
PoeTryMe: a versatile platform for poetry generation
Hugo Gonçalo Oliveira1

Abstract. PoeTryMe is a platform for the automatic generation of
poetry. It has a versatile architecture that provides a high level of
customisation. The user can define features that go from the poem
configuration and the sentence templates, to the initial seed words
and generation strategy. A prototype was implemented based on
PoeTryMe to generate Portuguese poetry, using natural language pro-
cessing resources for this language, and patterns that denote semantic
relations in human-created poetry. The possible results are illustrated
by three generated poems.

1 INTRODUCTION

Natural language generation [23] is a well-established sub-field of ar-
tificial intelligence and computational linguistics. Its main goal is to
develop computer programs capable of producing text that is under-
stood by humans. Biographies [15] and weather forecasts [2] are ex-
amples of the genres of text that have been generated automatically.
Another example is the generation of text with creative features, in-
cluding story narratives [3], jokes [24] or poetry (see section 2).

We have seen several attempts to generate creative artifacts auto-
matically, with the help of computer programs, and we now accept
the computer as an artist. The creation of visual art and the compo-
sition of musical pieces are other fields where creative systems have
been developed for.

In this paper, we present PoeTryMe, a platform designed for the
automatic generation of poetry. Given a generation grammar and a set
of relational triples, PoeTryMe generates grammatically correct and
meaningful sentences. It has a versatile architecture that provides a
high level of customisation and can be used as the base of poetry
generation systems, which can be built on the top of it. In PoeTryMe,
everything can be changed: the base semantics, represented as re-
lational triples; the templates of the generated sentences, included
in the generation grammars; the generation strategies, that select the
lines to include in the poem; and, of course, the poem configuration.

We start this paper by referring some work on the automatic
generation of poetry, including two categorisations for this kind
of systems. Then, we present an overview on the architecture of
PoeTryMe, followed by the description of a prototype, implemented
for the generation of Portuguese poetry. While introducing the exter-
nal resources used, we describe the process for acquiring line tem-
plates, and the implemented generation strategies. Following, we il-
lustrate the possible results of PoeTryMe by presenting three gener-
ated poems. Before concluding with some cues for future work, we
categorise the implemented strategies.

1 CISUC, University of Coimbra, Portugal, email: hroliv@dei.uc.pt, sup-
ported by FCT scholarship grant SFRH/BD/44955/2008, co-funded by FSE

2 RELATED WORK
The automatic generation of poetry is a complex task, as it involves
several levels of language (e.g. phonetics, lexical choice, syntax and
semantics) and usually demands a considerable amount of input
knowledge. However, what makes this task more interesting is that
some of the latter levels do not have to be strictly present.

On the one hand, writing poetic text does not have to be an ex-
tremely precise task [9], as several rules, typically present in the pro-
duction of natural language, need to be broken [18]. For instance,
there may not be a well-defined message. On the other hand, poetry
involves a high occurrence of interdependent linguistic phenomena
where rhythm, meter, rhyme and other features like alliteration and
figurative language play an important role.

In this section, we present two categorisations of poetry generation
systems, proposed in the literature. One of them considers the applied
techniques and another the generated text.

2.1 Poetry generation techniques
Regarding the followed approaches and techniques used, poetry gen-
eration systems can be roughly grouped into four categories [8]:
(i) template-based, which includes systems that just fill templates
of poetry forms with words that suit syntactic and/or rhythmic con-
straints; (ii) generate-and-test; (iii) evolutionary; and (iv) case-based
reasoning.

In generate-and-test systems, random word sequences are pro-
duced according to formal requirements, that may involve meter or
other constraints. Manurung’s chart system [17], WASP [9] and the
generate-and-test strategy of Tra-la-Lyrics [12] are systems that fall
into this category.

