the

optimality of the solution. Part of the work falling into this category is represented by the

approaches developed by Méndez et al. (2001) and Méndez and Cerdá (2003, 2004a, 2004b).

Allocation constraints: A single processing unit j must be assigned to every required stage l

for manufacturing batch i, here called the task (i,l).

i
Jj

ilj LliW
il

∈∀=∑
∈

, 1 (87)

Timing constraints: In order to define the exact timing for every batch task (i,l), constraint

(88) determines the ending time of the task from the starting and processing time in the assigned

unit j. Precedence constraints between consecutive stages l-1 and l of batch i are imposed through

constraint (89).

iilj
Jj

iljilil LliWtpTsTf
il

∈∀+= ∑
∈

, (88)

1,,)1(>∈∀≥ − lLliTfTs iliil (89)

Sequencing constraints: Sequencing constraints (90) and (91), which are expressed in terms of

big-M constraints, are defined for every pair of tasks (i,l) and (i’,l’) that can be allocated to the

same unit j. If both are allocated to unit j, i.e. Wilj = Wi’l’j = 1, either constraint (90) or (91) will be

active. If task (i,l) is processed earlier than (i’,l’), then X’il,i’l’ is equal to one and constraint (90) is

enforced to guarantee that task (i’,l’) will begin after completing both the task (i,l) and the

subsequent changeover operation at unit j. Moreover, constraint (91) becomes redundant. In case

that task (i’,l’) is run earlier in the same unit, constraint (91) is applied and constraint (90) is

relaxed. Otherwise, such a pair of tasks is not carried out at the same unit and, consequently,

constraints (90) and (91) become both redundant and the value of the sequencing variable X’il,i’l’ is

meaningless for unit j. It should be noted that the precedence concept used in the sequence

variable involves not only the immediate predecessor but also all batches processed before in the

same shared equipment.

35

() ()
)','(),(:,',,',

 2 '1

'','

'''','''',''

liliJjLlLlii

WWMXMsuclTfTs

liilii

jliiljliilliliililli

<∈∈∈∀

−−−−−++≥
 (90)

()
)','(),(:,',,',

 2 '

'','

'''',,''''

liliJjLlLlii

WWMXMsuclTfTs

liilii

jliiljliilililliliil

<∈∈∈∀

−−−−++≥
 (91)

Resource limitations: Taking advantage of the concept of general precedence, this formulation

is able to deal with resource limitations aside from processing units without predefining reference

points for checking resource availabilities. The general idea is to utilize a uniform treatment of

resource limitations, where the use of processing units and other resources such as manpower,

tools and services is handled through common allocation and sequencing decisions. To do that the

formulation defines the different types of resources r (manpower, tools, steam, energy, etc.)

involved in the scheduling problem as well as the individual items or pieces of resources z

available for each type r. For instance, three operator crews z1, z2 and z3 can be defined for the

resource type manpower, here called r1. Therefore, constraint (92) ensures that sufficient resource

r will be allocated to meet the requirement of batch i, where qrz is the amount of resource r

available at the resource item z of type r and νilrj defines the amount of resource r required when

task (i,l) is allocated to unit j, i.e. unit-dependent resource demands can be easily accounted for. In

addition, the pair of constraints (92) and (93) enforces the sequential usage of each resource item

by using the same idea introduced above for sequencing processing units. It should be noted that

the same sequencing variable X’il,i’l’ is utilized for processing units and other resources,

constraints (90), (91), (93) and (94), which allows generating a simple problem formulation with a

reduced number of binary variables.

ii

Jj
iljilrj

RRz
izrz LliRrWYq

ilir

∈∈∀= ∑∑
∈∈

,, ν (92)

() ()
)','(),(:,,',,',

 2 '1

'','

'''',''

liliZzRrLlLlii
YYMXMTfTs

rliilii

zliilzliililli

<∈∈∈∈∀

−−−−−≥
 (93)

()
)','(),(:,,',,',

 2 '

'','

'''',''

liliZzRrLlLlii
YYMXMTfTs

rliilii

zliilzliilliil

<∈∈∈∈∀

−−−−≥
 (94)

36

5. COMPARISON OF OPTIMIZATION APPROACHES

In the following, the MILP models that have been introduced in the previous sections will be

used to solve benchmarking examples taken from literature. Two case studies for batch

scheduling problems arising in process industries are presented. Based on the roadmap introduced

in section 2 (see Figure 3), a summary of the problem characteristics is given in Table 2. The

computational results for the case studies allow to compare and discuss the efficiency and

limitations of specific modeling approaches.

Table 2. Case study features
Feature Case I Case II

Process topology Network Sequential – single stage

Equipment assignment Variable Variable

Equipment connectivity Full ---

Inventory storage policies FIS (dedicated) ZW and UIS ---

Material transfer Instantaneous ---

Batch size Variable Fixed

Batch processing time Fixed – unit dependent Fixed – unit dependent

Demand patterns Scheduling horizon Due dates

Changeovers None Unit-dependent

Resource constraints None Discrete (manpower)

Time constraints None None

Costs None None

Degree of certainty Deterministic Deterministic

5.1. Case study I.

In order to test the effectiveness and current limitations of discrete and continuous time

representations, we performed a computational comparison using MILP models that rely on the

definition of global time intervals (Shah et al., 1993) or global time points (Maravelias and

Grossmann, 2003). The generality, efficiency and easy implementation of these formulations

were the main reasons to choose them within a variety of alternatives. The case study selected is

based on the benchmark problem proposed by Westenberger and Kallrath (1995). This case

covers most of the features that contribute to the high complexity of batch scheduling (network

structure, variable batch size, storage constraints, different transfer policies). It has, however, the

important simplification that no changeover times are considered. The scheduling problem data as

well as a detailed description of the different problem features are available at http://www.wior.uni-

karlsruhe.de/neumann/forschung/wk95/wk95.html. Figure 7 provides a graphical representation of

37

this chemical batch process that relies on the state task network (STN) concept introduced by

Kondili et al. (1993). The STN is a directed graph that consists of three elements: state nodes

representing the feeds (state1), intermediates (states 2 to 14) and final products (states 15 to 19);

task nodes representing the process operations which transform material from one or more input

states into one or more output states and; arcs that link states and tasks indicating the flow of

materials. State and task nodes are denoted by circles and rectangles, respectively. The available

units for performing each batch task are shown within the corresponding rectangle. As shown in

Fig. 7, this process comprises 17 processing tasks, 19 states and 9 production units and includes

flexible proportions of output states (task 2) and material recycles (task 3). It is assumed that there

is sufficient initial stock of raw material (S1) and unlimited capacity to store the required raw

material (S1) and the final products (S15-S19). Moreover, different intermediate storage polices

are taken into account. For instance, a zero-wait transfer policy (ZW) is assumed for states S6,

S10, S11 and S13 whereas a finite dedicated intermediate storage capacity (FIS) is considered for

the remaining intermediate states.

Task 1
U1

Task 1
U1

Task 2
U2

Task 2
U2

Task 3
U3

Task 3
U3

Tasks
4-7
U4

Tasks
4-7
U4

Tasks
13-17

U8/U9

Tasks
13-17

U8/U9

Tasks
10-12

U6/U7

Tasks
10-12

U6/U7

Tasks
8,9
U5

Tasks
8,9
U5

1 2 4 5
7

11

10

9

8

6

3

12

15

19

18

17

16

zw

zw

zw

14

13

zw
0.5

0.31

0.2 – 0.7

0.5

Task 1
U1

Task 1
U1

Task 2
U2

Task 2
U2

Task 3
U3

Task 3
U3

Tasks
4-7
U4

Tasks
4-7
U4

Tasks
13-17

U8/U9

Tasks
13-17

U8/U9

Tasks
10-12

U6/U7

Tasks
10-12

U6/U7

Tasks
8,9
U5

Tasks
8,9
U5

1 2 4 5
7

11

10

9

8

6

3

12

15

19

18

17

16

zw

zw

zw

14

13

zw
0.5

0.31

0.2 – 0.7

0.5

Figure 7. STN representation for the batch process of case study I.

It is worthwhile to mention that problem data involves only discrete processing times, which

represents a fortunate situation for discrete time models since no special provisions for rounding

are needed. In order to evaluate the influence of the objective function on the computational

performance, we solved two different instances: minimizing makespan (case 1.a) and maximizing

profit (case 1.b). For the makespan, product demands of 20 tons for states 15, 16 and 17 have to

be satisfied. Instances comprising a larger number of demands were not possible to solve in a

38

reasonable time by using the selected pure optimization approaches, which suggests limitations

that may be faced when addressing real-world problems. When the profit was maximized,

minimum product demands of 10, 10, 10, 5 and 10 tons for states 15, 16, 17, 18 and 19 were

considered.

Gantt charts for the optimal solutions for the two instances are shown in Figures 8 and 9.

Model sizes, computational times and objective values are summarized in Table 3. The number of

time intervals or points that was required in each case is also reported in brackets. For case 1.a, it

can be observed that both formulations are able to reach the same objective value of 28 h. Thirty

time intervals of 1-hour duration were defined for the discrete time, whereas eight variable time

points were required for the continuous representation. Only 1.34 sec were required by the

discrete time model, while 108 sec were required by the continuous model. An iterative procedure

that gradually increases the time horizon until a feasible solution is generated was implemented

for the discrete time model. In turn, the iterative procedure described in section 3 was utilized to

define the minimum number of variable time points required. The computational effort

corresponding to the last iteration for each case is reported in Table 3. However, we would like to

remark that the total computational cost for both cases is significantly higher and depends not

only on the starting point of the iterative procedure but also on the stopping criterion selected in

each iteration.

