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Abstract

In this paper we present a new approach to evaluate the environmental efficiency of deci-

sion making units. We propose a model that describes a two-stage process consisting of

a production and an end-of-pipe abatement stage with the environmental efficiency being

determined by the efficiency of both stages. Taking the dependencies between the two

stages into account, we show how nonparametric methods can be used to measure envi-

ronmental efficiency and to decompose it into production and abatement efficiency. For

an empirical illustration we apply our model to an analysis of U.S. power plants.
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1 Introduction

In the last two decades the measurement of environmental efficiency of decision making

units (DMUs) has become one of the major issues in the field of nonparametric efficiency

evaluation (see Zhou et al. (2008) for a survey). Since the traditional approaches like data

envelopment analysis (DEA) proposed by Charnes et al. (1978) do not account for the

unintended production of undesirable outputs like pollutants, different methods to incor-

porate emissions in nonparametric efficiency analysis (see Scheel (2001) for an overview)

have been proposed. These approaches include among others the incorporation of the in-

verse of the undesirable outputs (see Lovell et al. (1995)), the translation approach where

the undesirable outputs are subtracted from a sufficient large positive number (see Seiford

and Zhu (2002)) and the approach of incorporating them as weak disposable outputs (see

Färe et al. (1989)).

Most of these approaches treat the DMUs as black boxes (see figure 1) which use in-

puts (X) and produce desirable (Y) and undesirable outputs (U) (e.g. power plants use

coal and produce electricity and SO2 emissions). Environmental efficiency is analyzed

without taking into account that the DMUs produce desirable outputs and try to abate

undesirable outputs in different stages, which is the basic idea behind classic end-of-pipe

abatement technologies (e.g. scrubber technologies). Moreover, these approaches have in

common that they neither formulate an explicit production nor an abatement process of

the undesirable outputs (see Førsund (2009) for critical remarks).

Production

&

Abatement

X

Y

U

Figure 1: Environmental ”black box”

As a result, little research has been conducted to reveal sources of possible inefficiencies

with regard to the environment. For instance a DMU might be inefficient because it

uses too much of a polluting input in the production stage or the amount of emissions

which are abated using an abatement technology is too low. The existing literature that

presents more detailed analyses of environmental efficiency also has some drawbacks. Hua

and Bian (2008) propose a network based efficiency measure incorporating undesirable

outputs but no production theoretical background of this measure is presented. Yang et

al. (2008) propose an analysis with both a production and an abatement stage, but they

do not separate the efficiencies of these stages. Coelli et al. (2007) suggest an approach

where technical and environmental allocative efficiency is analyzed. However, abatement

efficiency is only shortly noted and not included in their analysis.
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In this paper we propose a new model to evaluate the environmental efficiency of DMUs

and to separate it into production and abatement efficiency. In contrast to the existing

literature, we explicitly formulate a production theoretical model of production and pollu-

tion abatement activities. Furthermore, an environmental efficiency measure is proposed

that can be decomposed into the effects of production and abatement inefficiencies on

environmental efficiency and we show how nonparametric methods can be used to esti-

mate this measure and its components. To show the empirical applicability of our new

approach, we analyze the environmental efficiency of U.S. coal-fired power plants in the

year 2009 with regard to sulfur dioxide (SO2) emissions.

This paper is structured as follows: Section 2 presents the theory of the production and

the abatement technology, while a new measure for environmental efficiency regarding

these technologies is discussed in section 3. In section 4 the new approach is applied to an

analysis of U.S. power plants and section 5 concludes the paper.

2 Modelling the Technologies

In our model we assume that the production process of a DMU can be divided into two

stages, the production stage with technology T1 and the abatement stage with technology

T2. In the first stage, the DMUs use inputs xF1 , x
P and xS1 to produce outputs y. xF1

denotes pollution free (or non-polluting) inputs, which means that the use of these inputs

does not lead to any pollution (e.g. labor), while pollution containing (or polluting) inputs

are denoted by xP (e.g. coal).1 xS1 denotes the amount of shared inputs xS(inputs which

are used in both stages) used in the production stage. The desirable outputs of the DMUs

consist of final outputs yf and intermediate inputs y2, which are inputs of the abatement

stage. The use of the pollution containing inputs xP to produce outputs y = yf + y2

leads to a production of undesirable outputs u′ (e.g. carbon dioxide emissions).2 These

undesirable outputs are inputs of the abatement process (e.g. scrubbers) where they

are reduced using non-polluting inputs xF2 , the amount xS2 of the shared inputs and the

intermediate inputs y2 to the final amount of undesirable outputs u′′ which are emitted

to the environment. The structure of this production process is depicted in figure 2.

To formally define the technology consider n DMUs that are using m inputs x ∈ R
m
+ which

can be split into mF pollution free, mP pollution containing and mS shared inputs, to

produce k desirable outputs y ∈ R
k
+.

3 mF
1 non-polluting inputs are used in the production

stage and mF
2 are used in the abatement stage. As a result of the use of polluting inputs

to produce y in the first stage, s undesirable outputs u′ ∈ R
s
+ are produced. They are

reduced to u′′ ∈ R
s
+ in the abatement process. We further define l ≡ u′ − u′′ ∈ R

s
+ as

the amount of abated pollution. Given the definitions above the first stage of the overall

1 Since we assume that polluting inputs are only used in the first stage, they do not have subscripts.
2 Note that we assume that neither y2 nor xS contains any pollution, so that no additional pollution can
be created at the abatement stage.