In Manurung’s chart system, sentences are logically represented
by first order predicates describing the input semantics, and charts
are used to generate natural language strings that match a given stress
pattern. While a chart parser analyses strings and translates them to
logical forms, a chart generator translates logical forms to strings.
During the generation, before adding the result of a new rule to the
chart, its stress pattern is checked for compatibility with the target
pattern. Only results with compatible patterns are added, ensuring
that the generated text satisfies the pattern. WASP is a forward rea-
soning rule-based system that aims to study and test the importance
of the initial vocabulary, word choice, verse pattern selection and
construction heuristics, regarding the acceptance of the generated
verses and complete poems. Tra-la-Lyrics [13, 12] is a system that
aims to generate text based on the rhythm of a song melody, given
as input. Using the sequence of strong and weak beats as a rhyth-
mic pattern, the task of generating song lyrics is very similar to the
generation of poetry. In the generate-and-test strategy, grammatical
sentences are produced and then scored according to their suitability
to a given meter/rhythmic pattern.



Evolutionary approaches rely on evolutionary computation tech-
niques. POEVOLVE [16] and McGonnagall [18, 19] are examples
of such approaches. POEVOLVE is a prototype that generates limer-
icks, implemented according to a model that takes the real process of
human poetry writing as a reference. In McGonnagall, the poem gen-
eration process is formulated as a state space search problem using
stochastic hill-climbing search, where a state in the search space is a
possible text with all its underlying representations, and a move can
occur at any level of representation, from semantics to phonetics. The
search model is an evolutionary algorithm encompassing evaluation
and evolution.

As for case-based reasoning approaches, existing poems are re-
trieved, considering a target message, and then adapted to fit in the
required content. Systems like ASPERA [10] and COLIBRI [5] fall
into this category. They are forward reasoning rule-based systems
that, given a prose description of the intended message and a rough
specification of the type of poem, select the appropriate meter and
stanza, generate a draft poem, request modification or validation by
the user, and update their database with the information of the vali-
dated verse.

2.2 Generated poetry properties

Manurung [18] affirms that poetic text must hold all the three prop-
erties of meaningfulness, grammaticality and poeticness. More pre-
cisely, it must: (i) convey a conceptual message, which is meaningful
under some interpretation; (ii) obey linguistic conventions prescribed
by a given grammar and lexicon; and (iii) exhibit poetic features. An
alternative categorisation for poetry generation attempts considers
the latter properties and divide systems into the following: (i) word
salad, which just concatenate random words together, without fol-
lowing grammatical rules, therefore not holding any of the proper-
ties; (ii) form-aware; and (iii) actual poetry generation systems.

In form-aware systems, the choice of words follows a pre-defined
textual form, by following metrical rules. They thus hold the prop-
erties of grammaticality and poeticness. The WASP system [9],
POEVOLVE [16], and the generative grammar strategy of Tra-la-
Lyrics [13] fall into this category.

Actual poetry generation systems must hold the three properties.
ASPERA [10] and COLIBRI [5] are examples of such systems. In
both of them, words must be combined according to the syntax
of the language and should make sense according to a prose mes-
sage provided by the user. Also, when occurring at the end of lines,
words may have additional constraints imposed by the strophic form.
McGonnagall [18, 19] falls into this category as well, given that a
goal state is a text that satisfies the three aforementioned properties.
However, after several experimentations, Manurung et al. [19] state
that it is difficult to produce both semantically coherent text in a strict
agreement to a predefined meter.

There are other systems whose results exhibit poetic features, obey
syntactic rules and, even though not following a well-defined and
precise message, try to generate meaningful text, as they select sen-
tences or words based on given seeds or semantic similarity. Ex-
amples of those include Wong and Chun’s [25] haiku generator,
Gaiku [20], and Ramakrishnan’s lyrics generator [22, 21]. Wong and
Chun generate haikus using a Vector Space Model (VSM), estab-
lished by sentences in blogs. Candidate sentences are selected ac-
cording to their semantic similarity. Gaiku generates haikus based
on a lexical resource that contains similar words. Haikus are gener-
ated according to a selected theme and syntactic rules. Ramakrishnan
el al. learned a model of syllable patterns from real melodies. The

model was used in a system that, given a melody, generates mean-
ingful sentences that match adequate syllabic patterns and rhyme re-
quirements. Meaningful sentences were generated with the help of
n-gram models, learnt from a text corpus. In a more recent version of
the system [21], meaningful sentences are generated with the help of
a knowledge base.