For the case of profit maximization, a fixed time period of 24 hours was defined. This

scheduling horizon was represented through 240 fixed time intervals and 14 variable time points

in the discrete and continuous time models, respectively. Longer periods were not possible to be

solved in a reasonable time for both time representations. In this case, the solution found through

the discrete time model was slightly better than the continuous one, probably because the number

of variable time points required for generating a better solution exceeds the current continuous

model capabilities. In fact, continuous time models comprising more than 14 time points only

generated poor solutions with significant computational effort. With 14 time points the continuous

time model was faster than the discrete time model (258 secs vs. 7202 secs).

39

Discrete STN model Continuous STN model

Figure 8. Gantt charts for case 1.a (Makespan minimization)

Discrete STN model Continuous STN model

Figure 9. Gantt charts for case 1.b (Profit maximization)

Although the usefulness and performance of continuous and discrete time models strongly

depends on the particular problem and solution characteristics, our experience in the area and the

results obtained from the case study performed allow us to draw some interesting conclusions for

general scheduling problems: (i) despite the fact that discrete time models are usually larger than

its continuous counterpart, its simpler model structure tends to significantly reduce the CPU time

requirements when a reasonable number of time intervals is postulated (around 400 intervals

usually appears as a tractable number); (ii) the complex structure of continuous time models

makes them useful only for problems that can be solved with reduced number of time points (15

points may be a current upper bound); (iii) discrete time models may generate better and faster

solutions than continuous ones whenever the time discretization is a good approximation to the

real data; (iv) the model objective function selected may have a notable influence on the

computational cost and the model efficiency. Computational costs ranging from 1 sec to 7202 sec

U1

U2

U3

U4

U5

U6

U7

U8

U9

U1

U2

U3

U4

U5

U6

U7

U8

U9
0 8 16 24 (h) 0 8 16 24 (h)

0 8 16 24(h) 0 8 16 24(h)

40

were obtained for this case study and; (v) serious limitations were observed at the moment of

solving large-scale problem instances requiring a large number of fixed time intervals or variable

time points.

Table 3. Computational results for discrete and continuous STN models
Case Study Event representation (time

intervals or points)
Binary vars, cont. vars,

constraints
LP

relaxation
Objective
function

CPU timea Relative
gap

1.a Global time intervals (30) 720, 3542, 6713 9.9 28 1.34 0.0
 Global time points (8) 384, 2258, 4962 24.2 28 108.39 0.0

1.b Global time intervals (240) 5760, 28322, 47851 1769.9 1425.8 7202 0.122
 Global time points (14) 672, 3950, 8476 1647 1407.4 258.54 0.042

a Seconds on Pentium IV PC with CPLEX 8.1 in GAMS 21.

5.2. Case study II.

The second case study to be presented here was initially addressed by Pinto and Grossmann

(1997) and later studied by Méndez and Cerdá (2002) and Janak et al. (2004). The problem

comprises a single stage process with four parallel extruders with different capacities where a

total of 12 batch orders need to be accomplished at specific due dates over a 30-day time horizon.

The corresponding unit-dependent processing rates and setups as well as the specific due dates are

reported in Pinto and Grossmann (1997). In contrast to the previous case study, this problem

involves continuous temporal data, which makes the use of pure discrete time models very

complex and inefficient. Because of that, our comparison is based on three different optimization

approaches that rely on alternative continuous time representations such as time slots, general

precedence and unit-specific time events. This comparison attempts to show alternative ways of

addressing the same problem through a variety of optimization approaches, highlighting main

differences, advantages and limitations in each case. The problem objective is to minimize the

total earliness, assuming that due dates are imposed as hard constraints on the completion times.

General problem features are again summarized in Table 2.

The scheduling problem is solved considering that only limited manpower (operator crews) is

available to operate (a) all extruders simultaneously; (b) three extruders at most; (c) two extruders

at most. Model sizes and computational requirements for the alternative approaches to the

corresponding cases 2.a, 2.b, 2.c are shown in Table 4. Gantt charts describing the optimal

solutions obtained for the cases are shown in Figure 10. Although this case study can be

considered as a relatively small and simple scheduling problem, it still represents a significant

challenge for pure optimization techniques. Interestingly, the computational effort in terms of

41

CPU time and nodes clearly reflects the higher complexity of resource constrained scheduling

problems, as shown in Table 4. Furthermore, significant differences not only in model sizes but

also in results can be observed for the different approaches evaluated. These substantial

differences arise because these models rely on a variety of assumptions that have a direct impact

on the model requirements, and they also make use of different MILP solvers (OSL and CPLEX).

For the time slot model, a mixed integer representation for resource constraints is utilized

together with the core of the formulation reported in section 4.4. Although a more efficient logic-

based approach was also presented in Pinto and Grossmann (1997), we only focused our attention

on the pure MILP approach. Since the set of new variables and constraints for modeling resource

limitations notably increases the model complexity, preordering rules were embedded into the

formulation to expedite the search. Unfortunately, the use of preordering rules along with a likely

wrong estimation of the minimum number of time slots required tends to generate suboptimal

solutions, which can be observed in the solutions reported for this model.

Subsequently, Méndez and Cerdá (2002) revisited this resource constrained scheduling

problem and proposed an optimization approach based on the general precedence concept and a

uniform treatment of resource limitations. Instead of using the standard approach that monitors

the level of resources at specific time points, this method employs allocating and sequencing

decisions over time to guarantee that resource availabilities are never exceeded. In this case,

specific allocating variables were used for processing units and operators crews, whereas a

common sequencing variable was used for both shared resources. This was possible because of

the use of the general precedence concept. Given that a limited number of checking points was

not used to monitor the limited resources, the optimality of the solution can be guaranteed.

Finally, the same scheduling problem was recently addressed by Janak et al. (2004) through

the extended version of the formulation based on the definition of unit-specific time events. As

can be observed in Table 4, both the resource unconstrained and constrained problems were

efficiently solved with a modest computational effort although, curiously, the model sizes

reported were significantly larger than the other approaches. For the cases with manpower

limitations, the number of event points required was increased from 4 to 12 event points which

gave rise to more complicated models involving more variables and constraints. It should be

noted that Table 4 only reports the computational statistics for given number of event points, i.e. 4

and 12 event points, respectively. However, given that these numbers are unknown a priori, the

42

iterative procedure previously described in section 3 must be used in each case, which represents

a much higher total CPU time. For the case 2.c, this formulation was not able to reach the actual

optimal solution (see Table 4). This situation usually arises when a reduced number of time

events is predefined. However, in this particular case the problem was attributed to a special

constraint restricting the starting time of a given batch and, consequently, eliminating the optimal

solution from the feasible region (Janak et al., 2005). The use of special constraints is not

mentioned in their original paper but we assume that they were used to speed up the search.

Table 4. Comparison of model sizes and computational requirements
Case Study Event representation Binary vars, cont. vars,

constraints
Objective
function

CPU time Nodes

2.a Time slots & preordering 100, 220, 478 1.581 67.74a (113.35)* 456
 General precedence 82, 12, 202 1.026 0.11b 64
 Unit-based time events (4) 150, 513, 1389 1.026 0.07c 7

2.b Time slots & preordering 289, 329, 1156 2.424 2224a (210.7)* 1941
 General precedence 127, 12, 610 1.895 7.91b 3071
 Unit-based time events (12) 458, 2137, 10382 1.895 6.53c 1374

2.c Time slots & preordering 289, 329, 1156 8.323 76390a (927.16)* 99148
 General precedence 115, 12, 478 7.334 35.87b 19853
 Unit-based time events (12) 446, 2137, 10381 7.909 178.85c 42193

Seconds on a IBM 6000-530 with GAMS/OSL / b Pentium III PC with ILOG/CPLEX / c 3.0 GHz Linux workstation with GAMS 2.5/CPLEX 8.1.
*Seconds for disjunctive branch and bound

 (a) without manpower limitation (b) 3 operator crews (c) 2 operators crews

Figure 10. Optimal schedules for case study 2.

6. REAL-WOLD SCHEDULING EXAMPLES INVOLVING COMPLEX PROCESS

CONSIDERATIONS

From a mathematical perspective, most scheduling problems found in industrial environments

can be regarded as very large-scale combinatorial and complex optimization problems, which

rarely can be solved to optimality within a reasonable amount of computational time. Such a

combinatorial explosiveness has to do with the increased number of products to be processed, the

43

long sequence of processing stages, the multiple units available for each task and the length of the

scheduling horizon to be considered. The complexity arises from a wide range of operational

constraints that often need to be taken into account in real world problems. Based on this fact, this

section attempts to illustrate the main motivation for developing more realistic and efficient

optimization models. A concise description highlighting the major characteristics and difficulties

of two challenging industrial problems, both extensively studied by different authors, is presented.

They deal with the scheduling of a polymer plant and a steel-making plant, respectively. The

section is concluded with some discussion on the sizes of the required mathematical formulations

in terms of variables and constraints.

6.1. SCHEDULING OF A POLYMER BATCH PLANT

A real-world scheduling problem from the polymer industries was studied by Schulz et al.

(1998) and Wang et al. (2000). It deals with a multiproduct batch plant where two types of

expandable polystyrene (EPS) are produced in several grain fractions. Within the considered

scheduling horizon a number of orders has to be fulfilled. Each order specification includes

information on due date and a given amount of some grain size fraction. The main objective is to

satisfy the customer orders with minimum delay. A schematic representation of the plant is shown

in Figure 11.