3 The notation R
.
+ means that the vector contains only non-negative elements.
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Production
Technology

T1

Abatement
Technology

T2

xF1

xP

xF2

yf

y2

u′ u′′

xS

xS1 xS2

Figure 2: Structure of the two-stage production process

technology, the production technology T1, can be defined as

T1 = {(xF1 , x
P , xS1 , y, u

′) ∈ R
mF

1
+mP+mS+k+s

+ : (xF1 , x
P , xS1 ) can produce (y, u′)}. (1)

In our model we treat the pollutants u′ as the residuals of the production stage.4 A

practical problem arises from the fact that in general u′ is not observable for the researcher.

To overcome this problem we assume that no abatement activities are conducted in the

production stage. Therefore, the amount of undesirable outputs that are the inputs of

the abatement stage can be derived from the materials balance condition (MBC).5 This

concept, introduced by Ayers and Kneese (1969), can be simplified as ”what goes in must

come out”. It is based on fundamental physical laws and states that the amount of

materials bounded in the inputs must be equal to those that are bounded in the desirable

and undesirable outputs.6 Therefore, we can estimate the amount of pollutants resulting

from the first stage by the equality

u′ = ΩxP − Φyf , (2)

where Ω is a s × mP matrix of factors that indicate the amount of undesirable outputs

bounded in the polluting inputs and Φ is a s × k matrix of factors that indicates the

4 See Pethig (2006) for microeconomic foundations of the residual generation in production processes.
5 Of course the MBC also holds if abatement activities are introduced in the production stage. But in
this case the amount of abatement would have to be considered in the MBC resulting in an equivalent
data problem.

6 See Lauwers (2009) for a discussion and Coelli et al. (2007) for an application of the MBC in nonpara-
metric efficiency analysis.
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amount of pollutants bounded in the final outputs.7 Note that the matrices Ω and Φ can

differ among the DMUs since the inputs and outputs might not be completely homogenous

e.g. the quality of coal and hence the sulfur content of it may differ among power plants.

Since we assume that the amount of u′ follows this equality as a residual of the production

we can split the production technology in two parts.8 The production of the desirable

outputs y,

T y
1 = {(xF1 , x

P , xS1 , y) ∈ R
mF

1
+mP+mS+k

+ : (xF1 , x
P , xS1 ) can produce y}, (3)

and the resulting pollution according to the MBC

T u′

1 = {(xP , yf , u′) ∈ R
mP+k+s
+ : u′ = ΩxP − Φyf}. (4)

We assume that the technology T y
1 satisfies the following axioms proposed by Shephard

(1970) (see Färe and Primont (1995) for a discussion):

1.1 Inactivity:

∀(xF1 , x
P , xS1 ) ∈ R

mF
1
+mP+mS

+ , (xF1 , x
P , xS1 , 0) ∈ T y

1 .

It is possible for any amount of inputs to produce no output.

1.2 No free-lunch:

(xF1 , x
P , xS1 , y) 6∈ T y

1 if xF1 = xP1 = xS1 = 0 and y ≥ 0.9

It is not possible to produce positive amounts of any output without using positive

amounts of at least one input.

1.3 Strong disposability of inputs:

If (xF1 , x
P , xS1 , y) ∈ T y

1 and (x̃F1 , x̃
P , x̃S1 ) ≥ (xF1 , x

P , xS1 ) then (x̃F1 , x̃
P , x̃S1 , y) ∈ T y

1 .

For any given combination (xF1 , x
P , xS1 , y) the same amount of output is attainable

by using more inputs.

1.4 Strong disposability of outputs:

If (xF1 , x
P , xS1 , y) ∈ T y

1 and ỹ ≤ y then (xF1 , x
P , xS1 , ỹ) ∈ T y

1 .

For any given combination of (xF1 , x
P , xS1 , y) it is possible to produce less output

holding (xF1 , x
P , xS1 ) constant.

1.5 Convexity: T y
1 is convex.

For example, if (xF1a, x
P
a , x

S
1a, ya) ∈ T y

1 and (xF1b, x
P
b , x

S
1b, yb) ∈ T y

1 then

α(xF1a, x
P
a , x

S
1a, ya) + (1− α)(xF1b, x

P
b , x

S
1b, yb) ∈ T y

1 ∀α ∈ [0, 1].

1.6 The technology exhibits variable returns to scale (VRS).

7 By assumption, the intermediate inputs do not contain any pollution.
8 For a detailed discussion of the splitting of a technology into the production of good output and the
residual generation see Murty and Russell (2010).

9 Here and in the following ”≥” means that at least one element of the vector satisfies strict inequality
while ”≧” means that all elements can hold with equality.
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1.7 Compactness: T y
1 is a compact set.

That means it is a closed and bounded set.