Furthermore, the random words strategy of Tra-la-Lyrics [13] falls
in what can be considered as a fourth category, as the meter of the
generated text suit the given rhythm and the text contains poetic fea-
tures (rhyme), but the word order does not follow grammatical rules
and there are no semantic constraints. In other words, this strategy
holds the property of poeticness, but none of the others.

Recently, a novel system was presented for poetry generation [4]
where, besides dealing with the three aforementioned properties, po-
ems are generated regarding the mood for a certain day (good or bad),
according to newspaper articles, and an aesthetic is produced, using a
set of measures (appropriateness to the mood, flamboyance, lyricism
and relevance for a selected article). The lines of the poem are col-
lected not only from the articles, but also from short phrases mined
from the Internet, and variations of the latter obtained by replacing
some words with others semantically similar. Moreover, comments,
supporting the choices made (e.g. mood, used sentences, aesthetic
measures), are generated. While the latter contextualise the poem,
the produced aesthetics may be used to evaluate the obtained results
more objectively.

3 PoeTryMe

PoeTryMe is a poetry generation platform that relies on a modular ar-
chitecture (see Figure 1) and thus enables the independent improve-
ment of each module. This architecture intends to be versatile enough
to provide a high level of customisation, depending on the needs of
the system and ideas of the user. It is possible to define the seman-
tics to be used, the sentence templates in the generation grammar, the
generation strategy and the configuration of the poem. In this section,
the modules, their inputs, and interactions are presented.

3.1 Generation Strategies

A Generation Strategy implements a method that takes advantage
of the Sentence Generator to obtain lines and build up a poem. The
poem is generated according to a set of seed words, used to get sen-
tences from the Sentence Generator, and a poem template. The latter
contains the poem’s structure, including the number of stanzas, the
number of lines per stanza and the number of syllables of each line.
Figure 2 shows the representation of poem structure templates, for
generating a sonnet and for a haiku. In the latter, the Portuguese word
estrofe indicate a stanza and the verso indicates a line.

An instantiation of the Generation Strategy does not generate sen-
tences. It just includes one or several heuristics to find the bet-
ter sentences for each line, obtained from the Sentence Genera-
tor. Heuristics might consider features like meter, rhyme, coherence
between lines or other, depending on the poem’s purpose. In our
prototype (see section 4), we have implemented a basic strategy, a
generate-and-test strategy, and an evolutionary approach.

3.2 Sentence Generator

The Sentence Generator is the core module of PoeTryMe’s architec-
ture and is used to generate meaningful sentences with the help of:



Sentence

Generator

Grammar
Poem

template

Relational

triples

Triples

Manager

Grammar

Processor

Poem 

 Sentece

templates

Relations

Verse

Seed

words

Terms

Generation

Strategy

Figure 1. PoeTryMe architecture

#sonnet
estrofe{verso(10);verso(10);verso(10);verso(10)}
estrofe{verso(10);verso(10);verso(10);verso(10)}
estrofe{verso(10);verso(10);verso(10)}
estrofe{verso(10);verso(10);verso(10)}

#haiku
estrofe{verso(5);verso(7);verso(5)}

Figure 2. First, the structure of a sonnet, and then, the structure of a haiku.

• a semantic graph, managed by the Triples Manager, where the
nodes are words and the edges are labelled according to a rela-
tion type. A tuple t = (node1, relation type, node2) establishes
a relational triple;

• generation grammars, processed by the Grammar Processor,
which contain textual templates for the (chart) generation of gram-
matical sentences denoting a semantic relation.

The generation of a sentence starts with a set of seed words, used
to select a subgraph from the main semantic graph. The former con-
tains only relations involving the seed words, or connected indirectly
to them from a path no longer than a predefined depth δ.

Generation proceeds by selecting a random triple in the subgraph
and a random grammar rule matching its relation type. There must be
a direct mapping between the relation names, in the graph, and the
name of the head rules, in the grammar. After inserting the arguments
of the triple in the rule body, the resulting sentence is returned.

