
ISSN 0252–9742

Bulletin
of the

European Association for

Theoretical Computer Science

EATCS

EA
T

C
S

Number 116 June 2015

Council of the

European Association for

Theoretical Computer Science

President: Luca Aceto Iceland
Vice Presidents: Paul Spirakis Greece

Burkhard Monien Germany
Antonin Kucera Czech Republic

Treasurer: Dirk Janssens Belgium
Bulletin Editor: Kazuo Iwama Kyoto, Japan

Lars Arge Denmark
Jos Baeten The Netherlands
Paul Beame USA
Mikolaj Bojanczyk Poland
Josep Díaz Spain
Zoltán Ésik Hungary
Fedor Fomin Norway
Pierre Fraigniaud France
Leslie Ann Goldberg UK
Monika Henzinger Austria
Christos Kaklamanis Greece
Juhani Karhumaki Finland

Elvira Mayordomo Spain
Luke Ong UK
Catuscia Palamidessi France
David Peleg Israel
Giuseppe Persiano Italy
Alberto Policriti Italy
Alberto Marchetti Spaccamela Italy
Vladimiro Sassone UK
RogerWattenhofer Switzerland
ThomasWilke Germany
PeterWidmayer Switzerland
GerhardWöeginger The Netherlands

Past Presidents:
Maurice Nivat (1972–1977) Mike Paterson (1977–1979)
Arto Salomaa (1979–1985) Grzegorz Rozenberg (1985–1994)
Wilfred Brauer (1994–1997) Josep Díaz (1997–2002)
Mogens Nielsen (2002–2006) Giorgio Ausiello (2006–2009)
Burkhard Monien (2009–2012)

Secretary Office: Ioannis Chatzigiannakis Italy
Efi Chita Greece

EATCS Council Members
email addresses

Luca Aceto . luca@ru.is
Lars Arge . large@madalgo.au.dk
Jos Baeten . jos.baeten@cwi.nl
Paul Beame . beame@cs.washington.edu
Mikolaj Bojanczyk . bojan@mimuw.edu.pl
Josep Díaz . diaz@lsi.upc.es
Zoltán Ésik . ze@inf.u-szeged.hu
Fedor Fomin . fomin@ii.uib.no
Pierre Fraigniaud . . pierre.fraigniaud@liafa.univ-paris-diderot.fr
Leslie Ann Goldberg leslie.goldberg@cs.ox.ac.uk
Monika Henzinger monika.henzinger@univie.ac.at
Dirk Janssens . Dirk.Janssens@ua.ac.be
Christos Kaklamanis . kakl@ceid.upatras.gr
Juhani Karhumäki . karhumak@cs.utu.fi
Antonin Kucera . tony@fi.muni.cz
Elvira Mayordomo . elvira@unizar.es
Burkhard Monien . bm@uni-paderborn.de
Luke Ong . luke.Ong@cs.ox.a.uk
Catuscia Palamidessi catuscia@lix.polytechnique.fr
David Peleg . peleg@wisdom.weizmann.ac.il
Giuseppe Persiano . giuper@dia.unisa.it
Alberto Policriti alberto.policriti@uniud.it
Alberto Marchetti Spaccamela alberto@dis.uniroma1.it
Vladimiro Sassone . vs@ecs.soton.ac.uk
RogerWattenhofer wattenhofer@tik.ee.ethz.ch
ThomasWilke thomas.wilke@email.uni-kiel.de
PeterWidmayer . widmayer@inf.ethz.ch
GerhardWöeginger g.j.woeginger@math.utwente.nl

Bulletin Editor: Kazuo Iwama, Kyoto, Japan
Cartoons: DADARA, Amsterdam, The Netherlands

The bulletin is entirely typeset by pdfTEX and ConTEXt in TXfonts.

All contributions are to be sent electronically to

bulletin@eatcs.org

and must be prepared in LATEX 2ε using the class beatcs.cls (a version of
the standard LATEX 2ε article class). All sources, including figures, and a
reference PDF version must be bundled in a ZIP file.
Pictures are accepted in EPS, JPG, PNG, TIFF, MOV or, preferably, in PDF.
Photographic reports from conferences must be arranged in ZIP files layed out
according to the format described at the Bulletin’s web site. Please, consult
http://www.eatcs.org/bulletin/howToSubmit.html.

We regret we are unfortunately not able to accept submissions in other for-
mats, or indeed submission not strictly adhering to the page and font layout
set out in beatcs.cls. We shall also not be able to include contributions not
typeset at camera-ready quality.

The details can be found at http://www.eatcs.org/bulletin, including
class files, their documentation, and guidelines to deal with things such as
pictures and overfull boxes. When in doubt, email bulletin@eatcs.org.

Deadlines for submissions of reports are January, May and September 15th,
respectively for the February, June and October issues. Editorial decisions
about submitted technical contributions will normally be made in 6/8 weeks.
Accepted papers will appear in print as soon as possible thereafter.

The Editor welcomes proposals for surveys, tutorials, and thematic issues of
the Bulletin dedicated to currently hot topics, as well as suggestions for new
regular sections.

The EATCS home page is http://www.eatcs.org

vii

Table of Contents

EATCS MATTERS
Letter from the President . 3
Letter from the Bulletin Editor . 11
Memories of Jiří Matoušek in Japan . 15

EATCS COLUMNS

The Algorithmics Column, by G.J. Woeginger
Query-Competitive Algorithms for Computing
with Uncertainty, by T. Erlebach, M. Hoffmann 21

The Computational Complexity Column, by V. Arvind
Combinatorial Game Complexity: An
Introduction with Poset Games, by S.A. Fenner, J. Rogers 41

The Distributed Computing Column, by P. Fatourou
Maurice Herlihy's 60th Birthday Celebration, by
P. Fatourou . 77
A Quarter-Century of Wait-Free
Synchronization, by V. Hadzilacos . 79
Hardware Trends: Challenges and Opportunities
in Distributed Computing, by T. Harris 91
Transactional Memory Today, by M. Scott 99

The Distributed Computing Column, by S. Schmid
Fault-tolerant Distributed Systems in
Hardware, by D. Dolev, M. Fugger, C. Lenzen,
U. Schmid, A. Steininger . 111

The Education Column, by J. Hromkovič
Informatics - New Basic Subject, by W. Gander 155

The Formal Language Theory Column, by G. Pighizzini
Average Size of Automata Constructions from
Regular Expressions, by S. Broda, A. Machiavelo,
N. Moreira, R. Reis . 167

The Logic in Computer Science Column, by Y. Gurevich
Selected Papers from the 1st Workshop "Logic,
Language, and Information", by G. Sciavicco, A. Burrieza 193
Distributed explicit knowledge and collective
awareness, by A. Burrieza, C. Fernández-Fernández 195
A logical approach for direct-optimal basis of
implications, by E. Rodríguez-Lorenzo, P. Cordero,
M. Enciso, A. Mora . 204
Abductive Reasoning in Dynamic Epistemic Logic
- Generation and Selection of Hypothesis,, by
I.D. Arroniz . 212
LCC-program transformers through
Brzozowski's equations, by E. Sarrión-Morillo 220
Mereology and temporal structures, by
P. González Nuňez . 230

News and Conference Reports
Report from the Japanese Chapter, by R. Uehara 241

Reflections on Influential Scientists and Ideas

George Dantzig: father of the simplex method, by
D. Avis . 249

Contributions by EATCS Award Recipients

Sampling from Discrete Distributions and
Computing Frechet Distances, by K. Bringmann 257

Book Introduction by the Authors

Semantics of Probabilistic Processes An
Operational Approach, by Y. Deng . 269

EATCS LEAFLET . 279

EATCS Matters

E
A
T
C
S

The Bulletin of the EATCS

3

Dear colleagues,

As you know, the EATCS is about to hold its
first ever ICALP conference outside Europe.
The 42nd ICALP will take place in the
period 4�10 July 2015 in Kyoto, Japan, and
will be co-located with the 30th Annual
ACM/IEEE Symposium on Logic in Computer
Science (LICS 2015).

ICALP 2015 had the largest number of
submissions in history (507) and the
largest ever number of submissions for
Track A (327). Moreover, all tracks
received many submission of very high
quality. The PCs for the three tracks,
which were expertly led by Bettina
Speckmann (Track A), Naoki Kobayashi (Track
B) and Magnús M. Halldórsson (Track C), did
an amazing job in selecting an exciting
conference programme. So, despite the
difficult economic climate, it seems that
the decision to hold the conference in
Japan in co-location with LICS was a good
one to take at this moment in time.
Moreover, I feel that it is also a
long-overdue sign of recognition of the
important role that the Japanese Chapter of
the EATCS plays in the life of our
association and for theoretical computer
science in general, and of the growing
status of TCS research in Asia as a whole.
The EATCS is firmly rooted in Europe, but
is an association with members from all
over the world. In fact, I would dearly
like to see more members from
extra-European countries and I encourage
TCS researchers from all over the world to
join the EATCS. I hope that, with your help
and support, our association can play an

BEATCS no 116

4

even more important role in the development
of TCS across the world.

I am very grateful to Masahito Hasegawa,
Kazuo Iwama and their team for the
extraordinary work they have done in
organizing ICALP/LICS 2015 and for the
support they have received from the
Japanese community at large. In
particular, on behalf of the EATCS, I
gratefully acknowledge the financial
support of the ERATO Kawarabayashi Large
Graph Project (grant holder: Ken-ichi
Kawarabayashi), of the project Exploring
the Limits of Computation (grant holder:
Osamu Watanabe), of the Research Institute
for Mathematical Sciences (RIMS), Kyoto
University, and of the Tateisi Science and
Technology Foundation. Thanks to the
sponsorship received by the organizers, the
early registration fee for members of the
EATCS attending ICALP/LICS 2015 was of
45, 000 JPY (roughly 320 Euros), which, by
today’s standards, is very low for a
five-day event.

Note that ICALP 2015 and LICS 2015 are
truly co-located events. The two
conferences will take place in the same
week and at the same location. There is
only one registration fee and conference
participants will be able to attend
whatever session they fancy at either
conference. The seven invited talks, the
three invited tutorials and the award
session, as well as the coffee and lunch
breaks, will be plenary events at which
participants in both conferences will
congregate and mingle. Moreover, an ICALP
Masterclass held by Ryuhei Uehara will
celebrate Japan’s fascination with puzzles,
following on the footsteps of the very

The Bulletin of the EATCS

5

successful masterclass on mathematical
puzzles held by Peter Winkler at ICALP 2008
in Reykjavik.

Since ICALP and LICS span the whole
spectrum of theoretical computer science,
in my admittedly biased opinion ICALP/LICS
2015 will be a veritable “theory festival”
with a mouthwatering scientific menu. I
invite you to look at
www.kurims.kyoto-u.ac.jp/icalp-lics2015/

for details on the conference programme,
the invited talks and invited tutorials.
As usual, a report on the conference will
be published in the October 2015 issue of
the Bulletin. I also hope that there will
be some coverage of the event on the blogs
devoted to theoretical computer science. I
will issue a call for guest bloggers on my
professional blog myself.

Apart from the invited and contributed
talks, ICALP 2015 will feature the
presentation of the EATCS Award 2015 to
Christos Papadimitriou and of the
Presburger Award 2015 to Xi Chen.
Moreover, during the conference, we will
honour the EATCS Fellows class of 2015, who
are

• Artur Czumaj (University of Warwick,
United Kingdom) for “contributions to
analysis and design of algorithms,
especially to understanding the role of
randomization in computer science”;

• Mariangiola Dezani-Ciancaglini
(University of Torino, Italy) for
“distinguished and seminal achievements
in formal methods and foundations of
programming languages, introducing or
developing new type systems for the

BEATCS no 116

6

lambda-calculus as well as for the
pi-calculus and related calculi”;

• Thomas A. Henzinger (Institute of
Science and Technology Austria) for
“fundamental contributions to formal
verification and synthesis of computer
and biological systems”;

• Dexter Kozen (Cornell University, USA)
for “pioneering and seminal work in
fields as diverse as complexity theory,
logics of programs, algebra, computer
algebra and probabilistic semantics”;
and

• Moshe Y. Vardi (Rice University, USA)
for “fundamental and lasting
contributions to the development of
logic in computer science and
exceptional services to the community
of theoretical computer science.”

Last, but not least, the EATCS
Distinguished Dissertation Award
Committee 2015 has selected the
following three theses for the EATCS
Distinguished Dissertation Award for
2015:

• Karl Bringmann, “Sampling from Discrete
Distributions and Computing Fréchet
Distances”,

• Michal Skrzypczak, “Descriptive set
theoretic methods in automata theory”
and

• Mary Wootters, “Any errors in this
dissertation are probably fixable:
topics in probability and
error-correcting codes”.

The Bulletin of the EATCS

7

On behalf of the EATCS, I heartily thank
the members of the award, dissertation and
fellow committees for their work in the
selection of this stellar set of award
recipients and fellows. It will be a great
honour to celebrate the work of these
colleagues during ICALP 2015.

If this weren’t enough, the programme for
ICALP/LICS 2015 will also include a session
to celebrate the 40th anniversary of the
journal Theoretical Computer Science. As
part of that session, Christos
Papadimitriou will deliver a presentation
on the past, the present and the future of
Theoretical Computer Science. I look
forward to Christos’ presentation.

Even though ICALP 2015 has not taken place
yet, we are already busy preparing future
editions of the conference. As you may
know already, ICALP 2016 will be held in
the period 11�15 July 2016 in Rome. Italy.
The PC chairs for the conference will be
Yuval Rabani (Hebrew University Jerusalem,
Israel) for Track A, Davide Sangiorgi
(University of Bologna, Italy) for Track B
and Michael Mitzenmacher (Harvard
University, USA) for Track C. The
preliminary call for papers for the
conference will be available in Kyoto.
Moreover, during the general assembly at
ICALP 2015, we will examine a bid to host
ICALP 2017 in Warsaw, Poland, and choose
the location for ICALP 2017. I am also
happy to inform you that our colleagues in
Prague are working on a bid for hosting
ICALP 2018.

Apart from ICALP, the EATCS is becoming
increasingly involved in many initiatives

BEATCS no 116

8

and uses its financial resources to support
young researchers and meritorious
activities in Theoretical Computer Science
as a whole. We try hard to give back to
the community what our members provide via
their membership fees. By way of example,
I remind you that the second EATCS Young
Researcher School will be devoted to
Understanding COMPLEXITY and CONCURRENCY
through TOPOLOGY of DATA and is organized
by Emanuela Merelli at the University of
Camerino, Italy, in the period 13�22 July
2015. Moreover, we have decided to provide
some modest financial support to the
Conference on Computational Complexity
(CCC) and to the Symposium on Computational
Geometry (SoCG).

The above-mentioned activities are just a
sample of the increasingly many ones in
which the EATCS is involved. In addition,
we have stipulated reciprocity agreements
with the European Association for Computer
Science Logic and the ACM Special Interest
Group on Logic and Computation. Later this
year, we also hope to be in a position to
issue the first call for nominations for a
new major prize in TCS in cooperation with
ACM Special Interest Group on Logic and
Computation, the European Association for
Computer Science Logic and the Kurt Gödel
Society.

As usual, let me remind you that you are
always most welcome to send me your
comments, criticisms and suggestions for
improving the impact of the EATCS on the
theoretical-computer-science community at
president@eatcs.org.

I look forward to seeing many of you in
Kyoto for ICALP 2015 and to discussing ways
of improving the impact of the EATCS within

The Bulletin of the EATCS

9

the theoretical-computer-science community
at the general assembly.

Luca Aceto, Reykjavik, Iceland
June 2015

BEATCS no 116

10

11

Dear Reader,

My recent days have been a bit hectic
because, as you see, we have only a couple
of weeks to go before ICAP/LICS 2015 will
be starting. In the letter of the
president, Luca says that the early
registration fee is roughly 320 EUR, which
is very low for a five day conference.
Thanks for the appreciation, but it is also
the fact that this benefit for people
outside Japan is just due to the exchange
rate. The current rate is approximately
140 JPY per EUR, but just looking back a
couple of years ago, it was about 100 JPY
per EUR. Some 40 % down only in a few
years! If it is the same rate now, then
the fee would be some 450 EUR, which may be
ok, but no one would say "very cheap."
ICALP 2015 in Kyoto was decided two years
ago. I gave a short presentation about
what it would look like in the business
meeting of ICALP 2013, in which I made a
sort of promise that the fee should not be
more than 350 EUR. At that time, the rate
was already something like 130 JPY per EUR,
but I had a clear memory that it had been
100 JPY just one year or so before. Who
knows if it would come back soon...