Given the observed combinations (xF1i, x
P
i , x

S
1i, y

f
i , y

2
i ) for i = 1, ..., n the DEA estimation

of the production technology reads as:

T y
1 = {(xF1 , x

P , xS1 , y) ∈ R
mF

1
+mP+mS+k

+ : xF1 ≧ XF
1 λ, xP ≧ XPλ, xS1 ≧ XS

1 λ,

yf + y2 ≦
(

Y f + Y 2
)

λ, 1Tλ = 1, λ ≥ 0}
(5)

where XF
1 represents the mF

1 ×n matrix of non-polluting inputs, XP represents the mP ×n

matrix of polluting inputs, XS
1 denotes the mS ×n matrix of the amount of shared inputs

in the production stage. The outputs consist of a k × n matrix Y f of final outputs and a

k × n matrix Y 2 of intermediate inputs. λ denotes a n× 1 vector of weight factors, with

1Tλ = 1 indicating variable returns to scale. In the second stage an abatement technology

is used to reduce the undesirable outputs that are residuals of the use of polluting inputs

and the production of final outputs according to T u′

1 . The abatement technology T2 can

be defined as

T2 = {(xF2 , x
S
2 , y

2, u′, l) ∈ R
mF

2
+mS+k+2s

+ : (xF2 , x
S
2 , y

2, u′) can produce l} (6)

where l = u′ − u′′ and hence has the same dimension as the s undesirable outputs. We

use l as the output of the abatement stage since in contrast to u′′ it is a desirable output

(see Coelli et al. (2007, p. 9)).

This technology is assumed to satisfy the following axioms:

2.1 Inactivity:

∀(xF2 , x
S
2 , y

2, u′) ∈ R
mF

2
+mS+k+s

+ , (xF2 , x
S
2 , y

2, u′, 0) ∈ T2.

It is possible to abate no emissions using some inputs, hence u′ = u′′ and l = 0.

2.2 No free-lunch: (xF2 , x
S
2 , y

2, u′, l) /∈ T2 if xF2 = xS2 = y2 = u′ = 0 and l ≥ 0.

2.3 Strong disposability of inputs:

If (xF2 , x
S
2 , y

2, u′, l) ∈ T2 and (x̃F2 , x̃
S
2 , ỹ

2, ũ)′ ≥ (xF2 , x
S
2 , y

2, u′) then (x̃F2 , x̃
S
2 , ỹ

2, ũ′, l) ∈

T2.

Strong disposability of u′ means that an increase of the emissions that are an input

to the abatement stage results in an equal increase in u′′, such that none of the

additional emissions are abated.

2.4 Strong disposability of outputs:

If (xF2 , x
S
2 , y

2, u′, l) ∈ T2 and l̃ ≤ l then (xF2 , x
S
2 , y

2, u′, l̃) ∈ T2.

It is possible to increase the amount of emissions u′′ until they are equal to u′. This

boundary follows from the non-negativity of l.

5



2.5 Convexity: T2 is convex.

For example, if (xF2a, x
S
2a, y

2
a, u

′

a, la) ∈ T2 and (xF2b, x
S
2b, y

2
b , u

′

b, lb) ∈ T2 then

α(xF2a, x
S
2a, y

2
a, u

′

a, la) + (1− α)(xF2b, x
F
2b, y

2
b , u

′

b, lb) ∈ T2 ∀α ∈ [0, 1].

2.6 The technology exhibits variable returns to scale.

2.7 Compactness: T2 is a compact set.

The DEA estimation of this technology is created using observations of (xF2i, x
S
2i, y

2
i , u

′′

i )

and estimations of u′i and li by the MBC for i = 1, . . . , n and reads as :

T2 = {(xF2 , x
S
2 , y

2, u′, l) ∈ R
mF

2
+mS+k+2s

+ : xF2 ≧ XF
2 z, xS2 ≧ XS

2 z, y
2 ≧ Y 2z, u′ ≧ U ′z,

l ≦ Lz, 1T z = 1, z ≥ 0}
(7)

where XF
2 denotes the mF

2 × n matrix of non-polluting inputs, XS
2 represents the mS × n

matrix of shared inputs used in the abatement stage, U ′ denotes the s × n matrix of

undesirable outputs and L represents the s × n matrix of abated undesirable outputs. z

denotes the n × 1 vector of weight factor. Note that these weight factors do not have to

equal the λ-values of the first stage. Hence, the reference observations may differ.

The overall technology of the two-stage production process TN is constructed by combin-

ing all three subtechnologies (T y
1 , T

u′

1 and T2) to one network DEA technology and reads as:

TN = {
(
xP , xF1 , x

S
1 , x

F
2 , x

S
2 , x

S , yf , y2, u′, u′′
)
:

xP ≧ XPλ






T y
1

xF1 ≧ XF
1 λ

xS1 ≧ XS
1 λ

yf + y2 ≦
(
Y f + Y 2

)
λ

1Tλ = 1
λ ≥ 0

u′ = xPΩ− yfΦ } T u′

1

y2 ≧ Y 2z






T2

xF2 ≧ XF
2 z

xS2 ≧ XS
2 z

u′ ≧ U ′z
u′ − u′′ ≦ (U ′ − U ′′) z

1T z = 1
z ≥ 0

xS1 + xS2 ≦ xS } } Shared inputs

(8)

In addition to the three subtechnologies the last inequality is included which states that

the sum of shared inputs used in both stages can not exceed an exogenous total amount

of shared inputs. Our technology is similar to the one presented in Färe and Grosskopf
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(1996) which also contains shared and intermediate inputs but is not constructed for the

analysis of environmental efficiency. The possibility of using network DEA to estimate

environmental efficiency is mentioned in Färe et al. (2007a) but is not worked out in detail

there. In the next section we will show how this technology can be used to estimate the

environmental efficiency of DMUs.