Similarly to Manurung [17], the Grammar Processor uses a
chart-parser in the opposite direction, in order to perform chart gen-
eration. The body of the rules should consist of natural language ren-
derings of semantic relations. Besides the simple terminal tokens,
that will be present in the poem without any change, the Grammar
Processor supports special terminal tokens that indicate the position
of the relation arguments (<arg1> and <arg2>), to be filled by the
Sentence Generator.

4 POETRY GENERATION IN PORTUGUESE
This section is about the prototype implemented in the top of
PoeTryMe, to generate Portuguese poetry. We present the natural
language processing resources used in the prototype, list some ren-
derings for semantic relations, included in the grammars after ex-
ploiting human-created poetry, describe the implemented generation
strategies, and show three examples of generated poems.

4.1 Resources used
PEN2 is an implementation of the Earley [6] chart-parsing algorithm
that analyses sentences according to grammars given as input. These
grammars are editable text files, where each line contains the name of
a rule and its body. In order to differentiate rule tokens from termi-
nals, rule names are upper case. An example of a simple and valid
rule set is shown in Figure 3, where the Portuguese word RAIZ,
meaning root, is the starting point of the grammar. We used PEN
in the opposite direction, in order to perform chart generation.

RAIZ ::= RULE
RAIZ ::= RULE <&> OTHERRULE

RULE ::= terminal
OTHERRULE ::= otherterminal
OTHERRULE ::= otherterminal <&> OTHERRULE

Figure 3. PEN example rules.

CARTÃO [11] is a public lexical knowledge base for Portuguese,
extracted automatically from three Portuguese dictionaries. It con-
tains about 325,000 semantic triples, held between words, which
can be used as a semantic graph. A semantic triple, represented
as follows, indicates that one sense of the word in the first argu-
ment (arg1) is related to one sense of the word in the second (arg2)
by means of a relation identified by RELATION NAME:

2 Available from http://code.google.com/p/pen/



arg1 RELATION NAME arg2
e.g. animal HIPERONIMO DE cão

(animal HYPERNYM OF dog)

CARTÃO includes relations as synonymy, hypernymy, part-of,
causation, purpose and property, amongst others. The name of the
semantic relation also defines the part-of-speech of its arguments.

SilabasPT3 is an API that performs syllabic division and stress
identification for Portuguese words. It was developed to help gener-
ating text based on rhythm in the project Tra-la-Lyrics [13, 12], but
it is an independent API that can be integrated in other applications.

LABEL-LEX4 is a lexicon of Portuguese, with 1,5 million in-
flected word forms, automatically generated from about 120,000
lemmas. For each word form, it provides information such as the
lemma, the part-of-speech and other morphological information.

4.2 Relations and renderings
Instead of creating our own grammars manually, we automatised this
task by exploiting real Portuguese poetry. It is a well known fact
that semantic relations can be expressed in running text by discrim-
inating patterns, typically used to discover new relations (see, for
instance, [14]). Therefore, in order to discover patterns for our gram-
mar, we extracted all sentences in a collection of Portuguese poetry5,
where the arguments of, at least, one triple of CARTÃO co-occurred.

After replacing the arguments by terminal tokens, relative to the
first and the second argument (<arg1> and <arg2>), we added
the sentence as a rule in the grammar with the name of the relation.
Table 1 shows examples of the relations used, example arguments,
and automatically discovered patterns, used as renderings for the re-
lations. About 700 patterns were discovered.

In order to deal with inflected words and to keep number and gen-
der agreement in the generated sentences, before discovering the pat-
terns, we added the number and the gender of the noun and adjec-
tive arguments to the relation name. For instance, the triple (destino
synonym-of futuro) was changed to (destino ms-synonym-of-ms fu-
turo), while the triple (versos part-of quadras) was changed to (ver-
sos mp-part-of-fp quadras). However, for the sake of clarity, we did
not include this information in table 1. The number and gender infor-
mation was obtained from LABEL-LEX.

4.3 Implemented generation strategies
Three different generation strategies were implemented in the proto-
type. While one is just used as a baseline for debugging, the others
follow evolutionary approaches, as Manurung’s [18] algorithm for
poetry generation.