We had two sad news. One is that of Jiří
Matoušek. We have an obituary by Takeshi
Tokuyana in this issue. The other is that
of John Nash; Mr and Mrs Nash were killed
by a car crash in May. I read a NY Times
article as well as many reader’s comments
there. Many of the readers mentioned the
New Jersey Turnpike, one of the busiest and
toughest highways in the US, and rear-seat
seat-belts (they were not wearing

BEATCS no 116

12

seal-belts in the rear-seat of the cab and
were thrown out of the car). I do know
that rear seat-belts in old US cabs are
often broken and/or are buried in a gap of
rear seats; it is not easy at all for
senior people to wear them quickly. I also
want to say something about the highway (I
remember well when I first drove on the
Turnpike, which seemed to me a most
exciting American culture), that is its
efficiency. The data show that the traffic
of the Turnpike is something like 20,000 at
a peak time, meaning that number of
vehicles (and roughly the same number of
people because most cars carry only a
driver) go one direction. This may seem a
lot, but just consider a single subway line
in Tokyo. One train has ten cars, each car
accommodates well more than 100 people and
they run every 2.5 minutes. Simple
calculation shows that this is already more
than the monster highway with 6-7 lanes
each direction.

I should come back to the Bulletin. As you
see in a moment, we started another new
section "Reflections on Influential
Scientists and Ideas." There is an
introduction by Luca about its purpose, but
simply speaking, that is a section for
essays about big influential scientists
and/or their ideas. Our first essay is
about George Dantzig and his simplex method
by David Avis (the last year is the
centenary of George Bernard Dantzig’s
birth). When David was a Stanford student,
he took a class of Dantzig, thus I am sure
he is a best person to start this new
column. Also this year is the 100th
anniversary of the birth of Richard
Hamming. I studied the Hamming code long

The Bulletin of the EATCS

13

time ago, but to me the Hamming distance is
more impressive as an important notion for
TCS people. I think it is a fun to
approach such big guys from several
different angles of our own. Please
consider your contributions to this new
section.

This issue’s columns are very rich; many
thanks to the column editors again and
again. Finally I hope I can see you in
Kyoto very soon.

Kazuo Iwama, Kyoto
June 2015

BEATCS no 116

14

15

JiříMatoušek
1963 – 2015

Memories of Jiří Matoušek in Japan

I first saw Jirka at SOCG1990 in Berkeley, where he gave the opening talk on
his seminal work on cutting hyperplane arrangement. He wore white casual shirts,
looked delicate, and spoke dispassionately with low and characteristic voice (with
good contrast to Pankaj, another young star in the conference). I felt that I was
seeing a picture of a young genius.

Fortunately, Prof. Hiroshi Imai of U. Tokyo invited him to Japan in 1991, and I
had opportunity to guide him. After talking in my office, we attended a workshop,
where he whispered to me ’Takeshi, I think I have a solution to your problem, if I
understand it correctly.’ We escaped from the workshop, and wrote a small paper
(Complexity of Projected Images of Convex Subdivisions. CGTA (1994)).

Jirka visited us many times after that, sometimes with his family. His talks
given calmly using a blackboard and a small memo in his hand enchanted us, and
his books were eagerly read and translated into Japanese.

I found Jirka was delicate, scholastic, curious, faithful and unique, and it was
fun to work with him. He often spoke euphemistic, and considered carefully
before making action. I remember the first time I took him to the cafeteria of
my office (IBM Tokyo Research) for lunch. He gazed at the samples (partially
plastic imitations) displayed in the showcase, wanted me to take time to explain
each of them, and then asked ’Then Takeshi, what is your recommendation’. He
replied ’Well, it looks promising’ to my suggestion, grinned happily, and enjoyed
lunch. Ms. Mary Inaba, who evidenced it and later became an associate professor
of U. Tokyo, described him as a ’charming and complicated boy’, and became a
good friend of Jirka’s family.

In 2005, a research project named New Horizon of Computing lead by Kazuo
Iwama started in Japan, and we invited him to its kick-off symposium in Kyoto.
Since it was his policy not to travel for a symposium/conference, we persuaded
him to come to give a talk on the last day and then work privately with Tetsuo
Asano (currently the president of Japan Advanced Institute of Science of Tech-
nology) and me. At a nice coffee shop in Kyoto, Tetsuo showed us a picture of
the distance trisector curve, which he had just invented. To our surprise, the first

BEATCS no 116

16

action of Jirka was to compute the Taylor expansion of the curve using Mathe-
matica. He grinned and told us that he loved to do such experiments to investigate
problems. The research was successful, and we submitted a paper to STOC. I was
a little afraid that it might be out-of-scope, but Jirka did not consider any possibil-
ity of rejection, and proposed to submit its journal version to a good mathematical
journal without waiting for STOC’s acceptance. The suggestion was wise since
the paper (The distance trisector curve. Advances in Math. 212 (2007), no. 1,
338-360) has been widely read and a group of mathematicians resolved one of
our conjectures.

Jirka had his own aesthetic sense in selecting the journals to publish papers.
The following is his email (with some editing) replying my suggestion to submit
another paper to Advances in Mathematics.

"I’m not so keen about Advances since it’s an Elsevier journal (which is the
worst, in terms of prices and policy, among the publishers, I think). Some other
possibilities might be, say, Israel J. Math., GAFA, JOURNAL FUR DIE REINE
UND ANGEWANDTE MATHEMATIK (Crelle), or Math. Annalen. For Annalen
or Crelle I’ve never tried, so we could try just for the fun of it. but DCG of course
is a natural place too. or still something else ... what do you think? best, Jirka"

I naturally liked his idea to have a paper in one of those legendary journals,
and we published the paper in Math. Annalen (Zone diagrams in Euclidean spaces
and in other normed spaces. Math. Ann. 354 (2012), no. 4, 1201-1221.)

Jirka was interested in not only mathematics but also culture, history, life, and
even politics. The following is the reply to my invitation in 2008.

"Thanks for the invitation, I’m seriously interested in coming. I can’t promise
100% I’ll make it but I hope so. Best, Jirka
P.S. one thing that slightly discourages me - I’ve heard that Japan now takes (or
will take) fingerprints of all visitors, like the US. Do you know anything about it?
I find it very unpleasant (even though I probably have nothing to hide...)."

I really miss Jirka, a friend with humanity, kindness, leadership, and sense of
humor. However, a privilege of great mathematicians is that they will live forever
as legends by their works, and our research community will never forget him. I
feel I hear his voice saying "Takeshi, do not worry. I will manage to find papers
and a blackboard in the heaven".

Takeshi Tokuyama
Tohoku University, Japan

Institutional
Sponsors

BEATCS no 116

18

CTI, Computer Technology Institute & Press "Diophantus"
Patras, Greece

CWI, Centum Wiskunde & Informatica
Amsterdam, The Netherlands

MADALGO, Center for Massive Data Algorithmics
Aarhus, Denmark

Microsoft Research Cambridge
Cambridge, United Kingdom

Springer-Verlag
Heidelberg, Germany

EATCS
Columns

20

The Bulletin of the EATCS

21

The Algorithmics Column
by

Gerhard J Woeginger

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
gwoegi@win.tue.nl

BEATCS no 116

22

Query-Competitive Algorithms for
Computing with Uncertainty

Thomas Erlebach Michael Hoffmann

Department of Computer Science
University of Leicester, UK

{te17,mh55}@leicester.ac.uk

Abstract

Motivated by real-life situations in which exact input data is not available
initially but can be obtained at a cost, one can consider the model of com-
puting with uncertainty where the input to a problem is initially not known
precisely. For each input element, only a set that contains the exact value of
that input element is given. The algorithm can repeatedly perform queries to
reveal the exact value of an input element. The goal is to minimize the num-
ber of queries needed until enough information has been obtained to produce
the desired output. The performance of an algorithm is measured using com-
petitive analysis, comparing the number of queries with the best possible
number of queries for the given instance. We give a survey of known results
and techniques for this model of queryable uncertainty, mention results for
some related models, and point to possible directions for future work.

1 Introduction
In the study of algorithms, we often assume that exact input data is available to
the algorithm, and our goal is to design algorithms that compute good solutions
efficiently. However, there are also scenarios where precise input data is not im-
mediately available. Instead, only rough, uncertain information about the input
may be given, for example intervals or other sets that contain the unknown exact
input values. In some such scenarios, it is possible to obtain exact information
about each part of the input at an additional cost. We refer to the operation of
obtaining exact information for one input element as a query, and we are inter-
ested in minimizing the number of queries to be made until sufficient information
has been obtained for calculating a solution. The performance of an algorithm can

The Bulletin of the EATCS

23

then be measured by comparing the number of queries made by the algorithm with
the best possible number of queries for the given input, following the approach of
competitive analysis for online algorithms.

In this article, we give a survey of known results and techniques for the de-
sign of query-competitive algorithms in the model of computing with uncertainty
sketched above. We also mention results for related questions and point to possi-
ble directions for future work.

1.1 Motivation
There are numerous examples of application scenarios that provide motivation
for studying computing with uncertainty. For example, as in Kahan’s pioneering
paper [12], one can consider applications where the input involves objects (e.g.,
airplanes) that are in motion and whose current positions are not known precisely.
If the exact location of an object was known some time in the past and if the
object moves with limited speed, then the current location of the object must lie
within a known region, and it may be possible to obtain the exact location of the
object by communicating with it (e.g., a radio communication with the pilot of an
airplane). The goal may be to compute a function of the locations of the objects
(e.g., the closest pair of airplanes). A similar application arises in mobile ad-hoc
networks, where estimates of the current positions of the nodes may be easily
available but obtaining the exact position of a node requires extra communication
or measurements. Kahan mentions further applications such as graphic animation
(selecting from moving objects those within the field of vision), integrating the
maximum of a set of functions of bounded variation, and dynamic scheduling of
jobs with time-varying priorities [12].

Another set of applications originates from distributed computing. For exam-
ple, in systems with distributed database caches, an estimate of an aggregate data
value may be available from a local cache, but obtaining the exact value requires
more expensive communication (e.g., a query to the master server). Moreover, a
system could maintain intervals of values in local database caches, so that updates
to data on the master server need to be replicated to a local cache only when the
new value lies outside the interval stored there. When a database query cannot be
answered based on the intervals stored in the local cache, exact values can be re-
trieved from the master server. Olston and Widom propose a concrete replication
mechanism employing this principle, the TRAPP system [16].

1.2 Other Approaches to Dealing with Uncertainty
There are various other approaches to modeling or addressing problems whose
input involves uncertain information. In stochastic optimization, uncertain input

BEATCS no 116

24

values are assumed to be drawn from (known) probability distributions, and the
goal is to find a solution that optimizes the expected value of the objective func-
tion, or that is good or feasible with high probability. In robust optimization, a
single solution has to be computed that is good in each possible scenario of how
the uncertain values can be realized. In two-stage optimization problems, a partial
solution has to be computed based on the given uncertain values, and the solution
has to be completed in a second stage after the uncertain values have been real-
ized as exact values. This notion can be generalized to multi-stage optimization
problems. Neither of these models or approaches involve querying specific input
elements in order to obtain their exact values. Therefore, we consider such work
outside the scope of this article.

2 Preliminaries
In computing with uncertainty, an instance of a problem typically consists of some
structural information S , a set U of elements with uncertain values, and a function
A that maps each element u ∈ U to an uncertainty set1 Au. The exact values of the
uncertain input elements are represented by a function w that maps each u ∈ U to
its exact value wu, and we require wu ∈ Au. Initially the algorithm might not know
any of the values wu. Querying2 an element u ∈ U reveals its exact value wu. We
can view a query of u ∈ U as the operation of replacing Au by the singleton set
{wu}. Note that depending on the concrete problem under consideration, wu could
be a real number, a vector of real numbers, or any other type of input data. In
cases where the exact values are vectors representing point coordinates, we will
sometimes write pu for wu.

For a given instance I = (S ,U, A,w) of a problem in the model of computing
with uncertainty (we refer to such a problem also as an uncertainty problem), we
let φ(S ,U,w) denote the set of solutions. Note that the set of solutions depends
only on the exact values wu for u ∈ U but not the uncertainty sets Au. An algorithm
only receives (S ,U, A) as input. The goal of the algorithm is to compute a solution
in φ(S ,U,w) (or all solutions in φ(S ,U,w)) after making a minimum number of
queries. Queries are made one by one, and the results of previous queries can
be taken into account when determining the next query to make. Therefore, this
model is also referred to as the adaptive query model.

For a given instance I = (S ,U, A,w), we denote by OPT I (or simply OPT) the
minimum number of queries that provide sufficient information for computing a
solution in φ(S ,U,w). An algorithm that makes ALGI queries to solve an instance
I is called ρ-query-competitive or simply ρ-competitive if ALGI ≤ ρOPT I + c for

1In the literature, the term uncertainty area has also been used.
2In the literature, queries have also been called updates in this context.

The Bulletin of the EATCS

25

all instances I of the problem, where c is a constant independent of the instance.
If c = 0, we say that the algorithm is strongly ρ-competitive. For randomized
algorithms, ALGI is the expected number of queries that the algorithm makes on
instance I. Note that the exact value wu of an uncertain element u ∈ U can be any
value in Au. We do not assume that wu is drawn from a probability distribution
over the set Au.

We should briefly clarify what it means formally to say that a set of queries
is sufficient to solve a problem. Let Q ⊆ U be a set of queries. Let AQ be the
uncertainty sets arising from A by setting AQ

u = {wu} if u ∈ Q and AQ
u = Au

otherwise. The set of queries Q is sufficient for computing a solution x if and only
if x ∈ φ(S ,U,w′) for all w′ such that w′u ∈ AQ

u for all u ∈ U (i.e., if x is a solution
for all choices of exact values w′ that are consistent with AQ). If Q is sufficient
for computing a solution, we also say that the instance (S ,U, AQ,w) is solved (and
that Q is a query solution), and otherwise unsolved.

Another aspect to discuss is which types of sets are allowed as uncertainty
sets Au. In cases where the uncertain elements represent numbers, we will usually
assume that each set Au is either an interval or a singleton set {wu}. In the latter
case, the exact weight of u is already known, and we say that the element u and
its uncertainty set are trivial. Elements that are not trivial (and their uncertainty
sets) are called non-trivial. We write open intervals as (a, b) and closed intervals
as [a, b].

Problems in the model of computing with uncertainty (e.g., the minimum
spanning tree problem) often display the following behavior: If the task is to
compute a single solution, there is a constant-competitive algorithm for the case
of open intervals as uncertainty sets but not for the case of closed intervals. The
difficulty with closed intervals is that a single query of the right interval can prove
that the value of the corresponding element is maximum or minimum among a
number of candidates, while a deterministic algorithm has no chance of identify-
ing that interval without querying a large number of elements. On the other hand,
if the task is to output all solutions, then a constant competitive ratio can often
be achieved also for closed uncertainty sets [12]. Similarly, if the task is to com-
pute the lexicographically first solution, a constant competitive ratio is sometimes
possible for closed uncertainty sets [11].

2.1 Example: MST with Uncertainty
Let us consider the minimum spanning tree problem with edge uncertainty. The
structural part of an instance of the problem is a connected, undirected graph
G = (V, E). The uncertain elements are the edges, and for each edge e ∈ E an
uncertainty set Ae containing its exact weight we is given. The task is to compute
the edge set of a minimum spanning tree (MST) of the graph G with edge weights

BEATCS no 116

26

g

5

f

e

(2,6)

(4,9)

{1}
1

3

Figure 1: Instance of MST with Uncertainty

given by w, i.e., φ(G, E,w) is the set consisting of the edge sets of all minimum
spanning trees of (G,w).

