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Summary

Proteins that are capable to transport molecules across membranes are fundamental for the

accurate functioning of the body. Many diseases have their cause in a dysfunction of a particular

transport protein. Membrane transporters are involved in the absorption, distribution, metabolism,

and excretion of endogenous and ingested substances, but for numerous transport proteins their

substrates and physiological roles are still unknown or hypothetical.

Most transporters exhibit a high specificity for their natural substrates. However, some

transporters show broad substrate specificity, thereby translocating a large variety of substances

including drugs. Consequently, the expression of so-called drug transporters can influence the

pharmacokinetics of administered drugs by controlling their oral absorption, their distribution within

the body, and their elimination through excretory organs. Furthermore, over-expression of

particular drug transporters can lead to a decreased drug bioavailability. The reduced drug

concentrations in blood and in tissues can even result in a phenotype of drug resistance. This

phenomenon is often observed in patients with cancers. However, therapy resistance is also a

well-known problem in other diseases such as inflammatory bowel disease (IBD). Approximately

50% of patients with Crohn`s disease and 20% of patients with ulcerative colitis require other

therapeutic strategies due to inefficient steroid treatment. Many of these patients need surgery as

a result of therapy resistance. But the underlying mechanisms of therapy resistance in IBD

patients are poorly understood.

The aim of this thesis was to assess the general expression of transporters in humans. The main

focus was the intestine as an important site of drug absorption. Furthermore, in vitro experiments

using intestinal cell lines were performed to evaluate alterations in transporter expression by

drugs and endogenous compounds. This knowledge can help to assess the impact of these

transporters on 1) the oral bioavailability of drugs, 2) therapy resistance, 3) possible drug-drug

interactions.

Initially, a method was developed to accurately quantify the expression of transporters using real-

time PCR (TaqMan® analysis, chapter 2). Thus, a standard for each gene of interest was

synthesized and quantified in order to compose standard curves with known amounts of PCR

templates. Consequently, for each transporter the gene-expression could be expressed as
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absolute mRNA transcript number. This method was used in all projects where mRNA

expressions were analyzed.

The general expression of drug transporter mRNA along the human intestinal tract was studied in

biopsies from 10-14 healthy volunteers (chapter 3). Biopsies were taken from the duodenum, the

terminal ileum, and from the proximal to the distal colon (ascending, transverse, descending, and

sigmoid colon). Site-specific mRNA expressions for MDR1 and MRP1-5 (chapter 3.1), BCRP

(chapter 3.2), and ASBT (chapter 3.3) were shown. These data can be useful in developing new

targeting strategies for enteral drug delivery. Additionally, the transporter expression obtained in

these healthy control patients can be compared with the transporter expression in IBD patients in

further studies. This might help to elucidate the role of transporters in IBD.

Using in vitro experiments, we investigated whether budesonide, an often-used glucocorticoid in

patients with IBD, might affect the expression of drug transporters (chapter 4.1). A selective

induction of MDR1 on mRNA and protein level was detected in a human intestinal cell line. Since

budesonide is also a P-gp substrate, this induction might be one reason for the steroid resistance

that is often observed in IBD patients treated with glucocorticoids.

Thalidomide is an “old” drug that is increasingly used as an adjuvant therapy in malignant and

inflammatory diseases, including IBD. Therefore, this drug was screened for possible interactions

with P-gp (chapter 4.2) and MRP2 (chapter 4.3) by performing induction-, inhibition-, and

transport-assays. Thalidomide showed no potential for interactions regarding these two drug-

efflux transporters.

Furthermore, a HPLC method for the determination of thalidomide enantiomers in blood was

developed (chapter 5). This sensitive method can be applied in prospective clinical trials where

the efficacy of thalidomide is further investigated.

In a study, including vasospastic persons with increased Endothelin-1 plasma levels, the

expression of MDR1 and MRP1-5 in isolated blood mononuclear cells was determined (chapter

6). Vasospastic persons differed from healthy controls in their expression pattern of transporter

proteins. They showed a significant decrease in their expression of MDR1, MRP2, and MRP5

mRNA when compared to controls. This might be an indirect effect of elevated ET-1 levels and

this could explain the enhanced drug-sensitivity reported by these patients.
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In a further project, the release of mitomycin C from collagen implants was determined using a

newly developed HPLC method (chapter 7). In this study it was clearly shown that commercially

available collagen implants could be loaded with MMC, and could subsequently release it. The

pharmacokinetics of this relationship is determined in vitro.
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Aim of the thesis

Our extensive goal is to reveal whether drug transporters are involved in therapy resistance

observed in patients with inflammatory bowel disease. The contribution of the present thesis to

that issue was the determination of the general expression of transporters along the intestinal

tract. By providing data from healthy control subjects we will be able to conduct further studies

including IBD patients. Moreover these data can elucidate the role of intestinal transporters in

general drug absorption. Additionally, we intended to investigate the impact of IBD drugs on

transporter expression and function using in vitro experiments. Results from intestinal cell lines

should give indications about alterations of transporters during drug treatment. Overall, this

knowledge will help to characterise the role of these transporters with regard to 1) oral

bioavailability of drugs, 2) therapy resistance, and 3) possible drug-drug interactions.

In particular, we aimed to elaborate the following points:

• Establishment of a method for the absolute quantification of mRNA transcript abundances.

• Determination of the general drug transporter expression along the human intestine.

• Influence of IBD drugs on transporter expressions in vitro.

• Investigation of the absorption of thalidomide and interactions with P-gp and MRP2.

• Establishment of a HPLC method for the determination of thalidomide enantiomers in

blood samples.

Beside our focus on IBD, we planned additional projects in collaboration with the University Eye

Clinic of Basel. The following topics were deliberated:

• Analysis of drug transporter expression in vasospastic subjects.

• Determination of the in vitro release of mitomycin C from collagen implants.
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1. Introduction

1.1 Drug absorption and transport proteins in the gastrointestinal tract

The gut represents an important interface between the organism and the external environment.

Therefore, the gastrointestinal mucosa consists of special epithelial layers that display various

features. They aid the digestion of food, absorb nutrients, export waste components and act as a

selective barrier to protect the body from pathogens. Transcellular and paracellular fluxes are

controlled by membrane pumps, ion channels and tight junctions, adapting permeability to

physiological needs (Baumgart and Dignass, 2002). Due to the fact that the intestine is heavily

colonized with bacteria, the epithelium plays a very active role in protecting the host from invading

and damaging bacteria and endotoxin (Ding and Li, 2004).

For the majority of orally administered drugs, the small intestine represents the primary site of

absorption. The most common mode of plasma membrane penetration is passive diffusion along

a concentration gradient. However, many drugs exhibit a poor absorption after oral administration.

Beside the physicochemical properties that influence oral bioavailability of drugs, poor absorption

has also been attributed to metabolism and active efflux in the small intestine (Suzuki and

Sugiyama, 2000). The enterocytes form a barrier to drug entry that exploits both drug-

metabolising enzymes, e.g. the cytochrome P450 family, and drug export pumps, e.g. P-

glycoprotein. A synergistic role of the cytochrome isoform 3A4 (CYP3A4) and P-glycoprotein has

been suggested due to several facts: their coexistence in the intestine, the significant overlap of

their substrate specificity and the poor bioavailability of substances that are substrates of both

proteins (Zhang and Yuan, 2001). In addition to oxidative metabolism and drug efflux, conjugation

reactions play an important role in the detoxification of xenobiotics in the small intestine (Lin et al.,

1999a). After being conjugated (e.g. to glutathione-, or glucuronide-conjugates) these compounds

can be excreted into the lumen by transporters with an affinity to organic anions such as the multi-

drug resistance associated proteins (MRPs).

In general, transport proteins mediate the translocation of specific molecules across various

membranes. Dependent on their local expression they control the absorption, distribution and

excretion of endogenous compounds and exogenous xenobiotics in the organism. The

translocation of their substrates can be either primary active using ATP hydrolysis as an energy

source or secondary active using an existing cellular electrochemical gradient. Examples are the

ATP-binding cassette transporters (ABC-transporters) or the solute carrier (SLC), respectively.
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Numerous members of different transporter families are involved in the cellular uptake and efflux

of drugs. Therefore, pharmacokinetics can be strongly influenced by the expression of these

transporters, particularly in excretory organs (liver, kidney) and protective barriers (intestine, blood

brain barrier). Consequently, both the knowledge of the accurate transporter expression in tissues

and the knowledge whether drugs are substrates, inhibitors or inducers of individual transport

proteins is of importance. This holds true especially during pharmacological development of novel

classes of therapeutic compounds and in the development of new targeting strategies for drug

delivery. As a result, potential drug-drug interactions could be prevented and thereby drug safety

could be improved.

1.2 ABC transporters

The ATP-binding cassette (ABC) transporters are a large and diverse superfamily of proteins

comprising around fifty members with many and varied functions. They share extensive sequence

homology and domain organisation including the characteristic ATP-binding cassette, consisting

of two nucleotide-binding domains. They are classified into seven subfamilies (ABCA to ABCG). In

this thesis the family members that are known to mediate drug transport were of particular

interest, since these proteins can have a major impact on drug disposition. All of these are located

in the plasma membrane where they can extrude a variety of structurally diverse drugs, drug

conjugates and metabolites. Export of these compounds occurs in an active, ATP-dependent

manner, and can take place against considerable concentration gradients.

The first member discovered in 1976 (Juliano and Ling, 1976) was P-glycoprotein (MDR1,

ABCC1). This protein appeared to be overexpressed in tumor cells with a multi-drug resistance

phenotype where it conferred resistance to many unrelated cytotoxic drugs. Later the existence of

the multi-drug resistance associated proteins (MRPs, ABCC) was revealed. Some of these

transporters are also relevant for drug transport, as well as the recently discovered ABC

transporter breast cancer resistance protein (BCRP, ABCG2). Although many ABC transporters

have been identified as drug-resistance proteins in cancer therapy, they are all expressed in

normal tissues transporting endogenous substrates or protecting the organism from natural

cytotoxins (Gottesman et al., 2002).

1.2.1 MDR1 (ABCB1)

P-glycoprotein (P-gp), the gene product of MDR1, is possibly the best-studied ABC drug efflux

transporter to date. The protein has a molecular weight of 170 kDa and 12 transmembrane

domains and two nucleotide-binding sites. P-gp is a transporter with extreme wide substrate
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specificity and therefore many unrelated substances were identified as P-gp substrates. However,

a tendency towards organic compounds with cationic or amphiphatic nature could be determined

(Schinkel and Jonker, 2003). P-gp is assumed to represent a protective mechanism against

potentially toxic xenobiotics. The high expression in solid tumours indicates the pivotal role of P-

gp in resistance to anticancer therapy. But its general expression in the apical membrane of

normal tissues such as intestine, kidney, liver, and blood-brain barrier is also of great significance

due to its excretory and barrier role. There, P-gp mediates the efflux of xenobiotics and toxins into

the intestinal lumen, urine, bile, and blood.

Drug-drug interactions may occur when the activity of the transporter is altered by one drug

resulting in a change of the clearance of another drug that is a P-gp substrate. It has been

reported that P-gp inhibitors such as verapamil, itraconazole, ritonavir, and talinolol increased the

plasma concentrations of the P-gp substrate digoxin due to inhibition of P-gp mediated efflux

(Verschraagen et al., 1999; Westphal et al., 2000a; Angirasa and Koch, 2002; Ding et al., 2004).

Additionally, P-gp has also been shown to be inducible in vitro and in vivo by xenobiotics such as

rifampicin (Westphal et al., 2000b), phenobarbital (Lu et al., 2004), dexamethasone (Fardel et al.,

1993), and herbal extracts from St. John’s wort (Zhou et al., 2004). Increased P-gp expression

can therefore lead to subtherapeutic concentrations of concomitantly administered substrates.

Moreover, genetic variants (single nucleotide polymorphisms, SNPs) can alter P-gp expression

and function. To date 28 SNPs have been identified on the MDR1 gene, whereas 11 SNPs

resulted in an amino acid exchange (Schwab et al., 2003a). So far, only the C3435T

polymorphism, which does not influence the amino acid sequence, was associated with an altered

P-gp expression and function. On average, the TT homozygotes have a lower level of intestinal P-

gp resulting in an increase of digoxin plasma levels, compared to the CC genotype group

(Hoffmeyer et al., 2000). C3435T is also reported to be a risk factor for certain class of diseases

including inflammatory bowel disease, Parkinson’s disease and renal epithelial tumour (Sakaeda

et al., 2004).

1.2.2 ABCB4 (MDR3)

A cDNA corresponding to a further human P-glycoprotein gene was found in liver (Van der Bliek

et al., 1987). The protein has 80% amino acid homology with the product of the human MDR1

gene. It was designated MDR3 since it corresponds to the third of the P-glycoprotein genes

mapped in hamster. MDR3 is mainly expressed in the bile canalicular membrane of the liver, but

is also found in the heart, muscle and in B cells. The murine mdr2 gene (homolog of human

MDR3) was found to function as a lipid translocase or flippase. It was demonstrated that mdr2
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expression caused an enhancement of phosphatidylcholine translocation (Ruetz and Gros, 1994).

Biliary secretion of lipids is an important physiological event; not only for the disposal of

cholesterol from the body, but also for the protection of cells lining the biliary tree against bile salts

(Elferink and Groen, 1999). Patients with progressive familial intrahepatic cholestasis (PFIC) type

3 have a mutation in the MDR3 gene, which leads to a disruption of biliary lipid secretion (de Vree

et al., 1998). Recent work has shown that MDR3 has significant drug transport activity and that

this transport is inhibited by MDR1 inhibitors (Smith et al., 2000). Whether MDR3 also functions in

vivo as a transporter of some drugs remains to be seen (Borst et al., 2000).

1.2.3 ABCC1-6 (MRP1-6)

The multi-drug resistance associated proteins (MRPs) are a further important group of human

ABC transporters that are relevant for drug transport. All of them possess the characteristic ATP-

binding cassette motive but they vary in the number of their transmembrane domains. So far, this

subfamily includes nine members (MRP1-9). In contrast to P-gp, MRPs work mainly as

transporters of amphiphatic organic anions. Therefore, they are capable to extrude drug

conjugates, such as glucuronide-, glutathione-, and sulphate-conjugates out of cells.

MRP1 (ABCC1) is ubiquitously expressed in the body. It is localised on the basolateral membrane

of epithelial cell layers, and its substrates are therefore transported towards the basolateral side.

Physiological important substrates for MRP1 include glutathione S-conjugates such as leukotriene

C4, as well as bilirubin glucuronides (Keppler et al., 1998). In addition, anionic drugs and drugs

conjugated to glutathione like methotrexate or arsenite are also transported by MRP1 (Bakos et

al., 2000; Vernhet et al., 2000).

MRP2 (ABCC2) is localised in the apical membrane of cells from liver, intestine, and kidney where

it plays a central role in detoxification by secreting metabolites into bile, intestinal lumen and urine

(Schaub et al., 1997; Fromm et al., 2000). The substrate specificity of MRP2 is similar to that of

MRP1, and includes glutathion conjugates, billirubin glucuronides, and a number of drugs and

their conjugated drug metabolites (Jedlitschky et al., 1997; Kawabe et al., 1999). These drugs

include temocaprilat, irinotecan, SN-38, arsenite, cisplatin, methotrexate, vincristine, saquinavir,

and ceftriaxone (Kusuhara and Sugiyama, 2002; Dietrich et al., 2003). Patients with Dubin-

Johnson syndrome have a fully deficient MRP2 gene. The absence of this transporter in the

hepatocyte canicular membrane leads to impaired biliary secretion of glutathione, glutathione
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conjugates, and bilirubin glucuronides (Paulusma et al., 1997). Similar to MDR1, MRP2 seems to

be inducible by rifampicin treatment (Fromm et al., 2000).

MRP3 (ABCC3), like MRP1, is present in the basolateral membrane of polarized cells, mainly in

liver, intestine and kidney (Scheffer et al., 2002b). MRP3 transports a wide range of bile salts and

seems to be involved in their reabsorption (Hirohashi et al., 2000). MRP3-transfection of cell lines

conferred resistance to epipodophyllotoxins, vincristine and methotrexate (Kool et al., 1999).

Therefore, MRP3 may also contribute to a toxicological defence function by excreting a range of

toxic substances from various epithelial cell types.

For MRP4  (ABCC4), there are no definite data concerning cellular localization or tissue

distribution. For instance, it has been reported that MRP4 is located on the basolateral membrane

of prostate cells (Lee et al., 2000), whereas another study showed MRP4 expression on the apical

membrane of kidney cells (van Aubel et al., 2002). The significance of MRP4 in drug transport is

at present unclear as well. However, an over-expression of MRP4 severely impaired the antiviral

efficacy of adefovir, azidothymidine and of other nucleoside analogs in cell lines (Schuetz et al.,

1999). Other substrates include folic acid, bile acids, methotrexate and 6-mercaptopurine

(Wielinga et al., 2002; Chan et al., 2004). A physiological role of MRP4 might be the release of

prostaglandins from cells (Reid et al., 2003).

MRP5 is widely expressed throughout most tissues. Like MRP4, it has an affinity to nucleotide-

based substrates. A study demonstrated that MRP5 transports the cyclic nucleotides cAMP and

cGMP (Jedlitschky et al., 2000), but the physiological function of this transporter remains to be

elucidated. There are no reports at present, which could suggest a role for MRP5 in drug

disposition. Experiments with transfected cells showed enhanced efflux of DNP-SG (2,4-

dinitrophenyl-S-glutathione), adefovir, and the purine analogues 6-mercaptopurine and

thioguanine (Wijnholds et al., 2000).

MRP6 (ABCC6) expression occurs mainly in kidney, liver and to a lower extends in several other

tissues (Scheffer et al., 2002a). Analysis of the drug sensitivity of MRP6-transfected cells revealed

low levels of resistance to several natural product agents, including etoposide, teniposide,

doxorubicin, and daunorubicin (Belinsky et al., 2002). Mutations in the MRP6 gene are the genetic

basis of pseudoxanthoma elasticum, a disease that affects elastin fibers in the skin, retina, and
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blood vessels (Ringpfeil et al., 2000). However, both the physiological function and potential

involvement of MRP6 in drug resistance are still unclear.

1.2.4 ABCG2 (BCRP)

Human breast cancer resistance protein (BCRP, ABCG2) belongs to the ABC drug efflux

transporters and was first discovered in breast cancer cells (Doyle et al., 1998). It can render

tumor cells resistant to the anticancer drugs topotecan, mitoxantrone, doxorubicin, and

daunorubicin (Jonker et al., 2000). Structurally, BCRP is a half-transporter (one nucleotide-binding

domain, 6 transmembrane domains) and it seems very likely that it functions as a homodimer

(Ozvegy et al., 2001). Whether BCRP can also function as a heterodimer with other half-

transporters of the ABCG class is not known. In humans, BCRP is expressed in placenta, breast,

ovary, intestine, and liver. BCRP mediates apically directed drug transport, appears to reduce

drug bioavailability, and protects fetuses against drugs (Jonker et al., 2000).

1.3 Solute carrier (SLC)

The SLC (Solute Carrier) series includes ion coupled transporters, facilitated transportes, and

exchangers. The genes encoding these transporters are divided into 43 gene families (SLC1-43,

according to the HUGO Gene Nomenclature Committee) and include 298 transporter genes at

present (Hediger et al., 2004). These SLC membrane proteins use cellular chemical and/or

electrical gradients to move molecules across cell membranes, whereas Na+ is the favoured

cation to move solutes into cells and anion exchange moves solutes out of cells. Physiologically,

they transport many endogenous substances such as amino acids, glucose, bicarbonate, bile

acids, ascorbic acid, urea or fatty acids. However, members of this superfamily can also be

involved in drug transport and play a role in drug disposition. Many of them are expressed in

important organs for drug disposition such as kidney, liver, and intestine. Relevant transporters

are members of the organic anion transportes (OATs), the organic anion transporting proteins

(OATPs), the organic cation transporters (OCTs, OCTNs), and the concentrative nucleoside

transporters (CNTs). In this thesis we also investigated the expression and regulation of the apical

sodium dependent bile acid transporter (ASBT, SLC10A2). This transporter, mainly located in the

ileum, is responsible for bile acid uptake and therefore contributes substantially to the

enterohepatic recycling of bile salts.
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1.4 Regulation of transporter expression by nuclear receptors

Nuclear receptors such as the pregnane X receptor (PXR) and the constitutive androstane

receptor (CAR) play important roles in protecting the body against toxic xenobiotics. They act as

activators of detoxifying proteins (e.g. cytochrome P450 enzymes or transporters). The

mechanism initially involves an interaction between the receptor and a specific ligand (Kliewer et

al., 1999). Ligand binding induces a conformational change within the receptor that facilitates

binding of co-activator proteins (e.g. RXR). This heterodimer regulates the transcription of the

target gene by binding to specific DNA response elements (Renaud and Moras, 2000).