In both of the latter strategies, there is an evaluation function that
scores each sentence according to the absolute difference between
the number of syllables the poem line has in the template, with the
number of syllables in the generated sentence – the lower the evalu-
ation, the better the sentence is. SilabasPT is used to count the num-
ber of syllables of each sentence and identify its last stress. The final
score of a poem, used only in the third strategy, is the sum of the
scores of all lines plus a bonus for poems with lines in the same
stanza with the same termination (rhyme). The other strategies do
not score rhymes because they do not generate the poem as a whole,
but just gather lines independently.

3 Available from http://code.google.com/p/silabaspt/
4 Available from http://label.ist.utl.pt/pt/labellex pt.php
5 We used wget to collect all the poems in the portal Versos de Segunda,

available from http://users.isr.ist.utl.pt/c̃fb/VdS/

The algorithms involved in each one of the strategies are briefly
described as follows:

• Basic: for each line to be filled, a random sentence is generated
using the key terms;

• Generate-and-test: for each line to be filled, n random sentences
are generated. The one with best score is chosen. All unused sen-
tences are indexed and can be used if a new line needs exactly the
same amount of syllables of the previously unused sentence.

• Evolutionary: an initial population of n poems is generated us-
ing the basic strategy. Then, each poem is scored according to the
aforementioned evaluation function. Each new generation consists
of the poems with the best evaluation, poems that are the result of
crossing two random poems in the population, and newly created
poems as well. When two poems are crossed, a new poem is cre-
ated with lines selected from both. The best scoring poem of the
last generation is returned.

4.4 Illustrative results
For illustration purposes, we present three poems obtained with the
implemented prototype. In figure 4, we present a haiku, obtained with
the generate-and-test strategy, using 100 generations per line, and the
seed words arte and paixão (in English, art and passion), with δ = 1.
With more depth, the system has more word choices and thus more
variations, but it is less focused on the seed words. On the other hand,
using δ = 1, each line will include one seed word, which is the case
for the presented haiku.

The example follows the 5-7-5 syllable pattern correctly. However,
the choice of words for the haiku must be done carefully, because
long words prevent the generation of short lines.

ah paixão afecto
não tem paixão nem objecto
sem na arte modos

Figure 4. Example of a generated haiku.

In figure 5, we present a sonnet, this time obtained with the evo-
lutionary approach, after 25 generations of 100 poems. In each gen-
eration, the population consisted of 40% of the best poems from the
previous, 40% resulting from crossing, and 20% new. The probabil-
ity of crossing, which consists of swapping two lines of two different
poems, was set to 50%, and the bonus for rhymes in the end of lines
to -3. Once again, we used δ = 1. However, as a sonnet has fourteen
lines, in order to have more variations, we used more seed words,
namely: computador, máquina, poeta, poesia, arte, criatividade, in-
teligência, artificial (computer, machine, poet, poetry, art, creativity,
intelligence, artificial).

The meter of the poem is very close to ten syllables per line.
Only the third and seventh line have one additional syllable. Also,
all the verses include one of the seeds and a related word. Meaning
is present in each isolated verse and thus, a meaning emerges for the
whole poem. However, there are no rhymes, which suggests that the
bonus is not enough to generate poems with this feature.

Even so, in an attempt to force the poems to have rhymes, we
generated more poems with the evolutionary approach, with similar



Type POS Example args. Example rule
Synonym-of noun,noun destino,futuro não sei que <arg1> ou <arg2> compete á minha angústia sem leme

(destiny,future)
adj,adj quebrada,rota <arg1> a espada já <arg2> a armadura

(broken,ragged)
Antonym-of adj,adj possı́vel,impossı́vel tudo é <arg1>, só eu <arg2>

(possible,impossible)
Hypernym-of noun,noun mágoa, dor e a própria <arg2> melhor fora <arg1>

(sorrow,heartache)
Part-of noun,noun versos,quadras as minhas <arg2> têm três <arg1>

(lines,blocks)
Causation-of noun,noun morte,luto a seca, o sol, o sal, o mar, a morna, a <arg1>, a luta, o <arg2>