Consider the example instance I = (G, E, A,w) depicted in Figure 1. The three
edges e, f , g have uncertainty sets Ae = {1}, A f = (4, 9) and Ag = (2, 6). The exact
weights of the edges are we = 1, w f = 5 and wg = 3. Initially, the algorithm is
given only G and A. This information is not sufficient for determining the edge
set of an MST: The edge e is clearly contained in any MST, but without querying
f or g we do not know which of these two edges is the more expensive one and
therefore not contained in the MST. If we decide to query f first, the query reveals
that w f = 5. At this point, we still do not know whether f is cheaper or more
expensive than g as Ag = (2, 6), so we also need to query g. When we receive
the answer wg = 3, we know that g is cheaper than f , and we can determine and
output the edge set {e, g} as a correct minimum spanning tree. Note that querying
only the edge g would also have been sufficient for determining that {e, g} is a
minimum spanning tree. Therefore, OPT I = 1 but we have made two queries,
twice the optimal number. Algorithmic results for the minimum spanning tree
problem with uncertainty will be discussed in Section 6.

3 The Witness Algorithm
The main approach that has been used to obtain query-competitive algorithms
for computing with uncertainty, as introduced by Bruce et al. [1] and stated in
general form by Erlebach et al. [8], is based on considering witness sets: For a
given instance I = (S ,U, A,w) of an uncertainty problem, a set W ⊆ U is called a
witness set if it is impossible to determine a solution without querying at least one
element of W. In other words, W is a witness set if the instance (S ,U, AU\W ,w) is
unsolved. A natural idea for solving an uncertainty problem is now to repeatedly
determine a witness set and query all elements of that witness set (elements with

The Bulletin of the EATCS

27

while instance is unsolved do
W ← a witness set of the current instance;
query all u in W;

end
Algorithm 1: Witness algorithm

a trivial uncertainty set can be skipped, of course), until the instance is solved.
An algorithm based on this template, shown in Algorithm 1, is called a witness
algorithm. Note that the instance changes in each iteration of the while-loop in the
algorithm, as the uncertainty sets of the elements in W are replaced by singleton
sets.

Most of the known results regarding query-competitive algorithms for uncer-
tainty problems are instantiations or adaptations of the witness algorithm. There
is a direct link between the size of witness sets and the competitive ratio, as shown
by the following lemma.

Lemma 1 ([1, 8]). If the size of each witness set W that a witness algorithm
queries is bounded by ρ, then the algorithm is strongly ρ-competitive

Lemma 1 can be proved by showing that any query solution must contain at
least one distinct element from each witness set queried by the algorithm.

We remark that if an algorithm during its execution queries k sets of elements
that are witness sets (and possibly some additional elements), we can infer that
any query solution must make at least k queries.

4 Selection and Related Problems

4.1 Identifying All Solutions
Kahan [12] considers the setting where the input consists of a set U of n elements
with uncertain values. The uncertainty set of each element u ∈ U is assumed to be
either a closed interval [ul, uh] or trivial (in which case the lower bound ul equals
the upper bound uh).

Maximum. For the problem of identifying all elements of U whose value is
equal to the maximum value maxu∈U wu in U, Kahan presents an algorithm that
makes at most OPT+1 queries [12]. The algorithm repeatedly queries a non-trivial
element u with largest upper bound uh until all elements with maximum value V
have been queried and no non-trivial element u with uh ≥ V remains. Kahan shows
that in any query solution at most one non-trivial element u with value uh ≥ V is

BEATCS no 116

28

not queried. As the algorithm queries only elements u with uh ≥ V , it makes at
most OPT + 1 queries.

Considering the input U = {u, v} with Au = [1, 5] and Av = [3, 10] and either
wu = 2,wv = 4 or wu = 4,wv = 7, it is clear that making OPT + 1 queries in the
worst case is optimal among deterministic algorithms.

Median. Assume that n = |U | is odd. For the problem of identifying all elements
of U whose value is equal to the value of the median (i.e., the dn/2e-smallest value)
of {wu | u ∈ U}, Kahan also presents an algorithm that makes at most OPT + 1
queries [12]. Let k = dn/2e. It is clear that the value of the median must lie
in the range [ml,mh], where ml is the k-smallest lower bound and mh is the k-
largest upper bound. Kahan shows that there must be at least one element u ∈ U
with [ml,mh] ⊆ [ul, uh]. The algorithm for the median problem now works as
follows: Compute [ml,mh]. If there is only one element u whose interval intersects
[ml,mh], return u as the unique median and quit. If every element whose range
contains [ml,mh] has already been queried, we must have ml = mh and we output
all those elements as the set of medians and quit. Otherwise, we query any element
whose interval contains [ml,mh] and repeat. Again, Kahan shows that in any query
solution at most one non-trivial element u whose interval contains the median
value is not queried. As the algorithm queries only elements u whose intervals
contain the median value, it makes at most OPT + 1 queries, and this is again
optimal among deterministic algorithms.

Minimum Gap. Now consider the Minimum Gap problem, where the goal is
to identify all pairs of elements u, v ∈ U such that their distance |wu − wv| is
minimum. Note that for any two elements of U, their uncertainty sets imply lower
and upper bounds on the distance between these two elements (and we thus also
have an upper bound on the minimum gap). For the Minimum Gap problem,
Kahan presents a (weakly) 2-competitive greedy algorithm. The algorithm first
queries all non-trivial elements whose interval contains the interval of at least one
other element. These elements (except possibly one of them) must be queried by
any query solution. The algorithm then repeatedly queries a non-trivial element
u for which there is another element v such that the lower bound on the distance
between u and v is smaller than the current upper bound on the minimum gap, and
is the smallest current lower bound among all pairs of elements (with ties broken
in favor of an element whose interval minimizes the maximum distance to non-
trivial intervals on the left and right). Kahan analyzes the algorithm by considering
connected components of elements in an auxiliary graph that contains an edge
between any two elements whose distance lower bound is less than or equal to
the minimum gap. He shows that any query solution must contain at least half the

The Bulletin of the EATCS

29

elements in a component (with at most one exception), while the greedy algorithm
may contain all its elements. Hence, the algorithm is 2-competitive. Furthermore,
one can show that no deterministic algorithm can achieve weak competitive ratio
smaller than 2 [12].

We remark that an alternative 2-competitive algorithm can be obtained using a
witness algorithm: Let L be the current lower bound on the minimum gap. While
there are two elements u, v whose distance lower bound is at most L (and at least
one of which is non-trivial), query all non-trivial elements in {u, v}. It is not dif-
ficult to see that the set {u, v} is a witness set, except possibly in the case where
u, v is the unique pair of elements whose distance equals the minimum gap. If
the algorithm terminates after k iterations, the algorithm makes at most 2k queries
and, by the remark after Lemma 1, any query solution makes at least k−1 queries.
Hence, the algorithm makes at most 2OPT + 2 queries, matching the performance
of Kahan’s algorithm.

4.2 Identifying One Solution
Khanna and Tan [13] also consider the setting where the input consists of a set
U of n elements with uncertain values and the uncertainty set of each element
u ∈ U is either a closed interval [ul, uh] or trivial. Defining ω to be the maximum
clique size of the interval graph induced by the uncertainty sets of the elements
of U, they present an ω-competitive algorithm for the problem of identifying a
k-smallest u ∈ U, for given k ∈ {1, . . . , n}. They generalize their result also to
the case where queries have different costs, i.e., querying u ∈ U has a cost of cu

instead of unit cost. Furthermore, they consider the variations of the problem
where the goal is to identify an element whose rank in U differs from the given
rank k at most by a factor of α (relative precision) or by an absolute difference
of α (absolute precision). They present O(ω)-competitive algorithms for these
variations. To show that no algorithm can be better than ω-competitive for the
problem of identifying an element with smallest value, Khanna and Tan consider
an instance with n elements where all uncertainty sets are [0, 2], one element has
value 0, and n − 1 elements have value 1. This instance has clique size ω = n. A
deterministic algorithm can be forced to query all n elements (all queries except
the last one return the value 1), while the optimal query set has size 1 and consists
of only the minimum element.

4.3 Computing or Approximating the Solution Value
Khanna and Tan [13] additionally consider the problem of approximating the sum
(or average) of the values of the n elements in U up to a certain relative preci-
sion α ≥ 1. They present an O(min{ω, α})-competitive algorithm that can also

BEATCS no 116

30

handle different query costs. For the problem of approximating the sum of the
values of the elements in U with absolute precision in the case of unit query
costs, they remark that a simple greedy algorithm yields the optimal query set.
Furthermore, they consider the computation of functions that are composed of
aggregation functions and selection functions.

Charikar et al. [3] consider the evaluation of AND/OR trees and generaliza-
tions including MIN/MAX trees and present query algorithms with best possible
competitive ratio (or within a factor of 2 of the best possible competitive ratio in
the generalized case).

5 Geometric Problems
Bruce et al. [1] consider geometric problems in the Euclidean plane in the model
of computing with uncertainty. Each input element u ∈ U corresponds to a point
pu = (xu, yu) in the Euclidean plane. The uncertainty set Au of each u ∈ U is
assumed to be either trivial or the closure of an open, connected region. We refer
to an uncertainty set also as an uncertainty region in the following.

Bruce et al. introduce the concepts of witness sets and witness algorithms and
apply them to the maximal points problem and the convex hull problem. For a
property φ (such as being a maximal point or a point lying on the convex hull),
they classify each uncertainty region Au as always φ, partly φ, dependent φ or
never φ, depending on whether all points or some point in Au satisfy the property
φ and on whether this depends on the point locations in the other uncertainty
regions or not.

Maximal points. The task of the maximal points problem is to output all ele-
ments u ∈ U that are maximal, i.e., all u such that there is no element v ∈ U with
xv ≥ xu and yv ≥ yu where at least one of the two inequalities is strict. Bruce
et al. show that if there is a partly maximal region, then there is a witness set of
size 2, and if there is a dependent maximal region but no partly maximal region,
then there is a witness set of size 3. Hence, one can always find a witness set
of size at most 3 until the instance is solved (i.e., until all uncertainty regions
are either always maximal or never maximal), and by Lemma 1 the algorithm is
strongly 3-competitive. They also give a lower bound showing that no determin-
istic algorithm can be better than 3-competitive and prove that there is a linear
lower bound on the competitive ratio if arbitrary connected sets are allowed as
uncertainty regions.

Convex hull. The task of the convex hull problem is to identify all elements
u ∈ U that correspond to points that lie on the boundary of the convex hull of the

The Bulletin of the EATCS

31

point set {pu | u ∈ U}. Assuming that the intersection between any two non-trivial
uncertainty regions that is non-empty contains at least an ε-ball for some ε > 0,
Bruce et al. show that there is always a witness set of size 3, implying a strongly 3-
competitive algorithm by Lemma 1. Furthermore, they show that no deterministic
algorithm can achieve competitive ratio less than 3, and that there is a linear lower
bound on the competitive ratio if arbitrary connected uncertainty sets are allowed.

6 Minimum Spanning Tree
Erlebach et al. [8] consider two variants of the minimum spanning tree (MST)
problem in the model of computing with uncertainty. In both variants, the task
of the algorithm is to output the edge set of a minimum spanning tree of a given
graph G = (V, E). The graph G here represents the structural information S that is
provided to the algorithm in addition to the uncertain information.

In the MST problem with edge uncertainty, the edge weights of the given graph
G = (V, E) are given in the form of uncertainty sets, i.e., we have U = E and the
weight of each edge e ∈ E is a value we contained in the uncertainty set Ae. The
uncertainty set of each edge is either trivial or an open set. Each edge has a lower
bound and an upper bound (the infimum and the supremum of its uncertainty set).
A strongly 2-competitive algorithm is obtained by adapting Kruskal’s algorithm
to the setting of uncertainty. Edges are inserted into a growing forest in non-
decreasing order of lower bounds. When a cycle is formed and if it is not possible
to identify an edge of maximum weight in the cycle, a witness set consisting of
two edges of the cycle can be identified and queried, and the algorithm is restarted.
Otherwise, an edge of maximum weight in the cycle is removed and the algorithm
continues. Erlebach et al. also show that no deterministic algorithm can achieve
competitive ratio smaller than 2. We illustrate the proof of this lower bound using
the graph shown in Figure 1 in Section 2.1: If the algorithm queries f first, the
weights of f and g are as shown in the figure. If the algorithm queries g first, the
weights are set to w f = 8 and wg = 5. In either case, the algorithm must make two
queries while there is a query solution with just one query, and the example can
be scaled up arbitrarily by repeating the triangle.

In the MST problem with vertex uncertainty, each vertex v ∈ V corresponds to
a point pv in the Euclidean plane and the weight of an edge {u, v} is the Euclidean
distance between pu and pv. Instead of the exact point locations, only an uncer-
tainty set Av is given for each vertex v. It is assumed that each uncertainty set is
either trivial or an open region. Erlebach et al. address the problem by observing
that it can be viewed as an edge uncertainty problem since the uncertainty sets of
the two endpoints of an edge e = {u, v} yield an uncertainty set for the weight of
e that is trivial or an open set. Hence, the 2-competitive algorithm for the edge

BEATCS no 116

32

uncertainty case can be applied to the vertex uncertainty case, where the query
of an edge is replaced by queries of both endpoints of the edge. This yields a
strongly 4-competitive algorithm for MST with vertex uncertainty, and it is also
shown that no deterministic algorithm can achieve a better competitive ratio.

In [6], it is shown that the strongly 2-competitive algorithm for MST with edge
uncertainty can be generalized to the minimum weight matroid base problem.

7 Cheapest Set Problems
Many combinatorial problems can be viewed as set selection problems: The input
contains a set U of elements, some subsets of U are feasible solutions, and the
goal is to output a feasible solution of minimum cost (where the cost of a solution
could be the sum of the costs of its elements). Examples of problems that can be
seen as set selection problems include the minimum spanning tree problem (the
feasible solutions are the edge sets of all spanning trees), the minimum-weight
perfect matching problem (the perfect matchings are the feasible subsets of the
edge set), or minimum cut problems (the set of edges crossing a cut is a feasible
solution). Erlebach et al. [6] study the general formulation of the set selection
problem where the input specifies a set U and the family F of all feasible subsets
of U. Instead of the exact weight wu of each element u ∈ U, an uncertainty set
Au that can be an open interval or trivial is given. The task of the cheapest set
problem is to identify a set C in F that has minimum weight, i.e.,

∑
u∈C wu is

minimum among all sets in F .
For the case that all sets in F have cardinality at most d, it is shown that there

is an algorithm for the cheapest set problem that makes at most dOPT + d queries,
and that this is best possible among deterministic algorithms. The algorithm re-
peatedly queries all elements of a robust cheapest set until a cheapest set can be
identified. Here, a robust cheapest set is a set C in F with the following property:
For any choice of exact weights wu ∈ Au for the elements of u ∈ U \ C, there
are weights wu ∈ Au for each element u ∈ C such that C is a cheapest set. The
analysis shows that a robust cheapest set always exists and that all sets queried by
the algorithm, except at most one, are witness sets. By the remark after Lemma 1,
this shows that the algorithm makes at most dOPT + d queries.

For cheapest set problems where the sets have a special structure, better algo-
rithms are possible. As we have seen, the minimum spanning tree problem, al-
though corresponding to a cheapest set problem with sets of size n − 1 for graphs
with n vertices, admits a 2-competitive algorithm. Another family of cheapest
set problems with special structure considered in [6] is the family of problems
that satisfy the 1-gap property: If the instance is not solved, there exist two sets
B,C ∈ F such that |B ∪ C| ≤ d + 1, C is a robust cheapest set, and B is a set

The Bulletin of the EATCS

33

that is potentially cheaper than C. An algorithm is presented that makes at most
dOPT + 1 queries to solve a cheapest set problem that satisfies the 1-gap property.
Furthermore, it is shown that the minimum-multicut problem in trees with d ter-
minal pairs satisfies the 1-gap property and can hence be solved with dOPT + 1
queries. A matching lower bound showing that this is best possible among deter-
ministic algorithms is also presented.