Figure 11. Schematic representation of the polymer batch process

The considered polymerization process includes three stages: Preparation of raw material,

polymerization and finishing. The first two stages are operated in batch mode and each stage

involves several units running in parallel. The finishing step splits the polystyrene suspension into

different grain fractions in a pair of continuous production lines. In the preparation step, batches

of input material are mixed in vessels, and then the mixture is pumped into one of several storage

44

tanks and subsequently fed into the polymerization reactor. Every tank has a capacity equal to the

batch size in the next polymerization step and is devoted to just one type of polystyrene during the

entire horizon. On the other hand, polymerization and finishing steps are connected by mixers in

which batches of polystyrene of the same type coming from the reactors are mixed and

continuously supplied to the finishing lines. The feed flowrate can change with time but its value

must remain within certain bounds. Each finishing line is assigned to just one type of polystyrene

and must be shutdown whenever the minimal feed rate condition cannot be satisfied.

Since the polymerizations require the same basic structure with minor variations in some

parameters, the plant layout is of the flowshop type. The major input to the polymerization step is

a mixture of styrene and some additives coming from the preparation stage. The choice of the

additives (i.e. the recipe) determines the grain size distribution and the type of expandable

polystyrene being made. For each EPS-type, there are five recipes, each one yielding a different

grain distribution. However, the choice of the recipe has a limited influence on the particle size

distribution and all grain fractions are produced in significant amounts in all batch runs.

Therefore, none of the different products can be produced separately and batches processed in the

reactors using different recipes are mixed together before going to the finishing stage.

Overproduction is another major issue. Since the batch size at the polymerization step is

constant and the number of recipes is limited, every grain fraction demand can hardly be satisfied

exactly. This results in overproduction of certain grain fractions that must be stored. Moreover,

unwanted grain fractions to be sold at low prices are always produced. Therefore, the real

scheduling goal is not only to produce the required grain size fractions with minimum delay, but

also to make them in the right amounts and with least production of unwanted fractions.

Several process constraints are to be satisfied: (1) The batch size in the polymerization stage is

constant due to technological restrictions. The filling level of the reactors affects the grain size

distribution. (2) For safety reasons, the simultaneous start of two or more polymerization runs in

different reactors is prohibited. A minimum delay of 4 h between the starts of two subsequent

polymerizations in different reactors is required. (3) Each mixer connecting reactors to finishing

lines is allocated to just one type of polymerization and the assignment must remain fixed along

the scheduling horizon. (4) At the end of a polymerization, enough volume must be available in

the corresponding mixer so that the reactor can be emptied. (5) If the mixers run empty, the

45

finishing line connected to them has to be temporarily shut down. In some cases, the shutdown of

the finishing lines is not permitted and, therefore, the feed flowrate should be properly adjusted

with respect to time to always have enough material in the mixers. (6) Tracking of each grain

fraction concentration in every mixer with respect to time is required to establish the fraction feed

rate to the corresponding finishing line. To do so, non-linear mass balances around the mixer must

be included in the problem formulation.

The major decisions of discrete and continuous nature include the following:

(a) The choice of the recipes and the number of batches (polymerizations) to be processed. There

are five choices for each type of polymerization. In addition, a maximum number of 36 to 70

polymerizations can be performed over a time horizon ranging from 8 to 14 days, respectively

(Wang et al., 2000).

(b) The assignment of a reactor unit and the timing of every polymerization.

(c) The mixer assignment to each polymerization, as well as, both the concentration of each grain

size fraction and the total mass in the mixer after completing the loading of a polymerization

batch.

(d) The feed rates of the separation stages and the total output of each grain fraction at any time.

(e) The timing of the start-up and shut-down of the finishing lines.

Assuming that 36 polymerizations (batches) are made using one of the ten available recipes,

the total number of possible tasks adds up to 360. Moreover, the whole set of batches processed in

the polymerization stage must be ordered to account for the minimum delay of 4 h between

subsequent polymerizations in different reactors. Therefore, there are 36! possible sequences of

batches in the polymerization stage. Preordering of batches by due dates cannot be applied since

every polymerization produces significant amounts of each grain size fraction; i.e. the batches are

coupled. In addition, a huge number of continuous variables are also required. For instance, the

actual concentration of every fraction in each mixer and the feed flowrates to the finishing lines

must be handled. Considering the production of ten different fractions and the running of four

mixers, a total of 4 mixers x 36 polymerizations x 10 different fractions = 1440 concentration

variables must be defined. Since the problem is intrinsically non-linear, it must be represented

through a mixed-integer nonlinear mathematical problem formulation (MINLP). Adopting a

46

scheduling horizon of 8 days, Schulz et al. (1998) developed a problem formulation involving

2656 variables of which 1009 are binary variables. Given that the size of the problem, especially

the large number of binary variables, makes it impossible to use general purpose algorithms, they

presented a special scheduling algorithm, which takes particular problem features into account,

leading to a good suboptimal solution with a reasonable CPU time.

6.2. SCHEDULING OF A STEEL-MAKING CASTING PLANT

The production scheduling of a steel-making continuous casting plant producing a wide

variety of steel ingots in a production line has been recognized as one of the most difficult

industrial scheduling problems (Harjunkoski and Grossmann, 2001). Products are characterized

by their width, thickness and chemical composition or grade. Each grade has a given production

recipe with strict specifications of temperature, chemistry and processing times at the different

production stages. Grades are further subdivided into sub-grades with minor differences in, for

instance, the carbon content.

The production is organized by orders or lots, each one composed of a given number of ladles

with similar product grades to be cast consecutively. The size of a lot may typically vary from one

to eight ladles. The scheduling horizon is often 1 week, during which typically an average of 30

orders and 120 ladles are made. Given the customer orders, the equipment items and the quality

constraints, the scheduling problem consists of completing all the production requirements at

minimum makespan, thus maximizing the throughput of the plant.

The processing of stainless steel consists of a sequence of high temperature operations starting

with the loading of scrap iron into an electric arc furnace (EAF) and ending with the continuous

casting (CC). The molten steel from the EAF is poured into ladles that a crane transports to a

subsequent equipment called argon oxygen decarburization unit (AOD), where mainly the carbon

is removed by argon and oxygen injection in order to meet the steel quality requirements. After

the AOD, the ladles are transported to a ladle furnace (LF) for secondary metallurgy operations,

such as chemical adjustments (e.g. nickel, oxygen, nitrogen, hydrogen contents), degassing and

temperature homogenization. In practice, LF also acts as a buffer to maintain the ladles at the

proper temperature before the last operation in the continuous caster (CC). Between the LF and

the CC there is a buffer that can hold at most one ladle. A ladle can stay in the buffer at most for

47

10 minutes, otherwise the liquid steel may cool down and must be reheated to the correct

temperature. In the CC, the liquid steel is cast and cooled to form slabs. The time required for

casting one ladle ranges from 60 to 70 minutes.

In the CC operation, the melt steel is solidified into slabs of a pre-specified width and

thickness. In order to achieve the desired properties of the final products, the slab formation

process has strict requirements of material continuity and casting speed to fulfill. When a

continuous steel flow is broken, the caster needs maintenance and the caster mold needs to be

replaced, which involves high costs and a delay in production. A new setup of the caster means

several hours of interruption in the casting. This happens, for instance, when either the slab

thickness or the grade is changed. If two subsequent products have a similar thickness and grade,

it may be possible to proceed without stopping. Otherwise, the caster needs to be stopped for

service. Moreover, the caster can only be run continuously for a limited number of compatible

ladles or products due to the extreme operating conditions. Therefore, the continuous casting

process can be considered as one of the major challenges in steel production planning, and even

obtaining feasible solutions is not trivial. It has been addressed separately in several studies, see

for instance Tang et al. (2000). The steel production process is illustrated in Figure 12.

1 3 42

1 Hot iron and scrap mixed in EAF
2 Decarburization in AOD
3 Quality adjustments in LMF
4 Casting into steel slabs

1 3 42

1 Hot iron and scrap mixed in EAF
2 Decarburization in AOD
3 Quality adjustments in LMF
4 Casting into steel slabs

Figure 12. Steel making process

Scheduling 80-100 orders on a production system involving a sequence of four processing

stages with some parallel units and subject to many operational restrictions is a highly complex

combinatorial problem requiring a huge number of 0-1 sequencing variables and constraints. For

simplification of the problem representation, a common approach by practitioners and reflected in

research is grouping of customer orders, often named as heats, into a smaller number of

48

sequences. Heats featuring the same grade and/or related subgrades and similar slab thickness can

be cast in the same sequence. Members of a sequence are then arranged by monotonically

decreasing or increasing slab width and increasing carbon content. In this way, the grouping

strategy aims to minimize the number of sequences and, consequently, the overall casting setup

time. The resulting sequences are to be ordered such that the schedule makespan and the average

order tardiness/earliness are both minimized.

Harjunkoski and Grossmann (2001) studied the scheduling of a steel-making continuous

casting plant producing up to 82 different ladles or products within a one-week time horizon. If

this industrial example were formulated as a single scheduling problem, the mathematical model

would include as many as 74,000 equations and 34,000 variables of which more than 33,000 are

discrete. Most likely such a large MILP problem is not solvable, at least in the near future.

Instead, Harjunkoski and Grossmann (2001) applied a three-stage decomposition strategy in order

to (1) optimally group ladles into sequences so as to minimize the total CC setup time, (2) find a

detailed schedule of each sequence at every production stage that reduces the makespan and the

buffer hold-time violations and (3) determine the proper ordering of sequences to decrease the

number of caster mold thickness changes while accounting for the order due dates. Since the

products are clustered into 20-25 groups, the resulting MILP mathematical models for the steps

(1) and (3) remain still quite large and the formulation for step (3) may involve as many as 16,000

binary variables and 15,643 constraints for the last step of the solution strategy. Although the

CPU time required may exceed 10,000 CPU-s, the predicted schedules lie within 3% of the

theoretical makespan.