PXR and CAR are highly expressed in liver and intestine, where they can be activated by a broad

spectrum of lipophilic xenobiotics that include drugs such as rifampicin, dexamethasone,

phenobarbital, troglitazone, and St. John’s wort (Jones et al., 2000; Kullak-Ublick and Becker,

2003). PXR and CAR stimulate the expression of similar sets of genes including those encoding

phase I and II enzymes and transporters, which are collectively involved in the metabolism and

excretion of lipophilic substances from the body. PXR and CAR are thus important “xenosensors”

that mediate drug-induced activation of the detoxifying transport and enzyme systems in liver and

intestine (Kullak-Ublick and Becker, 2003). Transporters activated by these receptors include P-

gp, MRP2, MRP3, and OATP2 (Kast et al., 2002; Staudinger et al., 2003; Wang and LeCluyse,

2003).

Although PXR and CAR protect the body from xenobiotics, their activation by drugs represents the

molecular basis for an important class of drug-drug interactions. Assays that detect PXR

activation during drug development are used to predict and prevent these drug-drug interactions

(Moore and Kliewer, 2000). Concerning transporters, most cases of such interactions are related

to elevated P-gp expressions that lead to a decrease of the plasma level of concomitantly

administered P-gp substrates. It was demonstrated that paclitaxel activates PXR leading to

enhanced P-gp mediated drug clearance. In contrast, docetaxel did not activate PXR and

displayed superior pharmacokinetic properties. Moreover, ET-743, another potent antineoplastic

agent, suppressed MDR1 transcription by acting as an inhibitor of PXR (Synold et al., 2001).

These findings demonstrate how the molecular activities of nuclear receptors can control drug

clearance.
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1.5 Inflammatory bowel disease (IBD) and transporters

Crohn’s disease and ulcerative colitis, summarised as inflammatory bowel disease (IBD), are

states of chronic intestinal inflammation, whereas the inflammation occurs in different parts of the

gut. The incidence is 6-11 cases per 100000 people per year (Neurath and Schurmann, 2000).

The pathogenesis of both diseases is still unclear. However, a loss of tolerance against the enteric

flora and a generalized enhanced reactivity against intestinal bacterial antigens may be the central

events in IBD (Wen and Fiocchi, 2004).

In the colon of patients with ulcerative colitis, Langmann and co-workers showed a down-

regulated expression of genes involved in intestinal detoxification, including MDR1 and pregnane

X receptor (PXR) (Langmann et al., 2004). Furthermore, mice deficient for mdr1a spontaneously

develop colitis similar to IBD in humans (Panwala et al., 1998). Schwab and co-workers revealed

that a mutation in the MDR1 gene is associated with the susceptibility for IBD in humans (Schwab

et al., 2003b). This single nucleotide polymorphism (C3435T) leads to a decreased intestinal P-gp

expression in patients with the TT genotype (Hoffmeyer et al., 2000). These are convincing

arguments for the role of transporters in the development of IBD by a defective detoxification.

Nonetheless, another great problem concerning IBD is therapy failure. Many patients with IBD

experience steroid dependence or steroid resistance. A study showed that elevated expression of

P-glycoprotein (MDR1) in enterocytes and in peripheral blood lymphocytes is associated with poor

response to medical therapy (Farrell et al., 2000).

In conclusion, the results from recent studies indicate that transporters, especially P-gp, could be

involved in the events of inflammatory bowel disease. P-gp expression, however, seems to have a

different impact on development and therapeutic efficacy of the disease.
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2. Absolute quantification of transporter mRNA expression

(quantitative real-time RT-PCR)

2.1 Introduction

Cellular alterations of gene expression can be analysed on different levels. Changes of the mRNA

level, the protein level, and protein function can be a measure for a regulated gene expression.

Reverse transcription polymerase chain reaction (RT-PCR) is the most common method for

analysing mRNA expression patterns and comparing mRNA levels in different samples. In this

thesis, several studies were performed where gene expressions in human tissues or cell lines

were measured using real time RT-PCR (TaqMan®). By using real-time RT-PCR the specific

products generated during each cycle of the PCR can be reliably measured and these are directly

proportionate to the amount of template prior to the start of the PCR process. But before real-time

PCR amplification could be performed, the isolated cellular mRNA had to be reverse transcribed

into cDNA. The cDNA was subsequently quantified with TaqMan® analysis using the standard

curve method. Therefore we used external standards that comprised known amounts of specific

cDNA fragments of the gene of interest. Consequently, the unknown amount of cDNA in the

analysed samples could be expressed as absolute transcript numbers of the corresponding gene.

2.2 Generation of cDNA standards for absolute mRNA quantification

In order to generate standard curves we used gene-specific cDNA fragments with known

concentrations as standards. These standards serve as a template during the real-time PCR

because they cover the TaqMan primer/probe area and therefore they are amplified similar to the

cellular reverse transcribed mRNA of the appropriate gene. Standards were obtained by classical

PCR amplification using primers that anneal outside the area where the TaqMan primers anneal

on the template. Since MDR1, MRP1-5, Villin, and ASBT are expressed in Caco-2 cells and

BCRP is expressed in BB19 cells, we used reverse transcribed RNA of these cell lines as a

template for classical PCR amplification. For the gene-specific PCR we used 25 ng cDNA per

25µL reaction volume including each primer at a concentration of 300 nM. The primers (Table 2.1)

were designed using the primer express software 2.0 (Applied Biosystems) and were

manufactured by Invitrogen (Basel, Switzerland). The components of the PCR reaction (AmpliTaq

Gold, 10x PCR buffer, dNTPs, MgCl2) were purchased form Applied Biosystems. Thermal cycling

was conducted using a Mastercycler personal from Eppendorf (Hamburg, Germany) and an

annealing temperature of 55°C was used. The PCR products (Table 2.2) were purified by running



- 25 -

a 1.5% agarose gel (TAE buffer, 100V, 50 min) and by a subsequent gel extraction (gel extraction

kit, Qiagen). When cDNA yields were too low the PCR amplification was repeated using the

purified product of the first PCR as a template.

The obtained standards were quantified using the PicoGreen® dsDNA quantitation kit according to

the manufactureres protocol (Molecular Probes, Eugene, OR). The PicoGreen® reagent is an

ultrasensitive fluorescent nucleic acid stain for quantitating double-stranded DNA using

bacteriophage lambda DNA as a standard. The amount of cDNA in the sample was expressed as

ng DNA per mL.

Additionally, the purified and quantified PCR products were analysed by sequencing (Microsynth

GmbH, Balgach, Switzerland). The received sequences were aligned to the genes of interest

using the BLAST program (http://www.ncbi.nlm.nih.gov/BLAST) in order to confirm the identity of

the PCR products. For further calculations the molecular weights of the cDNA fragments (Table

2.2) were determined on the basis of the corresponding sequence with the help of a biopolymer

calculator (http://paris.chem.yale.edu/extinct.frames.html).

primer sequence start length Tm
MDR1 forward 5`-ACAGTCCAGCTGATGCAGAGG-3`  1730  21 bp  59.1 °C
MDR1 reverse 5`-CCTTATCCAGAGCCACCTGAAC-3`  2150  22 bp  58.7 °C
MRP1 forward 5`-CACACTGAATGGCATCACCTTC-3`  2173  22 bp  59.1 °C
MRP1 reverse 5`-CCTTCTCGCCAATCTCTGTCC-3`  2489  21 bp  59.8 °C
MRP2 forward 5`-CCAATCTACTCTCACTTCAGCGAGA-3`  3509  25 bp  60.0 °C
MRP2 reverse 5`-AGATCCAGCTCAGGTCGGTACC-3`  3981  22 bp  60.5 °C
MRP3 forward 5`-TCTATGCAGCCACATCACGG-3`  3419  20 bp  59.3 °C
MRP3 reverse 5`-GTCACCTGCAAGGAGTAGGACAC-3`  3746  23 bp  58.8 °C
MRP4 forward 5`-AAGTGAACAACCTCCAGTTCCA-3`  2026  22 bp  57.3 °C
MRP4 reverse 5`-CCGGAGCTTTCAGAATTGAC-3`  2543  20 bp  56.1 °C
MRP5 forward 5`-CTAGAGAGACTGTGGCAAGAAGAGC-3`  570  25 bp  59.0 °C
MRP5 reverse 5`-AAATGCCATGGTTAGGATGGC-3`  902  21 bp  59.6 °C
Villin forward 5`-AGAAAGCCAATGAGCAGGAGAA-3`  926  22 bp  59.1 °C
Villin reverse 5`-ATGGATGTGGCATCGAACTTC-3`  1163  21 bp  58.5 °C
BCRP forward 5'-TTTCAGCCGTGGAACTCTTT-3'  1529  20 bp  56.2 °C
BCRP reverse 5'-TGAGTCCTGGGCAGAAGTTT-3'  1990  20 bp  56.0 °C
ASBT forward 5`-CATCTCTGGTTGCTCTCGTTGTTC-3`  1098  24 bp  61.1 °C
ASBT reverse 5`-TGATGTCTACTTTTCGTCAGGTTGAA-3`  1651  26 bp  60.0 °C

Table 2.1:  Sequence, starting position, length (base pairs), and melting temperature of the primers that were used for

the generation of gene-specific cDNA standards.
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amplicon gene name accession number length molecular weight
MDR1 ABCB1 NM_000927  421 bp 130377.2 g/mol
MRP1 ABCC1 NM_004996  317 bp 97797.4 g/mol
MRP2 ABCC2 NM_000392  473 bp 145684.6 g/mol
MRP3 ABCC3 NM_020038  328 bp 100912.6 g/mol
MRP4 ABCC4 NM_005845  518 bp 159304.6 g/mol
MRP5 ABCC5 NM_005688  333 bp 102594.6 g/mol
Villin VIL1 NM_007127  238 bp 73486.6 g/mol
BCRP ABCG2 NM_004827  462 bp 142064.4 g/mol
ASBT SLC10A2 NM_000452  554 bp 170455.8 g/mol

Table 2.2:  Gene name, gene bank accession number, length (base pairs) and molecular weight of the PCR amplicons

that were used as standards for TaqMan analysis.

2.3 Standard curve method

A standard curve for each gene on each plate is essential for accurate quantification of mRNA

transcript numbers. The standard curves were generated by a serial dilution of cDNA standard

solutions with known amount of PCR template. However, the starting amount for the PCR had to

be evaluated in order to obtain curves that span the range above and below the amount of the

unknown samples. Therefore, the quantified standard solutions were first analysed in TaqMan

assays and then adapted by further dilutions (= standard dilution in equation 1) so that the

obtained curves were adequate.

Linear standard curves were composed by plotting the Ct values of the standards against the log

of their corresponding serial dilution factor. Slope and Y-intercept of the standard curve line were

then calculated by linear regression. By measuring the Ct value of the unknown sample under the

same conditions, its corresponding serial dilution factor (= X  in equation 1) could then be

determined.

Based on this serial dilution factor (X) the number of cDNA molecules of the analysed gene in the

sample (transcript number) could be estimated. Therefore, the number of cDNA fragments in the

applied standard solution (standard 1) was calculated and subsequently multiplied with the serial

dilution factor (X) of the sample. Usually, the transcript number is normalised to 1 µg RNA. The

following equation (equation 1) shows how the transcript number per µg RNA was calculated.
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           C x V x N x X

      standard dilution x MW x 1x1012

Equation 1:  C (ng/mL) is the concentration of the standard determined with the PicoGreen® assay. V (µL) is the

volume of sample cDNA that contains 1 µg of reverse transcribed RNA. This is 100 µL for the common cDNA

concentration of 10 ng/µL. N is Avogadro`s number (6.022x1023 molecules per mol). X is the serial dilution factor of the

sample determined with the standard curve. The standard dilution describes how-fold the standard 1 has been diluted

for adapting the standard curve. MW (g/mol) is the molecular weight of the standard. 1x1012 accounts for conversions of

units.

2.4 Real-time PCR (TaqMan® assay)

The 5`nuclease assay or TaqMan® assay is a highly sensitive method to determine mRNA levels

quantitatively. This method uses a target specific oligonucleotide, the TaqMan probe, which

anneals between the forward and reverse primer sites. The probe carries a reporter dye on the 5`

end (6-carboxy-fluorescein) and a quencher dye on the 3` end (6-carboxy-tetramethyl-rhodamine).

As long as the probe is intact the fluorescence of the reporter dye is suppressed by the quencher

dye. However, during the PCR the DNA polymerase (Taq polymerase) cleaves the probe due to

its 5`-3` exonuclease activity. Now, a fluorescent signal is generated because the reporter dye is

separated from the quencher dye. Consequently, there is an increase of fluorescence after each

PCR cycle. With the ability to measure the PCR products as they are accumulating, in "real time,"

it is possible to measure the amount of PCR product at a point in which the reaction is still in the

exponential range. It is only during this exponential phase of the PCR reaction that it is possible to

extrapolate back to determine the starting amount of template. During the exponential phase in

real-time PCR experiments, a fluorescence signal threshold is determined at which point all

samples can be compared. Therefore, the number of PCR cycles required to generate enough

fluorescent signal to reach this threshold is defined as the cycle threshold, or Ct. These Ct values

are directly proportionate to the amount of starting template and are the basis for calculating

mRNA expression levels. The baseline is defined as the PCR cycles in which a signal is

accumulating but is beneath the limits of detection of the instrument.

Transcript number per µg total RNA  =
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TaqMan experiments were carried out either on a Gene Amp 5700 Sequence Detector using 96

well plates with total reaction volumes of 25 µL, or on a 7900HT Sequence Detection System

using 384 well plates with total reaction volumes of 10 µL (all Applied Biosystems, Rotkreuz,

Switzerland). PCR conditions were throughout 10 min 95°C followed by 40 cycles of 15 s 95°C

and 1 min 60°C. TaqMan Universal PCR Mastermix (Applied Biosystems) was used. Each

reaction contained 1 ng/µL cDNA and the concentrations of primers and probes were 900 nM and

225 nM, respectively. Primers and probes (Table 2.3) were designed according to the guidelines

of Applied Biosystems with help of the Primer Express 2.0 software. Primers were synthesized by

Invitrogen (Basel, Switzerland), probes by Eurogentec (Seraing, Belgium).

Gene Probe start length Tm
MDR1 5`-AAGCTGTCAAGGAAGCCAATGCCTATGACTT-3` 1929 31 bp 69.0 °C
MRP1 5`-CCTCCACTTTGTCCATCTCAGCCAAGAG-3` 2267 28 bp 69.0 °C
MRP2 5`-CTCAATATCACACAAACCCTGAACTGGCTG-3` 3773 30 bp 68.0 °C
MRP3 5`-CCAACCGGTGGCTGAGCATCG-3` 3608 21 bp 69.0 °C
MRP4 5`-CAAACCGAAGACTCTGAGAAGGTACGATTCCT-3` 2094 32 bp 68.4 °C
MRP5 5`-CTGACGGAAATCGTGCGGTCTTGG-3` 804 24 bp 69.0 °C
Villin 5`-TCATCAAAGCCAAGCAGTACCCACCAAG-3` 977 28 bp 69.2 °C
BCRP 5`-CCATTGCATCTTGGCTGTCATGGCTT-3` 1883 26 bp 69.4 °C
ASBT 5`-TTCAGCTCTCCTTCACTCCTGAGGAGCTC-3` 1419 29 bp 69.0 °C

Gene Forward Primer start length Tm
MDR1 5`-CTGTATTGTTTGCCACCACGA-3` 1854 21 bp 58.0 °C
MRP1 5`-GGGCTGCGGAAAGTCGT-3` 2236 17 bp 58.0 °C
MRP2 5`-ACTGTTGGCTTTGTTCTGTCCA-3` 3746 22 bp 58.4 °C
MRP3 5`-GGTGGATGCCAACCAGAGAA-3` 3567 20 bp 59.0 °C
MRP4 5`-AAGTGAACAACCTCCAGTTCCAG-3` 2026 23 bp 58.3 °C
MRP5 5`-CTGCAGTACAGCTTGTTGTTAGTGC-3` 768 25 bp 59.0 °C
Villin 5`-CATGAGCCATGCGCTGAAC-3` 957 19 bp 59.9 °C
BCRP 5`-CAGGTCTGTTGGTCAATCTCACA-3` 1859 23 bp 58.7 °C
ASBT 5`-ACGCAGCTATGTTCCACCATC-3` 1397 21 bp 59.0 °C

Gene Reverse Primer start length Tm
MDR1 5`-AGGGTGTCAAATTTATGAGGCAGT-3` 1992 24 bp 59.0 °C
MRP1 5`-AGCCCTTGATAGCCACGTG-3` 2315 19 bp 57.0 °C
MRP2 5`-CAACAGCCACAATGTTGGTCTCTA-3` 3845 24 bp 60.0 °C
MRP3 5`-GCAGTTCCCCACGAACTCC-3` 3651 19 bp 59.0 °C
MRP4 5`-GGCTCTCCAGAGCACCATCT-3` 2144 20 bp 58.0 °C
MRP5 5`-TCGGTAATTCAATGCCCAAGTC-3` 860 22 bp 59.8 °C
Villin 5`-TCATTCTGCACCTCCACCTGT-3` 1028 21 bp 59.2 °C
BCRP 5`-TCCATATCGTGGAATGCTGAAG-3` 1936 22 bp 58.7 °C
ASBT 5`-GCGGGAAGGTGAATACGACA-3` 1469 20 bp 60.0 °C

Table 2.3:  Sequence, starting position, length (base pairs), and melting temperature of the primers and probes that

were used for TaqMan analysis.
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3.1.1 Abstract

Efflux transporters such as P-glycoprotein and multidrug resistance-associated proteins (MRPs) in

the intestinal wall restrict intestinal drug transport. To overcome this limitation for enteral drug

absorption, galenical targeting approaches have been proposed for site-specific luminal drug

release in segments of the gut, where expression of the respective absorption-limiting transporter

is minimal. Therefore, expression of multidrug resistance gene 1 (MDR1) and MRP1-5 was

systematically investigated in 10 healthy subjects. Biopsies were taken from different segments of

the gastrointestinal tract (from duodenum, terminal ileum as well as ascending, transverse,

descending, and sigmoid colon). Gene expression was investigated by quantitative real-time PCR

(TaqMan). MRP3 appeared to be the most abundantly expressed transporter in the investigated

parts of the human intestine, except for the terminal ileum, where MDR1 showed the highest

expression. The ranking of transporter gene expression in the duodenum was

MRP3>>MDR1>MRP2>MRP5>MRP4>MRP1. In the terminal ileum the ranking order was as

follows: MDR1>MRP3>>MRP1≈MRP5≈MRP4>MRP2. In all segments of the colon (ascending,

transverse, descending, and sigmoid colon), the transporter gene expression showed the

following order: MRP3>>MDR1> MRP4≈MRP5>MRP1>>MRP2. We have shown, for the first

time, systematic site-specific expression of MDR1 and MRP along the gastrointestinal tract in

humans. All transporters showed alterations in their expression levels from the duodenum to

sigmoid colon. The most pronounced changes were observed for MRP2 with high levels in the

small intestine and hardly any expression in colonic segments. This knowledge may be useful to

develop new targeting strategies for enteral drug delivery.

3.1.2 Introduction

Efflux transporters in the intestinal wall form a barrier to cellular accumulation of toxins as well as

to drug absorption (Schinkel, 1997). Important efflux proteins in the gut are P-glycoprotein [gene

product of the multidrug resistance 1 (MDR1) gene] and multidrug resistance-associated protein

(MRP) transporters. They belong to the superfamily of ATP-binding cassette (ABC) transporters.

ABC transporters mediate the translocation of a wide variety of substances across cellular

membranes using ATP hydrolysis (Horio et al., 1991; Senior et al., 1995). The expression of ABC

transporter genes is widespread throughout many tissues, most notably in excretory sites such as

the liver, kidney, blood-brain barrier, and intestine. Therefore, they play a critical role in absorption

and tissue distribution of orally administered drugs (Schuetz et al., 1998; Ambudkar et al., 1999).

Due to their broad substrate specificity, they may influence the pharmacokinetics of many
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chemically unrelated substances (e.g., HIV drugs, anticancer drugs, endogenous compounds)

(Lee et al., 1997; Schinkel, 1998; Schuetz et al., 1999; Borst et al., 2000). MDR1 preferentially

extrudes large hydrophobic, positively charged molecules, whereas the members of the MRP

family extrude both hydrophobic uncharged molecules and water-soluble anionic compounds.

There is little knowledge about the expression pattern of those ABC transporters along the human

intestine. Taipalensuu investigated gene expression of 10 ABC transporters in jejunal biopsies

from healthy subjects (Taipalensuu et al., 2001). The highest expression was shown for breast

cancer resistance protein and MRP2. Nakamura investigated the expression of three ABC

transporters in duodenal and colorectal tissues in humans (Nakamura et al., 2002). In comparison

to duodenum, in colon they found a decrease in MDR1 expression, equal levels of MRP1, and a

strong decrease in MRP2 expression. However, this comparison was not obtained in the same

subjects. Therefore, the intraindividual expression differences between these transporters could

not be assessed.

Knowledge of the topographical distribution may be important for the development of specific

galenical targeting approaches, which may be utilized to improve intestinal absorption of drugs.