8 Computing OPT: The Verification Problem
In the competitive analysis of algorithms for computing with uncertainty, the num-
ber of queries is always compared with the best possible number OPT of queries
that suffice to produce the desired output. (Kahan [12] refers to this number OPT
as the lucky number.) The question then arises how difficult it is to calculate the
value of OPT (and possibly also a query solution consisting of OPT queries) if the
whole instance (S ,U, A,w) of a problem is provided as input (i.e., if also the exact
weights of all elements in U are provided to the algorithm). There are at least two
scenarios that motivate the computation of an optimal query solution: On the one
hand, if the performance of algorithms for computing with uncertainty is evalu-
ated in computational experiments, it is useful to be able to calculate OPT in order
to compare the number of queries made by different algorithms with OPT . On the
other hand, there may be application scenarios where the values of uncertain ele-
ments can change over time, but changes are rare events. Assume that the exact
values wu of all uncertain elements u ∈ U were known at a point in the past. Let
w′u denote the (unknown) current exact value of each uncertain element u ∈ U.
For each u ∈ U, an uncertainty set Au that guarantees w′u ∈ Au is given. The val-
ues w′u are unknown to the algorithm. We would now like to have an algorithm,
called a verification algorithm, that queries elements of U and produces one of
the following outputs:

(1) A valid solution x with respect to the current weights w′u.

(2) At least one element u ∈ U has changed its value (i.e., wu , w′u).

In scenarios where the typical case is that w′u = wu for all u ∈ U, querying the
elements of an optimal query set for (S ,U, A,w) is the best possible strategy for
a verification algorithm since it minimizes the number of queries that need to be
made until a valid solution x can be identified. Following the terminology of the
latter application setting, we refer to the (off-line) problem of computing an opti-
mal query set for a given instance (S ,U, A,w) (which is wholly presented to the
algorithm) as a verification problem (or the verification version of an uncertainty
problem).

BEATCS no 116

34

It is easy to see that the verification versions of the maximum, median and
minimum gap problems discussed in Section 4 can be solved in polynomial time.
In [5], we show that the verification version of MST with edge uncertainty can
be solved in polynomial time while the verification version of MST with vertex
uncertainty is NP-hard.

For general cheapest set problems, Erlebach et al. [7] show that the verification
problem is NP-hard for sets of size d for any d ≥ 2. For the minimum multi-
cut problem in trees with d terminal pairs under uncertainty, they prove that the
verification version can be solved in polynomial time for fixed d and is NP-hard
if d is part of the input.

For the problem of outputting all maximal points for a given uncertain point
set, Charalambous and Hoffmann [2] show that the verification problem is NP-
hard. In their reduction, every uncertainty set is either trivial or consists of just
two points. The complexity of the verification problem for the case of connected
uncertainty sets is left open.

9 Model Variations

9.1 Refinement Queries

We have assumed so far that the query of an uncertain element u ∈ U returns
its exact value wu. One may also consider settings where the answer to a query
is not the exact value, but a reduction of uncertainty. For example, the query of
an uncertainty interval [5, 10] could produce a smaller uncertainty interval [7, 9].
The same uncertain element may now have to be queried several times, each query
reducing the uncertainty interval further. We can then again aim to minimize the
number of queries needed until a solution can be computed.

Tseng and Kirkpatrick [17] consider this problem variation in a setting where
each input number is given as a finite stream of bits (given in decreasing order of
significance) that are initially unknown to the algorithm. Reading an additional
bit from one of the bit streams corresponds to a query. The goal is to minimize the
number of bits that the algorithm needs to read before it can compute a solution.
Algorithms that perform well with respect to this measure are called input-thrifty
algorithms. Tseng and Kirkpatrick analyze the performance of input-thrifty al-
gorithms relative to a suitably defined intrinsic cost of the given instance. They
present an algorithm for the extrema testing problem that is within a logarithmic
factor of the intrinsic cost of the given instance. They mention that their results
also hold in a more general model where a query does not yield one extra bit of a
number but the query results are nested uncertainty intervals.

Gupta et al. [11] study the selection problem and the minimum spanning tree

The Bulletin of the EATCS

35

problem in a general framework where queries yield refined estimates in the form
of sub-intervals. They distinguish all possible cases of combinations of closed in-
tervals, open intervals and trivial sets for the input uncertainty and for the results
of queries. Although there are 49 possible models in principle, they are able to
classify them into five different main categories and present results on the compet-
itive ratio for selection problems and minimum spanning tree problems for them.
For example, they show that the approach of witness algorithms can be general-
ized to the model with refinement queries for several of the five categories. They
also show that for models with closed intervals, query-competitive algorithms be-
come possible if the output is required to be a lexicographically smallest solution
rather than an arbitrary solution.

9.2 Non-adaptive Queries
Instead of allowing the algorithm to make queries one by one and take into account
the results of previous queries when selecting the next query, one can also require
that the algorithm specifies a set Q ⊆ U of queries only once. The queries are
then executed in parallel and the algorithm receives the exact values wu for all
queries u ∈ Q. This information must be enough for the algorithm to solve the
problem, i.e., no further queries are allowed. This means that the query results,
no matter which element of Au turns out to be the exact value of u ∈ Q, must be
sufficient to be able to identify a solution. A query set Q with this property is
called feasible. The problem of computing a smallest feasible query set Q in this
non-adaptive model is actually an off-line problem, as the feasibility of a query
set Q does not depend on the exact values of u ∈ U. Note that the problem of
determining a smallest feasible query set for the non-adaptive model is different
from the verification problem discussed in Section 8.

Much of the existing work on the non-adaptive query model has considered
the generalization where different queries have different costs, i.e., each u ∈ U
has a cost cu ≥ 0 and the goal is to compute a feasible query set Q of minimum
total cost. For given elements with closed intervals as uncertainty sets, Olston and
Widom consider selection and aggregation problems in the non-adaptive model,
assuming that the goal is to output a range [L,H] that contains the exact solution,
where H − L ≤ δ for a given precision requirement δ [16]. For example, it turns
out that for the problem of computing the sum of uncertain values up to a given
precision, determining an optimal feasible query set boils down to solving a knap-
sack problem. Feder et al. [10] further study the problem of determining the value
of the k-th smallest element, for any 1 ≤ k ≤ n, up to a precision of δ in the same
model and show that a feasible query set of minimum cost can be computed in
polynomial time via linear programming.

In another paper, Feder et al. [9] consider the shortest s-t path problem in the

BEATCS no 116

36

non-adaptive query model. The input consists of a directed acyclic graph G =

(V, E) with distinguished vertices s, t ∈ V . The edge weights are uncertain. Each
uncertainty set Ae that contains the exact weight we of an edge e ∈ E is assumed to
be a closed interval. A set P of candidate s-t-paths is given explicitly as part of the
input or implicitly via a description in a certain recursive form (that captures, e.g.,
the set of all s-t paths in a series-parallel graph). For a given precision parameter
δ > 0, the task is to determine a range [L,H] with H − L ≤ δ that contains the
length of a shortest s-t-path in P with respect to the exact weights we ≥ 0 for all
e ∈ E. They show that the problem of computing a feasible query set of minimum
total cost can be solved in polynomial time if δ = 0, i.e., if the exact length of the
shortest path in P is sought. For δ > 0, they show that different restrictions of the
problem are NP-hard or co-NP-hard and so the general problem cannot be in NP
nor co-NP if NP , co-NP. They also show that the general problem is in Σ2.

9.3 Solutions of Minimum or Maximum Objective Value
Another question that has been studied for optimization problems with uncertain
input is determining the minimum or maximum possible objective value of an
optimal solution, where the minimum/maximum is taken over all possible exact
values that the uncertain input elements could take. This is an off-line problem,
and queries are not considered in this setting.

For example, Löffler and van Kreveld study the problem of minimizing or
maximizing a number of basic geometric measures for input point sets whose
locations are described by uncertainty sets. They consider measures such as di-
ameter, width, closest pair, smallest enclosing circle, smallest enclosing bounding
box, length of the convex hull, area of the convex hull, or length of a tour visiting
the points in a given order. For all these measures and different types of uncer-
tainty sets (e.g., disks, squares, line segments), they present hardness results or
efficient algorithms [14, 15]. Dorrigiv et al. [4] consider the setting where the
input consists of points in the plane whose uncertainty regions are disjoint disks.
They prove that even for this restricted setting it is NP-hard to determine the min-
imum or maximum possible cost of a Euclidean spanning tree of the exact points,
and that there is no FPTAS for these problems unless P = NP. They also give ap-
proximation algorithms with ratios depending on a certain separability parameter
of the given instance.

10 Directions for Future Work
We have aimed to give an overview of the existing body of work for computing
with uncertainty in models where the algorithm can query the exact values of

The Bulletin of the EATCS

37

uncertain elements. Interesting questions that could be addressed in future work
include:

• For which uncertainty problems can randomized algorithms achieve bet-
ter competitive ratios than the best possible deterministic algorithms? In
particular, it would be interesting to see whether a randomized algorithm
can improve over the 2-competitive algorithm for the minimum spanning
tree problem under edge uncertainty [8]. The adversarial construction that
yields the lower bound of 2 for deterministic algorithms can be adapted to a
lower bound of 1.5 for randomized algorithms, but it is open whether there
exists a randomized algorithm with competitive ratio better than 2.

• Existing work has considered the adaptive query model where queries are
asked one by one, and the non-adaptive query model where all queries are
asked in parallel. It may be interesting to consider a model where queries
are asked in rounds. Each round makes a number of queries in parallel, and
the results of queries made in previous rounds can be taken into account
when determining the queries for the next round. For example, one could
study the trade-off between the number of rounds and the total query cost or
consider settings where the number of rounds is constrained to be at most a
given value k. Another direction would be to restrict the number of queries
that can be made in one round to a given number and aim to minimize the
number of query rounds.

• As far as we are aware, in the existing published work on computing with
uncertainty it has been assumed that the uncertainty of different input ele-
ments is independent, in the sense that receiving the answer of one query
does not provide any information about the exact values of the remaining
uncertain elements. One could imagine settings where querying one ele-
ment also reduces the uncertainty of other elements. For example, if the
input consists of three uncertain numbers together with the exact value of
their sum, learning the exact value of one number may potentially reduce
the size of the uncertainty sets of the other two numbers. It would be inter-
esting to study uncertainty problems with such dependencies between the
uncertainty sets of different input elements.

• As discussed in Section 9.3, for every uncertain problem input one can ask
for the minimum and maximum possible objective value of the solution,
over all possible exact input values that lie in the given uncertainty sets. One
can view the difference between the minimum and the maximum objective
value as uncertainty in the solution value, and an interesting direction could
be to study query strategies that reduce the uncertainty in the solution value
to a given target value.

BEATCS no 116

38

• It would be interesting to develop additional techniques or even a general
theory that allows us to classify problems with respect to the best possible
query-competitive ratio that can be achieved. For example, we know that
the existence of small witness sets (that can be found by the algorithm) for
a problem leads to algorithms with small competitive ratio by Lemma 1,
but it is unclear whether there are further general criteria with this prop-
erty. As an example of a more general type of result, we mention that Ka-
han [12] considers the problem of computing a function f of n uncertain
real-valued elements. The n exact input values can be represented as a point
in n-dimensional space. The function f maps Rn to R and partitions its do-
main into regions where the function value is constant. Kahan relates the
achievable competitive ratio to the existence of a point on some partition
boundary that is tangent to an (n − 1)-dimensional hyperplane intersecting
k co-ordinate axes.

• As a query algorithm that solves an uncertainty problem can be viewed as
trying to learn the solution by asking queries about the input, it appears
that there may be connections to work in machine learning that could be
explored further.

References
[1] R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient update strategies for

geometric computing with uncertainty. Theory of Computing Systems, 38(4):411–
423, 2005.

[2] G. Charalambous and M. Hoffmann. Verification problem of maximal points un-
der uncertainty. In International Workshop on Combinatorial Algorithms (IWOCA
2013), LNCS 8288, pages 94–105. Springer, 2013.

[3] M. Charikar, R. Fagin, V. Guruswami, J. M. Kleinberg, P. Raghavan, and A. Sahai.
Query strategies for priced information. Journal of Computer and System Sciences,
64(4):785–819, 2002.

[4] R. Dorrigiv, R. Fraser, M. He, S. Kamali, A. Kawamura, A. López-Ortiz, and
D. Seco. On minimum- and maximum-weight minimum spanning trees with neigh-
borhoods. Theory of Computing Systems, November 2014. Online First publication.

[5] T. Erlebach and M. Hoffmann. Minimum spanning tree verification under uncer-
tainty. In 41st International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2014), LNCS 8747, pages 164–175. Springer, 2014.

[6] T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive algorithms for
cheapest set problems under uncertainty. In 39th International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2014), Part II, pages 263–274.
Springer, 2014.

The Bulletin of the EATCS

39

[7] T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive algorithms for
cheapest set problems under uncertainty. Full version of [6]. Submitted, 2014.

[8] T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihalák, and R. Raman. Computing
minimum spanning trees with uncertainty. In 25th International Symposium on The-
oretical Aspects of Computer Science (STACS’08), pages 277–288, 2008.

[9] T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing
shortest paths with uncertainty. Journal of Algorithms, 62(1):1–18, 2007.

[10] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the
median with uncertainty. SIAM Journal on Computing, 32(2):538–547, 2003.

[11] M. Gupta, Y. Sabharwal, and S. Sen. The update complexity of selection and related
problems. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2011), volume 13 of LIPIcs, pages
325–338. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

[12] S. Kahan. A model for data in motion. In 23rd Annual ACM Symposium on Theory
of Computing (STOC’91), pages 267–277, 1991.

[13] S. Khanna and W.-C. Tan. On computing functions with uncertainty. In 20th Sym-
posium on Principles of Database Systems (PODS’01), pages 171–182, 2001.

[14] M. Löffler and M. J. van Kreveld. Largest and smallest convex hulls for imprecise
points. Algorithmica, 56(2):235–269, 2010.

[15] M. Löffler and M. J. van Kreveld. Largest bounding box, smallest diameter, and
related problems on imprecise points. Computational Geometry, 43(4):419–433,
2010.

[16] C. Olston and J. Widom. Offering a precision-performance tradeoff for aggregation
queries over replicated data. In 26th International Conference on Very Large Data
Bases (VLDB’00), pages 144–155, 2000.

[17] K.-C. R. Tseng and D. G. Kirkpatrick. Input-thrifty extrema testing. In 22nd Inter-
national Symposium on Algorithms and Computation (ISAAC 2011), LNCS 7074,
pages 554–563. Springer, 2011.

40

The Bulletin of the EATCS

41

The Computational Complexity Column
by

Vikraman Arvind

Institute of Mathematical Sciences, CIT Campus, Taramani
Chennai 600113, India
arvind@imsc.res.in

http://www.imsc.res.in/~arvind

Combinatorial games are a fascinating topic, as both recreational and serious
mathematics. One aspect of the mathematical theory deals with assigning
values that quantify positions in games. This has lead to deep connections
between numbers and games and a rich algebraic theory as discovered by
Conway.

A natural algorithmic question that arises is the following: given a posi-
tion in a combinatorial game as input, determine which player has a winning
strategy. In their article, Steve Fenner and John Rogers give an excellent
self-contained introduction to the computational complexity of combinatorial
games. They first explain the basic theory of combinatorial games, with focus
on poset games. With this background, they survey the complexity-theoretic
results in this field and discuss several open questions.

BEATCS no 116

42

Combinatorial Game Complexity: An
Introduction with Poset Games

Stephen A. Fenner
University of South Carolina,

Computer Science and Engineering Department

John Rogers
DePaul University,

School of Computing

Abstract

Poset games have been the object of mathematical study for over a cen-
tury but little has been written on the computational complexity of deter-
mining important properties of these games. In this introduction we define
combinatorial games and focus for the most part on impartial poset games,
of which Nim is perhaps the best-known example. We present the complex-
ity results known to date, some discovered very recently.

An extended version of this paper, with detailed proofs, is available on-
line at http://www.cse.sc.edu/~fenner/papers/games.html and on
arXiv.org.

1 Introduction
Combinatorial games have long been studied (see [5, 1], for example) but the
record of results on the complexity of questions arising from these games is rather
spotty. Our goal in this introduction is to present several results—some old, some
new—addressing the complexity of the fundamental problem given an instance of
a combinatorial game:

Determine which player has a winning strategy.

A secondary, related problem is

Find a winning strategy for one or the other player, or just find a
winning first move, if there is one.

The Bulletin of the EATCS

43

The former is a decision problem and the latter a search problem. In some cases,
the search problem clearly reduces to the decision problem, i.e., having a solution
for the decision problem provides a solution to the search problem. In other cases
this is not at all clear, and it may depend on the class of games you are allowed to
query.