3 Measuring and Separating Environmental Efficiency

In this section we present a new possibility to evaluate the environmental efficiency of the

DMUs given the technologies defined in the last section and to separate it into production

and abatement efficiency. As described above, we assume that the production process has

a two-stage structure with the production of desirable outputs in the first stage and the

reduction of the undesirable outputs, which are the residuals of the output production, in

the second stage.

In the literature of environmental economics different measures for environmental effi-

ciency have been proposed (see e.g Tyteca (1996) for an overview of different measures).

For a nonparametric analysis of environmental efficiency incorporating undesirable out-

puts as weak disposable outputs (see the introduction to this paper) Färe et al. (2004)

have developed an index that is based on the ratio of good to bad outputs. But to our

knowledge there exists no measure that allows to evaluate the environmental efficiency of

DMUs and to decompose possible inefficiencies into production and abatement inefficien-

cies. Therefore, we define a new measure of environmental efficiency (EEM) as :

wTu′′∗

wTu′′
=

wTu′∗

wTu′
︸ ︷︷ ︸

PE

·
wTu′′∗

wTu′∗
·

[

wTu′′

wTu′

]
−1

︸ ︷︷ ︸

AE

(9)

This measure is defined by the ratio of the weighted minimal amount of emissions (wTu′′∗)

released to the environment to the equally weighted actual observed amount of emissions

(wTu′′) of the DMU with a value less then 1 indicating environmental inefficiency. wT

denotes the 1 × s vector of weight factors for which possible choices might be global

warming potentials to convert different emissions into CO2 equivalents or (in a monetary

setting) emission allowance prices.10 In case of a single pollutant wT can be set to 1.

The environmental efficiency measure can be decomposed into the product of two efficiency

effects. The first term

(
wTu′∗

wTu′

)

captures the effect of production inefficiency (PE) on the

environmental efficiency. If the term is less than 1 the production is inefficient (the amount

of u′∗ is lower than u′) and hence the DMU can increase its environmental efficiency by

reducing its produced emissions from the production stage. The second term measures the

effect of abatement inefficiency (AE) and is the quotient of two ratios: the first measuring

the ratio of weighted minimal final emissions
(
wTu′′∗

)
to the weighted minimum of emission

10 For example, the global warming potential of methan (CH4) is 25. That means, that if the DMU emmits
1 ton of CO2 and 1 ton of CH4 the EEM aggregates the pollutants to 26 tons of CO2.
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input
(
wTu′∗

)
while the second measures the initial ratio of weighted emission output

(
wTu′′

)
to the initial weighted emission input

(
wTu′

)
. If this quotient is smaller than 1

then the DMU is abatement inefficient. If there are no abatement activities present, the

environmental efficiency measures equals the measure of the productive efficiency.

To obtain the environmental efficiency measure we use the network technology defined in

the last section and estimate the weighted minimum of emissions released to the environ-

ment. Given a sample of DMUs (i = 1, . . . , n) the activity analysis or data envelopment

analysis model reads as:

min
xP ,xS

1
,xS

2
,yf ,y2

1
,u′,u′′,λ,z

wTu′′

s.t. xP ≧ XPλ






T y
1

xF1i ≧ XF
1 λ

xS1 ≧ XS
1 λ

yf + y2 ≦
(
Y f + Y 2

)
λ

1Tλ = 1
λ ≥ 0

u′ = xPΩ− yfΦ } T u′

1

y2 ≧ Y 2z






T2

xF2i ≧ XF
2 z

xS2 ≧ XS
2 z

u′ ≧ U ′z
u′ − u′′ ≦ (U ′ − U ′′) z

1T z = 1
z ≥ 0

xS1 + xS2 ≦ xSi } Shared inputs

(10)

This linear program minimizes the weighted sum of emissions by simultaneously conduct-

ing the following steps. The production technology is used to minimize the polluting inputs

and to maximize the final outputs to achieve productive efficiency with regard to the mini-

mum amount of emissions u′∗ that is technically feasible according to the MBC. Therefore,

the minimization also incorporates u′. The efficient amount of pollutants released to the

environment (u′′∗) given u′∗ is estimated using the technology of the abatement stage.

Moreover, in this estimation the shared inputs are possibly reallocated and the interme-

diate inputs are increased to minimize emissions. The resulting minimal emission amount

u′′∗ is used together with u′∗ to measure the environmental efficiency as well as the effects

of the production and the abatement efficiency.

Note that without shared and intermediate inputs it is not necessary to estimate the effi-

ciency using this network DEA. Without this additional interaction between the produc-

tion and the abatement stage it is possible to estimate the productive and the abatement

efficiency separatly. This could be done by first estimating the efficient amount of u′∗

8



using the production technology T y
1 and the materials balance condition and in a second

step computing u′′∗ using the abatement technology T2.