Therefore, in this study, the expression of MDR1 and MRP1-5 genes was investigated in the

human intestine of 10 healthy subjects.

3.1.3 Materials and methods

Intestinal biopsies

Intestinal biopsies were obtained from a group of 10 healthy subjects (5 female, 5 male, aged

50–76 years, average age 62 years, no medication), which served as a control group in a clinical

study designed to investigate the regional expression of different genes in patients with

inflammatory bowel disease. The study protocol included specifically the investigation of drug-

transporting proteins and was approved by the local ethical committee. Informed consent was

obtained from all subjects prior to inclusion. No macroscopically pathological findings were

observed during endoscopies in these subjects. Three to four biopsies were obtained from

duodenum, terminal ileum, ascending colon, transverse colon, descending colon, and sigmoid

colon (Figure 3.1). Due to low enterocyte content, duodenal biopsies from one subject had to be

discarded, leading to nine duodenal samples.
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Figure 3.1   Schematic overview of biopsy sampling. Samples were taken from the duodenum (A), terminal ileum (B),
ascending colon (C), transverse colon (D), descending colon (E), and sigmoid colon (F).

Preparation of Samples

The samples were immediately submerged in a tube with RNAlater (Ambion, Austin, TX) and

stored at 80°C until further processing. For RNA isolation, two biopsies from each intestinal region

were homogenized for 30 s (Polytron PT 2100; Kinematika AG, Littau, Switzerland) and RNA was

extracted using the RNeasy Mini Kit (QIAGEN GmbH, Hilden, Germany) following the instructions

provided by the manufacturer. RNA was quantified with a GeneQuant photometer (Pfizer, Inc.,

Täby, Sweden). After DNase I digestion (Invitrogen, Basel, Switzerland), 1.5 µg of total RNA was

reverse-transcribed by SuperScript (Invitrogen) according to the manufacturer’s protocol, using

random hexamers as primers.
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TaqMan analysis was described in chapter 2.

Sequences of primers/probes are displayed in table 2.3.

Normalization to villin expression

For each sample, the number of transporter transcripts (MDR1, MRP1–5) and the number of villin

transcripts were determined. By calculating the ratio of transporter/villin mRNA, the transporter

expression was normalized. Enterocytes represent only a small fraction of the cells obtained in an

intestinal biopsy. Determination of villin, an enterocyte-specific, constitutively expressed protein,

can be used to control for the variation of enterocyte content in biopsy (Lown et al., 1994).

Therefore, transporter mRNA concentrations were expressed as a ratio with the villin levels of the

same samples. These villin-corrected values provide a relative measure of enterocyte

concentration (Lown et al., 1997). Results with this approach have already been published

(Taipalensuu et al., 2001; Mouly and Paine, 2003).

Statistical analysis

Gene expression was compared between the different intestinal segments by analysis of

variance. In the case of significant differences, all segments were compared with the expression

in duodenum using two-sided Dunnett’s multicomparison t test. The level of significance was

P<0.05. Comparisons were performed using SPSS for Windows software (version 11.0; SPSS

Inc., Chicago, IL).

3.1.4 Results

There was a considerable interindividual variability of transporter gene expression amounting on

average to 34% (CV%). Figure 3.2 displays the expression and ranking of all transporters in the

analyzed tissues normalized to villin. MRP3 appeared to be the most abundantly expressed

transporter in the investigated parts of the human intestine, except for the terminal ileum where

MDR1 showed the highest expression. The ranking of transporter gene expression in the

duodenum was MRP3 >> MDR1 > MRP2 > MRP5 > MRP4 > MRP1. In the terminal ileum the

ranking order was as follows: MDR1 > MRP3 >> MRP1 ≈ MRP5 ≈ MRP4 > MRP2. In all segments

of the colon (ascending, transverse, descending, and sigmoid colon), the transporter expression

showed the following order: MRP3 >> MDR1 > MRP4 ≈ MRP5 > MRP1 >> MRP2.
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Figure 3.2: Expression of all investigated transporters in the analyzed tissues normalized to villin expression. Data
represent means (± SEM) of biopsies from 10 health subjects, except duodenum, where biopsies from 9 subjects were
used.

Figure 3.3 shows the expression pattern of each individual transporter from the duodenum to the

sigmoid colon normalized to villin. Compared with the duodenum, the expression of MDR1 was 4-

fold higher in the terminal ileum and approximately 2-fold higher in the colonic segments. MRP1

exhibited a 2- to 3-fold higher expression in both the terminal ileum and colon compared with

duodenum. MRP2 showed highest expression in the duodenum, half-levels in the terminal ileum,

and hardly any MRP2 transcripts in each colonic segment. MRP3, MRP4, and MRP5 exhibited a

similar expression pattern with equal levels in the duodenum and terminal ileum, but a 2- to 3-fold

increase in the colon. Within the colon, MRP1, MRP3, and MRP5 showed an expression pattern

with decreasing levels from proximal to distal, whereas MDR1, MRP2, and MRP4 levels remained

rather constant.
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Figure 3.3 (A – F): Transporter specific gene expression in different gut segments normalized to the villin expression.
A: MDR1, B: MRP1, C: MRP2, D: MRP3 E: MRP4 and F: MRP5. Data represent means (± SEM) of biopsies from 10
health subjects, except duodenum, where biopsies from 9 subjects were used.
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3.1.5 Discussion

Only little information is available about the expression of ABC transporters along the intestinal

tract. Available information relates mainly to MDR1 and MRP2 expression (Dietrich et al., 2003;

Lindell et al., 2003). Furthermore, previous studies have focused on isolated parts of the intestine

(Taipalensuu et al., 2001; Lindell et al., 2003), on animal models (Achira et al., 2002; Takara et

al., 2003), or on cancer cells (Nakamura et al., 2002; Li et al., 2003; Pfrunder et al., 2003a). Here,

we present a systematic investigation of multidrug resistance protein mRNA expression in various

parts of the human intestine from proximal to distal within the same subject. One drawback of the

study is the lack of samples from the jejunum, an important site for drug absorption. The subjects

in our study underwent combined gastroscopy and colonoscopy procedures for screening of

gastrointestinal cancer. Therefore, an additional jejunoscopy was not performed. However,

Taipalensuu and co-workers focused on the human jejunum and found a transporter expression

with the following ranking: MRP2 > MDR1 ≈ MRP3 > MRP5 ≈ MRP1 > MRP4 (Taipalensuu et al.,

2001). Besides the high MRP2 levels, the transporter expression pattern in the jejunum shows

strong similarity to the pattern we found in the terminal ileum, which is conclusive because of the

proximity of these tissues.

It is suggested that MDR1 physiologically functions as a gatekeeper against xenobiotics in the gut.

The bioavailability of many drugs is reduced due to MDR1 efflux. MDR1 shows extremely broad

substrate specificity, including anticancer agents, antibiotics, antivirals, calcium channel blockers,

and immunosuppressants. With respect to the expression of MDR1 in the human intestine, an

increase from proximal to distal was stated, with the highest expression levels documented in the

colon (Fricker et al., 1996; Dietrich et al., 2003; Chan et al., 2004). In mice, however, Chianale

and co-workers found the highest levels of mdr3 mRNA in the ileum (Chianale et al., 1995). In the

rat intestine, the P-glycoprotein-mediated drug efflux showed highest activity in the ileum as well

(Stephens et al., 2001). We could also demonstrate, in humans, higher MDR1 mRNA levels in the

terminal ileum compared with the duodenum. These results are consistent with human data from

Mouly and Pain, who reported an increase in P-glycoprotein from duodenum to ileum (Mouly and

Paine, 2003). Additionally, our results indicate the highest MDR1 expression in the terminal ileum

within the investigated segments of the human intestine. It appeared to be 4-fold higher in the

terminal ileum compared with the duodenum and 2-fold higher compared with the colon.

Moreover, MDR1 was the most abundantly expressed transporter in the terminal ileum compared

with all other ABC transporters that were analyzed in this study.

MRP1 showed the lowest variation in mRNA levels within the intestinal tract. This is in good

agreement with the fact that MRP1 is expressed ubiquitously. Physiologically important substrates
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for MRP1 include glutathione S -conjugates such as leukotriene C4, as well as bilirubin

glucuronides (Keppler et al., 1998). In addition, anionic drugs and drugs conjugated to glutathione,

like methotrexate or arsenite, are also transported by MRP1 (Bakos et al., 2000; Vernhet et al.,

2000).

A previous study revealed that MRP2 is the ABC transporter with the highest expression besides

breast cancer resistance protein in the human jejunum (Taipalensuu et al., 2001). We found

relatively low MRP2 levels in the human duodenum and even lower levels in the terminal ileum,

but almost no MRP2 expression in the entire colon. These results were also found in the rat

intestine (Mottino et al., 2000; Rost et al., 2002), but up to now, they were not confirmed in

humans. Our results are also consistent with the expression pattern of glutathione S-transferase

in the human gastrointestinal tract mucosa (Coles et al., 2002). This phase II metabolizing

enzyme provides the conjugated compounds for subsequent export by MRP2 or MRP1. The

substrate specificity of MRP2 is similar to that of MRP1, and includes glutathione conjugates,

bilirubin glucuronides, and a number of drugs and their conjugated drug metabolites (Jedlitschky

et al., 1997; Kawabe et al., 1999). These drugs include pravastatin, temocaprilat, irinotecan, SN-

38, arsenite, cisplatin, methotrexate, vincristine, saquinavir, and ceftriaxone (Kusuhara and

Sugiyama, 2002; Dietrich et al., 2003). Regarding the amount of drugs transported by MRP2, a

drug targeting which circumvents absorption sites with high MRP2 expression would be of benefit,

especially for drugs with low bioavailability.

MRP3 transports a wide range of bile salts and seems to be involved in their reabsorption

(Hirohashi et al., 2000). MRP3 transfection of cell lines conferred resistance to

epipodophyllotoxins, vincristine and methotrexate (Kool et al., 1999). For MRP3, Rost and co-

workers showed low expression in the rat duodenum and high expression in the ileum and colon

(Rost et al., 2002). Our human data indicate low MRP3 levels in the duodenum as well as in the

terminal ileum but also high expression in the colon. Within the colon, MRP3 expression

diminished slightly from proximal to distal segments. This reduction in transporter expression from

ascending to sigmoid colon was observed for MRP1, MRP3, and MRP5. Interestingly, all of these

transporters are located on the basolateral membrane. For MDR1, MRP2, and MRP4, probably

located on the apical membrane (Chan et al., 2004) we observed rather constant expression

levels throughout the entire colon.

With respect to MRP4, we found equal expression levels in the duodenum and the terminal ileum

but a 3-fold increase in the colon. To our knowledge, there is no previous publication on the MRP4

expression in the colon. The significance of MRP4 in drug transport is at present unclear.

However, an overexpression of MRP4 severely impaired the antiviral efficacy of adefovir,
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azidothymidine, and other nucleoside analogs in cell lines (Schuetz et al., 1999). Other substrates

include folic acid, bile acids, methotrexate, and 6-mercaptopurine (Wielinga et al., 2002; Chan et

al., 2004). A physiological role of MRP4 might be the release of prostaglandins from cells (Reid et

al., 2003).

MRP5 expression appeared to be concordant to MRP4 expression with low levels in the

duodenum and the terminal ileum, but a 2-fold increase in the different colon segments. Both

transporters have an affinity to nucleotide-based substrates. There are no reports, at present,

which could suggest a role for MRP5 in intestinal drug disposition. Experiments with transfected

cells showed enhanced efflux of 2,4-dinitrophenyl-S-glutathione, adefovir, and the purine analogs

6-mercaptopurine and thioguanine (Wijnholds et al., 2000). Jedlitschky and co-workers

demonstrated that MRP5 transports the cyclic nucleotides cAMP and cGMP (Jedlitschky et al.,

2000), but the physiological function of this transporter remains to be elucidated.

Although our results indicate significant changes of MDR1 and MRP1-5 gene expression in

investigated parts of the human intestine, this does not necessarily correlate with protein

expression or function. Additional studies regarding the effect of expression on protein levels are

therefore required.

The impact of these transporters should be evaluated for drugs permeating epithelial barriers,

especially during pharmacological development of novel classes of therapeutic compounds.

Selectivity of inhibitors, in particular, for human efflux transporters located at the apical mucosal

membrane (such as MDR1, MRP2, and MRP4), remains to be examined, and further studies are

required. Therefore, the knowledge of the transporter expression throughout the human intestine

might be of special value.

Conclusion

We have shown, for the first time, systematic site-specific expression of MDR1 and MRP isoforms

along the gastrointestinal tract in humans. All transporters showed alterations in their expression

levels from the duodenum to the sigmoid colon. The most pronounced changes were observed for

MRP2, with high levels in the small intestine and hardly any expression in colonic segments. This

knowledge may be useful to develop new targeting strategies for enteral drug delivery.
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3.2 Breast cancer resistance protein (BCRP) mRNA expression in the

human intestinal tract

3.2.1 Abstract

Human breast cancer resistance protein (BCRP/ABCG2) is an ABC-transporter that is present on

the luminal membrane of intestinal epithelial cells and restricts absorption of anticancer drugs

such as methotrexate, topotecan, mitoxantrone, and doxorubicin. The exact anatomic distribution

of BCRP along the gastrointestinal tract has, however, not been determined before. The aim of

this study was therefore to investigate its mRNA expression pattern along the intestine in 14

healthy subjects (7 women, 7 men). Furthermore, duodenal mRNA expression of BCRP was

compared with MDR1. Since previous animal studies observed sex specific differences in BCRP

expression we analyzed intestinal BCRP expression with respect to sex. Biopsies were taken from

different gut segments (duodenum, terminal ileum and ascending, transverse, descending, and

sigmoid colon). Gene expression was assessed by quantitative real-time RT-PCR (TaqMan).

BCRP mRNA expression decreased continuously from the proximal to the distal parts of the

intestine. Compared to duodenum, the expression decreased to 93.7 percent in terminal ileum, to

75.8 percent in ascending colon, to 66.6 percent in transverse colon, to 62.8 percent in

descending colon, and to 50.1 percent in sigmoid colon. BCRP expression was comparable to

MDR1 expression in the duodenum. Differences in BCRP expression related to sex were not

observed. These findings represent the first systematic site-specific analysis of BCRP expression

along the intestinal tract. This knowledge might be important to develop target strategies for orally

administered anticancer drugs.

3.2.2 Introduction

BCRP (ABCG2) is a half-transporter that belongs to the G subfamily of ATP-binding cassette

(ABC) transporters. BCRP needs the dimerisation to homodimers for proper function (Ozvegy et

al., 2001). However, it is possible that heterodimeric forms of BCRP combined with another half

transporter exist in mammalian systems (Nakanishi et al., 2003). Similar to MDR1, BCRP was

detected and cloned from multi-drug resistant tumor cells (Doyle et al., 1998; Miyake et al., 1999;

Scheffer et al., 2000) It displays a wide substrate specificity and mediates the energy-dependent

translocation of various anticancer drugs such as methotrexate, daunorubicin, doxorubicin,

mitoxantrone, SN38, and topoisomerase inhibitors (such as topotecan) across cellular
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membranes (Doyle et al., 1998; Schellens et al., 2000; Nakanishi et al., 2003; Volk and

Schneider, 2003).

BCRP expression was detected mainly in excretory organs, e.g. in cannalicular membranes of the

liver, in epithelial cells of the small intestine, colon, kidney and lung, as well as in the blood-brain

barrier and the placenta (Maliepaard et al., 2001). Its localization indicates an important role in the

protection of tissues against xenobiotics. Particularly, the expression of BCRP in epithelial cells of

the intestine implies, that BCRP might be an important transporter limiting the absorption of orally

administered drugs and ingested toxins.

BCRP knock-out mice were found to be healthy and showed no major pathological alterations.

However, they become extremely sensitive to the dietary chlorophyll-breakdown product

pheophorbide a, resulting in severe, sometimes lethal phototoxic lesions on light-exposed skin

(Jonker et al., 2002). These data provide a striking illustration of the importance of drug

transporters in the protection of the body from toxicity of normal food constituents. Another

example is PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), a dietary carcinogen present

in baked food and cigarette smoke. Its absorption and its hepatobiliary and intestinal elimination

are clearly affected by Bcrp1 in mice (van Herwaarden et al., 2003). Furthermore, BCRP transport

is selectively inhibited by the fungal toxin fumitremorgin (van Loevezijn et al., 2001).

Differences in the transport of endogenous and xenobiotic compounds associated with sex have

been reported previously for several transport proteins (Salphati and Benet, 1998; Urakami et al.,

1999; Buist et al., 2002; Cerrutti et al., 2002; Buist and Klaassen, 2004). Recently, gender

associated differences for Bcrp have also been described (Tanaka et al., 2005). A higher

expression of Bcrp mRNA in the kidney of male rats and in the liver of male mice compared to

females has been observed. These gender differences were attributed to the suppressive effect of

estradiol in rats and to the inductive effect of testosterone in mice, respectively.

Up to know, there is little knowledge about the expression pattern of BCRP along the human

intestine. This knowledge, however, might be important for the development of specific galenical

targeting approaches, which may be utilized to improve intestinal absorption of BCRP substrates

such as anticancer drugs. Therefore, the expression of BCRP was investigated in the human

intestine of 14 healthy subjects (see chapter 3.1.3) and its duodenal expression was compared

with that of MDR1. We further determined, whether there are sex-related differences in human

BCRP mRNA expression along the intestinal tract that might lead to pharmacokinetic variations in

drug absorption.
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3.2.3 Materials and methods

Preparation of intestinal biopsies was described in chapter 3.1.3.

TaqMan analysis and primer/probe sequences were shown in chapter 2.

Statistical analysis

Gene expression was compared between the different intestinal segments, between BCRP and

MDR1, and between male and female by analysis of variance. In the case of significant

differences between intestinal segments, all segments were compared with the expression in

duodenum using two-sided t-test. The level of significance was P =0.05.

3.2.4 Results and discussion

There is information available about the tissue distribution of BCRP in animal species such as rat

and mice (Tanaka et al., 2005) as well as in humans (Maliepaard et al., 2001). Beside other

tissues, human BCRP is expressed in the apical membranes of small intestinal and colonic

epithelial cells, where it might limit the bioavailability of toxic compounds. However, nothing is

known about the site-specific localization of BCRP along the gastro-intestinal tract, which might be

important for the development of specific galenic formulations of anticancer drugs. Here, we

present for the first time a systematic analysis of the site-specific expression of BCRP along the

human intestinal tract.

Figure 3.4 shows the mRNA expression pattern of BCRP from the duodenum to the sigmoid

colon. Maximal expression was found in the duodenum and decreasing levels were found towards

the rectum. In the terminal ileum BCRP mRNA expression is reduced to 93.7 per cent compared

to duodenum. In the colonic segments BCRP mRNA expression is continuously decreasing from

proximal to distal. In ascending colon the BCRP level is reduced to 75.8 percent, in transverse

colon to 66.6 percent, in descending colon to 62.8 percent, and in sigmoid colon to 50.1 percent

compared to duodenum, respectively.

Human jejunum was not investigated in our study due to ethical reasons. Taipalensuu and co-

workers found high BCRP mRNA expression in jejunum (Taipalensuu et al., 2001). They showed

even a 3.4-fold higher expression compared to the MDR1 gene, another important ABC-

transporter of xenobiotics in the intestine. Data in rat have shown that the level of Bcrp gene

expression is higher in the jejunum compared to duodenum (Tanaka et al., 2005). However, it is
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not trivial to conclude from animal data on human, because species differences have been

described even between rodents. Whereas rats expressed high levels of Bcrp in the ileum, the

ileal level of Bcrp mRNA in mice was rather low. Nevertheless one is tempted to speculate, that

BCRP expression level might be maximal in the human jejunum as well.

Differences in the membrane transport of xenobiotics and endogenous compounds caused by

different levels of sexual hormones such as testosterone and estradiol have been described

previously in several animal studies with rats (Urakami et al., 2000; Kobayashi et al., 2002). These

gender related differences in membrane transport includes several transporters such as organic

cation transporters, organic anion transporters, and multidrug resistance proteins Mdr1a, Mdr1b

and Mdr2. Recently, sex-related differences of Bcrp expression levels in rodents have also been

described (Tanaka et al., 2005). Male rats exhibited higher expression levels in kidney and liver

compared to female rats. In our study, we found no significant differences in the expression level

of BCRP mRNA between males and females, neither in duodenum and terminal ileum, nor in all

colonic segments of the intestinal tract. We therefore conclude, that sexual hormones have most

probably no effect on the expression pattern of BCRP in the human intestine.

To estimate the impact of BCRP for detoxification, we compared the level of BCRP mRNA with

the level of MDR1 mRNA in the duodenum. Figure 3.5 shows that both MDR1 and BCRP mRNA

is expressed in the same range in the duodenum, with a slight but significant lower expression of

BCRP (p<0.05). However, since both transporters are highly expressed in the small intestine and

both transporters have a broad and overlapping substrate specificity, these findings indicate that

along with MDR1, BCRP might play an important role for limiting the absorption of orally

administered anticancer drugs and ingested toxins.