We give formal definitions below, but to give an idea of the subject matter,
we will discuss here the large class of games known as the poset games. One of
the best known of these is Nim, an ancient game, but given its name by Charles
Bouton in 1901 [2]. There are many others, among them, Hackendot, Divisors,
and Chomp [5]. Poset games not only provide good examples to illustrate general
combinatorial game concepts, but they also are the subject of a flurry of recent
results in game complexity, which is the primary focus of this article.

The rest of this section gives some basic techniques for analyzing poset games.
Section 2 lays out the foundations of the general theory of combinatorial games,
including numeric and impartial games. The rest of the paper is devoted to com-
putational complexity. Section 3 gives an upper bound on the complexity of
so-called “N-free” games, showing that they are solvable in polynomial time.
Section 4 gives lower bounds on the complexity of some games, showing they
are hard for various complexity classes. The section culminates in two recent
PSPACE-completeness results—one for impartial poset games, and the other for
“black-white” poset games. Section 5 discusses some open problems.

An extended version of this paper, with detailed proofs, is available online
at http://www.cse.sc.edu/~fenner/papers/games.html and on arXiv.
org.

1.1 Poset games
Definition 1.1. A partial order on a set P (hereafter called a poset) is a binary
relation ≤ on P that is reflexive, transitive, and antisymmetric (i.e., x ≤ y and
y ≤ x imply x = y). For any x ∈ P, define Px := {y ∈ P | x 6≤ y}.

We identify a finite poset P with the corresponding poset game: Starting with
P, two players (Alice and Bob, say) alternate moves, Alice moving first, where a
move consists of choosing any point x in the remaining poset and removing all y
such that x ≤ y, leaving Px remaining. Such a move we call playing x. The first
player unable to move (because the poset is empty) loses.1

Poset games are impartial, which means that, at any point in the play, the set
of legal moves is the same for either player. There is a rich theory of impartial
games, and we cover it in Section 2.5.

1Games can be played on some infinite posets as well, provided every possible sequence of
moves is finite. This is true if and only if the poset is a well-quasi-order (see, e.g., Kruskal [18]).

BEATCS no 116

44

In an impartial game, the only meaningful distinction between players is who
plays first (and we have named her Alice). Since every play of a poset game has
only finitely many moves, one of the two players (but clearly not both!) must have
a winning strategy. We say that a poset P is an ∃-game (or winning position) if
the first player has a winning strategy, and P is a ∀-game (or losing position) if
the second player has a winning strategy. In the combinatorial game theory litera-
ture, these are often calledN-games (“Next player win”) and P-games (“Previous
player win”), respectively. We get the following concise inductive definition for
any poset P:

P is an ∃-game iff there exists x ∈ P such that Px is a ∀-game.
P is a ∀-game iff P is not an ∃-game (iff, for all x ∈ P, Px is an
∃-game).

We call the distinction of a game being a ∀-game versus an ∃-game the outcome
of the game.

There are at least two natural ways of combining two posets to produce a third.

Definition 1.2. For posets P = 〈P,≤P〉 and Q = 〈Q,≤Q〉,

• define P + Q (the parallel union of P and Q) to be the disjoint union of P
and Q, where all points in P are incomparable with all points in Q:

P + Q := 〈P ∪̇Q,≤〉 ,

where ≤:=≤P ∪̇ ≤Q.

• Define P/Q (or P
Q—the series union of P over Q) to be the disjoint union of

P and Q where all points in P lie above (i.e., are ≥ to) all points in Q:

P
Q

:= 〈P ∪̇Q,≤〉 ,

where ≤ := ≤P ∪̇ ≤Q ∪̇(Q × P).

Note that + is commutative and associative, and that / is associative but not
commutative. Using these two operations, let’s build some simple posets. Let C1

be the one-element poset. For any n ∈ N, let

1. Cn := C1/C1/ . . . /C1︸ ︷︷ ︸
n

is the chain of n points (totally ordered). This is also

called a NIM stack.

2. An := C1 + C1 + · · · + C1︸ ︷︷ ︸
n

is the antichain of n pairwise incomparable points.

The Bulletin of the EATCS

45

^3C3 = ^1 V5 Λ4

Figure 1: Some simple posets constructed from individual points via parallel and
series union.

3. Vn := An/C1 is the n-antichain with a common lower bound.

4. Λn := C1/An is the n-antichain with a common upper bound.

5. ^n := C1/An/C1 is the n-antichain with common upper and lower bounds.

Some examples are shown in Figure 1.

Exercise 1.3. Find a simple way, given m and n, to determine whether Am/An is
an ∃-game or a ∀-game.

Exercise 1.4. Show that P/Q is an ∃-game if and only if either P is an ∃-game or
Q is an ∃-game.

1.1.1 More examples

The best-known poset game is Nim, an ancient game first formally described and
“solved” by C. L. Bouton in 1902 [2]. Here, the poset is a union of disjoint chains,
i.e., of the form Cn1 +Cn2 + · · ·+Cnk for some positive integers n1, . . . , nk. A move
then consists of choosing a point in one of the chains and remove that point and
everything above it.

Other families of poset games include

Chomp, introduced in 1974 by D. Gale [11], which, in its finite form, is repre-
sented by a rectangular arrangement of squares with the leftmost square in
the bottom row removed. This is a poset with two minimal elements (first
square on the second row, second square on bottom row). Every element in
a row is greater than all of the elements to the left and below so playing an
element removes it and all elements to the right and above.

Hackendot, attributed to von Newmann, where the poset is a forest of upside-
down trees (roots at the top). Hackendot was solved in 1980 by Úlehla
[29].

BEATCS no 116

46

Divisors, introduced by F. Schuh [22], the poset is the set of all positive divisors
(except 1) of a fixed integer n, partially ordered by divisibility. Divisors is
a multidimensional generalization of Chomp. Chomp occurs as the special
case where n = pmqn for distinct primes p, q.

1.2 Dual symmetry

Some poset games can be determined (as ∃-games or ∀-games just by inspection).
For example, suppose a poset P has some kind of dual symmetry, that is, there is
an order-preserving map ϕ : P→ P such that ϕ ◦ ϕ = id.

Fact 1.5. Let P be a poset and let ϕ : P→ P be such that ϕ ◦ ϕ = idP and x ≤
y ⇐⇒ ϕ(x) ≤ ϕ(y) for all x, y ∈ P.

• If ϕ has no fixed points, then P is a ∀-game.

• If ϕ has a minimum fixed point (minimum among the set of fixed points),
then P is an ∃-game.

Proof. If ϕ has no fixed points, then Bob can answer any x played by Alice by
playing ϕ(x). If ϕ has a least fixed point z, then Alice plays z on her first move,
leaving Pz, which is symmetric with no fixed points, and thus a ∀-game. �

For example, the poset below is symmetric with a unique fixed point x, which
Alice can win by playing on her first move:

x

1.3 Strategy stealing

Another class of posets that are easy to determine by inspection are those with
an articulation point, i.e., a point that is comparable with every other point in the
poset. For example, minimum and maximum points of P are articulation points.

Fact 1.6. If a poset P contains an articulation point, then P is an ∃-game.

The Bulletin of the EATCS

47

Proof. Let x be some articulation point of P. If x is a winning first move for
Alice, then we are done. If x is a losing first move for Alice, then there must be
some winning response y for Bob if Alice first plays x. But if Alice plays x, then
all points ≥ x are now gone, and so we have y < x. This means that the game
after Bob moves is Py, which is a ∀-game by assumption. But then, Alice could
have played y instead on her first move, leaving the ∀-game Py for Bob, and thus
winning. �

We call this “strategy stealing” because Alice steals Bob’s winning strategy.
The interesting thing about this proof is how nonconstructive it is. It shows that
Alice has a winning first move, but gives virtually no information about what that
first move could be. All we know is that the winning first play must be ≤ x. If x
is a maximum point of P, then the proof gives no information whatsoever about
Alice’s winning first move. Several poset games, including Chomp, have initial
posets with maximum points, so we know that they are ∃-games. But determin-
ing a winning first move for Alice in Chomp appears quite difficult, and no fast
algorithm is known. This suggests that, in the case of Chomp at least, the search
problem (finding a winning first move) is apparently difficult, whereas the deci-
sion problem (∃-game or ∀-game?) is trivial. The search versus decision issue is
discussed further in Section 4.1, below.

Exercise 1.7. Show that the winning first moves in any poset form an antichain.

1.4 Black-white poset games
Many interesting games are not impartial because the legal moves differ for the
players. In chess, for example, one player can only move white pieces and the
other only black pieces. We will informally call a game “black-white” when each
player is assigned a color (black or white) and can only make moves correspond-
ing to their color.2 Many impartial games have natural black-white versions. Here,
then, is a black-white version of a poset game:

Definition 1.8. A black-white poset game consists of finite poset P, each of whose
points are colored either black or white. The same rules apply to black-white poset
games as to (impartial) poset games, except that one player (Black) can only play
black points and the other player (White) can only play white points. (All points
above a played point are still removed, regardless of color.)

One could generalize this definition by allowing a third color, grey, say, where
grey points can be played by either player. We will not pursue this idea further.

2A different, popular color combination is red-blue. We use black-white so that illustrations
are faithfully rendered on a black-and-white printer.

BEATCS no 116

48

Other “colored” games include red-blue Hackenbush and red-green-blue Hacken-
bush [1].

Combinatorial games that are not impartial are known as partisan. In partisan
games, we must make a distinction between the two players beyond who moves
first. Generically, these players are called Left and Right. There is a surprisingly
robust general theory of combinatorial games, both impartial and partisan, devel-
oped in [1, 5], and we give the basics of this theory in the next section.

2 Combinatorial game theory basics

In this section we give some relevant definitions and a few facts from the general
theory of combinatorial games. We give enough of the theory to understand later
results. Thorough treatments of this material, with lots of examples, can be found
in [1, 5] as well as other sources, e.g., the recent book by Siegel [23]. Our ter-
minology and notation vary a little bit from [1, 5], but the concepts are the same.
When we say, “game,” we always mean what is commonly referred to as a combi-
natorial game, i.e., a game between two players, say, Left and Right, alternating
moves with perfect information, where the first player unable to move loses (and
the other wins). In their fullest generality, these games can be defined abstractly
by what options each player has to move, given any position in the game.

To save space, we will omit proofs of the results of this section, leaving them
as exercises to the reader. These proofs are usually straightforward applications of
previous results in this section, or induction, or both. The extended paper contains
the full proofs.

2.1 Notation

We letN denote the set {0, 1, 2, . . . , } of natural numbers. We let |X| denote the car-
dinality of a finite set X. We use the relation “:=” to mean “equals by definition.”
We extend the definition of an operator on games to an operator on sets of games
in the customary way; for example, if ∗ is a binary operation on games, and G and
H are sets of games, then G ∗ H := {g ∗ h | g ∈ G ∧ h ∈ H}, and if g is a game,
then g ∗ H := {g} ∗ H, and so on.

2.2 Basic definitions

Definition 2.1. A game is an ordered pair G = (GL,GR), where GL and GR are sets
of games. The elements of GL (respectively, GR) are the left options (respectively,
right options) of G. An option of G is either a left option or a right option of G.

The Bulletin of the EATCS

49

It is customary to write {GL|GR} or {`1, `2, . . . |r1, r2, . . .} rather than (GL,GR),
where GL = {`1, `2, . . .} and GR = {r1, r2, . . .}. We will do the same.

For this and the following inductive definitions to make sense, we tacitly as-
sume that the “option of” relation is well-founded, i.e., there is no infinite se-
quence of games g1, g2, . . . where gi+1 is an option of gi for all i.3 A position of a
game G is any game reachable by making a finite series of moves starting with G
(the moves need not alternate left-right). Formally,

Definition 2.2. A position of a game G is either G itself or a position of some
option of G. We say that G is finite iff G has a finite number of positions.4

Starting with a game G, we imagine two players, Left and Right, alternating
moves as follows: the initial position is G; given the current position P of G
(also a game), the player whose turn it is chooses one of her or his options of
P (left options for Left; right options for Right), and this option becomes the
new game position. The first player faced with an empty set of options loses.
The sequence of positions obtained this way is a play of the game G. Our well-
foundedness assumption implies that every play is finite, and so there must be
a winning strategy for one or the other player. We classify games by who wins
(which may depend on who moves first) when the players play optimally. This
is our broadest and most basic classification. Before giving it, we first introduce
the “mirror image” of a game G: define −G to be the game where all left options
and right options are swapped at every position, as if the players switched places.
Formally,

Definition 2.3. For any game G, define −G := {−GR|−GL}.

It is a good warm-up exercise to prove—inductively, of course—that −(−G) =

G for every game G. For impartial games, e.g., poset games, the “−” operator has
no effect; for black-white poset games, this is tantamount to swapping the color
of each point in the poset.

We can consider the following definition to be the most fundamental property
of a game:

Definition 2.4. Let G be a game. We say that G ≥ 0 (or 0 ≤ G) iff there is no right
option gR of G such that −gR ≥ 0. We will say G ≤ 0 to mean that −G ≥ 0.

So G ≥ 0 if and only if no right option gR of G satisfies gR ≤ 0. Symmetrically,
G ≤ 0 if and only if no left option gL of G satisfies gL ≥ 0. In terms of strategies,
G ≥ 0 means that G is a first-move loss for Right or a second-move win for Left.

3This follows from the Foundation Axiom of set theory, provided ordered pairs are imple-
mented in some standard way, e.g., (x, y) := {{x}, {x, y}} for all sets x and y.

4Finite games are sometimes called short games; see [23].

BEATCS no 116

50

If Right has to move first in G, then Left can win. Symmetrically, G ≤ 0 means
that G is a first-move loss for Left or a second-move win for Right.

The ≤ notation suggests that a partial order (or at least, a preorder) on games
is lurking somewhere. This is true, and we develop it below.

Definition 2.4 allows us to partition all games into four broad categories.

Definition 2.5. Let G be a game.

• G is a zero game (or a first-move loss, or P-game) iff G ≤ 0 and G ≥ 0.

• G is positive (or a win for Left, or L-game) iff G ≥ 0 and G 6≤ 0.

• G is negative (or a win for Right, or R-game) iff G ≤ 0 and G 6≥ 0.

• G is fuzzy (or a first-move win, or N-game) iff G 6≤ 0 and G 6≥ 0.

These four categories, P (for previous player win), L (for Left win), R (for Right
win), and N (for next player win), partition the class of all games. The unique
category to which G belongs is called the outcome of G, written o(G).

For example, the simplest game is the endgame 0 := {|}with no options, which
is a zero game (o(0) = P). The game 1 := {0|} is positive (o(1) = L), and the game
−1 := {|0} is negative o(−1) = R, while the game ∗ := {0|0} is fuzzy (o(∗) = N).

2.3 Game arithmetic, equivalence, and ordering
Games can be added, and this is a fundamental construction on games. The sum
G + H of two games G and H is the game where, on each move, a player may
decide in which of the two games to play. Formally:

Definition 2.6. Let G and H be games. We define

G + H := {(GL + H) ∪ (G + HL) | (GR + H) ∪ (G + HR)} .

In Section 1 we used the + operator for the parallel union of posets. Observe
that this corresponds exactly to the + operator on the corresponding games, i.e.,
the game corresponding to the parallel union of posets P and Q is the game-
theoretic + applied to the corresponding poset games P and Q.

We write G −H as shorthand for G + (−H). One can easily show by induction
that + is commutative and associative when applied to games, and the endgame
0 is the identity under +. This makes the class of all games into a commutative
monoid (albeit a proper class). One can also show for all games G and H that
−(G + H) = −G − H. Furthermore, if G ≥ 0 and H ≥ 0, then G + H ≥ 0. It is not
the case, however, that G−G = 0 for all G, although G−G is always a zero game.
These easy results are important enough that we state and prove them formally.

The Bulletin of the EATCS

51

Lemma 2.7. For any games G and H,

1. G −G is a zero game.

2. Suppose G ≥ 0. Then H ≥ 0 implies G + H ≥ 0, and H 6≤ 0 implies
G + H 6≤ 0.

3. Suppose G ≤ 0. Then H ≤ 0 implies G + H ≤ 0, and H 6≥ 0 implies
G + H 6≥ 0.

4. −(G + H) = −G − H.