The estimation and the decomposition of the environmental efficiency measure can be

graphically explained using the following figures 3 and 4.

y

xPl

u′

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

12345678 1

2

3

4

5

6

7

8

A

B

C
C′

ΩxP
45◦

A

B C

C′′

Figure 3: Measurement of environmental effficiency

Figure 3 shows the efficiency analysis of the production and the abatement stage. The

upper right quadrant showst the production technology, where the three DMUs (A,B,C)

are using one polluting input xP to produce the desirable output y. The upper boundary

of the technology is given by the connecting line between A and B, the vertical extension

to A and the horizontal extension to B. The production of y results in the generation

of a single pollutant u′. The amount of this pollutant is given by the materials balance

equation u′ = ΩxP , depicted by the ray through the origin in the lower right quadrant.

To keep the graphical example as simple as possible we assume that the output y does

not contain any pollution, hence Φ = 0. Moreover, we assume that xP is completely

homogenous which implies that Ω is a constant factor for all three observations. The

lower left quadrant shows the abatement technology. The input u′ is reduced to u′′, hence

the output is l = u′ − u′′.11 The 45◦ line shows the physical boundary of the technology,

since for every point on it l = u′ holds and thus u′′ = 0. Since we assume u′′ ≥ 0 no point

left to this line can be attained. The technical boundary of this technology is given by the

connecting line between A and B, the horizontal extension to A and the vertical extension

11 Since abatement without any costs is an unrealistic assumption, we may assume that each observation
uses in addition to u′ 1 unit of a non-polluting input xF

2 in the abatement stage.
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to B. The environmental efficiency analysis can be seen from following the dashed line

from C to C′′. From the graph of the production technology it is clearly visible that DMU

C lies in the interior of the technology and is therefore productive inefficient. Since y does

not contain any pollution we measure the productive efficiency in input orientation. Given

the production technology, C should reduce its input xP from 4 to 2 units keeping the

output constant to become productive efficient. According to the MBC the use of 2 units

of xP leads to the production of 4 units of u′. Given 4 units of u′, the maximal amount of

abatement is 2 units according to the abatement technology (see C′′). Hence, the minimal

amount of u′′ is u′′∗ = u′∗ − l∗ = 4− 2 = 2. In the former situtation C abated 1 of 8 units

of u′ resulting in u′′ = 8 − 1 = 7 units of released emissions. Thus, the environmental

efficiency measure takes the value
u′′∗

u′′
=

2

7
≈ 0.286. This means that C could lower its

emissions to 28.6% if it would operate its production and abatement stage efficiently.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

l

u′

45◦

C

B

A
C′

C′′

Figure 4: Decomposition of environmental efficiency

The decomposition of the environmental efficiency of DMU C into production and abate-

ment efficiency is depicted in figure 4 which shows the lower left quadrant of figure 3 mir-

rored at the l-axis. In addition, the figure includes three parallel lines (one through each

point C, C′ and C′′) with slope 1. The intersection of each line with the u′-axis indicates

the amount of u′′ associated with the points C, C′ and C′′ since l = u′ − u′′. For example,

point C represents u′ = 8 and l = 1 and the intersection point gives u′ − l = u′′ = 7. The

dashed line from the origin to C contains all combinations of u′ and l with the same ratio
u′′

u′
as in point C. As explained above, the efficient amount of u′ is given by u′∗ = 4 and the

optimal amount of abatement is l∗ = 2 (see C′′). The intersection of the parallel through

this point and the u′-axis is (2,0), hence u′′∗ = 2. Therefore the environmental efficiency

is
2

7
≈ 0.286. The point C′ is estimated by combining the productive efficient amount of
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emission input u′∗ = 4 and the ratio
u′′

u′
given at point C. The intersection of the parallel

line through the point C′ and the u′-axis gives the amount of emissions released to the

environment if the production stage operates efficiently but the abatement stage remains

unchanged. We denote this amount u′′#. The production efficiency is therefore given by
u′′#

u′′
=

3.5

7
= 0.5 which by using the intersection theorem is the same as

u′∗

u′
=

4

8
= 0.5,

where the last equation is the definition of production efficiency in our environmental effi-

ciency measure. Given the productive efficient point, C′ could further lower its emissions

by increasing l to 2 units keeping u′ constant to become abatement efficient. This would

lead to an evironmentally efficient amount of 2 units of u′′ and the abatement efficiency

is then given by
u′′∗

u′′#
=

2

3.5
≈ 0.571. But note that we would not obtain point C′ as a

solution of the network DEA model which only gives u′∗ and u′′∗. But by using the points

C and C′′ as well as again the intersection theorem we find that
u′′∗

u′′#
=

u′′∗

u′∗
·

[

u′′

u′

]
−1

with the right hand side of this equation representing the term for abatement efficiency

in our environmental efficiency measure. Finally, this measure is given by the product of

production and abatement efficiency 0.5 · 0.571 ≈ 0.286.

In the next section we show how this measure can be applied to an analysis of U.S. power

plants.