In conclusion, these findings represent the first systematic site-specific analysis of BCRP

expression along the human intestinal tract. We showed that BCRP expression significantly

decreased from the distal to the proximal parts of the gut and we observed no gender-specific

differences. This knowledge might be important for the development of target strategies for orally

administered anticancer drugs.
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Figure 3.4: Expression of BCRP mRNA normalized to villin in different gut segments. Data represent means (± SEM) of

biopsies from 14 healthy subjects (7 males, 7 females), except terminal ileum, where biopsies from 13 subjects (6

males, 7 females) were used.

Figure 3.5: Expression of BCRP mRNA and MDR1 mRNA in human duodenum normalized to the expression of villin.

Data represent means (± SEM) of biopsies from 14 healthy subjects.
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3.3 Mapping of the apical sodium-dependent bile salt transporter

(ASBT) in the human intestine and evaluation

of gender-specific differences

3.3.1 Introduction

Bile acids are essential for normal intestinal lipid digestion and absorption. In the small intestine,

bile acids emulsify dietary fats and lipid-soluble vitamins and regulate pancreatic secretion and the

release of gastrointestinal peptides (Koop et al., 1996). But rather than being excreted, the

majority of bile acids undergo enterohepatic circulation (Wong et al., 1996). They are reabsorbed

from the intestine and reach the liver via the portal circulation. In the liver, bile acids are

quantitatively extracted and resecreted into bile. The small amount of fecal bile salt loss (~5% of

the total) is balanced by hepatic conversion of cholesterol to bile salts, a process representing an

important route for the elimination of cholesterol from the body (Vlahcevic et al., 1999).

The enterohepatic circulation is dependent on several transport systems (Dawson and Oelkers,

1995; Trauner and Boyer, 2003). The hepatocellular bile salt uptake is mediated predominantly by

the Na+/taurocholate cotransport polypeptide (NTCP) and by the organic anion-transporting

polypetides (OATP-C in humans) located at the sinusoidal plasma membrane of hepatocytes. Bile

salt secretion into bile is mediated by the bile salt export pump (BSEP) located on the canalicular

membrane of hepatocytes. After their passage through the small intestine, bile salts are actively

reabsorbed in the terminal ileum, where the apical sodium-dependent bile salt transporter (ASBT)

has been identified as the responsible uptake protein.

ASBT (SLC10A2) is a 348-amino acid membrane glycoprotein with an apparent molecular mass

of approximately 50 kDa (Wong et al., 1995). It transports conjugated and unconjugated bile acids

with a high efficiency (Craddock et al., 1998). Subjects with mutations in the ASBT gene that lead

to dysfunctional protein suffer from congenital diarrhea and steatorrhea, due to bile acid

malabsorption (Oelkers et al., 1997). Pharmacological inhibition of ASBT can also lead to

interruption of enterohepatic circulation of bile acids with changes in the cholesterol and bile acids

homeostasis (Lewis et al., 1995; Huff et al., 2002; West et al., 2002).

To the current knowledge, ASBT is expressed at high levels on the apical brush border membrane

in terminal ileum and at lower levels in renal proximal tubules (Craddock et al., 1998) and in

cholangiocytes (Lazaridis et al., 1997). Regarding the human intestine, the knowledge of ASBT

expression is restricted to the terminal ileum. This prompted us to compare ileal ASBT expression
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with its expression in the duodenum and in different parts of the colon. Therefore, 14 healthy

subjects (7 women, 7 men) who were undergoing a combined gastroscopy and colonoscopy were

enrolled in this study (see chapter 3.1.3). Furthermore we determined gender-specific differences

in the ASBT expression within our study population. Additionally, in vitro experiments were

performed to evaluate the impact of sex hormones on ASBT expression in Caco-2 cells.

3.3.2 Materials and methods

Preparation of intestinal biopsies was described in chapter 3.1.3.

TaqMan analysis and primer/probe sequences were shown in chapter 2.

Incubation of Caco-2 cells with sex hormones

Caco-2 cells (used between passage 46-50) were purchased from ATCC (Manassas, USA) and

were cultured in Dulbecco’s MEM with Glutamax-I, supplemented with 10% fetal calf serum, 1%

non-essential amino acids, 1% sodium pyruvate, and 50 µg/ml gentamycin. Cells were seeded

into 12-well plastic culture dishes (3.8 cm2/well, BD Falcon AG, Allschwil, Switzerland) and were

maintained in a humidified 37°C incubator with 5% carbon dioxide in air atmosphere. After cells

were grown to confluence incubations were performed for 72 h including daily change of the

media. They were treated in triplicates with 0.1, 1, and 10 µM ethinylestradiol, 10 and 50 ng/mL

progesterone, and 10, 20, and 25 µM budesonide (all from Sigma-Aldrich, St. Luis, MO, USA).

Budesonide was used as a positive control for ASBT induction. The compounds were dissolved in

dimethyl sulfoxide (DMSO), whereas the final DMSO concentration did not exceed 1%. After 72

hours cells were disintegrated by adding lysis buffer RLT (Qiagen, Hilden, Germany) and

homogenized by using QIAshredder columns (Qiagen). Total RNA was extracted using the

RNeasy Mini Kit (Qiagen). After DNaseI digestion (Gibco, Life Technologies, Basel Switzerland)

0.75 µg of total RNA was reversed transcribed by Superscript (Gibco) according to the

manufacturer’s protocol using random hexamers as primers (Applied Biosystems, Rotkreuz,

Switzerland).
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3.3.3 Results

Expression of ASBT mRNA in the human intestine

The expression pattern of ASBT mRNA in the human intestine was studied in 14 control subjects

(Figure 3.6). Results were normalized to villin expression (ASBT mRNA / villin mRNA). We

observed a pronounced ASBT expression in the terminal ileum, about 6-fold less expression in

the duodenum and hardly any expression in the colon. The normalized ASBT expression

(arbitrary units ± SEM) was 171.8 (± 20.3) in the duodenum, 1010 (± 330) in the terminal ileum,

8.3 (± 5) in the ascending colon, 4.9 (± 0.9) in the transverse colon, 4.8 (± 1.7) in the descending

colon, and 1.1 (± 0.2) in the sigmoidal colon.

Gender-specific ASBT expression in the terminal ileum

We analyzed the data for sex-related differences. Only the biopsies obtained from terminal ileum

showed gender-specific differences concerning their ASBT mRNA expression (Figure 3.7).

Normalized ileal ASBT expression (± SEM) in women was 1426.8 (± 576.8), in men 533 (± 114.6).

Women exhibited a 2.7-fold higher mean ASBT expression than men, however, the difference

was not statistically significant.

Impact of sex hormones on the expression of ASBT in Caco-2 cells

Incubation with 0.1, 1, and 10 µM ethinylestradiol and 10 and 50 ng/mL progesterone for 72 h did

not change the amount of ASBT mRNA in Caco-2 cells (Figure 3.8). Budesonide, as a positive

control, showed a dose-dependent induction. ASBT mRNA amount increased 1.47-, 1.72-, and

1.82-fold compared to control cells using budesonide concentrations of 10, 20, and 25 µM,

respectively.
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Figure 3.6: ASBT mRNA expression in different gut segments normalized to villlin expression. Data represent means

(±SEM) of biopsies from 14 healthy subjects.

Figure 3.7: ASBT mRNA expression normalized to villin (±SEM). Biopsies were obtained from the terminal ileum of 6

men and 7 women. Difference is not significant.
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Figure 3.8: ASBT mRNA expression in Caco-2 cells normed to control. Cells were treated for 72 h with ethinylestradiol

(EE), progesterone (PG), and budesonide (Bud). Values represent mean (±SEM).

3.3.4 Discussion

Our results indicate that human ASBT mRNA is expressed in the small intestine, predominantly in

the terminal ileum but also, to a lower extent, in the duodenum. In the colonic segments only slight

expression levels were observed. Since ASBT is seen as a potential target in pharmacotherapy

(Hagenbuch and Dawson, 2004), data about the precise anatomic expression of this transporter

are of relevance.

It was shown that the inhibition of intestinal reabsorption of bile salts results in an increase of

hepatic cholesterol demand, leading to elevated low-density lipoprotein (LDL) receptor levels and

decreased plasma LDL (Huff et al., 2002; West et al., 2002; Li et al., 2004). The use of binding

resins was an early therapeutic strategy to increase fecal bile salt loss. Alternatively, high-affinity

inhibitors of ASBT have been developed. Therefore, the knowledge of the anatomical distribution

of this transporter can be of value, particularly regarding possible side effects of such inhibitors.

Clinical trials have to assess whether ASBT inhibitors have advantages compared to the

established cholesterol-lowering therapy (e.g. the use of statins).
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Another potential role of ASBT could be a drug targeting, using the specificity of this transporter

for bile salts combined with its high expression in the terminal ileum. ASBT has a very narrow

substrate specificity encompassing only conjugated and unconjugated bile salts with negligible

uptake of other organic anions (Craddock et al., 1998). Since ASBT shows very high expression

in the terminal ileum compared to other tissues, drugs conjugated to bile salts could be targeted to

ileocytes. This could be relevant for patients with Crohn’s disease in whom mainly the ileum is

affected.

Sexual hormones have been attributed to gender-differences in the expression of transporters in

several animal studies with rats (Urakami et al., 2000; Cerrutti et al., 2002; Kobayashi et al., 2002;

Buist and Klaassen, 2004). These transporters include organic cation transporters (OCTs),

organic anion transporters (OATs), multidrug resistance proteins (MDRs), as well as the breast

cancer resistance protein (BCRP). Our study showed gender-related differences in the expression

of ASBT in the terminal ileum of humans. However, due to the small sample size and high inter-

individual variability these differences were not significant. Potential factors for the observed trend

towards elevated expression of ASBT in women were investigated in further in vitro experiments.

The role of sex hormones or hormone replacement therapy on the expression of ASBT was

addressed.

Caco-2 cells are known to express ASBT and Neimark and co-workers showed that in this cell line

ASBT expression can be regulated by bile salts (Neimark et al., 2004). Therefore, we chose

Caco-2 cells to investigate ASBT regulation by sex hormones. As a positive control budesonide

was used since this glucocorticoid induced ASBT mRNA expression in ileal biopsies from healthy

volunteers (Jung et al., 2004). Here we showed a dose-dependent induction in Caco-2 cells by

budesonide. Sex hormones, such as ethinylestradiol and progesterone, however, did not change

the expression levels of ASBT. Therefore, these hormones seem not to have a direct effect on the

transcription of ASBT and further studies are required.

In conclusion, we showed for the first time that ASBT mRNA is expressed in the duodenum of the

human intestine, however, to a lesser extent than in the terminal ileum. Colonic tissues showed

only slight expression levels. Furthermore, gender-specific ASBT expression was observed in the

terminal ileum, with a trend towards higher expression levels in women. Our in vitro data in Caco-

2 cells did not provide evidence for a putative inductive effect of sex hormones on ASBT

expression.
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4.1.1 Abstract

Steroid resistance and inadequate response to glucocorticoid therapy are common problems in

patients with inflammatory bowel disease (IBD). The underlying mechanisms are poorly

understood. The involvement of P-glycoprotein, the product of the multidrug resistance gene

MDR1, in the disposition of steroids has been described. Therefore, increased expression of this

efflux transporter, located in the apical membrane of enterocytes, could lead to subtherapeutic

steroid concentrations. Here, we investigated the hypothesis that steroids can induce MDR1

expression in the intestine using LS180 cells, an established model of the intestinal mucosa. Cells

were treated with budesonide at a concentration of 1, 10, and 50 µM. As a positive control for

MDR1 induction 10 µM rifampicin was used. Total RNA was extracted after incubating the cells for

6 h and 72 h, whereas proteins were extracted after 3 and 5 days of incubation. Real-time RT-

PCR and Western blot analysis were used to determine mRNA and protein levels, respectively.

Budesonide induced MDR1 mRNA expression in a dose-dependent manner at concentrations of

1, 10, and 50 µM. The effects relative to control cells were higher after an incubation time of 72 h

(1.56-, 3.40-, 5.53-fold increase, respectively) compared to 6 h (1.00-, 1.71-, 2.87-fold increase,

respectively). MDR1 protein levels increased substantially after 3 and 5 days of incubation with 50

µM budesonide compared to control cells. In conclusion, in this in vitro system, MDR1 expression

is induced by budesonide, both at the mRNA and the protein level. We propose that the effect of

budesonide on MDR1 expression represents one mechanism of steroid resistance in patients with

IBD.

4.1.2 Introduction

Glucocorticoids are effective in the treatment of inflammatory bowel disease (IBD) by inhibiting the

chronic intestinal inflammation (Malchow et al., 1984; Hanauer, 2004). However, inadequate

response to glucocorticoids and steroid resistance are well known problems in these patients.

Approximately 50% of patients with Crohn`s disease and 20% of patients with ulcerative colitis

require other therapeutic strategies as a result of inefficient steroid treatment (Farrell and Kelleher,

2003). The underlying mechanisms of the glucocorticoid resistance in these patients are poorly

understood.

The involvement of P-glycoprotein (P-gp), the product of the multidrug resistance gene MDR1, in

the disposition of steroids has been previously described (Ueda et al., 1992; Schinkel et al.,

1995). P-gp transports glucocorticoids and many other unrelated drugs out of the target cell

through ATP-dependent efflux. Beside other tissues P-gp is expressed on the surface of

peripheral blood lymphocytes (PBL) (Coon et al., 1991) and on the apical membrane of intestinal
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epithelial cells (Zimmermann et al., 2004), both of which are putative targets of pharmacotherapy

in IBD. It has been shown that IBD patients with constitutive high MDR1 expression in these cells

exhibit a poor response to glucocorticoid treatment (Farrell et al., 2000). Furthermore,

glucocorticoids themselves are known to induce P-gp expression demonstrated in PBL of

glucocorticoid treated patients with ulcerative colitis (Hirano et al., 2004) and in the intestinal cells

of dexamethasone treated rats (Yumoto et al., 2001). Therefore, increased expression of this

efflux transporter by glucocorticoid treatment could lead to subtherapeutic drug concentrations in

the target cells and diminished anti-inflammatory activity.

More recently clinical interest has focused on budesonide (Figure 4.1), a new synthetic

glucocorticoid, for the treatment of active IBD. Budesonide is metabolized extensively

presystemically in the intestinal wall and liver leading to a low systemical bioavailability (Schwab

and Klotz, 2001). This results in a topical antiinflammatory effect on intestinal tissue, with

decreased systemic glucocorticoid adverse effects (Hofer, 2003). Some glucocorticoids are known

to be substrates of P-gp but only recently this was also shown for budesonide (Dilger et al., 2004).

Along the same line P-gp expression was increased after topical budesonide treatment in the

nasal mucosa of 5 patients (Henriksson et al., 1997).

Since there are no data available about P-gp induction in the human intestine by glucocorticoids

including budesonide, we performed a study investigating P-gp mRNA and protein levels after a

dose- and time-dependent incubation of LS180 cells with budesonide. LS180 cells are derived

from human colon carcinoma cells and are an established intestinal in vitro system to measure

P-gp induction (Schuetz et al., 1996; Pfrunder et al., 2003a). We hypothesised that budesonide

might induce MDR1 expression in these human intestinal cells and that this effect might explain

one mechanism of steroid resistance in patients with IBD.

Figure 4.1:  Structure of budesonide

Molecular Weight 430.53, Molecular Formula C25H34O6

(from: http://www.pharmaceutical-

technology.com/projects/astrazeneca/astrazeneca3.html)
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4.1.3 Materials and methods

Cell culture

The LS180 cell line (used between passage 45 and 48) was purchased from ATCC (Manassas,

USA). Cells were cultured in Dulbecco’s MEM with Glutamax-I, supplemented with 10% (v/v) fetal

calf serum, 1% non essential amino acids, 1% sodium pyruvate, 50 µg/ml gentamycin (Invitrogen

AG, Basel, Switzerland). Cells were seeded into 6 well plastic culture dishes (9.2cm2/well, BD

Falcon AG, Allschwil, Switzerland) and were maintained in a humidified 37°C incubator with a 5%

carbon dioxide in air atmosphere. After the cells had reached confluence they were treated with 1,

10, and 50 µM budesonide (Sigma-Aldrich, St. Luis, MO, USA). As a positive control for MDR1

induction 10 µM rifampicin (Fluka Chemie AG, Buchs, Switzerland) was used in parallel. The

compounds were dissolved in dimethyl sulfoxide (DMSO), whereas the final DMSO concentration

did not exceed 1%.

Preparation of cells

After 6 and 72 hours of incubation (n=3) with pure medium, budesonide (1, 10, 50 µM), and

rifampicin (10 µM) the cells were disintegrated by adding lysis buffer RLT (Qiagen, Hilden,

Germany) and homogenized by using QIAshredder columns (Qiagen). Total RNA was extracted

using the RNeasy Mini Kit (Qiagen). RNA was quantified with a GeneQuant photometer

(Pharmacia, Uppsala, Sweden). The purity of the RNA preparations was high as demonstrated by

the 260nm/280 nm ratio (range 1.8-2.0). After DNaseI digestion (Gibco, Life Technologies, Basel

Switzerland) 0.75 µg of total RNA was reversed transcribed by Superscript (Gibco) according to

the manufacturer’s protocol using random hexamers as primers (Applied Biosystems, Rotkreuz,

Switzerland).

TaqMan analysis and sequences of primers/probes were shown in chapter 2.

Western Blot Analysis

Cells were incubated in triplicates for 3 and 5 days with 50 µM budesonide and with medium as a

control. Then proteins were extracted with protein extraction buffer (20 mM Tris-HCl, 1% Igepal

CA-630, 0.5 mM sodium orthovanadate) including 1 mM phenylmethylsulfonyl fluorid (Sigma-

Aldrich) and protease inhibitor mix (8 µM leupeptin hemisulfate, 5 µM bestatine hydrochloride, 2

µg/ml aprotinin, 6 µM E-64, 1 µM pepstatin A). The quantification of the protein content was
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performed with the BCA protein assay kit (Pierce Chemical, Rockford, IL, USA). Protein

concentration was determined by measuring the absorbance at 562 nm with Spectra MAX 250

Microplate Spectrophotometer (Molecular Devices Corporation, California, USA).

For immunoblotting, 75 µg of total protein extract was mixed with Laemmli sample buffer (Bio Rad

Laboratories, Reinach, CH) and transferred to the polyacrylamide gel. Gel electrophoresis was

performed with a Mini Protean 3 Electrophoresis Cell (Bio Rad) applying 80 mA for 40 min for the

stacking gel (4% polyacrylamide) and 120 mA for 1 hour for the separating gel (6.5%

polyacrylamide). After electrophoresis, proteins were blotted to the nitrocellulose membrane (250

mA for 2.5 hours) using a Mini Trans-Blot Cell (Bio Rad). The transfer buffer contained 25 mM

Tris-HCl, 193 mM glycine, and 20% methanol. Protein transfer was verified by Ponceau S

staining. The membrane was blocked overnight at 4°C with PBS containing 5% milk powder and

0.05% Tween 20. After washing for 45 minutes (0.05% Tween in PBS), the membrane was

incubated for 2 hours at 37 °C with the primary, mouse anti-human antibody C219 against P-gp,

0.1 mg/ml (Alexis Corporation, Lausen, CH) diluted 1:50 in PBS containing 0.05% Tween, 1%

bovine serum albumine (BSA) and 1% milk powder. After the first incubation the membrane was

washed 3 times and then incubated with the secondary, horseradish peroxidase-conjugated,

rabbit anti-mouse IgG (Amersham, Buckinghamshire, UK) diluted 1:1000. Secondary antibody

incubation was performed for 1 hour at room temperature. Membranes were washed, and P-gp

detection was performed with the enhanced chemiluminescence system (ECL-Detection-Kit,

Amersham). The molecular weight was identified by using molecular weight Kaleidoscope TM

Standard (Bio Rad).

4.1.4 Results

MDR1 mRNA expression in LS180 cells was induced by budesonide in a dose- and time-

dependent manner (Figure 4.2). After an incubation time of 6 hours budesonide at concentrations

of 1, 10, and 50 µM increased the MDR1 mRNA expression relative to control cells (mean ± SEM)

1.00-fold (±0.22), 1.71-fold (±0.18), and 2.87-fold (±0.24), respectively. After an incubation time of

72 hours the relative increase was 1.56-fold (±0.12), 3.40-fold (±0.58), and 5.53-fold (±0.24),

respectively. Rifampicin (10 µM), as a positive control for P-gp induction, increased MDR1 mRNA

expression 2.90-fold (±0.08) and 13.74-fold (±2.77) after incubation times of 6 and 72 hours,

respectively. Western blot analysis revealed a substantial increase in MDR1 protein levels after 3

and 5 days of incubation with 50 µM budesonide compared to control cells (Figure 4.3).
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Figure 4.2:  Expression of MDR1 mRNA in LS180 cells treated with medium (control), 1, 10, and 50 µM budesonide

and 10 µM rifampicin for 6 and 72 hours. Values are normalized to control cells and represent mean ± SEM (n=3).