7. ALTERNATIVE SOLUTION APPROACHES

While this paper has been focused on optimization approaches and related modeling aspects,

it is important to note that there are other solution methods for dealing with short-term scheduling

of batch processes. These methods can be used either as alternative methods, or as methods that

can be combined with MILP. As seen in Figure 13 there is a great variety of solution methods for

solving scheduling problems.

49

(1) Exact methods (2) Constraint programming (CP)
 MILP Constraint satisfaction methods

MINLP

(3) Meta-heuristics (4) Heuristics
Simulated annealing (SA) Dispatching rules

 Tabu search (TS)
 Genetic algorithms (GA)

(5) Artificial Intelligence (AI) (6) Hybrid-methods
 Rule-based methods Exact methods + CP
 Agent-based methods Exact methods + Heuristics
 Expert systems Meta-heuristics + Heuristics

Figure 13. Solution methods used in batch scheduling problems

This paper has dealt with MILP methods where the most common solution algorithms are LP-

based branch and bound methods (Wolsey, 1998), which are enumeration methods that solve LP

subproblems at each node of the search tree (Dakin, 1965). Cutting plane techniques, which were

initially proposed by Gomory (1958), and which consist of successively generating valid

inequalities for the relaxed MILP problem, have received renewed interest through the work of

Crowder et al. (1983), Van Roy and Wolsey (1986), and especially the lift and project method of

Balas et al. (1993). Currently most MILP methods correspond to branch-and-cut techniques in

which cutting planes are generated at the various nodes of the branch and bound tree in order to

tighten the LP relaxation. A recent review of branch and cut methods can be found in Johnson et

al. (2000). Finally, Benders decomposition (Benders, 1962) is another technique for solving

MILPs in which the problem is successively decomposed into LP subproblems for fixed 0-1 and a

master problem for updating the binary variables.

The major software packages for MILP are CPLEX (ILOG, 1999) and XPRESS (Dash

Optimization, 2003), which use the LP-based branch and bound algorithm combined with cutting

plane techniques. These codes have seen tremendous progress over the last decade in terms of

capabilities for solving much larger problem sizes and achieving several order of magnitude

reductions in the speed of computation, as discussed in Bixby et al. (2002) and Bixby (2002).

MILP models and solution algorithms have been developed and successfully applied to many

industrial problems (e.g. see Kallrath, 2000). It should also be noted that MINLP models may

arise in batch scheduling problems, particularly due to nonlinearities in the objective function

when modeling the effect of inventories, which may give rise to nonlinearities. For a review on

MINLP methods see Grossmann (2002).

50

Constraint Programming (CP) (van Hentenryck, 1989; Hooker, 2000) is a relatively new

modeling and solution paradigm that was originally developed to solve feasibility problems, but it

has been extended to solve optimization problems, particularly scheduling problems. Constraint

Programming is very expressive since continuous, integer, as well as Boolean variables are

permitted and moreover, variables can be indexed by other variables. Furthermore, a number of

constructs and global constraints have also been developed to efficiently model and solve specific

problems, and constraints need neither be linear nor convex. The solution of CP models is based

on performing constraint propagation at each node by reducing the domains of the variables. If an

empty domain is found the node is pruned. Branching is performed whenever a domain of an

integer, binary or boolean variable has more than one element, or when the bounds of the domain

of a continuous variable do not lie within a tolerance. Whenever a solution is found, or a domain

of a variable is reduced, new constraints are added. The search terminates when no further nodes

must be examined. The effectiveness of CP depends on the propagation mechanism behind

constraints. Thus, even though many constructs and constraints are available, not all of them have

efficient propagation mechanisms. For some problems, such as scheduling, propagation

mechanisms have been proven to be very effective. Some of the most common propagation rules

for scheduling are the “time-table” constraint (Le Pape, 1998), the “disjunctive-constraint”

propagation (Baptiste and Le Pape, 2001), the “edge-finding” (Nuijten, 1994) and the “not-first,

not-last” (Baptiste and Le Pape, 2001). Software for constraint programming includes OPL and

ILOG Solver from ILOG, CHIP (Dincbas et al., 1988), and ECLiPSe (Wallace et al., 1997).

CP methods have proved to be quite effective in solving certain types of scheduling problems,

particularly those that involve sequencing and resource constraints. However, they are not always

effective for solving more general optimal scheduling problems that involve assignments.

Therefore the use of constraint programming in combination with MILP techniques, known as

hybrid methods (see Figure 13), has recently received attention since the two techniques are

complementary to each other. Significant computational savings have been reported by Jain and

Grossmann (2001), Harjunkoski and Grossmann (2002) and Maravelias and Grossmann (2004)

using hybrid methods in which assignment decisions are handled by an MILP subproblem and

sequencing decisions by a CP subproblem.

It should be noted that methods based on meta-heuristics, or also known as local search

methods, do not make any assumptions on the functions as they are often inspired by moves

51

arising in natural phenomena. For larger scheduling problems the use of a local search algorithms

such as Simulated Annealing (Kirkpatrick et al., 1983; Aarts and Korst, 1989), Genetic

Algorithms (Goldberg, 1989), or Tabu Search (Glover, 1990) may be preferable, since these

algorithms can obtain good quality solutions within reasonable time. Therefore, these techniques

have become popular for optimizing certain types of scheduling problems. However, these

algorithms also have significant drawbacks - they do not provide any guarantee on the quality of

the solution obtained, and it is often impossible to tell how far the current solution is from

optimality. Furthermore, these methods do not formulate the problem as a mathematical program

since they involve procedural search techniques that in turn require some type of discretization or

graph representation, and the violation of constraints is handled through ad-hoc penalty functions.

Tabu Search is the more deterministic of the three techniques and also has fewer tunable

parameters. The variant of Tabu Search called Reactive Tabu Search (RTS) (Battiti and

Tecchiolli, 1994) has proved to be the more successful implementation for scheduling problems.

Examples of application of these techniques in batch scheduling include the work by Graells et al.

(1988), Lee and Malone (2000) and Ryu et al. (2000) for simulated annealing, Löhl et al (1988)

for genetic algorithms, and Cavin et al. (2004) for tabu search.

Meta-heuristics are also known as improvement heuristics, given that they employ an iterative

procedure that starts with an initial schedule that is gradually improved. On the other hand, there

are several heuristics called dispatching rules which are considered as construction heuristics.

These rules use certain empirical criteria to prioritize all the batches that are waiting for

processing on a unit. For simple scheduling problems, they have demonstrated to have very good

performance, although their efficiency is usually evaluated empirically. The usefulness of

dispatching rules is still limited to quite a narrow variety of scheduling problems and optimality

can be proved only in some special cases. Some relevant dispatching rules are: FCFS (first come

first served), EDD (earliest due date), SPT (shortest processing time), LPT (longest processing

time), ERD (earliest release date), WSPT (weighted shortest processing time). Often, composite

dispatching rules involving a combination of basic rules can perform significantly better. Besides,

dispatching rules can be easily embedded in exact models to generate more efficient hybrid

approaches for large-scale scheduling problems. An extensive review and a classification of

various dispatching rules can be found in Panwalkar and Iskander (1977) and Blackstone et al.

(1982).

52

With the main goal of making a more efficient use of the process information as well as the

essential knowledge provided by human schedulers, artificial intelligence (AI) techniques have

also been widely applied to scheduling problems. AI is the mimicking of human thought and

cognitive processes to solve complex problems automatically. It uses techniques for writing

computer code to represent and manipulate knowledge. Different techniques mimic the different

ways that people think and reason. For instance, case-based reasoning (CBR) solves a current

problem by retrieving the solution to previous similar problems and altering those solutions to

meet the current needs. It is based upon previous experiences and patterns of previous

experiences. On the other hand, model-based reasoning (MBR) concentrates on reasoning about a

system’s behavior from an explicit model of the mechanisms underlying that behavior. Within the

AI field, agent-based approaches are software programs that are capable of autonomous, flexible,

purposeful and reasoning action in pursuit of one or more goals. They are designed to take timely

action in response to external stimulus from their environment on behalf of a human. Scheduling

problems have been solved by a set of individual agents (see Rabelo et al., 1994), which can work

parallel and their coordination may bring a more effective way to find an optimal solution. When

multiple agents are being used together in a system, individual agents are expected to interact

together to achieve the goals of the overall system. A survey by Shen and Norrie (1999) reports

30 projects using agent technology for manufacturing planning, scheduling and execution control

where agents represent physical entities, processes, operations, parts, etc.

The development of expert systems, also known as knowledge-based approaches, is also an

important field of the AI area. They encapsulate the specialist knowledge gained from a human

expert (such as an experienced scheduler) and apply that knowledge automatically to make

decisions. The process of acquiring the knowledge from the experts and their documentation and

successfully incorporating it in the software is called knowledge engineering, and requires

considerable skills to perform successfully. Some interesting applications based on AI

technologies for addressing real-world scheduling problems have been reported in Zweben and

Fox (1994), Sauer and Bruns (1997) and Henning and Cerdá (2000).

8. USE OF EXACT METHODS IN INDUSTRIAL PROBLEMS

The vast literature in the scheduling area highlights the successful application of different

optimization approaches to an extensive variety of challenging problems. Nowadays, more

53

difficult and larger problems than those studied years ago can be solved, sometimes even to

optimality, in a reasonable time by using more efficient integrated mathematical frameworks.

This important achievement comes mainly from the remarkable advances in modeling techniques,

algorithmic solutions and computational technologies that have been made in the last few years.

Although a promising near future in the area can be predicted from this optimistic current

situation, it is also well-known that the actual gap between practice and theory is still evident.