4 Application to U.S. Power Plants

For an empirical illustration we apply our model to an efficiency analysis of U.S. coal-fired

power plants in the year 2009. These plants have been adressed by several previous studies

(e.g. Färe et al. (2005), Färe et al. (2007b), and Sueyoshi et al. (2010)) analyzing their

environmental efficiency as described in the introduction to this paper. The amount of

available data, especially for abatement activities, has significantly increased in the last

years enabling us to conduct a detailed analysis of the potential sources of environmental

inefficiency. We analyze the environmental efficiency with regard to the sulfur dioxide

(SO2) emissions of the power plants. The reason for choosing SO2 emissions in our analysis

is twofolded. Firstly, coal fired power plants contribute 73% of all SO2 emissions in the

United States (EPA (2011b)) and therefore their efficiency has a significant influence on the

total generation of SO2 emissions in the U.S.. Secondly, the abatement of these emissions

by flue gas desulfurization units (FGDs) exists as an end-of-pipe technology and hence can

be analyzed with our network model (see Srivastava and Josewicz (2001) for a description

of FGDs). Due to their large contribution to overall SO2 emissions, the power plants are

regulated by the U.S. Environmental Protection Agency (EPA). The Acid Rain Program

(ARP) Phase II which was implemented in the year 2000 and covers all plants with a

capacity > 25 megawatts introduced a cap and trade program with a total amount of

allowances for 8.95 million tons of SO2 emissions per year (see EPA (2011a)). In addition,

the Clean Air Interstate Rule (CAIR) which includes 28 eastern states of the U.S. and

the district of Colombia was implemented in 2010 to reduce SO2 emissions to 57% of the
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amount in 2003 by 2015 (see EPA (2005)). In our analysis we will test, whether the plants

which are additionally regulated by the CAIR program have shown significant differences

with regard to their environmental efficiency before the regulation compared with those

which are only regulated by the ARP.

The sources of the data used in our study are the files EIA-860 and EIA-923 of the U.S.

Energy Information Agency (EIA), where EIA-923 provides detailed information on the

inputs and outputs of the production stage of the power plants, whereas EIA-860 contains

data on their abatement activities. These files contain the data on boiler and generator

level (EIA-923), respectively on FGD unit level (EIA-860). In addition to the data from

EIA we use the Clean Air Markets data from the EPA which provides data on the amount

of SO2 emissions released to the environment by each boiler of the plants. Finally, we

include plant-level labor data from Form 1 of the Federal Energy Regulatory Commis-

sion (FERC). Since the data are reported on different levels we had to aggregate them

to estimate plant-level efficiency. This aggregation was done as follows: In the first step,

we excluded all observations (boilers, generators and FGDs) with missing data (see the

paragraph below for a description of the used inputs and outputs). We also excluded

boilers for which coal contributes to less than 95% of the used heat content of the fuels

and those for which fuels other than coal, oil or gas contribute to more than 0.0001%

of the used heat content.12 FGDs were excluded if they either were non-operating or if

the generators linked with these units have an installed capacity that is lower than 100

megawatts. The last exclusion is due to previous studies (see Eastern Research Group

(2009)) which find that while medium (100− 500 MW) and large (> 500 MW) FGDs are

comparable e.g. with regard to capital cost per capacity, smaller (< 100 MW) FGDs show

significant differences to large and medium FGDs. To avoid this comparison we excluded

those observations. The remaining observation were checked if all linked units were still

included in the data set (e.g. if all boilers that are linked to one generator are still part of

the data). If the data were complete, we summed the single parts up to estimate the data

on power plant level, otherwise we did not include the data. As a result of this procedure,

not necessecarly all generators, boilers and FGDs of a power plant were included in our

analysis. However, we prefered this method to simply summing up all boilers, generators

and FGDs to one plant since this would lead to more serious problems. For example, our

approach avoids comparing the environmental efficiency of boilers and generators without

FGDs with those that are equipped with FGDs using the same estimated technology set.

For our efficiency analysis we use the following input and output variables. In the pro-

duction stage we include the sum of the heat content (measured by british thermal units

(BTUs)) 13 of the fuels used by the power plants (coal, oil and natural gas) as the pollution-

containing input.14 We do not include the different fuels separately because this would

12 This step was done following the definition of a power plant as coal-fired by Färe et al. (2007b).
13 A BTU is the amount of thermal energy needed to raise the temperature of one pound of water by 1◦F .
14 In our analysis coal consists of anthracite and bituminous (BIT), lignite (LIG) and subbituminous

(SUB) coal. Oil consists of destillate (DFO) and residual fuel (RFO) oil.
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lead to zeros in the input data since many observations do not use oil or natural gas

additional to coal. To avoid zeros in the data (see e.g. Thanassoulis et al. (2008) for

an overview of this problem in DEA methods) we aggregate all used fuels by multiplying

the physical quantities of the fuels with their heat content which is also reported in the

file EIA-923 and sum up the results to one input (total heat content). The non-polluting

input of the production stage is given by the installed capacity of the generators mea-

sured in megawatts (MW). The output of the production stage, the produce amount of

electricity, can be split up into two parts. The first part, the net generation of electricity,

is the amount (measured in gigawatt hours (GWh)) of electricity produced by the plant

excluding the amount of electricity used by the plant. The second part is the amount of

electricity used by the FGD units to abate SO2 emissions. Since this electricity is both an

output of the production stage and an input of the abatement stage, it can be viewed as an

intermediate input. To estimate the amount of SO2 emissions (in tons) that are generated

in the production stage we multiply the physical quantites of the used fuels by their sulfur

content and by the uncontrolled emission factors that are reported in appendix A of the