(death,grief)
verb,noun dor,doer é <arg2> que desatina sem <arg2>

(pain,to hurt)
Purpose-of noun,noun arma,munição com <arg2> sem <arg1>

(weapon,ammunition)
verb,noun taça,beber <arg1> para <arg2> junto á perturbada intimidade

(cup,to drink)
Has-quality noun,adj certeza,certo eu que não tenho nenhuma <arg1> sou mais <arg2> ou menos <arg2>

(certainty,sure)
Property-of adj,noun letal,morte a <arg2> é branda e <arg1>

(letal,death)

Table 1. Automatically discovered renderings, included in the grammars.

e não há deus nem preceito nem arte
um palácio de arte e plástica
as máquinas pasmadas de aparelhos
num mundo de poesias e versos

o seu macaco era duas máquinas
horaciano antes dos poetas
para as consolas dos computadores
num mundo de poesias e carmes

longas artes apografias cheias
tenho poesias como a harpa
poema em arte modelação

somos artificiais teatrais
máquinas engenhocas repetido
um poeta de lı́ricas doiradas

Figure 5. Example of a generated sonnet.

settings as the previous, except for: (i) the bonus for rhymes, which
was set to -10; (ii) δ was set to 2; (iii) regarding the higher value of
δ, the provided seed words were only two, more precisely, they were
the same as in the first presented poem (arte and paixão).

One of the resulting poems is a block of four lines, presented in
figure 6. All the lines of this poem end with the same termination, but
none of them agrees with the correct metrics. Actually, all the lines
have more syllables than they should – one in the first and third lines,
six in the second and four in the fourth. Regarding the semantics
of the poem, it is less focused on the seeds, as expected, and none
of them is actually used. Still, the poem contains words related to
art, as escultura, representação and composição (sculpture, acting,
composition).

As others have noticed for meaningfulness and poeticness [19], we
confirmed that it is difficult to generate a poem that strictly obeys to
the three properties of poetry generation without relaxing on, at least,

ah escultura representação
e os que dão ao diabo o movimento da convulsão
sua composição de preparação
é destino estar preso por orientação

Figure 6. Example of a generated block of four lines.

one of them. Moreover, the performed experiments showed that the
generate-and-test strategy, with 100 or more generations of each line,
result more consistently in poems with better evaluation. However, as
it is, the latter strategy does not have bonus for rhymes, and they will
only occur by chance, as in the poem of figure 4. On the other hand,
the evolutionary approach is more complex and has parameters that
should be deeper analysed, but can generate poems with rhymes in a
trade-off for less precise meter.

5 CATEGORISATION

Regarding that we have implemented different strategies for generat-
ing poetry, the work presented here falls in more than one category.
Although our approach uses sentence templates, only one is actually
template-based (basic strategy), while the other two follow, respec-
tively, a generate-and-test and an evolutionary approach.

As for their goals, since we use a semantic graph as input and
we render information in it to natural language sentences, we can say
that, if the graph is well constructed, and regarding that the grammars
generate grammatically correct sentences, our system holds both the
property of grammaticality and meaninfulness. Nevertheless, the lat-
ter property can be seen as “weaker” than the others, because the user
only provides seed terms, and not a fixed and well-formed mean-
ing. As for poeticness, our system supports different configurations
of poems and two of the implemented strategies take the number of
syllables per line into consideration. Furthermore, the evolutionary



approach has a bonus for rhymes. Therefore, according to Manu-
rung [18], when following the generate-and-test or the evolutionary
approach, our prototype can be seen as an actual poetry generation
system.

6 CONCLUSIONS AND FURTHER WORK
We have presented PoeTryMe, a platform for the automatic genera-
tion of poetry, and a prototype, implemented in the top of this plat-
form. One of the strengths of PoeTryMe is its high level of customi-
sation. It may be used with different lexical resources and gener-
ate different poem configurations. The generation grammars may be
edited and improved at will, in order to cover new linguistic construc-
tions. Furthermore, new generation strategies may be implemented,
which can originate different and interesting types of poems, accord-
ing to a predefined purpose. Therefore, PoeTryMe can be used as the
starting point for one (or more) poetry generation systems, eventually
after taking future directions for improvement.