Figure 4.3:  Western blot analysis of P-gp in LS180 cells with monoclonal antibody C219. Incubation times were 3 days

(A) and 5 days (B). Columns 1-3 represent cells treated with medium and columns 4-6 represent cells treated with 50

µM budesonide.

A B
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4.1.5 Discussion

In this study we have shown that budesonide induces the expression of MDR1 in an in vitro model

of the human intestine. So far, nothing is known about an effect of budesonide on intestinal P-gp

expression. In one study, increased P-gp content was documented in the nasal mucosa of 5

patients after topical budesonide treatment (Henriksson et al., 1997). With respect to IBD patients,

the effect of glucocorticoid treatment on the P-gp expression in enterocytes would be of special

interest. There are several publications showing that dexamethasone induces P-gp expression in

the intestine of rats (Yumoto et al., 2001; Perloff et al., 2004). Furthermore, drug interactions with

the P-gp substrates cyclosporin A, indinavir and tacrolimus in dexamethasone treated rats have

been reported (Lin et al., 1999b; Shimada et al., 2002; Yokogawa et al., 2002). Extrapolating

these findings to budesonide, a similar effect could be assumed. The present results confirmed P-

gp induction by budesonide in human intestinal cells.

The cells line we chose for this study were LS180 cells, a human colon carcinoma cell line. It has

been shown before that several drugs such as rifampicin, reserpine, phenobarbital and verapamil

can increase P-gp mRNA and protein content in this human cell line (Schuetz et al., 1996). In

vivo, rifampicin treatment increased the P-gp content also in human duodenal biopsies (Greiner et

al., 1999). Since LS180 cells behave like human intestinal cells with respect to P-gp induction, we

used 10 µM rifampicin as a positive control in our experiments. The increase in MDR1 mRNA with

10 µM rifampicin and 50 µM budesonide was equal after 6 hours (about 2.9-fold increase) but

after 72 hours 10 µM rifampicin showed a substantial stronger effect than 50 µM budesonide

(13.74-fold versus 5.53-fold increase, respectively). Therefore, in vivo drug interactions that were

reported for rifampicin (Greiner et al., 1999; Westphal et al., 2000b; Hamman et al., 2001) would

be probably less pronounced for budesonide. The applied budesonide concentrations of 1, 10,

and 50 µM are high, but we infer that they could be relevant local concentrations in the gut lumen

when the drug is applied rectally as an enema. The P-gp expression in the small intestine would,

however, most likely not be affected after rectal administration of budesonide and therefore

interactions with drugs absorbed in the small intestine are not likely.

Other authors (Jung et al., 2004) revealed that budesonide intake increases the expression of the

apical sodium dependent bile acid transporter (ASBT) in ileal biopsies of healthy subjects. They

also showed that the ASBT gene was transactivated by the glucocorticoid receptor. The authors

of the study claimed that ASBT induction by budesonide could be beneficial in patients with

Crohn`s disease who exhibit reduced ASBT expression and suffer from bile acid malabsorption.

Unfortunately, they did not examine P-gp expression in these biopsies. To the current knowledge,
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MDR1 seems to be transactivated by the pregnane X receptor (PXR) (Geick et al., 2001).

Consequently, budesonide seems to have an affinity to both the glucocorticoid receptor and PXR.

IBD patients with general high MDR1 expression in peripheral blood lymphocytes and in intestinal

epithelial cells exhibit a poor response to glucocorticoid treatment (Farrell et al., 2000). The results

of this study also showed a stable MDR1 expression in PBL among patients with IBD and controls

regardless of disease activity or glucocorticoid therapy. The authors did, however, not investigate

MDR1 expression in enterocytes in their patients.  If patients with generally elevated MDR1 levels

experience an additional transient induction through glucocorticoid treatment, this could result in a

state of steroid resistance through markedly enhanced P-gp efflux.

On the other hand, knockout mice deficient for mdr1a P-gp developed an inflammation of the

large intestine similar to inflammatory bowel disease (Panwala et al., 1998). The inflammation was

dependent on the presence of intestinal bacteria, suggesting a function of P-gp to protect the body

from toxins produced by intestinal bacteria. This hypothesis is in concordance with data from

patients with ulcerative colitis where the expression of MDR1 and PXR was significantly reduced

in the colon (Langmann et al., 2004). Reinforcement of the intestinal barrier against bacterial

toxins by increased P-gp expression could therefore be a further beneficial effect of steroid

treatment.

In conclusion, budesonide increases the expression of P-gp in an in vitro model of the human

mucosa. In patients with generally high MDR1 expression budesonide treatment could induce a

state of steroid resistance due to strongly elevated intestinal P-gp levels. In these patients, the

administration of steroids that show less pronounced MDR1 induction might reduce the incidence

of steroid resistance. However, this hypothesis warrants further studies.

Acknowledgement

We thank Ursula Behrens for excellent technical assistance.



- 58 -

4.2 Thalidomide’s potential for interactions with

P-glycoprotein (MDR1)

4.2.1 Abstract

BACKGROUND: There is growing clinical interest in thalidomide for the treatment of various

disorders due to its anti-inflammatory, immunomodulatory, and anti-angiogenic properties. In

numerous clinical trials thalidomide is used as an adjunct to standard therapy. Therefore,

clinicians should be aware of all possible drug-drug interactions that might occur with this drug. P-

glycoprotein (P-gp), a drug efflux transporter that is expressed in many tissues, is the cause of

several drug-drug interactions. Competition for substrate binding or up-regulation of this

transporter can lead to significant changes concerning efficacy or safety of the therapy. In this

study we investigated thalidomide’s potential to cause drug-drug interactions on the level of P-gp.

METHODS: LS180 cells were incubated with thalidomide for 72 h in order to determine P-gp

induction using real-time RT-PCR. A human leukaemia cell line over-expressing MDR1 (CCRF-

CEM/MDR1) was used to measure uptake of rhodamine 123, a P-gp substrate, in the presence of

thalidomide. Dose-dependent and bi-directional transport of thalidomide through Caco-2 cell

monolayers was performed to assess site-directed permeability. Transport rates were determined

using HPLC including chiral separation of the thalidomide enantiomers. RESULTS: Thalidomide

did not induce P-gp expression in LS180 cells. The uptake of rhodamine 123 in CCRF cells over-

expressing MDR1 was not influenced by co-incubation with thalidomide. The transport through

Caco-2 monolayers was linear and the permeability was similar for both directions. No differences

between the thalidomide enantiomers were observed. CONCLUSIONS: Our study indicates that

thalidomide is neither a substrate, nor an inhibitor or an inducer of P-gp. Therefore, P-gp related

drug-drug interactions with thalidomide are not likely.
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4.2.2 Introduction

Thalidomide was widely used in Europe as a sedative-hypnotic drug (Contergan®) since 1956. In

the early 1960s it was withdrawn from the market due to its obvious teratogenic effects. Later, in

1965, it was reported to show remarkable efficacy against erythema nodosum leprosum (Sheskin,

1965). The recent renewed interest in thalidomide is based on its potential to treat inflammatory

and autoimmune disorders and to its antiangiogenic activity (Meierhofer and Wiedermann, 2003).

Thalidomide’s anti-inflammatory and immunomodulatory effects of have been explained by a

degradation of mRNA encoding tumour necrosis factor α (TNF-α) in monocytes (Moreira et al.,

1993). Furthermore, thalidomide seems to inhibit the production of the cancer-associated growth

factor interleukin 6 (Rowland et al., 1998; Kedar et al., 2004) and the production of several other

cytokines (Meierhofer et al., 2001). Clinical applications of thalidomide include aphthous ulcers,

Behçet`s syndrome, rheumatoid arthritis, graft-versus-host disease, and inflammatory bowel

disease. In addition, malignant diseases such as haematological cancers, prostate cancer, and

renal-cell carcinoma have been treated with thalidomide (Singhal and Mehta, 2002; Franks et al.,

2004).

Thalidomide (α-phthalidomidoglutarimide) is a neutral racemic compound derived from glutamic

acid. It is applied in equimolar amounts of (+)-(R)- and (-)-(S)-enantiomers that rapidly interconvert

at physiological pH (Eriksson et al., 1998b). The parent compound undergoes spontaneous

hydrolysis in aqueous solution at pH 7, leading to twelve hydrolysis products (Eriksson et al.,

2001). This nonenzymatic hydrolysis is the main break-down mechanism of thalidomide in the

body, whereas hepatic metabolism seems to play a minor role (Schumacher et al., 1965).

Therefore, only low concentrations of 5-hydroxythalidomide were detectable in a human study

(Eriksson et al., 1998a). Additionally, it was shown in vitro that thalidomide is a poor substrate for

cytochrome P-450 isoenzymes and that it does not inhibit the metabolism of CYP-specific

substrates (Teo et al., 2000). These results suggest that thalidomide is not involved in clinically

important drug-drug interactions caused by an inhibition of cytochrome P-450 metabolism.

However, interactions may also occur at the level of drug transporters such as P-glycoprotein (P-

gp), the gene product of MDR1. This protein appeared to be overexpressed in tumour cells with a

multi-drug resistance phenotype, where it conferred resistance to many unrelated cytotoxic drugs

(Juliano and Ling, 1976). P-gp is an efflux pump, located on the apical membrane of cells. It

actively extrudes a variety of substances and presumably functions as a biological barrier against

xenobiotics and pathogens (Ambudkar et al., 1999). Beside tumour cells, P-gp is generally

expressed in many tissues such as intestine, kidney, liver, and blood brain barrier, where it is

involved in the absorption, distribution and elimination of many drugs (Thiebaut et al., 1987;
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Cordon-Cardo et al., 1990). Due to its broad substrate specificity it influences the

pharmacokinetics of numerous unrelated substances, such as HIV drugs, anticancer drugs and

endogenous compounds. (Lee et al., 1998; Borst et al., 2000; Takara et al., 2002). Therefore,

drugs that induce P-gp expression or inhibit its function can alter the pharmacokinetics of

concomitantly administered P-gp substrates. Many cases of drug-drug interactions on the basis of

these mechanisms have already been described (Lin, 2003). For a drug that is a P-gp substrate,

the outcome of P-gp inhibition can be elevated plasma concentrations, whereas P-gp induction

can lead to decreased plasma concentrations. This can result in side effects or ineffective therapy,

respectively.

Due to its antiangiogenic activity, thalidomide is being tested in patients who suffer from various

cancers (Fanelli et al., 2003). In tumour cells, P-gp is often overexpressed, making them resistant

to P-gp substrates (Juliano and Ling, 1976). Whether thalidomide is a substrate of this transporter

could therefore be of interest. Moreover, many drugs used in cancer therapy, such as actinomycin

C, etoposide, teniposide, paclitaxel, docetaxel, and topotecan, as well as glucocorticoids and

morphine are P-gp substrates. Therefore, the coadministration of a potential inhibitor or inducer of

P-gp could influence the therapy due to the described mechanisms.

Since thalidomide is mostly used as an adjuvant therapy, clinicians should be aware of all

possible drug-drug interactions. So far, there is nothing known about the affinity of thalidomide to

transporter proteins. In this study, it was investigated whether this drug has a potential for

interactions on the level of P-gp. Experiments were performed to determine the effect of

thalidomide on the function and expression of this clinically important drug efflux transporter. This

knowledge can help to assess the risk of P-gp related drug-drug interactions during therapies

where thalidomide is applied. Moreover, it might further elucidate the process of thalidomide

absorption.
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Figure 4.4:  The pharmacokinetics of thalidomide: Biotransformation by cytochrome P-450 enzymes (negligible).

Interconversion of the enantiomers (albumin and pH-dependent). Hydrolysis of the amide bonds (pH-dependent).

4.2.3 Materials and methods

Determination of MDR1 mRNA induction with quantitative real-time RT-PCR

 (+/-)-Thalidomide and rifampicin (Sigma-Aldrich Chemie GmbH, Schnelldorf, Germany) were

dissolved in dimethyl sulfoxide (DMSO). LS180 cell line (used between passage 40 and 45) was

purchased from ATCC (Manassas, USA). Cells were cultured in Dulbecco’s MEM with Glutamax-I,

supplemented with 10% (v/v) fetal calf serum, 1% non essential amino acids, 1% sodium pyruvate

and 50µg/ml gentamycin. Cultures were maintained in a humidified 37°C incubator with a 5%

carbon dioxide in air atmosphere. The cells were seeded into 6 well plastic culture dishes

(9.2cm2/well) and after they had reached confluence they were treated with 10 and 100 µM

thalidomide, and 10 µM rifampicin for 72h. Medium was changed two times per day. At the end of
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the culture period total RNA was extracted using the RNeasy Mini Kit (Qiagen, Hilden, Germany).

RNA was quantified with a GeneQuant photometer (Pharmacia, Uppsala, Sweden). The purity of

the RNA preparations was high as demonstrated by the 260nm/280nm ratio (range 1.8-2.0). After

DNaseI digestion (Gibco, Life Technologies, Basel Switzerland) 1µg of total RNA was reversed

transcribed by Superscript (Gibco, Life Technologies, Basel Switzerland) according to the

manufacturer’s protocol using random hexamers as primers.

TaqMan analysis and sequences of primers/probes were shown in chapter 2.

All samples were run in triplicates. Results are expressed as ratios of MDR1 expression to

GAPDH expression.

Rhodamine 123 uptake in CCRF-CEM/MDR1 cells

CCRF-CEM/MDR1 cells (human leukaemic T-lymphocytes over-expressing MDR1) were a gift

from Altana Pharma Ltd. (Konstanz, Germany). The cells are growing in suspension and were

cultured in RPMI 1640 medium with Glutamax-I, supplemented with 10% FCS and 50 µg/mL

gentamycin. Cells were continuously cultured in the presence of 1 µg/ml vincristine under 5% CO2

/ 95% air atmosphere at 37°C. One day before the experiment, cells were grown in vincristine-free

medium.

Two million CCRF-CEM/MDR1 cells per milliliter were pre-incubated at 37°C for 10 min in the

presence of 10, 100 and 300 µM thalidomide and 100µM verapamil (both Sigma-Aldrich Chemie,

Schnelldorf, Germany), followed by an incubation with additional 5 µM rhodamine 123 (Molecular

Probes, Eugene, OR). After 15 min, rhodamine 123 uptake was stopped by transferring samples

on ice. Cells were washed three times in the presence of the previous applied drug at 4°C and

lysed in 1 % Triton X-100. Aliquots were transferred into Optiplate-96 plates (Packard, Zürich,

Switzerland) and fluorescence of the lysate was analyzed with a HTS 7000 Plus Bio Assay

Reader (Perkin Elmer Ltd., Buckinghamshire, UK) with 485 nm excitation and 535 nm emission

filters. Prior to the assay, possible quenching of rhodamine 123 due to thalidomide or verapamil

was checked for all concentrations used in the uptake experiment.

Transport of (+/-)-thalidomide across Caco-2 cell monolayers

Caco-2 cells (used between passage 54-59) were purchased from ATCC (Manassas, USA). They

were cultured in Dulbecco’s MEM with Glutamax-I, supplemented with 10% fetal calf serum, 1%

non-essential amino acids, 1% sodium pyruvate and 50 µg/ml gentamycin. Cells were seeded

with a density of 6 x 104 cells/cm2 onto Snapwell polycarbonate membrane filters (12 mm
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diameter, 0.4 µm pore size; Costar, Cambridge, MA) and were cultured in standard six well cluster

plates in a humidified 37°C incubator with a 5% carbon dioxide in air atmosphere. 16 days after

seeding, the membranes with the cell monolayer were placed into a diffusion chamber (Costar,

Cambridge, MA). The experiments were performed at 37°C with sample volumes of 4 mL per

compartment. Cells were washed twice and equilibrated for 10 min with preheated transport buffer

(HBSS + 1mM Pyruvate).

Bi-directional transport was initiated by adding transport buffer containing 100 µM thalidomide to

the donor chamber (apical or basolateral side of the cell monolayer). The transport buffer was

removed from the acceptor compartment after 5, 10, 15 and 30 minutes and replaced with fresh

buffer. For the investigation of dose-dependent transport 10, 50, 100, and 250 µM thalidomide

was added to the apical compartment. After 10 minutes the buffer in the basolateral compartment

was removed for analysis.

The drawn samples were instantly acidified with citrate buffer (pH 1.5) and frozen until further

processing. This approach prevents interconversion and hydrolysis of thalidomide enantiomers

(Eriksson and Bjorkman, 1997). The paracellular marker fluorescein isothiocyanate dextran (FITC

dextran, Sigma-Aldrich Chemie GmbH, Schnelldorf, Germany) was used for monitoring the

monolayer integrity after each experiment. FITC dextran transport was measured in a

fluorescence reader (Perkin Elmer HTS Soft 7000 Plus).

The transported amount of thalidomide in the transport buffer samples was determined by

enantioselective HPLC analysis. Therefore, samples were extracted with dichloromethane :

hexane (1:1, v/v), the extraction solvent was evaporated and the residue was re-dissolved in

methanol for the injection into the HPLC system (Merck, Switzerland). The separation of the

thalidomide enantiomers was performed with a chiral column (Chiralcel OJ, 250 x 46 mm, Daicel

Chemical Industries). Anthracene (Riedel-de Haen, Seelze, Germany) served as internal

standard. The mobile phase consisted of ethanol / hexane (65:35, v/v) with a flow rate of 0.85

mL/min at 40°C. Thalidomide enantiomers were quantified with UV-detection at 220 nm using

external standard curves. All solvents were of HPLC quality (LiChrosolv®, Merck, Switzerland).

For the investigation of bi-directional transport, the apparent permeability values (Papp) were

calculated as ΔQ/Δt x 1/A x 1/C0. ΔQ/Δt was determined by plotting the amount of transported

thalidomide enantiomer (µmol) as a function of time (s). Time points were 5, 10, 15, and 30 min.

The slope of the line was calculated using linear regression. A is the surface of the filter (cm2) and

C0 is the thalidomide concentration (µM) in the donor compartment.
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For the determination of dose-dependent transport, the transported amount of each thalidomide

enantiomer (µmol) after 10 min was plotted against the applied concentration. The correlation

coefficients were determined by linear regression.

4.2.4 Results

In LS180 cells, thalidomide treatment had no effect on MDR1 expression. Incubation with 10 and

100 µM thalidomide for 72 hours did not change the MDR1 mRNA transcript number compared to

control (Figure 4.5). Rifampicin, as a positive control for MDR1 induction, increased the

expression 2.5-fold. The expression of the housekeeping gene GAPDH was not altered under any

of the treatments (data not shown).

The uptake of the P-gp substrate rhodamine 123 in CCRF-CEM/MDR1 cells was not significantly

changed by thalidomide treatment compared to control (Figure 4.6). Thalidomide concentrations

of 10, 100 and 300 µM did not influence P-gp function, whereas verapamil showed strong P-gp

inhibition as the intracellular fluorescence of rhodamine increased about 5-fold. At all applied

concentrations thalidomide and verapamil exhibited no quenching regarding the fluorescence of

rhodamine 123 (data not shown).

The bi-directional transport of 100 µM thalidomide across Caco-2 cell monolayers indicates that

the permeability (Papp ) from A to B side was similar to that from B to A side (Figure 4.7). For (+)-

thalidomide the Papp values (cm/s) were 6.89x10-5 and 5.70x105, for (-)-thalidomide 6.90x10-5 and

5.67x10-5, respectively. There was a trend towards increased transport from A to B side (not

significant, p>0.1). The enantiomers showed no differences in their permeability. The ratios Papp (B

to A) over Papp (A to B), as a measure for active transport, were 0.826 and 0.822 for (+)- and

(-)-thalidomide, respectively. Dose-dependent transport of 10, 50, 100, and 250 µM thalidomide

after 10 min appeared to be linear. The correlation coefficients were >0.999 for both enantiomers

(Figure 4.8).
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Figure 4.5:  Expression of MDR1 in LS180 cells. Cells were incubated for 72h. Rifampicin served as a positive control

for MDR1 induction. Values represent mean expression ratios (MDR1 expression / GAPDH expression) ± SEM.

Figure 4.6:  Uptake of R123 in CCRF/MDR1 cells. Verapamil was applied as a P-gp inhibitor. Values represent mean

intracellular R123 fluorescence ± SEM.
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Figure 4.7:  Apparent permeability (Papp) of (+/-)-thalidomide (100 µM) through Caco-2 cells. The drug was added to the

basolateral side (B to A) or to the apical side (A to B) of the monolayers. Values represent mean ± SEM. Differences are

not significant (p>0.05).

Figure 4.8:  Dose-dependent transport of thalidomide through Caco-2 cell monolayers. 10, 50, 100, and 250 µM (+/-)-

thalidomide were added to the apical compartment. After 10 minutes the transported amounts (µg) of (+)- and (-)-

thalidomide were determined. Values represent means ± SEM.