New academic developments are mostly tested on complex but relatively small problems whereas

current real-world applications consist of hundreds of batches, dozens of pieces of equipment and

long scheduling periods, usually ranging from one to several weeks. Industrial problems are also

very hard-constrained, which means that optimization solvers have to find the optimal or near-

optimal solutions in a huge search space with a relatively small feasible region. This difficulty can

be easily observed in the reported results for case study II. This may result in unstable and

unpredictable computational performance of optimization models, which is definitely not suitable

for industrial environments.

In order to make the use of exact methods more attractive in the real-world, increasing effort

has been oriented towards the development of systematic techniques that allow maintaining the

number of decisions at a reasonable level, even for large-scale problems. A reduced search space

can guarantee a more stable and predictable behavior of the optimization model. Manageable

model sizes may be obtained by applying heuristic model reduction methods, decomposition or

aggregation techniques. Additionally, once the best possible solution has been generated in the

specified time, improvement optimization-based techniques could be employed to gradually

enhance a non-optimal solution with very modest computational effort. A clear disadvantage of

these techniques is that the optimality of the solution can no longer be guaranteed. However,

requiring optimality may not be relevant in practice due to the following: (1) a very short time is

available to generate a solution, (2) optimality is easily lost because of the dynamic nature of

industrial environments, (3) implementing the schedule as such is limited by the real process and

(4) only a subset of the actual scheduling goals are taken into account.

Some available techniques widely used to deal with large-scale problems are described below.

1. Heuristic model reduction methods: Taking advantage of an empirical and well-known

solution method or a particular feature of the problem addressed, it is frequently convenient to

54

incorporate this essential knowledge into the mathematical problem representation.

Performing this task usually permits not only to obtain reduced models that describe only the

critical decisions to be made but also generates good solutions in a reasonable time. A clear

example of this strategy is given by multiple sequential process-oriented models that make use

of simple or combined dispatching rules, also called preordering rules, to generate better

solutions in a given short time. (see Pinto and Grossmann, 1995; Cerdá et al. ,1997; Méndez et

al. 2001).

2. Decomposition & aggregation techniques: Two major approaches are to either consider

aggregation techniques, or else to use decomposition either in spatial or in temporal forms.

Examples of strategies based on aggregation are works by Basset et al. (1996), Wilkinson

(1996) and Birewar and Grossmann (1990). These include aggregating later time periods

within the specified time horizon in order to reduce the dimensionality of the problem, or to

aggregate the scheduling problem so that it can be considered as part of a planning problem.

Approaches based on spatial or temporal decomposition, usually rely on Lagrangean

decomposition (Graves, 1982; Gupta and Maranas, 1999). In the case of spatial decomposition

the idea is use the links between subsystems (e.g. manufacturing, distribution and retail) by

dualizing the corresponding interconnection constraints, which then requires the multiperiod

optimization of each system. In the case of temporal decomposition the idea is to dualize the

inventory constraints in order to decouple the problem by time periods. The advantage of this

decomposition scheme is that consistency is maintained over every time period (Jackson and

Grossmann, 2003).

3. Improvement optimization-based techniques: The gradual improvement of a non-optimal

solution can be interpreted as a special case of rescheduling where the available solution is

partially adjusted with the only goal of enhancing a particular scheduling criterion. These

techniques use the entire current schedule as the starting point of a procedure that, based on

the problem representation, iteratively enhances the existing solution in a systematic manner.

The model size remains usually under user control by allowing that only a small number of

potential changes be performed in each iteration. The work that has followed this direction has

shown promising results with modest computational effort (see Roslöf et al., 2001; Méndez

and Cerdá, 2003b).

55

9. ACADEMIC AND COMMERCIAL APPLICATIONS FOR SCHEDULING OF

BATCH PLANTS

With few exceptions, academic software for batch scheduling is normally available as part of a

modeling system such as GAMS and AMPL. Therefore, there are relatively few academic

software packages that can be used as commercial packages and which involve sophisticated

graphical user interfaces. For the sake of brevity, we only present a table of a number of academic

groups who are actively working in the area of batch scheduling and are known to have unique

computational tools for batch scheduling. As can be seen in Table 5, there is a growing number of

active researchers in batch scheduling, although the size of this community is still rather modest.

Table 5. Academic groups with software for batch scheduling
School Researcher(s)

Weblink
Åbo Akademi University T. Westerlund

http://www.abo.fi/~twesterl/
Carnegie Mellon University I.E. Grossmann

http://egon.cheme.cmu.edu
Imperial College C. Pantelides, N. Shah

http://www.ps.ic.ac.uk
Instituto Superior Lisbon A. Barbosa Povoa

http://alfa.ist.utl.pt/~d3662/
INTEC - CONICET J. Cerdá

http://intecwww.arcride.edu.ar/~jcerda/
National University of Singapore I.A. Karimi
 http://www.chee.nus.edu.sg/staff/000731karimi.html
University of São Paulo J.M. Pinto
 http://pqi.ep.usp.br/pessoal/zeca.html
Polytechnic Univ. Catalunya L. Puigjaner

http://deq.upc.es/wwwdeq/cat/infogral/curriculs/Lluis%20Puigjaner.htm
Princeton University C.A. Floudas

http://titan.princeton.edu/home.html
Purdue University J. Pekny and G.V. Reklaitis

http://engineering.purdue.edu/ChE/Research/Systems/index.html
Rutgers University M. Ierapetritou

http://sol.rutgers.edu/staff/marianth/
University College London L. Papageorgiou

http://www.chemeng.ucl.ac.uk/staff/papageorgiou.html
University of Dortmund S. Engell

http://www.bci.uni-dortmund.de/ast/en/content/mitarbeiter/elehrstuhlinhaber/engell.ht
University of Sao Paulo J. Pinto
 http://www.lscp.pqi.ep.usp.br/pro_zeca.html
University of Tessaloniki M. Georgiadis

http://www.cperi.certh.gr/en/compro.shtml#SECT2
University of Wisconsin C. Maravelias

http://www.engr.wisc.edu/che/faculty/maravelias_christos.html

Commercial software for batch scheduling, on the other hand, has only begun to emerge over

the last few years. Table 6 lists few representative software packages that are currently available

in the market, and for which the users only need to specify data on the problem at hand.

56

Establishing the precise capabilities and methodologies behind these packages is not an easy task

since vendors do not normally disclose the full technical information behind these packages. We

should also clarify that there are several software packages available that require that the user

model the scheduling problem as a mixed-integer program or a constrained programming

problem. Examples of the former type of software includes systems like GAMS, AMPL, AIMMS,

while examples of the former include systems like OPL, CHIP and ECLIPSE, although among

these OPL can handle both MILP as well as CP models. Furthermore, OPL has access to the

special purpose software ILOG scheduler, which is especially suitable for batch scheduling

problems.

Table 6. Batch scheduling Software
Software Vendor

Aspen Plant Scheduler Aspen Technology
Model Enterprise Optimal Single-Site Scheduler Process Systems Enterprise
VirtECS Schedule Advanced Process Combinatorics
SAP Advanced Planner and Optimizer SAP

9.1. Aspen Plant Scheduler

Aspen Plant Scheduler from Aspen Technology (http://www.aspentech.com) is a member of the

MIMI family of supply chain solutions (Jones and Baker, 1996). Its objective is to create an

optimal or near-optimal short-term schedule for unit production, consistent with the longer-term

group production plan, to address the inevitable variability in actual vs. planned customer orders.

The solution is developed at the end item level (i.e. a shippable, billable item) scheduled by

production work center by start and stop times, shift, day, or other finite time period. Decision

rules and heuristics are used to speed creation of an executable schedule for large numbers of

items sharing limited capacity. Users typically generate a schedule for a time horizon spanning a

few days to a few weeks. The solution is integrated with the Aspen Available-to-Promise /

Capable-to-Promise solution, to enable rapid response to customer requests for new orders, make-

to-order items, and new product formulations. The solution is also linked to Aspen Collaborative

Forecasting and Collaborative Replenishment solutions to link the Aspen client to both suppliers

and customers. Finally, integration from Aspen Supply Planner allows for direct conversion of an

annual plan to a more granular schedule used to organize final staging, testing, and product

distribution.

57

9.2. Model Enterprise Optimal Single-Site Scheduler (OSS Scheduler)

The OSS Scheduler from Process Systems Enterprise Ltd. (http://www.psenterprise.com)

determines optimal production schedules for given availabilities of plant resources, recipe

information and known product demands, using as a basis the STN and RTN MILP models by

Kondili et al (1993) and Pantelides (1994), respectively. The OSS Scheduler determines an

economically optimal schedule for a process plant producing multiple products. It is especially

suited to multi-purpose plants where products can be processed on a selection of alternative

equipment, via different routes and in any batch size. The objective of the schedule can be

configured according to the economic requirements of the operation - for example, to deliver

maximum profit, maximum output or on-time in full. The schedules produced satisfy all operating

constraints such as hard and soft delivery deadlines. The OSS Scheduler can be applied to both

continuous and batch processing. Intermediate products can be stored in vessels, in individual

tanks or a tank farm. The application accepts complex recipes with blending, separation and re-

cycles. Changeovers and downtime can be included and cleaning can be added as downtime or

even as a process. The OSS Scheduler can also be used to design the economically optimum

process plant for a given production requirement

9.3. VirtECS Schedule

VirtECS Schedule from Advanced Process Combinatorics (http://www.combination.com) builds

an optimized schedule that satisfies all constraints and levels load on parallel equipment. The

package is based on an MILP model similar to the STN model, but incorporates a special MILP

solver developed at Purdue University that exploits more effectively the structure of the

scheduling models (e.g. see Bassett et al, 1997). VirtECS Schedule includes an Interactive

Scheduling Tool (IST) to facilitate the ability to modify production schedules through direct

control of key inputs. VirtECS Schedule has also the capability of rescheduling to respond to

changing operating conditions on the plant floor, for instance when mechanical failures or rush

orders make the current schedule obsolete.