The outcome o(G) of a game G is certainly the first question to be asked about
G, but it leaves out a lot of other important information about G. It does not
determine, for example, the outcome when G is added to a fixed game X. That is,
it may be that two games G and H have the same outcome, but o(G+X) , o(H+X)
for some game X. Indeed, defining 2 := {1|}, one can check that o(1) = o(2) = L,
but we have o(2−1) = L (left wins by choosing 1 ∈ 2L when she gets the chance),
whereas we know already from Lemma 2.7 that o(1 − 1) = P.

Behavior under addition leads us to a finer classification of games.

Definition 2.8. Let G and H be games. We say that G and H are equivalent,
written G ≈ H, iff o(G + X) = o(H + X) for all games X.5

It follows immediately from the definition that ≈ is an equivalence relation on
games, and we call the equivalence classes game values. We let PG denote the
Class6 of all game values.7 Letting X be the endgame 0 in the definition shows
that equivalent games have the same outcome. Using the associativity of +, we
also get that G ≈ H implies G + X ≈ H + X for any game X. Thus + respects
equivalence and naturally lifts to a commutative and associative Operation (also
denoted +) on PG.

The remaining goal of this subsection is finish showing that 〈PG,+,≤〉 is a
partially ordered abelian Group. We have built up enough basic machinery that we
can accomplish our goal in a direct, arithmetic way, without referring to players’
strategies.

5In much of the literature, the overloaded equality symbol = is used for game equivalence. We
avoid that practice here, preferring to reserve = for set theoretic equality. There are some important
game properties that are not ≈-invariant.

6We will start to capitalize words that describe proper classes.
7Since each game value itself is a proper Class, we really cannot consider it as a member of

anything. A standard fix for this in set theory is to represent each game value v by the set of
elements of v with minimum rank, so PG becomes the Class of all such sets.

BEATCS no 116

52

Lemma 2.9. A game G is a zero game if and only if G + H ≈ H for all games H.

Corollary 2.10. A game G is a zero game if and only if G ≈ 0 (where 0 is the
endgame).

Here is our promised Preorder on games.

Definition 2.11. Let G and H be games. We write G ≤ H (or H ≥ G) to mean
H −G ≥ 0 (equivalently, G − H ≤ 0). As usual, we write G < H to mean G ≤ H
and H 6≤ G.8

You can interpret G < H informally as meaning that H is more preferable
a position for Left than G, or that G is more preferable for Right than H. For
example, if Left is ever faced with moving in position G, and (let us pretend) she
had the option of replacing G with H beforehand, she always wants to do so.

Proposition 2.12. The ≤ Relation on games is reflexive and transitive.

Proposition 2.13. For any two games G and H, G ≈ H if and only if G − H is a
zero game, if and only if G ≤ H and G ≥ H.

The last two propositions show that the binary Relation ≤ on games is a Pre-
order that induces a partial Order on PG. Proposition 2.13 also gives a good work-
ing criterion for proving or disproving game equivalence—just check whether
G − H is a second player win—without having to quantify over all games.

Proposition 2.14. 〈PG,+〉 is an abelian Group, where the identity element is the
≈-equivalence class of zero games, and inverses are obtained by the negation
Operator on games.

Finally, ≤ is translation-invariant on PG, making it a partially ordered abelian
Group:

Corollary 2.15. For any games G, H, and X, if G ≤ H then G + X ≤ H + X.

We next look at two important subclasses of games—the numeric games and
the impartial games.

8We now have two ways of interpreting the expression “G ≥ 0”: one using Definition 2.4
directly and the other using Definition 2.11 with 0 being the endgame. One readily checks that the
two interpretations coincide.

The Bulletin of the EATCS

53

2.4 Numeric games
A numeric game is one where at each position all the left options are < all the
right options. Formally,

Definition 2.16. A game G is numeric iff ` < r for every ` ∈ GL and r ∈ GR, and
further, every option of G is numeric.

One can show that G is numeric if and only if ` < G for every ` ∈ GL and G < r
for every r ∈ GR. If H is also numeric, then either G ≤ H or H ≤ G. The + and −
operations also yield numeric games when applied to numeric games.9 Numeric
games have a peculiar property: making a move only worsens your position (for
Left this means having to choose a smaller game; for Right, having to choose a
larger game). Thus neither player wants to make a move—if they were given the
option to skip a turn, they would always take it. For these games, an optimal play
is easy to describe: Left always chooses a maximum left option (i.e., one that does
the least damage), and Right always chooses a minimum right option, assuming
these options exist.10 This intuitive idea is formalized in the following theorem,
which is referred to in the literature as the “dominating rule.” It applies to all
games, not just numeric games.

Theorem 2.17. Let G be a game. If y ≤ ` for some ` ∈ GL, then G ≈ {y,GL|GR}.
Similarly, if y ≥ r for some r ∈ GR, then G ≈ {GL|GR, y}.

If y ≤ ` ∈ GR, then we say that y is dominated by ` in G. Similarly, if
y ≥ r ∈ GR, then y is dominated by r in G. We obtain equivalent games by
removing dominated options. A player never needs to play a dominated option; it
is just as well (or better) to choose an option that dominates it.

Numeric games are called such because their values act like real numbers; for
one thing, their values are totally ordered by ≤. These games are constructed in a
way somewhat akin to how the real numbers are constructed from the rationals via
Dedekind cuts. The left options of a game form the left cut, the right options the
right cut, and the game itself represents a number strictly between the two. The
differences are that the two cuts might be bounded away from each other (one or
the other may even be empty), and the left cut might contain a maximum element.

2.4.1 Finite numeric games

The values of finite numeric games form a subgroup of PG naturally isomorphic
(in an order-preserving way) to the dyadic rational numbers under addition, ac-

9The property of being numeric is not invariant under ≈. One can easily concoct two equivalent
games, one of which is numeric and the other not.

10In general, Left can win by choosing any option ` ≥ 0, and Right can win by choosing any
option r ≤ 0.

BEATCS no 116

54

cording to the following “simplicity rule”:

Definition 2.18. Let G be a finite numeric game. The (numerical) value of G,
denoted v(G), is the unique rational number a/2k such that

1. k is the least nonnegative integer such that there exists an integer a such that
v(`) < a/2k for all ` ∈ GL and a/2k < v(r) for all r ∈ GR, and

2. a is the integer with the least absolute value satisfying (1.) above.

So for example, the endgame 0 has value v(0) = 0, the game 1 has value v(1) =

1, and the game −1 has value v(−1) = −1, as the notation suggests. Intuitively,
|v(G)| indicates the number of “free moves” one of the players has before losing
(Left if v(G) > 0, and Right if v(G) < 0). In fact, for any two finite numeric games
P and Q, one can show that v(P + Q) = v(P) + v(Q) and that v(−P) = −v(P). Also,
P ≤ Q if and only if v(P) ≤ v(Q).11 The valuation map v is not one-to-one on
games, but induces a one-to-one map on values of numeric games.

To illustrate the simplicity rule, consider the game h := {0|1}. The rule says
that v(h) is the simplest dyadic rational number strictly between 0 and 1, namely,
1/2. First note that Left can always win h whether or not she plays first, so h > 0.
If v respects +, then we should also have h + h ≈ 1. Let us check this. First
consider 1 − h:

1 − h = 1 + (−h) = {0|} + {−1|0} = {0 − h, 1 − 1|1 + 0}
= {−h, 0|1} ≈ {0|1} = h

(the equivalence is by the dominating rule and −h < 0). Thus

h + h ≈ h + (1 − h) ≈ 1 .

Black-white poset games are numeric [10]. Here we identify Black with Left
and White with Right. So for example, an antichain of k black points has numeric
value k, and an antichain of k white nodes has numeric value −k. Figure 2 shows
the numeric value of two simple, two-level black-white poset games.

Exercise 2.19. Use the simplicity rule to prove the values in Figure 2.

The numerical values of arbitrary numeric games (not necessarily finite) form
an ordered, real-closed field No into which the real numbers embed, but which
also contains all the ordinals as well as infinitesimals [5]. Donald Knuth dubbed
No the surreal numbers [17], and they are formed via a transfinite construction.
The dyadic rationals are those constructed at finite stages, but numbers constructed
through stage ω already form a proper superset of R.

11One can define a purely game-theoretic multiplication operation on numeric games in such a
way that v(PQ) = v(P)v(Q) for all P and Q. See [5] for details.

The Bulletin of the EATCS

55

2−k

`1 `2 `k

· · ·

u1 u2 uk

k − 1
2

Figure 2: The numerical values of two simple black-white poset games. The left
has value k − 1

2 and the right has value 2−k, for k ≥ 1.

2.5 Impartial games and Sprague-Grundy theory

A game is impartial if at every position, the two players have the same options.
Formally,

Definition 2.20. A game G is impartial iff GL = GR and every g ∈ GL is impartial.

Equivalently, G is impartial if and only if G = −G. This means that values of
impartial games are those that have order two in the group 〈PG,+〉.

Examples of impartial games include 0 and ∗. Families of impartial games
include Nim, Geography, Node Kayles, and poset games.12 There is a beautiful
theory of impartial games, developed by R. P. Sprague and P. M. Grundy [25, 14]
that predates the more general theory of combinatorial games described in [1, 5].
We develop the basics of this older theory here. First note that, since there are no
Left/Right biases, all impartial games are either zero (P) or fuzzy (N), and we can
assume that Left always moves first. We will call impartial zero games ∀-games
(“for all first moves . . . ”) and impartial fuzzy games ∃-games (“there exists a first
move such that . . . ”). In this section only, we restrict our attention to impartial
games, so when we say “game,” we mean impartial game.

Two (impartial) games G and H are equivalent (G ≈ H) if and only if G + H is
a ∀-game, because H = −H (Sprague and Grundy defined this notion for impartial
games). One can associate an ordinal number with each game, which we call the
g-number13 of the game, such that two games are equivalent if and only if they
have the same g-number. The g-number of a finite game is a natural number. We
will restrict ourselves to finite games.

Definition 2.21. Let A be any coinfinite subset of N. Define mex A (the minimum

12Impartiality is not ≈-invariant.
13also called the Grundy number or the NIM number—not to be confused with the value of a

numerical game

BEATCS no 116

56

excluded element from A) to be the least natural number not in A, i.e.,

mex A := min(N − A) .

More generally, for i = 0, 1, 2, . . . , inductively define

mexi A := min (N − (A ∪ {mex0(A), . . . ,mexi−1 A})) ,

the i’th least natural number not in A. (So in particular, mex0 A = mex A.)

Definition 2.22. Let G be any (finite) game. Define the g-number of G as

g(G) := mex g-set(G) ,

where g-set(G) := {g(x) | x ∈ GL} is called the g-set of G.

That is, g(G) is the least natural number that is not the g-number of any option
of G, and the set of g-numbers of options of G is g-set(G). For example, g-set(0) =

∅, and so g(0) = 0. Also, g-set(∗) = {g(0)} = {0}, and so g(∗) = 1.

Exercise 2.23. Prove the following for any finite poset P and any n ∈ N.

1. g(P) ≤ |P|. (Generally, g(G) ≤
∣∣∣GL

∣∣∣ for any impartial G.)

2. g(Cn) = n for all n ∈ N.

3. g(An) = n mod 2.

4. g(Vn) = (n mod 2) + 1.

What is g(Λn)? What is g(^n)?

Exercise 2.24. Describe g(Am/An) simply in terms of m and n.

Here is the connection between the g-number and the outcome of a game.

Proposition 2.25. A game G is a ∀-game if and only if g(G) = 0.

Proof idea. If g(G) , 0, then there is some option x of G that Left can play such
that g(x) = 0, but if g(G) = 0, then no move Left makes can keep the g-number at
0. �

The central theorem of Sprague-Grundy theory—an amazing theorem with a
completely nonintuitive proof—concerns the g-number of the sum of two games.

Definition 2.26. For any m, n ∈ N, define m⊕ n to be the natural number k whose
binary representation is the bitwise exclusive OR of the binary representations of
m and n. We may also call k the bitwise XOR of m and n.

The Bulletin of the EATCS

57

For example, 23 ⊕ 13 = 10111 ⊕ 01101 = 11010 = 26.

Theorem 2.27 (Sprague, Grundy [25, 14]). For any finite games G and H,

g(G + H) = g(G) ⊕ g(H) .

Corollary 2.28. Two impartial games G and H are equivalent if and only if g(G) =

g(H).

Proof. G and H are equivalent iff G + H is a ∀-game, iff g(G + H) = 0 (Proposi-
tion 2.25), iff g(G) ⊕ g(H) = 0 (Theorem 2.27), iff g(G) = g(H). �

Since every natural number n is the g-number of the poset game Cn, this means
that every game is equivalent to a single NIM stack.

We can use Theorem 2.27 to solve Nim. Given a Nim game P = Cn1 + · · ·+Cnk ,
we get g(P) = n1 ⊕ · · · ⊕ nk. If this number is nonzero, then let i be largest such
that (g(P))i = 1. Alice can win by choosing a j such that (n j)i = 1 and playing
in Cn j to reduce its length (and hence its g-number) from n j to n j ⊕ (g(P))i. This
makes the g-number of the whole Nim game zero.

Theorem 2.27 shows how the g-number behaves under parallel unions of posets
(Definition 1.2). How does the g-number behave under series unions? Unfortu-
nately, g(P/Q) might not depend solely on g(P) and g(Q). For example, g(V2) =

g(C1) = 1, but g(C1/V2) = g(^2) = 3 whereas g(C1/C1) = g(C2) = 2. However,
g-set(P/Q) does depend solely on g-set(P) and g-set(Q) for any posets P and Q,
and this fact forms the basis of the Deuber & Thomassé algorithm of the next
section.

There is one important case where g(P/Q) does only depend on g(P) and g(Q):

Fact 2.29. For any finite poset P and any k ≥ 0,

g
(

P
Ck

)
= g(P) + k .

This can shown by first showing that g(P/C1) = g(P) + 1, then using induction
on k. By Fact 2.29, we get that g(^n) = 1 + g(Λn) for example.

3 Upper bounds
When asking about the computational difficulty of determining the outcome of
a game, we really mean a family of similar games, represented in some way as
finite inputs. In discussing game complexity, we will abuse terminology and refer
to a family of games simply as a game. (The same abuse occurs in other areas

BEATCS no 116

58

of complexity, notably circuit complexity.) We will also use the same small-caps
notation to refer both to a family of games and to the corresponding decision
problem about the outcomes.

Perhaps the most common upper bound in the literature on the complexity
of a game is membership in PSPACE. Without pursuing it further, we will just
mention that, if a game G of size n satisfies: (i) every position of G has size
polynomial in n; (ii) the length of any play of G is polynomial in n; and (iii) there
are polynomial-time (or even just polynomial-space) algorithms computing the
“left option of” and “right option of” relations on the positions of G, then o(G)
can be computed in polynomial space. These properties are shared by many, many
games.

In this section we will give some better upper bounds on some classes of finite
poset games, the best one being that N-free poset games are in P [6]. We will
assume that a poset is represented by its Hasse diagram, a directed acyclic graph
(DAG) in which each element is represented as a node and an arc is placed from
a node for element x to the node for y when x < y and there is no element z such
that x < z < y. The poset is the reflexive, transitive closure of the edge relation of
the DAG.

3.1 N-free games
With the Hasse diagram representation, we can apply results from graph theory to
devise efficient ways to calculate g-numbers for certain classes of games. A good
example is the class of N-free poset games. An “N” in a poset is a set of four
elements {a, b, c, d} such that a < b, c < d, c < b, and the three other pairs are
incomparable. When drawn as a Hasse diagram the arcs indicating comparability
form the letter “N”. A poset is N-free if it contains no N as an induced subposet.
We let N-Free denote the class of N-free poset games.

Valdes, Tarjan, and Lawler [30] show that an N-free DAG can be constructed
in linear time from a set of single nodes. New components are created either by
applying parallel union (G+H) or by applying series union (G/H). As with posets,
the parallel union is the disjoint union of G and H. The series union is a single
DAG formed by giving to every element in H with out-degree 0 (the sinks in H)
an arc to every element in G with in-degree 0 (the sources in G). This gives the
Hasse diagram of the series union of the corresponding posets. Their algorithm
provides a sequence of + and / operations that will construct a given N-free DAG
from single points.