(+)-Thalidomide (-)-Thalidomide
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4.2.5 Discussion

Drug transporters, such as P-glycoprotein, are increasingly recognized as an important

determinant of drug disposition (Fromm, 2000). Like cytochrome P450 enzymes, inhibition and

induction of P-gp have been reported as the cause of drug-drug interactions (Lin, 2003). Here we

showed that the drug thalidomide is not capable of inhibiting P-gp function or inducing its

expression. This knowledge may be of importance because thalidomide is a drug that is

increasingly used in clinical studies, mainly as an adjuvant therapy. Therefore, we determined

thalidomide’s potential for interactions with P-gp.

P-gp expression has been shown to be inducible by xenobiotics such as rifampicin (Westphal et

al., 2000b). Rifampicin treatment resulted in an increase in intestinal P-gp levels, which correlated

with a decrease in oral exposure of both digoxin (Greiner et al., 1999) and talinolol (Westphal et

al., 2000b). Further examples for P-gp induction are phenobarbital (Lu et al., 2004),

dexamethasone (Fardel et al., 1993), and herbal extracts from St. John’s Wort (Pfrunder et al.,

2003b; Zhou et al., 2004). Due to enhanced efflux, increased P-gp expression can lead to

subtherapeutic concentrations of concomitantly administered substrates. In this study we used the

LS180 cell line as an appropriate model to investigate P-gp induction. LS180 cells are derived

from a human colon carcinoma cell line and it has been shown that several drugs such as

rifampicin or phenobarbital could increase P-gp and CYP3A4 mRNA and protein content in these

cells (Schuetz et al., 1996; Pfrunder et al., 2003a). Rifampicin, used as positive control in our

experiments, strongly induced MDR1 expression, whereas thalidomide did not change MDR1

mRNA levels.

Several cases of drug-drug interactions caused by P-gp inhibition have been reported. Elevated

digoxin plasma concentrations were observed with cardiac drugs that are P-gp inhibitors, such as

verapamil or quinidine (Mordel et al., 1993; Verschraagen et al., 1999). Ketoconazole, a potent P-

gp inhibitor, caused a marked increase in the CSF concentration of ritonavir and saquinavir

(Khaliq et al., 2000). The absorption of talinolol increased with the coadministration of verapamil

(Gramatte and Oertel, 1999). By measuring the rhodamine 123 uptake in a cell line over-

expressing MDR1, we used a specific assay for the investigation of functional P-gp inhibition.

Though this assay is not able to discriminate between substrates and inhibitors, it can be

concluded that thalidomide does not interact with P-gp, neither as a substrate nor as an inhibitor.

Verapamil, a known inhibitor in vitro and in vivo, was used as a positive control showing significant

accumulation of rhodamine 123 in the cells.

At present, it is unclear whether transporters are involved in the absorption, distribution and

elimination of thalidomide. We determined the bi-directional permeability and the dose-dependent
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transport of thalidomide enantiomers through Caco-2 cell monolayers. This cell line is generally

accepted as in vitro model to study intestinal permeation (Artursson et al., 2001). Furthermore,

Caco-2 cells are reported to express membrane transporters, such as P-gp and multi-drug

associated proteins (MRPs) (Gutmann et al., 1999; Pfrunder et al., 2003a). Therefore, we used

this model to assess if thalidomide underwent carrier-mediated transport and whether there is a

difference in the permeability between (+)- and (-)-thalidomide. The ratio Papp (B to A) over Papp (A

to B) is a measure for active, apical directed transport. For paclitaxel, a known P-gp substrate, this

ratio was reported to be 41.9 in Caco-2 cells (Hugger et al., 2002). For thalidomide, we observed

equal transport for both directions of the monolayer leading to a Papp ratio of 0.82. In a previous

study, where thalidomide transport through Caco-2 cells was also investigated, similar results

were obtained (Zhou et al., 2003). In addition, they showed that verapamil had no effect on

thalidomide permeability. A drawback of their study, however, was the lack of chiral separation.

The present study is the first one investigating the transepithelial transport of thalidomide including

chiral separation of the enantiomers.

Due to the fast chiral inversion at physiological pH, the stereoselective absorption of thalidomide

can hardly be determined in vivo. In order to avoid racemisation, the samples in our in vitro

experiments were instantly acidified when drawn from the acceptor chamber (Eriksson and

Bjorkman, 1997). Since both enantiomers share the same physical and chemical properties,

different absorption rates could indicate an interaction of thalidomide with chiral structures such as

proteins. Our results show, however, that there is no difference in the permeability of the

enantiomers. Taken together, transport experiments through Caco-2 cell monolayers show linear

and no site-directed transport of thalidomide and its enantiomers. This indicates that P-gp is not

involved in the absorption process of this drug.

In conclusion, thalidomide exhibited no functional interaction with P-gp in our in vitro experiments.

Furthermore, thalidomide did not induce P-gp expression. Drug-drug interactions due to these

mechanisms are therefore unlikely. Transport studies showed linear permeability that appeared to

be neither site-directed nor stereoselective. These results suggest that passive diffusion is

involved in thalidomide absorption. Luminal efflux pumps like P-gp seem not to restrict oral

thalidomide uptake, which could also explain the high bioavailability found in vivo. Moreover, the

efficacy of thalidomide in cancer therapy is most likely not limited by P-gp overexpression in

tumour tissues. Whether thalidomide has an affinity to other transporters cannot be ruled out by

this study and further investigations are required.
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4.3 Thalidomide’s potential for interactions with multidrug

resistance associated protein 2 (MRP2)

4.3.1 Introduction

The family of MRP proteins consists of ATP-dependent transporters that mediate the cellular

extrusion of organic anions including conjugated drug metabolites (Konig et al., 1999). In

particular, MRP2 mediates the biliary and intestinal secretion of many clinically important anionic

drugs, along with the glucuronide- and glutathione-conjugates of many xenobiotics. (Suzuki and

Sugiyama, 2000). Thus, beside P-gp and BCRP, MRP2 represents an important efflux pump in

the intestine, which can lower the bioavailability of drugs such as furosemide, HIV protease

inhibitors, indomethacin, methotrexate, pravastatin, probenecid, and SN38. Regarding the amount

of drugs transported by MRP2, drug-drug interactions due to inhibition or induction of this

transporter could be of relevance.

So far, there is no information available about thalidomide’s affinity to drug transporters. The

following assays were used to study the involvement of MRP2 in clinically important drug

interactions, as well as in the intestinal absorption of thalidomide.

We used the LS180 cell line as a model to investigate whether thalidomide treatment might

increase the expression of MRP2 in the intestine. A previous study showed that in duodenal

biopsies obtained from 16 healthy subjects before and after nine days of oral treatment with 600

mg rifampicin per day, MRP2 mRNA and protein was induced by the treatment (Fromm et al.,

2000). Therefore, rifampicin was used as a positive control in our experiments.

By measuring the CMFDA accumulation in a cell line over-expressing MRP2, we used a functional

assay for MRP2 inhibition. The fluorescent marker CMFDA (5-chloromethylfluorescein diacetate),

a precursor of the fluorescent MRP2 substrate MF-SG (methylfluorescein glutathione conjugate),

was applied in MDCK cells stably transfected with MRP2. MK-571 was used as a positive control

for MRP2 inhibition.

Caco-2 cell monolayers were used to simulate the oral absorption of racemic thalidomide. By

using a stereoselectiv HPLC assay we were able to discriminate between both thalidomide

enantiomers. The involvement of MRP2 in thalidomide absorption was investigated by co-

incubating the cells with known substrates of this transporter (methotrexate, probenecid,

pravastatin). Additionally, temperature-dependent transport was determined by performing

thalidomide transport at 37°C and at 4°C.
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4.3.2 Materials and methods

Induction experiments: materials and methods used for the induction experiments have already

been described in chapter 4.2.3.

Sequences of primers and probes and TaqMan analysis were shown in chapter 2.

CMFDA uptake assay

CMFDA was purchased from Molecular Probes (Eugene, OR), whereas MK-571 was from Biomol

(Plymouth Meeting, PA, USA). The Madin-Darby canine kidney cell line, stably over-expressing

human MRP2 (MDCK/MRP2), was a gift from Dr. R. Evers (The Netherlands Cancer Institute,

Amsterdam, The Netherlands). The cells form monolayers and were cultured in DMEM

supplemented with 10% FCS. They were cultured under 5% CO2 / 95% air atmosphere at 37°C in

the appropriate medium containing 50 µg/mL gentamycin.

Non-fluorescent and membrane permeable 5-chloromethylfluorescein diacetate (CMFDA) was

used as precursor of the MRP2 substrate methylfluorescein glutathion conjugate (MF-SG). The

ester is cleaved by cytosolic esterases to the fluorescent, membrane impermeable 5-

chloromethylfluorescein (CMF) which can then react with thiols on proteins and peptides (such as

glutathione) to form conjugates. MF-SG can be secreted actively by MRP2.

MDCK/MRP2 cells were seeded into 24-well plates and were used when they reached

confluence. For loading, they were incubated with 1 mL CMFDA solution (0.5 µM) for 1 hour at

10°C. Cells were washed twice with 0.5 mL HBSS containing (+/-)-thalidomide (10, 100, 300µM),

MK-571 (20µM) or pure HBSS at 4°C. Efflux was performed by incubating the cells with 1 mL of

the mentioned solutions at 37°C. After 30 minutes, solutions were removed and cells were

washed with 1 mL of pure HBSS. For cell lysis Triton X-100 (1%) was applied and 200µL aliquots

were analysed (HTS 7000 Plus Bio Assay Reader).
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Transport through Caco-2 cell monolayers

Cultivation of Caco-2 cells was described in chapter 4.2.3.

Cells were seeded with a density of 6 x 104 cells/cm2 onto Transwell polycarbonate membrane

filters (Costar) with 0.4 µm pore size and 4.7 cm2 growth area (6-well plate). Cells were grown to

confluence and experiments were done 11-16 days after seeding.

Possible inhibition of thalidomide transport was investigated by pre-incubating the cells with the

MRP2 substrates pravastatin, probenecid, and methotrexate (Sigma-Aldrich Chemie GmbH,

Schnelldorf, Germany) at a concentration of 50 µM for 30 min. Then, thalidomide (100µM) was

added on the apical membrane. During the experiments the MRP2 substrates were also present

in both compartments. Samples were taken from the basolateral side after 10, 20 and 30 minutes

and Papp values were calculated (see chapter 4.2.3).

Temperature-dependent transport was performed at 37°C and at 4°C (on ice). Thalidomide (100

µM) was added to the apical side and samples were taken from the basolateral side after 10, 20

and 30 minutes.

4.3.3 Results

MRP2 expression was reduced 2.5-fold with thalidomide (100µM) and rifampicin (10µM)

treatment. 10µM thalidomide did not influence MRP2 expression compared to control (Figure 4.8).

The expression of the housekeeping gene GAPDH was not altered under any of the treatments

(data not shown).

Thalidomide had no effect on the uptake of CMFDA in MDCK/MRP2 cells at concentrations of 10,

100, and 300 µM. MK-571 (20 µM), as a MRP inhibitor, increased CMFDA uptake about two-fold

(Figure 4.9).

The apical to basolateral transport of thalidomide was not influenced by the addition of MRP2

substrates (50 µM) such as pravastatin, probenecid, and methotrexate (Figure 4.10). The Papp

values did not change significantly and no differences between the enantiomers were detectable.

Thalidomide transport appeared to be temperature-dependent (Figure 4.11), as performing the

experiment at 4°C resulted in a significant decrease in the Papp values (p<0.0001). For (+)- and

(-)-thalidomide the Papp values were reduced to 18.1% and 23.7%, respectively.
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Figure 4.8:  Expression of MRP2 in LS180 cells. Cells were incubated for 72h. Values represent mean expression

ratios (MRP2 expression / GAPDH expression) ± SEM.

Figure 4.9:  Methylfluorescein (MF) accumulation in MDCK/MRP2 cells. MK-571 was applied as a positive control for

MRP2 inhibition. Values represent mean intracellular MF fluorescence ± SEM.
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.

Figure 4.10:  Permeability of (+/-)-thalidomide (100 µM) from the apical to the basolateral side of Caco-2 cell

monolayers. The MRP2 substrates pravastatin, probenecid and methotrexate (50 µM) were present at both sides during

the experiments. Values represent mean±SEM. Differences between the treatments are not significant (p>0.05).

Figure 4.11:  Permeability of (+/-)-thalidomide (100 µM) from the apical to the basolateral side of Caco-2 cell

monolayers. The experiment was performed at 37°C and at 4°C (on ice). Values represent mean±SEM. Differences

between 37°C and 4°C are significant for both enantiomers (p<0.0001).
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4.3.4 Discussion

Thalidomide treatment did not induce the expression of the luminal efflux transporter MRP2 in

LS180 cells. At a concentration of 100 µM thalidomide reduced MRP2 mRNA levels 2.5-fold. The

same effect was seen with rifampicin treatment. However, in a study with human subjects treated

with rifampicin MRP2 mRNA and protein levels increased in duodenal biopsies (Fromm et al.,

2000). Consequently, LS180 cells might be no adequate model for MRP2 induction and an

appropriate model has to be found. Concerning MDR1, the LS180 cells perform like human

duodenum cells and show an induction under rifampicin treatment (Schuetz et al., 1996; Greiner

et al., 1999).

Thalidomide did not influence the uptake of a fluorescent MRP2 substrate in a cell line over-

expressing this transporter. Since racemic thalidomide did not show any effect we did not

additionally apply the enantiomers. It can be concluded that thalidomide does not interact with

MRP2, neither as a substrate nor as an inhibitor.

We investigated the absorption of thalidomide through intestinal cells by using Caco-2 cell

monolayers. Caco-2 cells are reported to express membrane transporters, such as P-gp and

MRPs, and are generally accepted as in vitro model to study intestinal permeation (Artursson et

al., 2001). Therefore we used this model to assess if thalidomide underwent transporter-mediated

active transport.

Carrier-mediated transport can be energy dependent or independent (e.g. facilitated). Energy

dependent active transport mechanisms are not functional at 4°C and can be abolished by

performing the experiment on ice. As we observed a pronounced reduction of the apical to

basolateral permeability at 4°C, a basolaterally located active efflux carrier (e.g. MRP1 or MRP3)

could transport thalidomide. But the absences of an inhibition with probenecid or methotrexate,

both are substrates of MRP1 and MRP3, does not support this hypothesis. However, a further, not

yet identified active transporter could transport thalidomide to the basolateral side. Alternatively,

the reduced permeability might be attributed to a higher rigidity of the cell membrane at low

temperatures leading to a lower diffusive transport. A more likely explanation is a reduced

solubility of thalidomide at low temperatures leading to decreased concentrations in the apical

compartment.

In conclusion, MRP2-mediated interactions of thalidomide with concomitantly administered drugs

are not to be expected. Furthermore, the absorption of thalidomide in the gastrointestinal tract

after oral intake will probably not be restricted by the expression of MRP2. The involvement of

other transporters cannot be ruled out by these experiments and further studies are required.
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5. Development and validation of a HPLC method for the

determination of thalidomide enantiomers

in whole blood in clinical trials

5.1 Abstract

This assay describes a method for the determination of racemic thalidomide in human blood. The

separation of the enantiomers was performed by HPLC using a Daicel Chiracel OJ column. The

isocratical eluent was ethanol/hexane (65:35, v/v). The flow rate was 0.85 mL/min at 40°C with

detection at 220 nm.  After acidification with citrate buffer (pH 1.5) the blood samples were

extracted with dichloromethane:hexane (1:1, v/v) and redissolved in 200 µL methanol. The

extraction efficiency was about 57% for (+)- and (-)-thalidomide and about 73% for the internal

standard anthracene. (+)-Thalidomide, (-)-thalidomide, anthracene and caffeine (which occurred in

all blood samples) were well separated  (α = 1.48, 1.26, 1.30; R = 3.0, 2.7, 2.1). There was no

interaction with caffeine. Calibration curves were performed with 6 standards of racemic

thalidomide (n=2). For each enantiomer the range was 0.02 - 2.0 µg/mL (with a limit of

quantitation of 20 ng/mL). The concentration of the internal standard was 2.0 µg/mL. The

calibration curves were linear with correlation coefficients of 0.9957 for (+)-thalidomide and 0.9945

for (-)-thalidomide. Precision was performed at three concentrations (n=5). The coefficients of

variation were well below the 15% limit. Accuracy was also below the 15% limit. We checked the

stability of stock solutions of the pure enantiomers after 3 months at –20°C. No racemisation or

degradation was observed. Acidified blood samples spiked with the pure enantiomers were also

stable after 3 freeze / thaw cycles.
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5.2 Introduction: Use of thalidomide in IBD

The inflammatory process in inflammatory bowel disease (IBD) is characterised by increased and

continuous production of proinflammatory cytokines by intestinal lamina propria mononuclear cells

and peripheral blood monocytes (Mahida et al., 1989; Reinecker et al., 1993). Increased TNF-α

levels have been isolated in the serum, in the intestinal mucosa, and in the stools of patients with

Crohn`s disease (CD) or ulcerative colitis (UC) (Murch et al., 1991; Braegger et al., 1992; Breese

et al., 1994). Therefore TNF-α might play a central role in the inflammatory cascades and

represents a therapeutic target in diseases with raised tissue concentrations of this cytokine. This

assumption is supported by clinical studies with infliximab, a humanised chimeric monoclonal

antibody against TNF-α. Infliximab was shown to be effective in at least two thirds of patients with

steroid dependent chronic active CD (van Dullemen et al., 1995).

Thalidomide, an agent with TNF-α suppressive properties, was introduced in 1997 into the

therapy of CD (Wettstein and Meagher, 1997). Up to now, there are 4 published clinical trials (with

10-22 patients) that investigated the effect of thalidomide administration (50-400 mg/d) in patients

with CD and UC for 12 weeks (Ehrenpreis et al., 1999; Vasiliauskas et al., 1999; Bariol et al.,

2002; Bauditz et al., 2002). The data suggest that thalidomide is an effective short-term treatment

for symptomatic IBD. One study with long-term use (19-24 months) showed also that thalidomide

is effective and safe in refractory CD (Facchini et al., 2001). In another study including 15 patients

with refractory disease, thalidomide was effectively used to maintain response to infliximab over a

few months (Sabate et al., 2002).

These observational studies of thalidomide in inflammatory bowel disease are promising, but the

patient numbers are small. The authors of these studies conclude that the results support the

need for placebo-controlled trials, where the efficacy and safety of thalidomide in IBD can be

further investigated. For this purpose, a validated HPLC-method for the enantioselective

determination of thalidomide enantiomers in blood is described in this thesis.
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5.3 Materials and methods

Chemicals

 (-)-(S)-Thalidomide, (+)-(R)-thalidomide and (+/-)-(R/S)-thalidomide were obtained from Sigma-

Aldrich Chemie GmbH (Schnelldorf, Germany), purity > 98%. Anthracene Oekanal® was

purchased from Riedel-de Haen Laborchemikalien GmbH&Co.KG (Seelze, Germany), purity: 99.3

%. Ethanol, n-hexane, dichloromethane and methanol were all of HPLC quality (LiChrosolv®) and

were purchased from Merck (Switzerland). Citric acid 1-hydrate (p.a.) was obtained from Merck

(Switzerland).

Solutions

Citrate buffer (pH 1.5, 0,025 M)

Extraction medium (dichloromethane: n-hexane, 1 : 1 (V/V))

Whole blood for laboratory use (Blutspendezentrum SRK beider Basel).

Stock solutions of racemic thalidomide and anthracene :

Stock 1 (8 mg /100 mL) 8.00 mg (+/-)-thalidomide in 100.0 mL methanol

Stock 2 (2 mg /100 mL) 25.0 mL of stock 1 ad 100.0 mL methanol

Stock 3 (0.08 mg /100 mL) 4.00 mL of stock 2 ad 100.0 mL methanol

Anthracene (8 mg / 100 mL) 8.00 mg anthracene in 100.0 mL methanol

Apparatus

The HPLC system  (LaChrom) and the software (D-7000 HPLC system manager) were from

Merck Hitachi. The following components were integrated into the HPLC system:

Interface D-7000, DA Detector L-7455, Column oven L-7300, Autosampler L-7200, Pump L-7100.

The Degasser DG-4 was obtained from Henggeler. For the separation of the thalidomide

enantiomers a chiral column (Chiralcel OJ, 250 x 46 mm, Daicel Chemical Industries) was used

throughout. The column was protected by a LiChrospher C-18 guard column (4 x 4 mm, Merck).
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HPLC conditions

The temperature of the column was 40 °C. The mobile phase consisted of 65% ethanol and 35%

hexane. The flow rate of the mobile phase was 0,85 mL/min. The injection volume of the samples

was 80 µL. UV-detection of the substances was performed at a wavelength of 220 nm. The run-

time was 20 minutes.

Sample preparation

2.0 mL blood was given in a glass extraction tube. The samples were acidified by addition of 2.0

mL citrate buffer (pH 1.5, 0.025M). 50 µL anthracene stock solution (internal standard) was added

to provide an anthracene concentration of 2 µg/mL. Thalidomide stock solutions were added as

necessary. After addition of 5.0 mL of extraction medium (dichloromethane:hexane 1:1(V/V)) the

samples were shaken for 20 min. The organic layers were separated by centrifugation (3000 n

min-1, 0°C, 10 min.) and transferred to another glass tube. The solvent was evaporated under a N2

stream at 40°C for 12 min. The residue was redissolved in 200 µL of methanol by means of

vortexing and ultra sonic. The solution was then filtered through a 0.2 µm filter and 80 µL were

injected into the HPLC system.