9.4. SAP Advanced Planner and Optimizer (SAP APO)

SAP (http://www.sap.com) offers the system mySAP, a comprehensive framework for supply

chain optimization. mySAP includes the module SAP Advanced Planner and Optimizer (SAP

58

APO), in which the planning and scheduling tool helps to support real-time and network

optimization across the extended supply chain (Braun and Kasper, 2004). This module is used

within a hierarchical decomposition scheme for planning and scheduling. While the higher level

planning tools are based on MILP models, it appears that the detailed scheduling module (PP/DS)

is largely based on constraint programming and genetic algorithms. It also appears to be restricted

to multistage plant configurations.

10. CURRENT REACTIVE SCHEDULING CAPABILITIES

The scheduling techniques examined in the previous sections are aimed at generating a priori

production schedules assuming that plant parameters and production requirements will remain

unchanged throughout the entire time horizon. However, industrial environments are highly

dynamic and although the proposed initial schedule may be the best option under the predicted

circumstances, it can quickly become inefficient or even infeasible after the occurrence of

unforeseen events, which are not only related to external market factors (late order arrivals, orders

cancellations, delayed raw material shipments, modifications in order due dates and/or customer

priorities) but also to the operational level (changes in batch processing/setup times, unit

breakdown/startup, reprocessing of batches, changes in resource availabilities). In such a case, the

ability to handle unpredictable circumstances and periodically or driven by events re-optimize the

schedule on a daily or hourly basis becomes a key issue in batch plant operation.

Despite the great importance of rescheduling functionality for batch processes, only a few

number of optimization approaches have been reported in the last decade. Hasebe et al., (1991)

proposed a reordering algorithm for the scheduling of multiproduct batch plants consisting of

parallel production lines with a shared unit. The algorithm involved two reordering operations, the

insertion of a job and the exchange of two jobs. More recently, Vin and Ierapetritou (2000)

developed a solution approach that addresses the problem of reactive scheduling in multiproduct

batch plants. The approach was based on a two-stage solution procedure where the optimal

reschedule is obtained from the solution of a MILP formulation that systematically incorporates

all different rescheduling alternatives. Two kinds of disturbances involving machine breakdown

and rush order arrivals were only considered. Roslöf et al. (2001) presented an MILP reordering

algorithm to improve a non-optimal schedule or update the schedule in progress because of

unforeseen events. Test runs were performed by releasing, i.e. re-allocating and/or re-sequencing,

59

either one or two jobs at a time. Méndez and Cerdá (2003b) developed a MILP formulation for

the reactive scheduling problem in multiproduct batch plants. The proposed approach allowed

performing multiple rescheduling operations at the same time such as the insertion of new order

arrivals, the reassignment of existing batches to alternative units due to equipment failures and the

reordering & time-shifting of old batches at the current processing sequences. To prevent

rescheduling actions from disrupting smooth plant operation, limited changes in batch sequencing

and unit assignment were permitted. Subsequently, the original model was extended in Méndez

and Cerdá (2004a) to consider resource-constrained multistage batch facilities, where manpower

limitations aside from processing units must be taken into account in the rescheduling framework.

So far the reported work clearly reveals that current capabilities of optimization methods to

reactive scheduling problems are still very restricted and mostly focused on sequential batch

processes. More general, efficient and systematic rescheduling tools are required for recovering

feasibility and/or efficiency with short reaction time and minimum additional cost. The main

effort should be oriented towards avoiding a time-expensive full-scale rescheduling, allowing

during the rescheduling process only limited changes to the scheduling decisions already made at

the beginning of the time horizon. In addition to the data required for predictive scheduling

models, a generic rescheduling tool also needs to provide an explicit representation of the current

situation by incorporating the information related to: (a) the schedule in progress, (b) the present

plant state, (c) current inventory levels, (d) present resource availabilities, (e) the current time

data, (f) unexpected events, (g) rescheduling actions that can be taken and (h) the criterion to be

optimized. Rescheduling actions may range from a simple time shifting to a full-scale re-

optimization, depending on the type of events that occurred, the current situation of the plant and

the available time to adjust the schedule. Given that more flexible rescheduling operations usually

involve higher computational cost, the role of the human expert or scheduler should be oriented at

the definition of the scope of the possible rescheduling actions. Therefore, a reactive scheduling

framework for general batch processes should provide the basic rescheduling operations to

optimally:

(1) Fix critical scheduling decisions already made at the beginning of the time horizon (lot-sizing,

allocation, sequencing and timing).

60

(2) Modify or adjust some scheduling decisions (resource re-allocation, batch re-sequencing and

time-shifting).

(3) Eliminate batches (order cancellation).

(4) Mix or split batches already scheduled.

(5) Modify size of batches already scheduled (re-sizing).

(6) Transform new demands into a set of new batches to be processed (lot-sizing).

(7) Insert new batches into the schedule in progress.

Furthermore, these rescheduling actions should be performed simultaneously and with a

modest computational effort, aiming at satisfying all process constraints while optimizing a

specific rescheduling goal. The estimated cost of updating the on-going schedule should be

incorporated in the problem representation.

10. CONCLUSIONS

This paper has presented a comprehensive review of the state-of-the art of batch scheduling.

An extensive classification of problem types has shown the great diversity involved in short-term

batch scheduling problems. A general classification of optimization models was used as

framework for describing the major optimization approaches that have emerged over the last

decade in this area. Modeling aspects of representative optimization models were presented

emphasizing the main ideas and highlighting their strengths and limitations. Two benchmark

problems were solved by using the different approaches to illustrate the performance of methods

discussed in the review. Two real-world industrial problems were also discussed to highlight

some of the limitations of current methods. Finally, other alternative solution methods were

briefly discussed, followed by approaches for solving large-scale problems. From the academic

and commercial software that was discussed it is clear that the general scheduling software that

can address all cases is still elusive. The important issue of rescheduling capabilities was also

briefly discussed showing that substantial work remains to be done in this area.

It is hoped that this paper will stimulate further research as it is clear that even though very

significant progress has been made in short-term batch scheduling, the direct and systematic

solution of large-scale industrial problems through mathematical programming is still an

unresolved issue.

61

Acknowledgements

The authors gratefully acknowledge financial support from ABB Corporate Research. We would

also like to thank Dr. Pousga Kaboré for fruitful discussions.

Nomenclature
Indices
f, f’ Product Family
i, i’ Batch task
ist storage task
j, j’ Batch processing unit
n, n’ time or event point (continuous time)
r, r’ resource type
z, z’ resource item
t, t’ time intervals (discrete time)

Sets
I Batch Tasks
Ij Tasks that can be processed in unit j
Ir Tasks that require resource r
Ijf Tasks belonging to family f that can be processed in unit j
IST Storage tasks
Is

ST Storage tasks for state s
Izw Tasks that produce at least one zero wait state.
Izw

r Tasks that produce the resource r which requires zero wait policy.
J Processing units
JT

 Storage units
JT

s Storage units that can store state s
Ji Processing units that can perform task i
Jii’ Processing units that can perform both task i and task i’
N Time or event points (continuous time)
R Resources
Ril Resources required in stage l of task i
RJ

 Resources corresponding to processing equipment
RJ

i Resources corresponding to processing equipment that can be allocated to task i
RS

i Resources corresponding to storage equipment that can be allocated to task i
S States
ST States that can be stored in tanks
SZW States that require a zero wait policy
Sj States that can be stored in a shared storage tank j
T Time intervals (discrete time)
Z Resource items
Zr Resource items of type r

Parameters
αi Fixed processing time of task i
βi Variable processing time of task i
ρc

is Proportion of state s consumed by task i
ρp

is Proportion of state s produced by task i
µirt Coefficient for the fixed production/consumption of resource r at time t relative to the start of the

task i
νirt Coefficient for the variable production/consumption of resource r at time t relative to the start of

the task i

62

µc
ir Coefficient for the fixed consumption of resource r at the beginning of task i

νc
ir Coefficient for the variable consumption of resource r at the beginning of task i

µp
ir Coefficient for the fixed production of resource r at the end of task i

νp
ir Coefficient for the variable production of resource r at the end of task i

∏st Amount of state s received at time t
Suij Setup time for processing task i in unit j
clff’ Changeover time required between a task belonging family f and a task belonging to family f’
clii’ Changeover time required between task i and a task i’
clil,i’l’ Changeover time required between stage l of task i and stage l’ of task i’
Cj Maximum capacity of storage tank j
Cmin

s Minimum storage capacity for state s
Cmax

s Maximum storage capacity for state s
Dst Amount of state s delivered at time t
H Time horizon of interest
ptij Processing time of task i in unit j
Rmin

r Minimum availability of resource r
Rmax

r Maximum availability of resource r
Rmax

rt Maximum availability of resource r at the beginning of time interval t
Vmin

i Minimum batch size of task i
Vmax

i Maximum batch size of task i
Vmin

ij Minimum capacity of unit j
Vmax

ij Maximum capacity of unit j
Vmin

ir Minimum capacity of resource r for task i
Vmax

ir Maximum capacity of resource r for task i

Binary variables
Vjsn Define if state s is being stored in tank j at time point n
Wit Define if task i starts at the beginning of time interval t
Win Define if task i is being performed at event point n
Winn’ Define if task i starts at time point n and ends at time point n’
Wijt Define if task i starts in unit j at the beginning of time interval t
Wijkl Define if the stage l of task i is allocated to the time slot k of unit j
Wsin Define if task i starts at time or event point n
Wfin Define if task i finishes at time or event point n
Wij Define if task i is allocated to unit j
WFij Define if task i starts the processing sequence of unit j
Xii’j Define if task i is processed right before task i’ in unit j
Xii’ Define if task i is processed right before task i’ in some unit
X’il,i’l’ Define if stage l of task i is processed before/after stage l’ of task i’ in some unit
Yilz Define if resource item z is allocated to stage l of task i