For instance, more generation strategies can be developed and the
evolutionary strategy can be improved after testing more complex
evaluation functions. Besides the number of syllables, other aspects,
such as the the stress patterns, may also be considered. A strategy for
generating rhymes more consistently, without a negative impact on
the meter, should as well be devised.

In the implemented prototype, the lexical knowledge base used is
structured on words. On the one hand, this might be a limitation, be-
cause natural language is ambiguous and several words have more
than one sense. On the other hand, poetry is often vague and does not
have to convey a precise message. Nevertheless, it would be inter-
esting to compare the results of using word-based lexical resources
against sense-aware resources (e.g. WordNet [7]) Also interesting
would be to use a polarity lexicon (e.g. SentiWordNet [1]), in or-
der to generate poetry with a predefined sentimental orientation (e.g.
positive or negative), as others [4] have recently accomplished.

Although our prototype was created for Portuguese, the platform’s
architecture could be used for generating poetry in other languages.
In order to do that, we would need to use external resources for the
target language, including the lexical knowledge base, the syllabic
division algorithm, and the morphology lexicon.

Finally, we should add that, as it happens for other creative arti-
facts, it is difficult to objectively evaluate the quality of a poem. Still,
in the future, our results should be the target of some kind of valida-
tion and evaluation. Ideas for validation include comparing the con-
figuration of the generated poems with similarly structured human-
created poems, while evaluation might be performed based on the
opinion of human subjects, which should consider aspects like the
structure, meter, novelty and semantics of generated poems.

REFERENCES
[1] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani, ‘Senti-

WordNet 3.0: An enhanced lexical resource for sentiment analysis and
opinion mining’, in Proceedings of the 7th International Conference
on Language Resources and Evaluation, LREC 2010, pp. 2200–2204,
Valletta, Malta, (2010). ELRA.

[2] Anja Belz, ‘Automatic generation of weather forecast texts using com-
prehensive probabilistic generation-space models’, Natural Language
Engineering, 14(4), 431–455, (October 2008).

[3] Selmer Bringsjord and David A. Ferrucci, Artificial Intelligence and
Literary Creativity: Inside the Mind of BRUTUS, a Storytelling Ma-
chine, Lawrence Erlbaum Associates, Hillsdale, NJ., 1999.

[4] Simon Colton, Jacob Goodwin, and Tony Veale, ‘Full FACE poetry
generation’, in Proceedings of 3rd International Conference on Com-
putational Creativity, ICCC 2012, pp. 95–102, Dublin, Ireland, (2012).

[5] Belén Dı́az-Agudo, Pablo Gervás, and Pedro A. González-Calero, ‘Po-
etry generation in colibri’, in Proceedings of 6th European Conference
on Advances in Case-Based Reasoning (ECCBR 2002), pp. 73–102,
London, UK, (2002). Springer.

[6] Jay Earley, ‘An efficient context-free parsing algorithm’, Communica-
tions of the ACM, 6(8), 451–455, (1970). Reprinted in Grosz et al.
(1986).

[7] WordNet: An Electronic Lexical Database (Language, Speech, and
Communication), ed., Christiane Fellbaum, The MIT Press, May 1998.

[8] P. Gervás, ‘Exploring quantitative evaluations of the creativity of au-
tomatic poets’, in Workshop on Creative Systems, Approaches to Cre-
ativity in Artificial Intelligence and Cognitive Science, 15th European
Conference on Artificial Intelligence, (2002).

[9] Pablo Gervás, ‘WASP: Evaluation of different strategies for the auto-
matic generation of spanish verse’, in Proceedings of AISB’00 Sympo-
sium on Creative & Cultural Aspects and Applications of AI & Cogni-
tive Science, pp. 93–100, Birmingham, UK, (2000).

[10] Pablo Gervás, ‘An expert system for the composition of formal spanish
poetry’, Journal of Knowledge-Based Systems, 14, 200–1, (2001).