Electric Power Annual Report (EIA (2011)). Beside these emissions and the electricity

used by the FGD units, the inputs of the abatement stage consist of the operating costs

as well as the costs of the installed FGD structures. The operating costs consist of the

costs of land acquisition, waste disposal, chemicals and other maintenance material. To

present the costs of installed FGD structures in the year 2009 we use inflation data from

the Bureau of Labor Statistics. We assume that no additional equipment was installed

to the FGD unit after the year it came into service and hence assume that the costs of

the structures did not change after that year. We have to assume this, because we lack

data for these costs before the year 1985 and so we cannot observe changes in the costs

for structures over the whole operating period of some of the FGD units.15 The single

output of the abatement stage is the amount of abated SO2 emissions which we obtain

by substracting the amount of released SO2 emissions (given by the EPA data) from the

estimated amount of SO2 emissions produced in the first stage. In addition to the inputs

described above which are only used by either the production or the abatement stage, we

also include one shared input, the number of employed workers. Two problems arise from

the fact that FERC data only report the overall number of worker employed at the power

plant. Firstly, our dataset does not necessarily cover the whole plants as explained above.

Therefore, we assumed that the number of workers of the plants is proportional to the

plants capacity and hence the total amount of labor in our dataset is estimated by

Number of workers (total) = Number of workers (FERC) ·
MWData

MWTotal

(11)

where MWData is the capacity of the plant in our dataset and MWTotal is the total capacity

of the plant. Secondly, we had to attribute the total amount of workers to the production

and the abatement stage. To estimate the amount of workers operating the FGD units

15 The historical data back to the year 1985 can be obtained from the file EIA-767.
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we used two power laws which were developed by Srivastava (2000) to estimate the cost

of operating labor for FGD units.16 For wet scrubbers the amount is estimated by

Number of workers (FGD) = 41.69041 ·MW−0.322307 ·
MW

100
(12)

and for dry scrubbers by

Number of workers (FGD) = (18.25− 2.278 · ln(MW)) ·
MW

100
(13)

where MW denotes the capacity of the generators linked to the FGD unit. The difference of

the estimated total number of workers and the estimated FGD operating labor is attributed

to the production stage. Table 1 presents the descriptive statistics for the data used in

the production and the abatement stage, respectively.

Table 1: Descriptive statistics of the production process

n = 23 Power Plants Min Mean Median Max SD

Production stage

Inputs
Total heat content (Bio. BTUs) 9049.93 47413.73 32816.74 127135.37 33232.20
Capacity (MW) 191.70 883.38 644.60 2160.20 589.47

Output
Net generation (GWh) 1108.39 5035.63 3450.75 14664.33 3717.50

Abatement stage

Inputs
SO2 emissions (tons) 971.80 7032.16 4570.78 40129.08 8919.37
Operation costs (1000$) 1316.00 7399.52 5473.00 21619.00 6045.30
Costs of structures (1000$, 2009) 11323.52 211254.71 122746.99 692319.67 170881.04

Output
Abated SO2 emissions (tons) 2102.27 78471.06 41399.25 280130.00 83419.18

Intermediate input

FGD electricity (GWh) 5.79 78.92 46.62 314.60 81.56

Shared input

Labor total (worker) 55.00 140.17 118.00 398.00 79.36
Labor production (worker) 25.00 102.26 88.00 330.00 65.65
Labor FGD (worker) 12.00 37.91 31.00 76.00 19.05

16 These equations are also implemented in the EPA CueCost program, a computer software to estimate
the capital cost of power plants.
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The descriptive statistics show, that although we excluded observations with a capacity

lower than 100 MW, our sample covers a broad range of power plant sizes as can be seen

by the minimal and maximal amounts of installed capacity. The relatively small sample

size (23 power plants) is largely driven by the FERC data since for many power plants

no labor data was available. The costs for the FGD structures appear to be very large

(the maximum is near to 700 Mio.$) but they are in accordance with the average costs as

presented by the EPA (see EPA (2003)).