Continuous variables
Bijt Batch size of the task i started at the beginning of time interval t in unit j
Bit Batch size of the task i started at the beginning of time interval t
Bin Batch size of the task i activated at time or event point n
Binn’ Batch size of the task i started at time n and ended at time n’
Bsin Batch size of the task i started at time or event point n
Bfin Batch size of the task i finished at or before time or event point n
Bpin Batch size of the task i that is being processed at time point n
PTin Processing time of task i that starts at time point n
Rrn Amount of resource r that is being consumed at time point n
Rirn Amount of resource r that is being consumed by task i at time point n
Rrt Amount of state r that is being consumed at the beginning of time interval t
Ssn Amount of state s at time point n
Ssjn Amount of state s stored in shared tank j at time point n
Sst Amount of state s at the beginning of time interval t

63

Tn Time that corresponds to time point n
Tsin Start time of task i that starts at time point n
Tsrn Start time of usage of resource r at event point n
Tsjk Start time of slot k in unit j
Tsi Start time of task i
Tsil Start time of stage l of task i
Tfi Finish time of task i
Tfin Finish time of task i that starts at time point n
Tfjk Finish time of slot k in unit j
Tfil Finish time of stage l of task i

References

Aarts, E.H.L. & Korst, J. (1989). Simulated annealing and boltzmann machines: A stochastic approach to

combinatorial optimization and neural computing, John Wiley, New York.

Balas, E., Ceria S. & Cornuejols G. (1993). A lift-and-project cutting plane algorithm for mixed 0-1

programs. Mathematical Programming, 58, 295 – 324.

Baptiste, P.; Le Pape, C. & Nuijten, W. (2001). Constrained-based scheduling: applying constraint

programming to scheduling problems. Kluwer Academic Publishers.

Bassett, M.H.; Pekny J. F. & Reklaitis G.V. (1997). Using detailed scheduling to obtain realistic operating

policies for a batch processing facility. Industrial Engineering Chemistry Research, 36, 1717 – 1726.

Battiti, R. & Tecchiolli, G. (1994) The reactive tabu search. ORSA Journal on Computing, 6, 126.

Benders, J.F. (1962). Partitioning procedures for solving mixed-variables programming problems,

Numerische Mathematik 4, 238 – 252.

Bixby, R.E.; Fenelon, M.; Gu Z.; Rothberg E. & Wunderling R. (2002a). MIP: theory and practice:

closing the gap. http://www.ilog.com/products/optimization/tech/research/mip.pdf

Bixby, R.E. (2002b). Solving real-world linear programs: a decade and more of progress. Operations

Research, 50, 3 – 15.

Blackstone, J.H.; Phillips, D.T. & Hogg, G.L. (1982). A state-of-the-art-survey of dispatching rules for

manufacturing job shop operations”, International Journal on Production Research, 20, 27 – 45.

Braun, H. & Kasper, T. (2004). Optimization in SAP supply chain management. Presented at CPAIOR04,

Nice. http://www-sop.inria.fr/coprin/cpaior04/files/CPAIOR2004SAP.PDF

Castro, P., Barbosa-Póvoa, A.P.F.D & Matos, H. (2001). An improved RTN continuous-time formulation

for the short-term scheduling of multipurpose batch plants. Industrial and Engineering Chemistry

Research, 40, 2059 – 2068.

Castro, P.M.; Barbosa-Póvoa, A.P.; Matos, H.A. & Novais, A.Q. (2004) Simple continuous-time

formulation for short-term scheduling of batch and continuous processes. Industrial and Engineering

Chemistry Research, 43, 105 – 118.

64

Cavin, L.; Fischer, U; Glover, F. & Hungerbühler, K. (2004). Multi-objective process design in multi-

purpose batch plants using a tabu search optimization algorithm. Computers & Chemical Engineering,

28, 459 – 478.

Cerdá, J.; Henning, G.P. & Grossmann, I.E. (1997). A mixed-integer linear programming model for short-

term scheduling of single-stage multiproduct batch plants with parallel lines. Industrial and

Engineering Chemistry Research, 36, 1695 – 1707.

Chen, C.; Liu, C.; Feng, X. & Shao, H. (2002). Optimal short-term scheduling of multiproduct single-stage

batch plants with parallel lines. Industrial and Engineering Chemistry Research, 41, 1249 – 1260.

Crowder, H.P.; Johnson, E.L & Padberg, M.W. (1983). Solving large-scale zero-one linear programming

problems. Operations Research, 31, 803 – 834.

Dakin R.J. (1965). A tree search algorithm for mixed integer programming problems. Computer Journal,

8, 250 – 255.

Dash Optimization. (2003). http://www.dashoptimization.com/products_version2003.html

Dincbas, M.; Van Hentenryck, P.; Simonis, H.; Aggoun, A.; Graf, T. & Berthier, F. (1988). The constraint

logic programming language CHIP. In FGCS-88: Proceedings of International Conference on Fifth

Generation Computer Systems, Tokyo, 693 – 702.

Floudas, C.A.; Lin, X. (2004). Continuous-time versus discrete-time approaches for scheduling of

chemical processes: a review. Computers and Chemical Engineering, 28, 2109 – 2129.

Giannelos, N.F. & Georgiadis, M.C. (2002). A simple new continuous-time formulation for short-term

scheduling of multipurpose batch processes. Industrial and Engineering Chemistry Research, 41, 2178

– 2184.

Glover, F. (1990) Tabu search: a tutorial. Interfaces, 20, 74.

Goldberg, D.E. (1989). Genetic algorithms in search, optimisation and machine learning. Addison-

Wesley, Reading Mass.

Gomory R.E. (1958). Outline of an algorithm for integer solutions to linear programs. Bulletin of the

American Mathematics Society, 64, 275 – 278.

Graells, M.; Cantón, J.; Peschaud, B.T. and Puigjaner, L. (1988). General approach and tool for the

scheduling of complex production systems. Computers and Chemical Engineering, 22, 1, S395 -

S402.

Grossmann, I.E. (2002). Review of nonlinear mixed-integer and disjunctive programming techniques for

process systems engineering. Journal of Optimization and Engineering, 3, 227 – 252.

Gupta, S. & Karimi, I.A. (2003). An improved MILP formulation for scheduling multiproduct, Multistage

Batch Plants. Industrial and Engineering Chemistry Research, 42, 2365 – 2380.

65

Harjunkoski, I & Grossmann, I.E. (2001). A decomposition approach for the scheduling of a steel plant

production, Computers and Chemical Engineering, 55, 11, 1647 – 1660.

Harjunkoski, I. & Grossmann, I.E. (2002). Decomposition techniques for multistage scheduling problems

using mixed-integer and constraint programming methods. Computers and Chemical Engineering, 26,

1533 – 1552.

Henning, G.P. & Cerdá, J. (2000). Knowledge-based predictive and reactive scheduling in industrial

environments. Computers and Chemical Engineering, 24, 9, 2315 – 2338.

Hentenryck, P.V. (1989). Constraint satisfaction in logic programming, MIT PRESS, Cambridge, MA.

Hentenryck, P.V. (2002). Constraint and integer programming in OPL. INFORMS Journal on Computing,

14, 4, 345 – 372.

Hooker, J.N. (1999). Logic-based methods for optimization, John Wiley & Sons.

Ierapetritou, M.G. & Floudas, C.A. (1998). Effective continuous-time formulation for short-term

scheduling. 1. Multipurpose batch processes. Industrial and Engineering Chemistry Research, 37,

4341 – 4359.

ILOG (1999). ILOG OPL Studio 2.1., User's Manual. ILOG Inc.

Jain, V. & Grossmann, I.E. (2001). Algorithms for hybrid MILP/CP model for a class of optimization

problems. INFORMS Journal in Computing, 13, 258 – 276.

Janak, S.L.; Lin, X. & Floudas, C.A. (2004). Enhanced continuous-time unit-specific event-based

formulation for short-term scheduling of multipurpose batch processes: Resource constraints and

mixed storage policies. Industrial and Engineering Chemistry Research, 43, 2516 – 2533.

Johnson, E.L.; Nemhauser G.L. & Savelsbergh M.W.P. (2000). Progress in linear programming based

branch-and-bound algorithms: An exposition, INFORMS Journal on Computing, 12.

Jones, C.V. & Baker T. E. (1996). MIMI/G: A graphical environment for mathematical programming and

modeling. Interfaces, 26, 3, 90ff.

Kallrath J. (2000) Mixed integer optimization in the chemical process industry: experience, potential and

future. Trans. I. Chem. E., 78, Part A, 809 – 822.

Kallrath, J. (2002). Planning and scheduling in the process industry. OR Spectrum, 24, 219 – 250.

Kim, S.B.; Lee, H.; Lee, I.; Lee, E.S. & Lee, B. (2000). Scheduling of non-sequential multipurpose batch

processes under finite intermediate storage policy. Computers and Chemical Engineering, 24, 1603 –

1610.

Kirkpatrick, S.; Gelatt, C.D. & Vechi, M.P. (1983). Optimization by simulated annealing. Science, 220,

671.