Deuber & Thomassé [6] show that N-Free ∈ P by applying this construction
to demonstrate how to calculate the g-number of an N-free poset game based on
the sequence of construction steps obtained by the VTL algorithm above. Their
algorithm, which we now describe, works by keeping track of the g-sets of the

The Bulletin of the EATCS

59

posets obtained in the intermediate steps of the construction, rather than the g-
numbers. There is no need to store the g-numbers, because the g-number of any
poset can always be easily computed from its g-set by taking the mex.

The g-number of a single node is 1. This is the base case.

Fact 3.1. Given posets P and Q, the g-set of the parallel union P + Q is

g-set(P + Q) = {g(P + Qq) : q ∈ Q} ∪ {g(Pp + Q) : p ∈ P}
= {g(P) ⊕ g(Qq) : q ∈ Q} ∪ {g(Pp) ⊕ g(Q) : p ∈ P} .

The second equality follows from the Sprague-Grundy theorem. This is easy
to see if you consider the root of the game tree for P + Q. Each of its children
results from playing either an element in P or one in Q. The left-hand set in the
union contains the g-numbers of the games resulting from playing an element in
Q; the right-hand set from playing an element in P. Their union is the g-set of
P + Q, so its g-number is the mex of that set.

To calculate the g-set of a series union, we will need the definition of the
Grundy product of two finite sets of natural numbers:

A � B := B ∪ {mexa B | a ∈ A} .

A � B is again a finite set of natural numbers that is easy to compute given A and
B. Basically, A � B unions B with the version of A we get after re-indexing the
natural numbers to go “around” B. Notice that mex(A � B) = mexmex A B. We will
use this fact below.

Lemma 3.2 (Deuber & Thomassé [6]). For any finite posets P and Q, g-set(P/Q) =

g-set(P) � g-set(Q) = g-set(Q)∪{mexi(g-set(Q)) : i ∈ g-set(P)}.

The left-hand set of the union results from playing an element in Q, which
removes all of the elements in P. Using induction, we can see what happens when
an element in P is played.

Proof of Lemma 3.2. The fourth equality uses the inductive hypothesis.

g-set(P/Q) = {g((P/Q)r) : r ∈ P/Q}
= {g((P/Q)p) : p ∈ P} ∪ {g((P/Q)q) : q ∈ Q}
= {g((Pp/Q)) : p ∈ P} ∪ {g(Qq) : q ∈ Q}
= {mex(g-set(Pp) � g-set(Q)) : p ∈ P} ∪ g-set(Q)
= {mexmex g-set(Pp) g-set(Q) : p ∈ P} ∪ g-set(Q)
= {mexg(Pp)(g-set(Q)) : p ∈ P} ∪ g-set(Q)
= {mexi(g-set(Q)) : i ∈ g-set(P)} ∪ g-set(Q)
= g-set(P) � g-set(Q)

�

BEATCS no 116

60

In particular, the g-number of P/Q is greater than or equal to the sum of the g-
numbers of P and Q. Notably, it’s an equality if Q is Cn for some n (Fact 2.29) and
the reason is that the g-set of Cn has no gaps, that is, it contains all of the values
from 0 to n − 1. It’s easy to see that it’s true when P and Q are both singletons.
Their g-numbers are both 1 and forming their series-union creates a NIM stack of
size 2 and that has g-number 2.

Another way to understand Lemma 3.2 is to consider the game tree of P/Q,
and we’ll look at the simple case where P is an arbitrary game with g-number k
and Q is a singleton. Consider the root node r of the game tree of P/Q. One of its
children represents playing the single element in Q and that child has g-number
0. The rest of r’s children represent game configurations reached by playing an
element in P. By the induction hypothesis the g-number of each of these nodes
will be one more than in P’s game tree where they had g-numbers 0 to k − 1, and
perhaps g-numbers k + 1 and larger. So in P/Q’s tree they have g-numbers 1 to k,
with perhaps g-numbers k + 2 or larger. Because the child reached by playing Q’s
single element has g-number 0, the first missing value in the g-set formed from
these g-numbers is k + 1.

Now using Fact 3.1 and Lemma 3.2, the decomposition described in [30] can
generate a binary tree where each internal node is labeled with a poset P and
an operation (parallel union or series union), and its children are the two posets
combined to form P. Starting with each leaf, where the poset is a singleton and
the g-set is {0}, and moving up the tree, one can apply Fact 3.1 and Lemma 3.2 to
compute the g-set of the root (and none of the g-numbers involved exceed the size
of the final poset). This can all be done in time O(n4).

3.2 Results on some classes of games with N’s

General results for classes of games containing an “N” have been few. In 2003,
Steven Byrnes [3] proved a poset game periodicity theorem, which applies to,
among others, Chomp-like games, which contain many “N”-configurations.

Here’s the theorem, essentially as stated in the paper:

Theorem 3.3. In an infinite poset game X, suppose we have two infinite chains
C (c1 < c2 < · · ·) and D (d1 < d2 < · · ·), and a finite subset A, all pairwise
disjoint, and assume that no element of C is less than an element of D. Let Am,n =

A ∪ C ∪ D − {x ∈ X|x ≥ cm+1} − {x ∈ X|x ≥ dn+1} (that is, Am,n is the position that
results from starting with the poset A ∪ C ∪ D, then making the two moves cm+1

and dn+1). Let k be a nonnegative integer. Then either:

1. there are only finitely many different Am,n with g-number k; or

The Bulletin of the EATCS

61

2. we can find a positive integer p such that, for large enough n, g(Am,n) = k if
and only if g(Am+p,n+p) = k.

Thus, as the poset A expands along the chains C and D, positions with any fixed
g-number have a regular structure.

A simple example of a class of games covered by the theorem is the family
of two-stack Nim games, where A is empty and Am,n consists of an m-chain and
an n-chain. The g-number 0 occurs for every An,n so the periodicity is 1. The
g-number 1 occurs for every A2n,2n+1 and so has periodicity 2. In fact, one can find
a periodic repetition for every g-number. The surprising thing is that this is still
true when you allow elements in one chain to be less than elements in the other.

Another family contains Chomp, described in Section 1.1.1. We can generalize
Chomp to games where the rows do not have to contain the same number of ele-
ments. Byrnes showed that for such games there is a periodicity in the g-numbers
when we fix the size of all but the top two rows.

As Byrnes claims, this yields a polynomial-time decision algorithm for each
family generated from a fixed A but not a uniformly polynomial-time algorithm
across the families, as the time is parameterized by A.

3.2.1 Bounded-width poset games

If a poset P has width k, that is, if k is the maximum size of any antichain in P,
then there are only |P|k many positions at most in the game: if x0, x1, . . . , xn−1 ∈ P
are the elements chosen by the players in the first n moves of the game, then the
resulting position is completely determined by the minimal elements of the set
{x0, . . . , xn−1}, i.e., an antichain of size ≤ k.

This means that, for constant k, one can compute the g-number of P in poly-
nomial time using dynamic programming. The exponent on the running time de-
pends on k, however. For certain families of bounded-width posets, one can beat
the time of the dynamic programming algorithm; for example, one can compute
the g-number of width-2 games in linear time.

4 Lower bounds

In this section we give some lower bounds on game complexity. There is a vast
literature on combinatorial game complexity, and we make no attempt to be thor-
ough, but rather concentrate on poset game complexity.

BEATCS no 116

62

4.1 A note about representations of games

The complexity of a game depends quite a bit on its representation. The choice
of representation is usually straightforward, but not always. For example, how
should we represent an N-free poset? Just by its Hasse diagram, or by an expres-
sion for the poset in terms of single points and parallel union and series union
operators? The results of Valdes, et al. [30] show that one representation can be
converted into the other in polynomial time, so the choice of representation is not
an issue unless we want to consider complexity classes within P or more succinct
representations of posets, as we will do below. There, fortunately, our hardness
results apply to either representation.

Even if the representation of a game is clear, the results may be counterintu-
itive. For example, how should we represent members of the class of all finite
games? In Section 2, we defined a game as an ordered pair of its left and right
options. We must then represent the options, and the options of options, and so on.
In effect, to represent an arbitrary finite game explicitly, we must give its entire
game tree (actually, game DAG, since different sequences of moves may end up in
the same position). Under this representation, there is a straightforward algorithm
to compute the outcome of any game: use dynamic programming to find the out-
come of every position in the game. Since every position is encoded in the string
representing the game, this algorithm runs in polynomial time.

What makes a game hard, then, is that we have a succinct representation for
it that does not apply to all games. For example, the obvious representation of a
poset game is the poset itself, and the number of positions is typically exponential
in the size of the poset. Subfamilies of poset games may have even more succinct
representations. For example, a Nim game can be represented as a finite list of
natural numbers in binary, giving the sizes of the stacks, and a game of Chomp
can be represented with just two natural numbers m and n in binary, giving the di-
mensions of the grid. Notice that this Chomp representation is significantly shorter
than what is needed to represent an arbitrary position in a Chomp game; the latter
is polynomial in m + n.

In what sense does finding a winning strategy in Chomp reduce to determining
the outcome of Chomp games? We already know that every Chomp game is an ∃-
game because it has a maximal point. We could find a winning strategy if we were
able to determine the outcome of every Chomp position, but even writing down a
query to an “outcome oracle” takes time linear in m + n, which is exponential
in the input size. The more modest goal of finding a winning first move may be
more feasible, because the position after one move is simple enough to describe
by a polynomial-length query string. To our knowledge, no efficient algorithm
is known to determine the outcome of an arbitrary Chomp position after a single
move, even allowing time (m + n)O(1).

The Bulletin of the EATCS

63

We will more to say about representations below when we discuss lower
bounds for poset games within the complexity class P.

4.2 Some PSPACE-hard games

Many games have been shown PSPACE-hard over the years. Early on, Even
and Tarjan showed that Hex generalized to arbitrary graphs is PSPACE-complete
[7]. A typical proof of PSPACE-hardness reduces the PSPACE-complete True
Quantified Boolean Formulas (TQBF [26]) problem to the outcome of a game.
We can consider a quantified Boolean formula ϕ = (∃x1)(∀x2) · · ·ψ (where ψ is a
Boolean formula in conjunctive normal form (cnf)) itself as a game, where players
alternate choosing truth values for x1, x2, . . ., the first player (Right, say) winning
if the resulting instantiation of ψ is true, and Left winning otherwise.14

TQBF seems ideal for encoding into other games. Thomas Schaefer showed
a number of interesting games to be PSPACE-hard this way [21]. One interest-
ing variant of TQBF that Schaefer proved PSPACE-complete is the game where
a positive Boolean formula ψ is in cnf with no negations, and players alternate
choosing truth values for the Boolean variables. Schaefer called this game
Gpos(POS CNF). Unlike TQBF, however, the variables need not be chosen in or-
der; players may choose to assign a truth value to any unassigned variable on any
move. Left (who moves first) wins if ψ is true after all variables have been chosen,
and Right wins otherwise. Since ψ is positive, Left always wants to set variables
to 1 and Right to 0.

As another example, consider Geography. The input is a directed graph G
and a designated vertex s of G on which a token initially rests. The two players
alternate moving the token on G from one node to a neighboring node, trying to
force the opponent to move to a node that has already been visited. Geography is
a well-known PSPACE-complete game [21, 24]. In [19], Lichtenstein & Sipser
show that Geography is PSPACE-complete even for bipartite graphs.

An obvious way to turn Geography into a black-white game is to color the
nodes of graph G black and white. Each player is then only allowed to move the
token to a node of their own color. Since moves are allowed only to neighboring
nodes, the black-white version is equivalent to the uncolored version on bipartite
graphs. The standard method of showing that Geography is PSPACE-complete
is via a reduction from True Quantified Boolean Formulas (TQBF) to Geography
(see for example [24]). Observe that the graph constructed in this reduction is not
bipartite. That is, there are nodes that potentially may be played by both play-
ers. Hence, we cannot directly conclude that the black-white version is PSPACE-

14This is technically not a combinatorial game by our definition, because the end condition is
different. One can modify the game slightly to make it fit our definition, however.

BEATCS no 116

64

complete. However, in [19] Lichtenstein & Sipser show that Geography is indeed
PSPACE-complete for bipartite graphs.

We now consider the game Node Kayles. This game is defined on an undi-
rected graph G. The players alternately play an arbitrary node from G. In one
move, playing node v removes v and all the direct neighbors of v from G. In the
black-white version of the game, we color the nodes black and white. Schae-
fer [21] showed that determining the winner of an arbitrary Node Kayles instance
is PSPACE-complete. He also extended the reduction to bipartite graphs, which
automatically yields a reduction to the black-white version of the game (see [12]).
Therefore, black-white Node Kayles is also PSPACE-complete.

The game of Col [1] is a two-player combinatorial strategy game played on a
simple planar graph, some of whose vertices may be colored black or white. Dur-
ing the game, the players alternate coloring the uncolored vertices of the graph.
One player colors vertices white and the other player colors vertices black. A
player is not allowed to color a vertex neighboring another vertex of the same
color. The first player unable to color a vertex loses. A well-known theorem
about Col is that the value of any game is either x or x + ∗ where x is a number.
Removing the restriction that Col games be played on planar graphs and consid-
ering only those games in which no vertex is already colored, we get a new game,
GenCol (generalized Col). It is shown in [10] that GenCol is PSPACE-complete;
furthermore, GenCol games only assume the two very simply game values 0 and
∗.

In [20], Stockmeyer & Chandra give examples of games that are complete for
exponential time and thus provably infeasible.

4.3 Lower bounds for poset games

Until recently, virtually no hardness results were known relating to poset games,
and the question of the complexity of determining the outcome of a game was
wide open, save the easy observation that it is in PSPACE.

For the moment, let PG informally denote the decision problem of determining
the outcome of a arbitrary given (impartial) poset game, that is, whether or not the
first player (Alice) can win the game with perfect play. The first lower bound on
the complexity of PG we are aware of, and it is a modest one, was proved by
Fabian Wagner [31] in 2009. He showed that PG is L-hard15 under FO-reductions
(First-Order reductions). This is enough to show, for example, that PG < AC0.
Soon after, Thomas Thierauf [28] showed that PG is hard for NL under AC0

reductions.16 A breakthrough came in 2010, when Adam Kalinich, then a high

15L is short for LOGSPACE.
16NL is nondeterministic LOGSPACE.

The Bulletin of the EATCS

65

school student near Chicago, Illinois, showed that PG is hard for NC1 under AC0

reductions [16]. For the proof, he invents a clever way to obliviously “flip” the
outcome of a game, i.e., to toggle the outcome between ∃ and ∀. This allows for
the simulation of a NOT-gate in an NC1 circuit. (An OR-gate can be simulated by
the series union construction of Definition 1.2. See below.)

The astute reader will notice that Kalinich’s result appears to be weaker than
the other two earlier results. In fact, the three results are actually incomparable
with each other, because they make different assumptions about how poset games
are represented as inputs. We say more about this below, but first we mention that
Wagner’s and Thierauf’s results both hold even when restricted to Nim games with
two stacks, and Kalinich’s result holds restricted to N-free games. Modest as they
are, these are currently the best lower bound we know of for N-free poset games.

Very recently, the complexity of PG was settled completely by Daniel Grier,
an undergraduate at the University of South Carolina [13]. He showed that PG
is PSPACE-complete via a polynomial reduction (henceforth, p-reduction) from
Node Kayles. Here, it is not important how a game is represented as an input, so
long as the encoding is reasonable. His proof shows that PSPACE-completeness
is still true when restricted to three-level games, i.e., posets where every chain
has size at most three (equivalently, posets that are partitionable into at most three
antichains). The games used in the reduction are of course not N-free.

4.4 Representing posets as input

As we discussed above, for any of the various well-studied families of poset games
(Chomp, Divisors, Nim, etc.), there is usually an obvious and natural way to rep-
resent a game as input. For example, an instance of Chomp can be given with just
two positive integers, one positive integer for Divisors, and a finite list of positive
integers for Nim, giving the heights of the stacks. When considering arbitrary fi-
nite posets, however, there is no single natural way to represent a poset as input,
but rather a handful of possibilities, and these may affect the complexity of various
types of poset games. We consider two broad genres of poset representation:

Explicit The poset is represented by an explicit data structure, including the set
of points and the relations between them. In this representation, the size of
the poset is always comparable to the size of the input.