5.4 Results

Chromatography results

(+)-Thalidomide had a retention time of 11.15 min and (-)-thalidomide of 14.75 min. The internal

standard anthracene appeared after 17.79 min and the retention time of the unretained solute (t0)

was 3.6 min (Figure 5.1).

The capacity factors (k = t-t0/t0) were 2.1 for (+)-thalidomide, 3.1 for (-)-thalidomide and 3.9 for

anthracene. The selectivity of the separation (α = k2 / k1) was 1.48 for the thalidomide enantiomers

and 1.26 for (-)-thalidomide and anthracene. The resolution (R = 2 (t2-t1) / (w1+w2)) was 3.0 for the

enantiomers and 2.7 for (-)-thalidomide and anthracene (where w is the baseline width of a peak

measured by extrapolating the relatively straight sides to the baseline). Caffein and (+)-

thalidomide were also well separated (α = 1.3, R = 2.1).
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Chromatogram A

Chromatogram B

Figure 5.1:  The chromatograms above show the separation of racemic thalidomide and the internal standard

anthracene. The concentrations were 4 µg/mL for racemic thalidomide (2 µg/mL for each enantiomer) and

2 µg/mL for anthracene. In chromatogram A pure drugs were assayed (racemic thalidomide and anthracene solved in

methanol). Chromatogram B was obtained after extracting the drugs from spiked blood samples. The peak appearing

after 9.41min is caffeine, which will appear in almost all blood samples.
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Calibration curve

Six standards were prepared in duplicate to create the calibration curves. For each enantiomer

the range was from 0.02 µg/mL to 2.0 µg/mL. The lower limit of quantification (LLOQ) was 20

ng/mL with a signal to noise ratio (S/N) > 10. The concentration of the internal standard was 2

µg/mL throughout the analyses. The trend line was forced through origin. All response values

were based on the ratio of the peak height of the thalidomide enantiomers to that of anthracene.

Standard (+/-) Thalidomide (-) Thalidomide (+) Thalidomide Stock solution Anthracene

Standard 1 0.04 µg/mL 0.02 µg/mL 0.02 µg/mL 100 µL stock 3 50 µL (2 µg/mL)
Standard 2 0.2  µg/mL 0.1  µg/mL 0.1  µg/mL 20 µL   stock 2 50 µL (2 µg/mL)
Standard 3 0.5  µg/mL 0.25 µg/mL 0.25 µg/mL 50 µL   stock 2 50 µL (2 µg/mL)
Standard 4 1.0  µg/mL 0.5  µg/mL 0.5  µg/mL 100 µL stock 2 50 µL (2 µg/mL)
Standard 5 2.0  µg/mL 1.0  µg/mL 1.0  µg/mL 50 µL   stock 1 50 µL (2 µg/mL)
Standard 6 4.0  µg/mL 2.0  µg/mL 2.0  µg/mL 100 µL stock 1 50 µL (2 µg/mL)

Table 5.1:  Concentrations of thalidomide, its enantiomers and anthracene within the standard curves.

Figure 5.2:  Six-point standard curves for (+)- and (-)-thalidomide ranged from 0.02 µg/mL to 2.0  µg/mL. The y-axis

is expressed as height of thalidomide peak divided through height of anthracene peak (internal standard). Standard

curves were linear with r2 = 0.9957 and 0.9945 for (+)-thalidomide and (-)-thalidomide, respectively.

Selectivity

For the determination of selectivity blood samples from six drug-free volunteers were analysed by

the method. There appeared a small endogenous peak at 11.0 min, which was seen in all blood

samples (data not shown). This could be a possible interference with (+)-thalidomide. However, its

height was only one third of the height of (+)-thalidomide at the LLOQ (lower limit of quantification).

No other peaks occurred which could disturb the chromatographic determination.

Calibration curve: (+)-thalidomide y = 1.1317x
R2 = 0.9957
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Precision

Precision was measured by calculating the coefficient of variation (CV) of 5 determinations at

three concentrations (0.02, 0.5, 2.0 µg/mL). For each concentration the CV should not exceed

15%, except for the LLOQ where the CV should not exceed 20%. We used peak height for further

calculations, as more accurate results were obtained by this approach. In that case, for all

concentrations the coefficient of variation was well below the 15% limit.

Table 5.2:  Results of the determination of precision. At three concentrations (low, middle, high) the coefficient of

variation (CV) was calculated for 5 determinations.

Accuracy

The accuracy is a measure of the proximity of mean test results obtained by the method to the

true value obtained by the calibration curve. Accuracy was measured using 5 determinations at

three concentrations. The mean value should be within 15% of the true value except for the lower

limit of quantification where it should be within 20% of the true value. For both enantiomers the

deviations of the mean from the true value were all below 15%.

0.02 µg mL-1 (+)-Th./Anthracene (-)-Th./Anthracene
(LLOQ)

Area Height Area Height
Vial 1 2.22E-02 2.21E-02 3.17E-02 1.98E-02
Vial 2 3.43E-02 3.04E-02 3.52E-02 2.22E-02
Vial 3 2.21E-02 2.33E-02 2.55E-02 2.39E-02
Vial 4 2.43E-02 2.52E-02 3.29E-02 2.05E-02
Vial 5 2.62E-02 2.67E-02 2.97E-02 1.96E-02

mean 2.58E-02 2.55E-02 3.10E-02 2.12E-02
standard deviation 5.05E-03 3.25E-03 3.69E-03 1.82E-03
coefficient of variation 19.6% 12.7% 11.9% 8.6%

0.5 µg mL-1 (+)-Th./Anthracene (-)-Th./Anthracene

Area Height Area Height
Vial 1 5.76E-01 5.62E-01 5.99E-01 4.64E-01
Vial 2 6.28E-01 5.79E-01 6.58E-01 4.90E-01
Vial 3 6.12E-01 5.64E-01 6.14E-01 4.63E-01
Vial 4 6.40E-01 5.91E-01 6.68E-01 4.97E-01
Vial 5 6.53E-01 5.97E-01 6.58E-01 4.96E-01

mean 6.22E-01 5.79E-01 6.39E-01 4.82E-01
standard deviation 2.97E-02 1.58E-02 3.08E-02 1.70E-02
coefficient of variation 4.8% 2.7% 4.8% 3.5%

2.0 µg mL-1 (+)-Th./Anthracene (-)-Th./Anthracene

Area Height Area Height
Vial 1 2.45E+00 2.24E+00 2.46E+00 1.86E+00
Vial 2 2.45E+00 2.24E+00 2.46E+00 1.86E+00
Vial 3 2.56E+00 2.33E+00 2.57E+00 1.94E+00
Vial 4 2.10E+00 1.92E+00 2.10E+00 1.60E+00
Vial 5 2.72E+00 2.55E+00 2.72E+00 2.10E+00

mean 2.45E+00 2.26E+00 2.46E+00 1.87E+00
standard deviation 2.26E-01 2.25E-01 2.28E-01 1.82E-01
coefficient of variation 9.2% 10.0% 9.3% 9.7%
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 (+)-Thalidomide

Concentration Calibration curve mean Deviation
(concentration x 1.1317) (5 determinations) (accuracy)

0.02 ug/mL 0.022634 0.0255 11.24%
0.5 ug/mL 0.56585 0.579 2.27%
2.0 ug/mL 2.2634 2.26 -0.15%

(-)-Thalidomide

Concentration Calibration curve mean Deviation
(concentration x 0.942) (5 determinations) (accuracy)

0.02 ug/mL 0.01884 0.0212 11.13%
0.5 ug/mL 0.471 0.482 2.28%
2.0 ug/mL 1.884 1.87 -0.75%

Table 5.3:  Results of the determination of accuracy. At three concentrations (low, middle, high) the deviation of the

theoretical value obtained with the standard curve from the mean of five determinations was calculated.

Extraction efficiency

For the determination of the extraction efficiency the peak height of extracted thalidomide from

blood was compared with not-extracted thalidomide. Therefore we added the same amount of

(+/-) thalidomide stock solution both to blood and to extraction medium. The solutions were

processed according to the extraction method described before (5.3). The experiments were

performed at three concentrations (0.1, 0.5, 2.0 µg/mL). The amount of anthracene was 2.0 µg/mL

throughout. (+)- and (-)-Thalidomide showed an extraction efficiency of about 57% and

anthracene of about 73%.

(+)-thalidomide recovery (-)-thalidomide recovery Anthracene recovery
0.1 µg/mL 55.7% 55.0% 69.1%
0.5 µg/mL 57.9% 57.7% 73.3%
2.0 µg/mL 59.5% 59.4% 76.7%

Table 5.4:  Results of the determination of extraction efficiency. Values represent the percentage of thalidomide and

anthracene that can be extracted from blood samples using the described extraction procedure.

Stability of stock solutions and blood samples

Stock solutions

In order to determine the stability of thalidomide in stock solutions, solutions of each enantiomer in

methanol (0.5 mg/100 mL) were prepared. Aliquots were stored either at room temperature (RT)

or at -20°C. Directly after preparing and after 3 months the solutions were assayed to determine

degradation (decrease of peak area) and racemisation (percentage of the main enantiomer).
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(+)-thalidomide solution (-)-thalidomide solution
After preparing
Racemisation (% main enantiomer) 96.4% 95.3%
Area 2331388 2162740

After 3 months (-20°C)
Racemisation (% main enantiomer) 96.1% 94.9%
Area 2379842 2258674

After 3 months (RT)
Racemisation (% main enantiomer) 52.7% 51.0%
Area 344275 397404

Table 5.5:  Stability of (+)-thalidomide and (-)-thalidomide stock solutions. Results represent percentage of the main

enantiomer and peak area. Stock solutions were assayed directly after preparing, after 3 months at –20°C and after 3

months at room temperature (RT).

The freshly prepared stock solutions showed a slight racemisation of (+)-thalidomide and (-)-

thalidomide (96.4% and 95.3% main enantiomer, respectively). After 3 months at -20°C

racemisation increased only little (0.3% and 0.4%, respectively). Degradation was not observed,

as the peak areas were consistent. After 3 months at room temperature the solutions showed total

racemisation (about 50% of both enantiomers). The peak areas decreased strongly (85 %

degradation). In order to stabilise stock solutions of thalidomide, they should be kept in methanol

at -20°C. This will avoid any racemisation or degradation of the drug for at least 3 months.

Blood samples

The stereospecific stability of thalidomide in blood samples was determined by performing

freeze/thaw cycles prior to the extraction procedure. First of all, the stock solutions of the pure

enantiomers were assayed in order to specify their purity. Then blood samples were spiked with

these stock solutions, acidified and run through 3 freeze/thaw cycles. After the extraction the

change in the optical purity (decrease of the percentage of the main enantiomer) was measured.

(+)-thalidomide (-)-thalidomide
Stock solution 96.3% 94.9%
Blood samples 96.2% 94.6%

Table 5.6:  Determination of thalidomide racemisation in blood samples. Stock solutions of the pure enantiomers and

spiked blood samples after 3 freeze/thaw cycles were analysed. Results represent percentage of the main enantiomer.

The stock solutions of (+)-thalidomide and (-)-thalidomide showed a purity of 96.3% and 94.9%,

respectively. The blood samples after 3 freeze/thaw cycles, showed only a slight increase in

racemisation (purity of 96.2% and 94.6%, respectively). Blood samples have to be acidified

instantly. Then there will be almost no loss of the former optical purity.
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6.1 Abstract

PURPOSE : To quantify the gene expression levels of the ABC-transporters MDR1 (P-

glycoprotein) and MRP (multidrug resistance-associated protein) isoforms in isolated mononuclear

cells of vasospastic persons with increased Endothelin-1 plasma levels. METHODS: Quantitative

real-time RT-PCR was performed to determine the expression levels of the MDR1 (P-

glycoprotein) gene and MRP1 to MRP5 genes as well as the expression of the ETA and ETB

receptor in mononuclear cells derived from 11 vasospastic subjects compared to 10 healthy

controls. RESULTS: Mononuclear cells of vasospastic subjects showed a significant decrease in

the expression of MDR1 (P-glycoprotein) gene (p=0.029), MRP2 gene (p=0.003), and MRP5 gene

(p=0.013) when compared to healthy controls. These effects were poorly correlated with ET-1

plasma levels. No significant ETA and ETB receptor expression was observed in both groups.

CONCLUSIONS: Vasospastic persons differ in their expression pattern of MDR proteins from

healthy controls. This might be an indirect effect of elevated ET-1 levels.

6.2 Introduction

ATP binding cassette (ABC) transporter proteins belong to a large superfamily of transport

proteins that are highly conserved across evolution (Higgins, 1992). These transport proteins

mediate the translocation of different structurally unrelated molecules across various membranes

and are expressed in different tissues. They are located in the plasma membrane or in the

membrane of different cellular organelles (Gottesman and Pastan, 1993). Therefore, they control

the distribution of endogenous metabolic products and exogenous xenobiotics on a subcellular

level as well as in the organism as a whole. Some of these proteins form specific membrane

channels (Enkvetchakul et al., 2001). Others facilitate the transport of inorganic ions, or pump

various organic compounds (Hipfner et al., 1999). For this transport activity, ABC proteins utilize

the energy of ATP hydrolysis (Senior et al., 1995).

Numerous clinical data, mainly derived from cancer research, have revealed that the multidrug

resistance phenotype is often associated with the over-expression of certain ABC transporters,

termed multidrug resistance (MDR) proteins. P-glycoprotein (P-gp, MDR1, ABCB1) mediated

multidrug resistance was the first discovered (Juliano and Ling, 1976; Debenham et al., 1982;

Kartner et al., 1983; Ling et al., 1984) and probably still is the most widely observed mechanism in

clinical multidrug resistance (Gottesman et al., 2002).

Beside P-gp, other efflux-pumps belonging to the group of multidrug resistance-associated

proteins with 9 homologues (MRP1-MRP9) were characterized. Over-expression of some of these
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transport proteins lead to MDR phenotype (Kool et al., 1997; Bakos et al., 2000). MDR proteins

possess a broad substrate specificity (Gottesman and Pastan, 1993). Therefore, acute inhibition

or decreased expression of such MDR proteins may result in an enhanced uptake and systemic

accumulation of drugs, which may lead to an increased sensitivity or toxicity.

Self-reported observations of vasospastic subjects revealed an enhanced sensitivity to different

drugs such as beta-blockers and calcium channel blockers (many of them are substrates of MDR

transport proteins). All these subjects showed characteristic symptoms for the vasospastic

syndrome like an inborn tendency towards cold hands and sometimes cold feet, a low body mass

index, and low blood pressure that fluctuates markedly (Flammer et al., 2001). They also often

show a slower sleep onset (Pache et al., 2001), significantly less feelings of thirst coupled with

less daily fluid intake (unpublished data), and a higher plasma level of endothelin (Flammer et al.,

2001).

Recently it was shown that Endothelin-1 (ET-1) in subnanomolar to nanomolar concentrations

was able to rapidly reduce the activity of MRP2 mediated drug transport in shark rectal gland

(Miller et al., 2002). This effect of MRP2 function could also be confirmed in killifish renal proximal

tubules (Masereeuw et al., 2000) and a similar inhibitory effect was seen for P-glycoprotein. Both

effects could be abolished when an ETB receptor antagonist was given but not when an ETA

receptor antagonist was given. This prompted us to investigate the expression levels of P-

glycoprotein and MRP1 to MRP5 in subjects with vasospastic syndrome and elevated ET-1

plasma levels, and compare it with the expression of these transport proteins in healthy controls.

6.3 Materials and methods

Blood samples

Blood samples were collected from 11 vasospastic subjects and 10 healthy controls. Vasospastic

subjects and controls were recruited from the study “Pathophysiology of vascular dysregulation”

(Swiss national protocol number 65/00; this study was performed at the University Eye Clinic of

Basel, Switzerland). All participants gave written informed consent for all procedures before

inclusion in the study. The protocol was approved by the Ethical Committee of the Department of

internal medicine, University Hospital Basel Switzerland, and adhered to the guidelines laid down

in the Declaration of Helsinki. A detailed medical history excluded individuals with a history of

alcohol or drug abuse, systemic diseases (e.g., diabetes, high concentration of blood lipids, major

arterial hypertension or other systemic circulatory diseases other than vasospasm) or who had
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been taking any medication at least 4 weeks prior to the study. Subjects were included in the

study after an ophthalmological examination without pathological findings and a screening for

indicators of vasospasm. After local cooling of the fingers, vasospastic subjects exhibited a stop in

blood flow for more than 20 s, which was detected by nailfold capillaromicroscopy (Gasser and

Flammer, 1991). In addition, ET-1 plasma levels were determined by a specific

radioimmunoassay, as described by Goerre et al. (Goerre et al., 1995). Therefore, blood samples

were taken by venopuncture after 30 min of a rest in a supine position. All vasospastic subjects

tested here exhibited an increased plasma level of ET-1, ranging from 2.13 to 4.13 pg/ml

(reference value for females: 1.42±0.28 pg/ml; for males: 1.67±0.34 pg/ml) (Leu and Huang,

1995). Examination of healthy controls showed no vasospastic response and low ET-1 plasma

levels. Individual ET-1 plasma concentrations are shown in Figure 6.1.

Processing of mononuclear cells

Mononuclear cells were isolated from 10 ml heparinized whole blood by density centrifugation as

described by Maurer and colleagues (Maurer et al., 1977) using a lymphocyte separating medium

(Lymphodex; Innotrain, Kronberg, FRG). After extensive washing (three times) with phosphate

buffered saline (PBS) cells were centrifuged at 440x g for 5 min and the supernatant was

aspirated. Dry pellets were frozen immediately and stored at -75 °C until use.

Total RNA was isolated using the RNeasy mini kit (Qiagen GmbH, Hilden, Germany) following the

instructions provided by the manufacturer. RNA was quantified with a GeneQuant photometer

(Pharmacia, Uppsala, Sweden). After DNase I digestion (Gibco, Life Technologies, Basel

Switzerland) 2 µg of total RNA was reverse-transcribed by Superscript (Gibco, Life Technologies,

Basel, Switzerland) according to the manufacturer’s protocol using random hexamers as primers.

Quantitative real-time PCR was described in chapter 2.

Statistical Analysis

Gene expression was compared for each gene between the control group and the vasospastic

patients by the two-sided non-parametric Mann-Whitney U-test. The level of significance was to

p<0.05. Correlation analysis was performed using the non-parametric Spearman’s rank

correlation.
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6.4 Results

The individual pattern of expression of MDR1 and MRP isoforms was qualitatively different

between healthy controls and vasospastic patients. Whereas in healthy controls no systematic

pattern of gene expression could be observed, each of the vasospastic patients showed a

qualitatively similar expression pattern of MDR1 and MRP genes (Figure 6.2).

On average, vasospastic patients expressed about half as much of the MDR1 gene than controls

and they showed a smaller inter-individual range of MDR1 expression than controls (Figure 6.3).

This was significantly (p=0.029) smaller than in the control group. Expression of the MRP1 gene

was slightly but not significantly (p=0.085) higher in the vasospastic patients and, on average,

almost doubled. Expression of the MRP2 and MRP5 genes decreased significantly (p=0.003 and

p=0.013, respectively) in the vasospastic patients. No significant changes in gene expression was

observed for the MRP3 and MRP4 genes, although a trend to lower expression could be stated.

Non-parametric rank correlation (Spearman’s p) showed, with the exception of MRP1, a weak

negative correlation to ET-1 levels (p= -0.31 to -0.59). Although correlation was significant for

MDR1, MRP2, and MRP5, the values of p indicate only poor to moderate correlation.

The expression of the endothelin receptors ETA and ETB in mononuclear cells of control and

vasospastic subjects was not detectable by TaqMan anaylsis. A borderline expression was

obtained for both groups with mean threshold cycle (Ct) values between 38.9 and 39.6 (Table

6.1). The Ct value is defined as PCR cycle number, where the PCR product (represented by a

corresponding fluorescence) reaches a predefined threshold value. Earlier cycle number

corresponds to higher amounts of cDNA of the gene of interest in the sample. Ct values above 38

cycles were judged to represent no or only trace amount of gene expression.

As a positive control, prostate tissue was used, where Ct values of 25.15 and 27.24 for ETA and

ETB receptors were obtained, respectively. Since in every PCR cycle the DNA amount is

approximately doubled, a 14,000-fold and a 5,000-fold difference for ETA and ETB receptor

expression was observed, respectively. Therefore, mononuclear cells seem only to express trace

amounts of these receptors.