We estimate the environmental efficiency of the power plants by solving the linear program

defined in section 3. To solve this problem we use the package ”lpSolve” for the statistical

software R. Since the final output (net generation of electricity) does not contain any

pollution, we do not minimize the emissions over this variable. The Ω matrix is estimated

for each plant by the weighted average sulfur dioxide emission input (u′) per BTU of

used heat content. The detailed results of the environmental efficiency as well as the

decomposition into production and abatement efficiency for each plant can be found in

table 3 in the appendix of this paper. Table 2 contains the descriptive statistics of the

results while figure 5 contains the related boxplots. A boxplot can be read as follows. The

box shows the interquartile range of the efficiency estimates with the lower end indicating

the first quartile and the upper end indicating the third quartile. The bold line shows

the median value. The whiskers span to the most extreme observations that lie within 1.5

times the interquartile range.
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Figure 5: Boxplots of the efficiency estimates
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Table 2: Descriptive statistics of efficency measures

Efficiency Min Mean Median Max SD # Efficient

Environmental 0.089 0.522 0.465 1.000 0.341 4

Production 0.793 0.942 0.994 1.000 0.073 10

Abatement 0.112 0.542 0.472 1.000 0.343 5

Our efficiency analysis shows that ten power plants are productive and five are abatement

efficient. Four plants are efficient regarding both the production and the abatement stage

and are therefore environmentally efficient. One observation, the power plant Cayuga, is

abatement but not productive efficient, hence its environmental efficiency equals its pro-

duction efficiency. Moreover, our results show that while the efficiency of the production

is high among the DMUs (average efficency 94.2%), the abatement efficiency is quite low

(average efficiency 54.2%). It is clearly visible from the boxplots that the low abatement

efficiency of the plants largely influences their environmental efficiency which is also rel-

ativly low (mean value 52.2%). To analyze whether the plants which are regulated by

the EPA CAIR program show significant differences in their environmental performance

compared to the plants which are only regulated by the ARP program, we tested for these

potentials differences using the Wilcoxon-Test. While we find no differences among the

power plants with respect to the environmental and the abatement efficiency, we find that

the CAIR regulated plants show significant lower productive efficiency results. This result

indicates that the CAIR program comprises a subgroup of ARP regulated plants which

have significant potentials to lower their emissions created in the production stage. This

reduction would lead to a catch-up of these plants to the rest of the ARP regulated power

plants.

To summerize our results we find that the power plants in the year 2009 show significant

potentials to reduce their SO2 emissions. This supports the EPA decision to implement

further regulatory actions on the plants (as the CAIR program). Using the possibility

to separate the environmental efficiency into its components, we find that environmental

inefficiencies are largely driven by abatement inefficiencies. Therefore, an optimal regula-

tion should adress the abatement activities of the power plants to exploit the potentials

for SO2 reductions.

5 Conclusion

In this paper we have presented a new approach to evaluate the environmental efficiency

of decision making units. Since the existing literature of nonparametric efficiency analysis

does not account for explicit abatement activities of the DMUs we proposed a technology

that incorporates a production as well as an abatement stage, which are linked using inter-

16



mediate and shared inputs. Furthermore, we showed how the materials balance condition

can be incorporated to estimate the amount of emissions before the abatement process.

We proposed a new measure for environmental efficiency and showed how it can be de-

composed into the effects of production and abatement efficiency. Moreover, a network

DEA model was introduced which can be used to estimate the efficiency measure and its

components. Our application of the new model to U.S. power plants shows that there

are significant potentials to reduce SO2 emissions which could be achieved by more effi-

cient abatement activities of the plants. We find significant differences in the production

efficiency of power plants which are in addition to the Acid Rain Program of the EPA

regulated by the Clean Air Interstate Rule. These differences which existed in the year

2009 and hence before the regulation started, can be interpreted as potential sources for

an catch-up to the plants which are not regulated by the CAIR. But we want to point

out, that since our sample only consists of 23 power plants these results might be due to

the small sample size. This problem could be adressed in future reseach by applying the

presented model on different datasets. Empirical research with regard to the coal-fired

power plants may analyze sources of the large abatement inefficiencs which could be used

to identify the targets of environmental regulation more precisely. Since the detailed data

for empirical environmental analyses as performed in this paper are lacking for many inter-

esting real-world problems, future theoretical research may enhance the presented model

to allow a detailed analysis without the necessity of a large amount of data.
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Färe, R., S. Grosskopf, and G. Whittaker (2007a). “Network DEA”. In: Modeling Data

Irregularities and Structural Complexities in Data Envelopment Analysis. Ed. by J.

Zhu and W. D. Cook. Springer: New York, pp. 209–240.
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7 Appendix

Table 3: Plant results of the efficiency analysis

Plant ID Plant Name Environmental Production Abatement

51 Dolet Hills 0.089 0.796 0.112
469 Cherokee 0.176 1 0.176
470 Comanche 0.473 1 0.473
477 Valmont 1 1 1
645 Big Bend 0.263 0.89 0.295
990 Harding Street 0.358 0.899 0.399
994 AES Petersburg 0.244 0.891 0.274
1001 Cayuga 0.901 0.901 1
1356 Ghent 0.269 1 0.269
1363 Cane Run 0.135 0.869 0.155
1364 Mill Creek 0.778 0.889 0.875
1915 Allen S King 0.661 1 0.661
2727 Marshall 0.997 0.999 0.998
3797 Chesterfield 0.707 0.943 0.75
4078 Weston 1 1 1
4162 Naughton 0.267 0.994 0.268
6071 Trimble County 1 1 1
6085 R M Schahfer 0.095 0.817 0.116
6137 A B Brown 0.186 0.793 0.235
8042 Belews Creek 0.465 0.985 0.472
8066 Jim Bridger 0.254 1 0.254
8069 Huntington 0.695 1 0.695
8224 North Valmy 1 1 1

20