[11] Hugo Gonçalo Oliveira, Leticia Antón Pérez, Hernani Costa, and Paulo
Gomes, ‘Uma rede léxico-semântica de grandes dimensões para o por-
tuguês, extraı́da a partir de dicionários electrónicos’, Linguamática,
3(2), 23–38, (December 2011).

[12] Hugo Gonçalo Oliveira, F. Amı́lcar Cardoso, and Francisco C. Pereira,
‘Exploring different strategies for the automatic generation of song
lyrics with tra-la-lyrics’, in Proceedings of 13th Portuguese Conference
on Artificial Intelligence, EPIA 2007, pp. 57–68, Guimarães, Portugal,
(2007). APPIA.

[13] Hugo Gonçalo Oliveira, F. Amı́lcar Cardoso, and Francisco Câmara
Pereira, ‘Tra-la-lyrics: an approach to generate text based on rhythm’,
in Proceedings of 4th International Joint Workshop on Computational
Creativity, pp. 47–55, London, UK, (2007). IJWCC 2007.

[14] Marti A. Hearst, ‘Automatic acquisition of hyponyms from large text
corpora’, in Proceedings of 14th Conference on Computational Lin-
guistics, COLING’92, pp. 539–545. ACL Press, (1992).

[15] Sanghee Kim, Harith Alani, Wendy Hall, Paul H. Lewis, David E.
Millard, Nigel R. Shadbolt, and Mark J. Weal, ‘Artequakt: Generat-
ing tailored biographies with automatically annotated fragments from
the web’, in Proceedings of ECAI 2002 Workshop Semantic Authoring,
Annotation and Knowledge Markup, SAAKM 2002, pp. 1–6, (2002).

[16] R. P. Levy, ‘A computational model of poetic creativity with neural
network as measure of adaptive fitness’, in Proceedings of the ICCBR-
01 Workshop on Creative Systems, (2001).

[17] Hisar Manurung, ‘A chart generator for rhythm patterned text’, in Pro-
ceedings of 1st International Workshop on Literature in Cognition and
Computer, (1999).

[18] Hisar Manurung, An evolutionary algorithm approach to poetry gener-
ation, Ph.D. dissertation, University of Edinburgh, 2004.

[19] Ruli Manurung, Graeme Ritchie, and Henry Thompson, ‘Using genetic
algorithms to create meaningful poetic text’, Journal of Experimental
& Theoretical Artificial Intelligence, 24(1), 43–64, (2012).

[20] Yael Netzer, David Gabay, Yoav Goldberg, and Michael Elhadad,
‘Gaiku: generating haiku with word associations norms’, in Proceed-
ings of the Workshop on Computational Approaches to Linguistic Cre-
ativity, CALC ’09, pp. 32–39. ACL Press, (2009).

[21] Ananth Ramakrishnan A and Sobha Lalitha Devi, ‘An alternate ap-
proach towards meaningful lyric generation in tamil’, in Proceedings of
the NAACL HLT 2010 Second Workshop on Computational Approaches
to Linguistic Creativity, CALC ’10, pp. 31–39. ACL Press, (2010).

[22] Ananth Ramakrishnan A, Sankar Kuppan, and Sobha Lalitha Devi,
‘Automatic generation of Tamil lyrics for melodies’, in Proceedings of
the Workshop on Computational Approaches to Linguistic Creativity,
CALC ’09, pp. 40–46, Stroudsburg, PA, USA, (2009). ACL Press.

[23] Ehud Reiter and Robert Dale, Building natural language generation
systems, Cambridge University Press, New York, NY, USA, 2000.

[24] Graeme Ritchie, Ruli Manurung, Helen Pain, Annalu Waller, Rolf
Black, and Dave O’Mara, ‘A practical application of computational hu-
mour’, in Proceedings of 4th International Joint Workshop on Compu-
tational Creativity, pp. 91–98, London, UK, (2007).

[25] Martin Tsan Wong and Andy Hon Wai Chun, ‘Automatic haiku gen-
eration using VSM’, in Proceeding of 7th WSEAS Int. Conf. on Ap-
plied Computer & Applied Computational Science (ACACOS ’08),
Hangzhou, China, (2008).