Kondili, E; Pantelides, C.C. & Sargent, W.H. (1993). A general algorithm for short-term scheduling of

batch operations – I. MILP formulation. Computers and Chemical Engineering, 2, 211 – 227.

66

Le Pape, C. (1998). Implementation of resource constraints in ILOG schedule: a library for the

development of constrained-based scheduling systems. Intelligent Systems Engineering, 3, 2, 55 – 66.

Lee, K.; Park, H I1 & Lee, I. (2001). A novel nonuniform discrete time formulation for short-term

scheduling of batch and continuous processes. Industrial and Engineering Chemistry Research, 40,

4902 – 4911.

Lee, Y.G. & Malone M. F. (2000). Flexible batch processing. Industrial and Engineering Chemistry

Research, 39, 6, 2045 – 2055.

Lim, M. & Karimi, I.A. (2003). Resource-constrained scheduling of parallel production lines using

asynchronous slots. Industrial and Engineering Chemistry Research, 42, 6832 – 6842.

Lin, X.; Floudas, C.A.; Modi, S. & Juhasz, N.M. (2002). Continuous-time optimization approach for

medium-range production scheduling of a multiproduct batch plant. Industrial and Engineering

Chemistry Research, 41, 3884 – 3906.

Löhl, T.; Schulz C. & Engell S. (1988). Sequencing of batch operations for a highly coupled production

process: Genetic algorithms versus mathematical programming,” Computers and Chemical

Engineering, 22, 1, S579 – S585.

Maravelias, C.T. & Grossmann, I.E. (2003). New general continuous-time state-task network formulation

for short-term scheduling of multipurpose batch plants. Industrial and Engineering Chemistry

Research, 42, 3056 – 3074.

Maravelias, C.T. & I. E. Grossmann. (2004). A hybrid MILP/CP decomposition approach for the

continuous time scheduling of multipurpose batch plants," Computers and Chemical Engineering, 28,

1921 – 1949.

Méndez, C.A.; Henning, G.P. & Cerdá, J. (2000). Optimal scheduling of batch plants satisfying multiple

product orders with different due-dates. Computers and Chemical Engineering, 24, 2223 – 2245.

Méndez, C.A.; Henning, G.P. & Cerdá, J. (2001). An MILP continuous-time approach to short-term

scheduling of resource-constrained multistage flowshop batch facilities. Computers and Chemical

Engineering, 25, 701 – 711.

Méndez, C.A. & Cerdá, J. (2002). An MILP framework for short-term scheduling of single-stage batch

plants with limited discrete resources”, Computer-Aided Chemical Engineering, 12, 721 – 726.

Elsevier Science Ltd. ISBN: 0-444-51109-1.

Méndez, C.A. & Cerdá, J. (2003a). An MILP continuous-time framework for short-term scheduling of

multipurpose batch processes under different operation strategies. Optimization & Engineering, 4, 7 –

22.

Méndez, C.A. & Cerdá, J. (2003b). Dynamic scheduling in multiproduct batch plants. Comp. & Chem.

Eng., 27, 1247 – 1259.

67

Méndez, C.A. & Cerdá, J. (2004a). An MILP framework for batch reactive scheduling with limited

discrete resources. Computers and Chemical Engineering, 28, 1059 – 1068.

Méndez, C.A. & Cerdá, J. (2004b). Short-term scheduling of multistage batch processes subject to limited

finite resources. Computer-Aided Chemical Engineering, 15B, 984-989.

Mockus, L. & Reklaitis, G.V. (1999a). Continuous time representation approach to batch and continuous

process scheduling. 1. MINLP formulation. Industrial and Engineering Chemistry Research, 38, 197 –

203.

Mockus, L. & Reklaitis, G.V. (1999b). Continuous time representation approach to batch and continuous

process scheduling. 2. Computational issues. Industrial and Engineering Chemistry Research, 38, 204

– 210.

Neumann, K.; Schwindt, C. & Trautmann, N. (2002). Advanced production scheduling for batch plants in

process industries. OR Spectrum, 24, 251 – 279.

Nuijten, W.P.M. (1994). Time and resource constrained scheduling: a constraint satisfaction approach.

PhD Thesis, Eindhoven University of Technology.

Pantelides, C.C. (1994). Unified frameworks for optimal process planning and scheduling. Foundations of

Computer-Aided Process Operations, Cache publications, New York, 253 – 274.

Panwalkar, S.S. & Iskander, W.A. (1997). Survey of scheduling rules. Operations Research, 25, 45 – 61.

Pekny, J. F. & Reklaitis, G. V. (1998). Towards the convergence of theory and practice: A technology

guide for scheduling/planning methodology. Proceedings of the third international conference on

foundations of computer-aided process operations, 91 – 111.

Pinto, J.M. & Grossmann, I.E. (1995). A continuous time mixed integer linear programming model for

short-term scheduling of multistage batch plants. Industrial and Engineering Chemistry Research, 34,

3037 – 3051.

Pinto, J.M. & Grossmann, I.E. (1996). An alternate MILP model for short-term scheduling of batch plants

with preordering constraints. Industrial and Engineering Chemistry Research, 35, 338 – 342.

Pinto, J.M. & Grossmann, I.E. (1997). A logic-based approach to scheduling problems with resource

constraints. Computers and Chemical Engineering, 21, 801 – 818.

Pinto, J.M. & Grossmann, I.E. (1998). Assignments and sequencing models of the scheduling of process

systems. Annals of Operations Research, 81, 433 – 466.

Rabelo, R.J. & Camarinha–Matos L.M. (1994). Negotiation in multi-agent based dynamic scheduling.

Journal on Robotics and Computer Integrated Manufacturing, 11, 4, 303 – 310.

Reklaitis, G.V. (1992). Overview of scheduling and planning of batch process operations. NATO Advanced

Study Institute—Batch process systems engineering. Turkey: Antalya.

68

Rodrigues, M.T.M.; Latre, L.G. & Rodrigues, L.C.A. (2000). Short-term planning and scheduling in

multipurpose batch chemical plants: A multi-level approach. Computers and Chemical Engineering,

24, 2247 – 2258.

Roslöf, J.; Harjunkoski, I.; Björkqvist, J.; Karlsson, S. & Westerlund, T. (2001). An MILP-based

reordering algorithm for complex industrial scheduling and rescheduling, Computers & Chemical

Engineering, 25, 821 – 828.

Ryu, J.H.; Lee, H.K. & Lee, I.B. (2001). Optimal scheduling for a multiproduct batch process with

minimization of penalty on due date period. Industrial and Engineering Chemistry Research, 40, 1,

228 - 233.

Sauer, J. & Bruns, R. (1997). Knowledge-based scheduling in industry and medicine. IEEE Expert 12, 24

– 31.

Schilling, G. & Pantelides, C.C. (1996). A simple continuous-time process scheduling formulation and a

novel solution algorithm. Computers and Chemical Engineering, 20, S1221 – S1226.

Schulz, C.; Engell, S. & Rudolf, R. (1998). Scheduling of a multiproduct polymer batch plant. In J. F.

Pekny, G. E. Blau, & B. Carnahan, Proceeding for foundations of computer-aided process operations

(FOCAPO’ 98). Snowbird: CACHE Publications.

Shah, N.; Pantelides, C.C. & Sargent, W.H. (1993). A general algorithm for short-term scheduling of batch

operations – II. Computational issues. Computers and Chemical Engineering, 2, 229 – 244.

Shah, N. (1998). Single- and multisite planning and scheduling: Current status and future challenges.

Proceedings of the third international conference on foundations of computer-aided process

operations. 75 – 90.

Shen ,W. & Norrie, D.H. (1999). Agent-based systems for intelligent manufacturing: A state of the art

survey. Knowledge and Information Systems, 1, 2, 129 – 156.

Sundaramoorthy, A. & Karimi, I.A. (2005). A simpler better slot-based continuous-time formulation for

short-term scheduling in multiproduct batch plants. Chemical Engineering Science, 60, 2679 – 2702.

Tang, L.; Liu, J.; Rong, A. & Yang, Z. (2000). A mathematical programming model for scheduling

steelmaking continuous casting production. European Journal of Operational Research, 120(2), 423 –

435.

Van Roy, T.J. & Wolsey, L.A. (1986). Valid inequalities for mixed 0-1 programs. Discrete Applied

Mathematics, 14, 199 – 213.

Vin, J.P. & Ierapetritou, M.G. (2000). A new approach for efficient rescheduling of multiproduct batch

plants. Industrial and Engineering Chemistry Research, 39, 4228 – 4238.

Wallace, M.; Novello, S. & Schimpf, J. (1997). ECLiPSe: A platform for constraint logic programming,

ICL Systems Journal, 12, 1, 159 – 200.

69

Wang, K.; Löhl, T.; Stobbe M. & Engell, S. (2000). A genetic algorithm for online-scheduling of a

multiproduct polymer batch plant, Computers and Chemical Engineering, 24, 393 – 400.

Westenberger, H. & Kallrath, J. (1995). Formulation of a job shop problem in process industry. Internal

report, Bayer AG, Leverkusen, and BASF AG, Ludwigshafen.

Wolsey, L. (1998). Integer Programming. John Wiley and Sons.

Zhang, X. & Sargent, W.H. (1996). The optimal operation of mixed production facilities – A general

formulation and some approaches for the solution. Computers and Chemical Engineering, 20, 897 –

904.

Zhu, X.X. & Majozi, T. (2001). Novel continuous time MILP formulation for multipurpose batch plants. 2.

Integrated planning and scheduling. Industrial and Engineering Chemistry Research, 40, 5621 – 5634.

Zweben, M. & Fox, M.S. (1994). Intelligent scheduling, Morgan Kaufmann, San Francisco.