Table 6.1:  Mean threshold cycle (Ct) values in mononuclear cells of vasospastic and control subjects and in human
prostate tissue. Ct value and cDNA concentration of the gene of interest are inversely correlated. A decrease by one in
Ct values corresponds approximately to a 2-fold increase of cDNA concentration of the gene of interest. Ct values
above 38 cycles are judged to represent no or only trace amount of gene expression.
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Figure 6.1:  ET-1 plasma concentrations. Individual ET-1 concentrations as well as means and standard errors of the
means (SEM) in healthy and vasospastic subjects.

Figure 6.2:  Individual gene expression of MDR1 (P-glycoprotein) and MRP isoforms (MRP1 to MRP5) genes: healthy
controls (A), vasospastic persons (B).
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Figure 6.3:  Mean gene expression of MDR1 and MRP isoform (MRP1 to MRP5) genes in healthy controls and

vasospastic persons. Error bars represent the standard error of the mean.

6.5 Discussion

In addition to their contribution to the protection of the body against xenobiotics and to multidrug

resistance in cancer, MDR proteins play an important but not yet fully understood physiological

role.

The role of MDR proteins in the protection against toxic agents is supported by the wide substrate

specificity of these transporters (Gottesman et al., 2002), the fact that MRP isoforms also mediate

the transport of partially detoxified compounds, such as glutathione and glucuronide conjugates,

and also by their tissue distribution. These transporters are present in important pharmacological

barriers, such as in the blood-retina barrier by the retinal pigment epithelium (Kennedy and

Mangini, 2002) as well as the endothelial cells of the brain capillaries (van Kalken et al., 1992) and

in the epithelial cells in the choroid plexus (Rao et al., 1999), both contributing to the blood-brain

barrier. They could be also identified in the brush border membrane of intestinal cells (Leu and

Huang, 1995), the biliary canalicular membrane of hepatocytes (Accatino et al., 1996; Donner and

Keppler, 2001), and the luminal membrane in proximal tubules of the kidney (Gutmann et al.,

2000). So they are expressed as a consequence of differentiation triggers and in response to

environmental challenges. Numerous studies revealed that MDR gene expression is not only



- 91 -

influenced by harmful chemicals and metabolites, but also by stress-evoking stimuli. This stress

response can either occur as an increase in MDR mRNA due to heat shock (Kim et al., 1997),

UV-, X-, and gamma-irradiation (Hill et al., 1990; Ohga et al., 1996; Harvie et al., 1997) or

genotoxic stress (Kennedy and Mangini, 2002). On the other hand, induction of inflammatory

response in experimental models of inflammation in rats and mice has been demonstrated to

decrease the expression of P-gp at the levels of mRNA (Piquette-Miller et al., 1998). Thereby, P-

gp expression is under the control of IL-6 (Sukhai et al., 2001).

Recently, acute inhibition of MDR1 (P-glycoprotein) and MRP2 function by the vasoactive

hormone ET-1 (Masereeuw et al., 2000; Miller et al., 2002) was demonstrated in sharks and

killifish. In the present study we demonstrate changes in the expression of MDR1 (P-glycoprotein)

and MRP isoform genes in leucocytes of vasospastic subjects manifested in a significant down-

regulation of the mRNA levels of MDR1 (P-glycoprotein), MRP2 and MRP5 in vasospastic

patients with elevated plasma concentrations of ET-1.

Endothelin is one of the most potent vasoconstrictors and was first discovered by Yanagisawa

and co-workers in 1988 (Yanagisawa et al., 1988). There exist three isoforms (ET-1, ET-2, and

ET-3), each with 21 amino acids. ET-1 is present in many mammalian species, including humans.

Although vascular endothelial cells are the major source of endothelin, it is also produced by a

wide variety of cell types including renal tubular endothelium, glomerular mesangium, cardiac

myocytes, glial cells, the pituitary, macrophages and mast cells (Inoue et al., 1989). Endothelins

appear to act mainly as local paracrine/autocrine peptides, but circulating levels of endothelins

also have great biological significance, especially in pathological states of increased serum

concentration (Inoue et al., 1989; Sakurai et al., 1992).

Two receptors for endothelins have been characterized in humans, designated ETA and ETB

receptor (Arai et al., 1990; Sakurai et al., 1990). The order of affinity of endothelins for ETA

receptor is endothelin-1>endothelin-2>endothelin-3. ETB receptors show the same affinity for all 3

endothelins (Inoue et al., 1989; Arai et al., 1990; Sakurai et al., 1990; Sakurai et al., 1992). Both

receptors are expressed in a wide variety of tissue types (Gandhi et al., 1992; Hayzer et al., 1992;

Moreland et al., 1992; Prayer-Galetti et al., 1997).

Concerning leukocytes, opposed results are available: in the human monocytic cell line THP-1 the

presence of ETB receptor mRNA was detected whereas another monocytic cell line (U937) lacked

in its expression of the transcript (King et al., 1997).

The mechanisms of the changes in the expression of MDR1 (P-glycoprotein) and MRP isoforms in

leucocytes of vasospastic persons are yet not understood. Although little is known about the

signaling cascades that regulate MRPs, several pathways of their gene regulation appear to occur
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through stimulation of enviromental factors. While stress signals increase levels of MRP1 mRNA

(Harvie et al., 1997; Oosthuizen et al., 2000), MRP2 gene expression is down-regulated due to

inflammatory cytokine release (Sukhai and Piquette-Miller, 2000). As mentioned above, in an

animal model MDR1 (P-glycoprotein) and MRP2 mediated transport is under the control of ET-1,

which acts here via protein kinase C (Masereeuw et al., 2000; Miller et al., 2002).

There are indications in our experiments that the effect of elevated ET-1 levels on the expression

of MDR proteins might be indirect. Although various studies provide evidence of the ET receptors

in monocytic cell lines by using binding assays or receptor inhibition experiments (McMillen et al.,

1995; King et al., 1997), we could demonstrate that only trace amounts of mRNA transcripts of

ETA and ETB receptor could be detected in isolated mononuclear cells of healthy controls and

vasospastic persons. Compared to prostate tissue as positive control where both receptors are

expressed, mononuclear cells showed a 14 and 5 thousand-fold less expression, respectively.

This view of an indirect mechanism is also corroborated by the poor intraindividual correlation

between MDR protein expression and ET-1 plasma levels. The responsible mediating factors for

MDR protein regulation are however not yet identified.
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7.1 Abstract

PURPOSE: To study mitomycin C loaded collagen implant (CI) pharmacokinetics behaviour in

vitro. METHODS: The CI were incubated for 15 minutes in different MMC loading solutions with

the following concentrations: 0.03 mg/mL (n=9), 0.3 mg/mL (n=10) and 3.0 mg/mL (n=10). The

loaded CI were transferred in 100 µL of 0.9% NaCl. Aqueous flow of 5 µL/min was simulated. The

MMC concentrations of the samples were determined by high performance liquid chromatography

(HPLC). Dissolution kinetics were evaluated by a first-order process. The half-life of dissolution

and the time of 95% dissolution were determined. RESULTS: The CI absorbed on average a

MMC dose of 0.054, 0.530, and 6.090 µg when incubated in the different MMC loading solutions

containing 0.03 mg/mL, 0.3 mg/mL, and 3.0 mg/mL of MMC, respectively. In the release

experiments, the mean total dose delivered by CI was 0.0493, 0.585, and 5.291 µg, respectively.

A linear correlation between loading concentration and the estimated total dose released was

demonstrated. The kinetic parameters showed a fast MMC dissolution. The half-life of the 3 series

was 8.8, 10.1, and 10.5 min. CONCLUSIONS: Commercially available collagen implant can be

loaded with MMC, and could provide relatively slower release than sponge delivery of MMC.

Clinical implications of these results warrant further studies.

7.2 Introduction

Collagen implants (Aquaflow, STAAR AG, Nidau, Switzerland) are currently used to enhance

success rates in deep sclerectomy1-5. They are manufactured from purified porcine collagen, and

are slowly degraded postoperatively during 6-9 months, as has been shown by ultrasonic

biomicroscopic studies6,7. Mitomycin C has been used to modulate tissue response to surgical

trauma in glaucoma surgery8.

This study was undertaken to examine the pharmacokinetics behaviour of mitomycin C loaded

collagen implant (CI) in vitro.
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7.3 Materials and Methods

Glaucoma collagen implant

The cylindrical collagen implant is manufactured by Staar Surgical AG, Nidau, Switzerland. It

measures 2.5 mm in length and 1 mm in diameter. The collagen implant is processed from

lyophilized American porcine scleral collagen, which is sterilised by a radiation procedure. This

cross-linked, collagen-based biocompatible material does not induce a systematic immunologic

reaction3. The water content of the hydrated device is 99%. Chiou et al7,9 reported ultrasonic

biomicroscopy (UBM) findings consistent with IOP lowering by aqueous filtration through the thin

remaining TDM to an area under the scleral flap, which was hypothetically maintained open by the

presence of the collagen implant.

Other available implants are the reticulated hyaluronic acid implant10 and the hydrophilic acrylic

non-absorbable implant (Dr Elie Dahan, personal communication).

Release experiment

Mitomycin C ampoules containing 2 mg were used (Roche Pharma AG, Reinach, Switzerland).

Before each experiment, MMC was reconstituted by adding 666.7 µL of water for injection to

make up a stock solution containing 3 mg/mL. The collagen implants were incubated for 15

minutes at ambient temperature in 100 µL of different MMC loading solutions with the following

concentrations: 0.03 mg/mL (n=9), 0.3 mg/mL (n=10) and 3.0 mg/mL (n=10). The difference

between dry and wet weight served as an estimate of total drug loading and was determined

using a balance AT201 (Mettler Toledo, Greifensee, Switzerland). The loaded implants were

transferred in 100 µL of 0.9% NaCl and the MMC release experiment was performed at 37°C

using a Thermomixer 5436 (Eppendorf, Hamburg, Germany). Humour flow of 5 µL/min was

simulated by removing a 37.5 µL sample after 7.5 minutes and after 15 minutes and then a 75 µL

sample after every 15 minutes until no more MMC release was detectable. The removed volumes

were immediately substituted with 0.9% NaCl.



- 96 -

HPLC assay

The MMC concentrations of the samples were determined by high performance liquid

chromatography (HPLC) with UV detection at 365 nm. The HPLC system  (LaChrom) and the

software (D-7000 HPLC system manager) were from Merck Hitachi (Switzerland). A reversed

phase column (Symmetry C8, 3.9x150 mm, Waters, Milford, Massachusetts) was used. The

mobile phase consisted of 80% phosphate buffer (10 mM, pH 7.0) and 20% ethanol (v/v) with a

flow rate of 1 mL/min at 30°C. External calibration was performed with standard curves ranging

from 7.5 ng/mL to 30 µg/mL, with a lower limit of quantitation of 7.5 ng/mL.

Evaluation of kinetic parameters

Dissolution kinetics was evaluated by a first-order process represented by the following formula:

Dose(released) = Dose(est)*(1-exp(-k*t)), where Dose(est) denotes the estimated total dose

released and k denotes the first-order dissolution rate constant. From these estimates, the half-life

of dissolution (T1/2 = ln(2)/k) and the time of 95% dissolution (T95% = -ln(0.05)/k) were

determined. Parameters were estimated by non-linear regression analysis using Origin Software

(version 7, OriginLab Corp., Northampton MA, USA). Dose linearity was assessed by linear

regression analysis. In case of significance, analysis of variance was followed by Scheffe`s

multicomparison test for pair wise comparisons. Level of significance was p=0.05. Comparisons

were performed by SPSS for windows, version 11.0.

7.4 Results

Using 3 different MMC loading solutions containing 0.03 mg/mL, 0.3 mg/mL, and 3.0 mg/mL, we

obtained the following results (Table 7.1). The implants absorbed a mean MMC dose of 0.054,

0.530, and 6.090 µg, respectively, which was determined by taking the difference between dry

and wet weight (mean dry weight: 0.30, 0.309, and 0.338 µg, mean wet weight: 2.09, 2.077 and

2.348 µg, respectively). In the release experiments, the mean total dose delivered by the implants

was 0.0493, 0.585, and 5.291 µg, respectively. A linear correlation between loading concentration

and the estimated total dose released was demonstrated (Figure 7.1 and 7.2). The kinetic

parameters showed a fast MMC dissolution. The half-life of dissolution (T1/2) of the 3 series was

8.8, 10.1, and 10.5 min, respectively. The time of 95% release (T95%) was 37.8, 43.6, and 45.5

min, respectively. After 90, 120 and 150 min there was no detectable MMC release.
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Figure 7.1:  Mean (± SEM) cumulative mitomycin C release (µg) over time. Arrows denote times of 95% drug release

(T95%).

Figure 7.2:  Dose-linearity of loading concentration versus estimated totally released drug.
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A)

0.03 mg/mL

(n=9)

B)

0.3 mg/mL

(n=10)

C)

3 mg/mL

(n=10)

Doseweighted (µg) 0.054 ± 0.003 0.530 ± 0.026 6.09 ± 0.36

(A, B vs C: p<0.001)

Doseest (µg) 0.049 ± 0.002 0.585 ± 0.046 5.29 ± 0.58

(A, B vs C: p<0.001)

k (min-1) 0.079 ± 0.001 0.070 ± 0.002

(p=0.014)

0.067 ± 0.003

(p=0.002)

T1/2 (min) 8.8 ± 0.1 10.1 ± 0.3

(p=0.025)

10.5 ± 0.4

(p=0.002)

T95% (min) 37.8 ± 0.5 43.6 ± 1.4

(p=0.025)

45.5 ± 1.7

(p=0.002)

Table 7.1:  Dose (weighted): MMC dose absorbed by the implants, which was estimated as follows: difference between

wet and dry weight multiplied with the MMC concentration. Dose (est): Total MMC dose released from the implants,

which was estimated by non-linear regression analysis assuming a first-order release process. K: first-order dissolution

rate constant. T1/2: half-life of dissolution. T95%: time of 95% dissolution. All p-values correspond to comparisons with

treatment A (0.03 mg/mL), unless stated otherwise. All other comparisons were not significantly different.

7.5 Discussion

The use of MMC in deep sclerectomy has been already reported. Kozobolis and coworkers11,

compared deep sclerectomy with MMC to deep sclerectomy without MMC. They reported lower

mean IOP achieved, and significantly higher qualified success with the MMC group. Shaarawy

and co-workers12 compared deep sclerectomy with and without the use of collagen implants in a

randomised controlled study. They reported similar mean IOP levels between the two groups, but

statistically significant higher complete success with the use of the collagen implant.

Hypothetically, the results of the procedure could be superior if it was augmented with both an

implant and MMC. Operation time could also be relatively shortened if the implant was loaded with

MMC. Prior to clinical experimentation the pharmacokinetics of the MMC loaded implant is

reported in our article.

Factors affecting MMC efficacy include concentration and volume of MMC used, duration of

application, and the use of irrigation after application. Vass and co-workers13 reported on the

scleral concentration of MMC with the use of different concentrations and different volumes of

MMC. They reported that scleral concentration increases linearly with increasing concentration,
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but not linearly with increasing volume. Never the less both volume and concentration significantly

affected scleral concentrations and the authors suggested that both factors should be well taken

in consideration.

Regarding the effect of post application irrigation on scleral concentrations of MMC, the same

group14 reported that irrigation reduced MMC concentration only down to half the scleral

thickness, leaving the deep intrascleral concentrations unchanged. Which posed the interesting

question of if we can use lower unirrigated concentrations, or are higher concentrations needed

for clinical effect.

The time of MMC application also significantly affects scleral concentrations15. Significant

differences have been reported comparing 0.5 to 1, and 1 with 5 min application durations. It is

worth mentioning that 64% of the MMC was delivered to the sclera within the first min., which

directly pertains to rapid release from the used MMC-soaked application sponge.

In our study we have chosen three different concentrations. The first is frequently used in clinical

settings (0.3 mg/mL), and we have chosen to compare it with 10 times less and ten times more

the concentration. A flow rate of 5 µL/min was chosen to simulate the estimated flow rate of a

trabeculo-Descemet`s membrane following deep sclerectomy.

In a potential clinical setting, the loaded implant could be sutured to the remnants of the sclera

after deep sclerectomy, where the flow of aqueous from the anterior chamber via the trabeculo-

Descemet`s membrane would carry MMC released to a subconjunctival bleb. MMC could also

directly diffuse to the underlying sclera and to the ciliary body and choriod. Whether that would

constitute a safety hazard, or would a very low concentration released, be as effective and yet

safe is beyond the scope of this study and should be addressed in subsequent studies of safety

and efficacy.

Multiple studies have reported on the use of different delivering material of MMC, including a

regular surgical sponge, a scleral shield, a presoaked soft contact lens and a reversible

thermosetting gel 16,17. In our study we could clearly show that the commercially available collagen

implant could be loaded with MMC, and could subsequently release it. The pharmacokinetics of

this relationship is determined in vitro.

In experienced hands deep sclerectomy with collagen implant and adjunctive MMC usually takes

about 25 minutes (personal communication, André Mermoud, Lausanne, Switzerland). Uploading

collagen implant with MMC thus would potentially reduce operation time by 12% (considering

MMC application time of 3 mins), by specifically saving on application time.
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Collagen implant seems to releases MMC in a considerably slower fashion compared to published

reports in the literature regarding release from a regular sponge. The impact of the use of the

MMC collagen implant on efficacy and safety warrants further clinical studies.
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8. Conclusions and outlook

Little is known about the etiology and the development of therapy resistance in inflammatory

bowel disease. Transporter proteins, in particular P-glycoprotein, seem to be involved in the

pathogenesis of IBD (Panwala et al., 1998; Schwab et al., 2003b; Langmann et al., 2004). On the

other hand, drug transporters might also be implicated in therapy resistance in these patients

(Farrell et al., 2000). Apparently, it still requires further research in the field of IBD and

transporters.

In this thesis, the general expression of several transporters in different parts of the intestine of

healthy volunteers was investigated. We have shown, for the first time, systematic site-specific

expression of MDR1, MRPs, BCRP, and ASBT in humans. The expression pattern of each

transporter showed significant alterations along the intestinal tract with low interindividual

variability. This knowledge is of importance for further studies, where samples of IBD patients are

analyzed. It is essential to provide data from control biopsies that derive from the same anatomic

localization in order to obtain reliable results. Furthermore, this knowledge can be useful to

develop drug-delivery strategies, which circumvent absorption sites with high drug transporter

expression.

The induction of drug transporters might be one reason for the therapy resistance that is

frequently observed in patients with IBD. Budesonide, an often-used glucocorticoid, induced the

expression of MDR1 in an in vitro model of the human intestine. But these findings have to be

confirmed in therapy-resistant IBD patients. If this holds true, studies using specific P-gp inhibitors

would make sense in order to overcome therapy resistance.

Thalidomide is increasingly used in conditions of uncontrolled inflammation including IBD.

Although it is a relative old drug, there is only little information about its affinity to transporters. Our

investigations revealed that thalidomide is neither a substrate nor does it induce the expression of

P-gp and MRP2. Consequently, thalidomide has no potential for interactions with these

transporters. This is of importance since thalidomide is mainly used as an adjuvant therapy.

Whether thalidomide has an affinity to other transporters than P-gp and MRP2 has to be

determined in further experiments.
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Transport studies through Caco-2 cells suggest that thalidomide is absorbed by passive diffusion.

Both enatiomers showed the same permeability. Transport proteins in the intestine seem not to

influence the absorption process. Nevertheless, additional experiments using a wider

concentration range, testing ATP-depletion, and using other inhibitors would be of interest.

The described HPLC assay for the determination of thalidomide enantiomers is a sensitive

method to analyze this drug in blood samples. It can be applied in prospective clinical trials.

Further studies in IBD patients are necessary because it still has to be evaluated whether they

have a substantial benefit from thalidomide treatment.

Vasospastic patients showed an altered expression of drug transporters in isolated mononuclear

cells compared to control subjects. The significant down-regulation of MDR1, MRP2, and MRP5

could explain the enhanced drug-sensitivity that was reported by these patients. However, only

the measurement of drug plasma concentrations can provide evidence for this assumption. The

underlying mechanism for this regulation is still unclear. The elevated Endothelin-1 levels in

vasospastic patients did not correlate with transporter expression. Moreover, mononuclear cells

showed hardly any expression of endothelin receptors. Therefore, a direct Endothelin-1 effect on

transporter expression can be ruled out and further investigations are required.

The transporter expressions determined in this thesis were mainly analyzed on mRNA level, but

this does not necessarily correlate with protein expression or function. Additional studies

regarding expression on protein levels are therefore desirable. But concerning P-gp, it was shown

recently that MDR1 transcript number is at least as valid as MDR1 protein abundance as a

predictor of P-gp efflux activity in Caco-2 cells (Taipalensuu et al., 2004)

In this thesis we provided data about the general transporter expressions in biopsies of the human

intestine. A further step would imply a separation of the different cell subtypes that comprise a

biopsy. It would be of interest whether enterocytes or cells of the immune system show alterations

of their transporter expression during drug treatment. Furthermore, the influence of the

inflammatory process on transporter expression in these cells should be investigated. Since both

enterocytes and immune cells are supposed targets of pharmacotherapy in IBD, the basis of

therapy resistance has to be explored in well-characterised cell subtypes.
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