Succinct (Implicit) The poset is represented by a Boolean circuit with two n-bit
inputs. The inputs to the circuit uniquely represent the points of the poset,
and the (1-bit) output gives the binary relation between these two inputs. In
this representation, the size of the poset can be exponential in the size of the
circuit.

BEATCS no 116

66

Within each representational genre, we will consider three general approaches to
encoding a poset P, in order from “easiest to work with” to “hardest to work with”:

Partial Order (PO) P is given as a reflexive, transitive, directed acyclic graph,
where there is an edge from x to y iff x ≤ y.

Hasse Diagram (HD) P is given as a directed acyclic graph whose reflexive,
transitive closure (i.e., reachability relation) is the ordering ≤. The graph
then gives the Hasse diagram of P.

Arbitrary (binary) Relation (AR) An arbitrary directed graph (or arbitrary bi-
nary relation) is given, whose reflexive, transitive closure is then a pre-order
whose induced partial order is P. (Equivalently, P is the set of strongly con-
nected components, and ≤ is the reachability relation between these com-
ponents.)

The first two (PO and HD) must involve promises that the input satisfies the cor-
responding constraint, so problems in these categories are posed as promise prob-
lems. Notice that the PO promise is stronger than the HD promise, which is
stronger than the AR (vacuous) promise. So in either the Explicit or Succinct
cases, the complexity of the corresponding problems increases monotonically as
PO→ HD→ AR.

We will ignore some additional subtleties: In the explicit case, is the graph (or
relation) given by an adjacency matrix or an array of edge lists? In the succinct
case, should we be able to represent a poset whose size is not a power of 2? For
example, should we insist on including a second circuit that tells us whether a
given binary string represents a point in the poset? These questions can generally
be finessed, and they do not affect any of the results.

4.5 The decision problems
The two genres and three approaches above can be combined to give six versions
of the basic decision problem for arbitrary posets: the three explicit problems
PG(Explicit,PO), PG(Explicit,HD), and PG(Explicit,AR); and the three succinct
problems PG(Succinct,PO), PG(Succinct,HD), and PG(Succinct,AR). We will
define just a couple of these, the others being defined analogously.

Definition 4.1. PG(Succinct,HD) is the following promise problem:

Input: A Boolean circuit C with one output and two inputs of n bits
each, for some n.

Promise: G is acyclic, where G is the digraph on {0, 1}n whose edge
relation is computed by C.

The Bulletin of the EATCS

67

Question: Letting P be the poset given by the reachability relation
on G, is P an ∃-game?

Definition 4.2. PG(Explicit,AR) is the following promise problem:

Input: A digraph G on n nodes.
Promise: None.
Question: Letting P be the poset given by the reachability relation

on the strongly connected components of G, is P an ∃-game?

We also can denote subcategories of poset games the same way. For exam-
ple, Nim(Explicit,HD) is the same as PG(Explicit,HD), but with the additional
promise that the poset is a parallel union of chains; for any k > 0,
Nimk(Explicit,HD) is the same as Nim(Explicit,HD) but with the additional promise
that there are at most k chains; N-Free(Succinct,PO) is the same as
PG(Succinct,PO) with the additional promise that the poset is N-free.

4.6 The first results
Here are the first lower bounds known for poset games, given roughly in chrono-
logical order. The first four involve Nim; the first two of these consider explicit
games, and the next two consider succinct games. None of these results is cur-
rently published; proof sketches can be found in the extended paper.

Theorem 4.3 (Wagner, 2009). Nim4(Explicit,HD) is L-hard under AC0 reduc-
tions.

The proof reduces from the promise problem ORD (order between vertices),
which is known to be complete for L via quantifier-free projections [8, 15].

Theorem 4.4 (Thierauf, 2009). Nim2(Explicit,AR) is NL-hard under AC0 reduc-
tions.

The proof reduces from the reachability problem for directed graphs, which is
NL-complete under AC0-reductions.

The next result about succinct poset games is straightforward.

Theorem 4.5 (F, 2009). Nim2(Succinct,PO) is coC=P-hard under p-reductions.

The idea here is that, for any L ∈ coC=P and any input x, we produce two
NIM stacks, and x ∈ L if and only if they are of unequal length.

Theorem 4.6 (F, 2009). Nim6(Succinct,HD) is PSPACE-hard under p-reductions.

BEATCS no 116

68

The proof uses a result of Cai & Furst [4] based on techniques of David Bar-
rington on bounded-width branching programs. Recall that S 5 is the group of
permutations of the set {1, 2, 3, 4, 5}. Their result is essentially as follows:

Theorem 4.7 (Cai & Furst). For any PSPACE language L, there exists a polyno-
mial p and a polynomial-time computable (actually, log-space computable) func-
tion σ such that, for all strings x of length n and positive integers c (given in
binary), σ(x, c) is an element of S 5, and x ∈ L if and only if the composition
σ(x, 1)σ(x, 2)σ(x, 2) · · ·σ(x, 2p(n)), applied left to right, fixes the element 1.

The idea is that we connect the first five NIM stacks level-by-level via per-
mutations in S 5, as well as adding a couple of widgets. If the product of all the
permutions fixes 1, then we get five NIM stacks of equal length N + 1 and one
NIM stack of length N + 3, which is an ∃-game by the Sprague-Grundy theorem.
If 1 is not fixed, then we get four stacks of length N +1 and two of length N +2—a
∀-game by the same theorem.

Although the above results all mention Nim, the representations we use of a
Nim game as a poset are not the natural one. Therefore, it is better to consider
these as lower bounds on N-free poset games, which are naturally represented as
posets.

The next results regard N-free games. They depend on Adam Kalinich’s game
outcome-flipping trick. The trick turns a poset game A into another poset game
¬A with opposite outcome, starting with A and applying series and parallel union
operations in a straightforward way. Here we describe a simplification of the trick
due to Daniel Grier:
Given a poset A,

1. Let k be any (convenient) natural number such that 2k ≥ |A| (that is, A has
at most 2k elements).

2. Let B := A/C2k−1.

3. Let C := B + C2k .

4. Let D := C/C1.

5. Finally, define ¬A := D + A.

Exercise 4.8. Check that: (1) if g(A) , 0, then g(¬A) = 0; (2) if g(A) = 0, then
g(¬A) = 2k+1. See the extended paper for a proof.

Observe that the size of ¬A is linearly bounded in |A|. In fact, |¬A| ≤ 6|A| if
A , ∅.

The Bulletin of the EATCS

69

Theorem 4.9 (Kalinich [16]). N-Free(Explicit,PO) is NC1-hard under AC0 re-
ductions.

Proof sketch. We reduce from the Circuit Value problem for NC1 circuits with a
single output. Given an NC circuit C with a single output and whose inputs are
constant Boolean values, we produce a poset game P so that P is an ∃-game if
and only if C = 1. We can assume WLOG that all gates in C are either (binary)
OR-gates or NOT-gates. Starting with the input nodes, we associate a poset Pn

with every node n in C from bottom up so that the outcome of Pn matches the
Boolean value at node n. P is then the poset associated with the output node of C.
The association is as follows:

• If n is an input node, we set Pn := ∅ if n = 0; otherwise, if n = 1, we set
Pn := C1.

• If n is an OR-gate taking nodes ` and r as inputs, then we set Pn := P`/Pr.
(Recall Exercise 1.4.)

• If n is a NOT-gate taking node c as input, we set Pn := ¬Pc.

This transformation from C to P can be done in (uniform) AC0, producing a poset
of polynomial size, provided C has O(log n) depth. �

The next theorem is not published elsewhere.

Theorem 4.10 (F, 2011). N-Free(Succinct,PO) is PP-hard under p-reductions.

To prove this, we generalize the Kalinich/Grier construction a bit.

Definition 4.11. For any poset A and any integer t > 0, define

Threshold(A, t) :=
(A/C2k−t) + C2k

Ct
+ A ,

where k is any convenient natural number (the least, say) such that 2k > max(|A| −
t, t − 1).

Note that ¬A = Threshold(A, 1). It can be checked that

g(Threshold(A, t)) =

{
2k+1 if g(A) < t,
0 if g(A) ≥ t. (1)

We then use the Threshold(·, ·) operator to polynomially reduce any PP lan-
guage to N-Free(Succinct,PO).

BEATCS no 116

70

4.7 A note on the complexity of the g-number
Of course, computing the g-number of an impartial game is at least as hard as
computing its outcome, the latter just being a test of whether the g-number is
zero. Is the reverse true, i.e., can we polynomial-time reduce computing the g-
number to computing the outcome? For explicitly represented poset games, this
is certainly true. Given an oracle S returning the outcome of any poset game, we
get the g-number of a given poset game G as follows: query S with the games
G,G + C1,G + C2, . . . ,G + Cn, where n is the number of options of G (recall that
that Ci is a NIM stack of size i). By the Sprague-Grundy theorem (Theorem 2.27),
all of these are ∃-games except G + Cg(G), which is a ∀-game.

What about succinctly represented games? The approach above can’t work, at
least for poset games, because the poset has exponential size. Surprisingly, we can
still reduce the g-number to the outcome for succinct poset games in polynomial
time, using the threshold construction of Definition 4.11 combined with binary
search. Given a succinctly represented poset P of size ≤ 2n, first query S with
Threshold(P, 2n−1). If S says that this is an ∃-game, then we have g(P) < 2n−1;
otherwise, g(P) ≥ 2n−1. Next, query S with Threshold(P, 2n−2) in the former case
and Threshold(P, 3 · 2n−2) in the latter case, and so on. Note that in this reduction,
the queries are adaptive, whereas they are nonadaptive for explicitly represented
games.

4.8 PSPACE-completeness
In this section we sketch the proofs of two recent PSPACE-completeness results
for poset game. The first, by Daniel Grier, is that the outcome problem for gen-
eral explicit (impartial) poset games is PSPACE-complete [13]. The second is a
similar result about the complexity of black-white poset games [10].

Theorem 4.12 (Grier [13]). Deciding the outcome of an arbitrary finite poset
game is PSPACE-complete.

Here we describe the reduction but do not prove correctness. See the extended
paper or [13] for a full proof.

Proof sketch. Membership in PSPACE is clear. For PSPACE-hardness, we re-
duce from Node Kayles. Let G = (V, E) (a simple undirected graph) be an arbi-
trary instance of Node Kayles. By altering the graph slightly if necessary without
changing the outcome of the game, we can assume that |E| is odd and that for every
v ∈ V there exists e ∈ E not incident with v. We can do this by adding two disjoint
cliques to G—either two K2’s or a K2 and a K4, whichever of these options results
in an odd number of edges. We then construct the following three-level poset P
from G:

The Bulletin of the EATCS

71

v2

· · · · · ·

ce

ae

v1

Figure 3: The < relations in P obtained from the edge e = {v1, v2} in G.

• The points of P are grouped into three disjoint antichains, A, B, and C, with
A being the set of minimal points, C the maximal points, and B the points
intermediate between A and C.

• For each edge e ∈ E there correspond unique points ce ∈ C and ae ∈ A, and
vice versa.

• We let B := V .

• For each edge e = {v1, v2} and b ∈ B, we have b < ce iff b = v1 or b = v2, and
ae < b iff this is not the case, i.e., iff b , v1 and b , v2. This is illustrated in
Figure 3.

This construction can clearly be done in polynomial time, given G. �

Finally, we turn to the complexity of black-white poset games. The next theo-
rem is the first PSPACE-hardness result for a numeric game.

Theorem 4.13. Determining the outcome of a black-white poset game is PSPACE-
complete.

Proof sketch. Membership in PSPACE is straightforward. For hardness, we re-
duce from TQBF. We present the reduction in detail and briefly describe optimal
strategies for the winning players, but we do not show correctness. See the ex-
tended version for a more detailed sketch and [10] for a full proof.

Suppose we are given a fully-quantified boolean formula ϕ of the form
∃x1∀x2∃x3 · · · ∃x2n−1∀x2n∃x2n+1 f (x1, x2, . . . , x2n+1), where f = c1 ∧ c2 ∧ · · · ∧ cm

is in cnf with clauses c1, . . . , cm. We define a two-level black-white poset (game)
X based on ϕ as follows:

• X is divided into sections. There is a section (called a stack) for each vari-
able, a section for the clauses (the clause section), and a section for fine-
tuning the balance of the game (balance section).

BEATCS no 116

72

• The ith stack consists of a set of incomparable waiting nodes Wi above (i.e.,
greater than) a set of incomparable choice nodes Ci. We also have a pair of
anti-cheat nodes, αi and βi, on all stacks except the last stack. For odd i,
the choice nodes are white, the waiting nodes are black, and the anti-cheat
nodes are black. The colors are reversed for even i.

• The set of choice nodes Ci, consists of eight nodes corresponding to all
configurations of three bits (i.e., 000, 001, . . . , 111), which we call the left
bit, assignment bit and right bit respectively.

• The number of waiting nodes is |Wi| = (2n + 2 − i)M, where M is the
number of non-waiting nodes in the entire game. It is important that |Wi| ≥

|Wi+1| + M.

• The anti-cheat node αi is above nodes in Ci with right bit 0 and nodes in
Ci+1 with left bit 0. Similarly, βi is above nodes in Ci with right bit 1 and
nodes in Ci+1 with left bit 1.

• The clause section contains a black clause node b j for each clause c j, in
addition to a black dummy node. The clause nodes and dummy node are all
above a single white interrupt node. The clause node b j is above a choice
node z in Ci if the assignment bit of z is 1 and xi appears positively in c j, or
if the assignment bit of z is 0 and xi appears negatively in c j.

• The balance section or balance game is incomparable with the rest of the
nodes. The game consists of eight black nodes below a white node, which
is designed to have numerical value −7 1

2 . All nodes in this section are called
balance nodes.

The number of nodes is polynomial in m and n, so the poset can be efficiently
constructed from ϕ.

A sample construction is shown in Figure 4. The idea is that players take turns
playing choice nodes, starting with White, and the assignment bits of the nodes
they play constitute an assignment of the variables, x1, . . . , x2n+1. The assignment
destroys satisfied clause nodes, and it turns out that Black can win if there re-
mains at least one clause node. The waiting nodes and anti-cheat nodes exist to
ensure players take nodes in the correct order. The interrupt node and dummy
node control how much of an advantage a clause node is worth (after the initial
assignment), and the balance node ensures the clause node advantage can decide
whether White or Black wins the game. One can show that White (i.e., Right) can
force a win when playing first if and only if the formula is true. �

The Bulletin of the EATCS

73

· · ·

clause nodes

node

W1

C1

α1 β1 α2 β2

W2

C2 C3

W3

balance nodes

dummy node

interrupt

Figure 4: An example game with three variables (n = 1). Circles represent in-
dividual nodes, blobs represent sets of nodes, and χ is the set of clause nodes.
An edge indicates that some node in the lower level is less than some node in the
upper level. The dotted lines divide the nodes into sections (stacks, clause section
and balance section).

5 Open questions
Are there interesting games whose complexity is complete for a subclass of
PSPACE? The natural black-white version of GenCol is complete for the class
PNP[log], but the game itself and the reasons for its complexity are not so interest-
ing. In this version, each uncolored node is reserved (“tinted”) for being colored
one or the other color, e.g., some node u can only be colored black, while some
other node v can only be colored white. Then the outcome of this game depends
only on which subgraph (the black-tinted nodes or the white-tinted nodes) con-
tains a bigger independent set. Given two graphs G1 and G2, the problem of deter-
mining whether G1 has a bigger independent set than G2 is known to be complete
for PNP[log] [27].

Fix a natural number k > 2. For poset games of bounded width k, defined in
Section 3.2.1, is there an algorithm running in time o(nk)?

Grier’s proof that the poset game decision problem is PSPACE-complete (The-
orem 4.12) constructs posets having three levels, that is, whose maximum chain
length is three. What about two-level games? Those having a single maximum
or a single minimum element are easily solved. What is the complexity of those
with more than one minimum and more than one maximum? Certain subfami-
lies of two-level posets have g-numbers that show regular patterns and are easily
computed, or example, games where each element is above or below at most two
elements, as well as “parity uniform” games [9]. Despite this, we conjecture that
the class of all two-level poset games is PSPACE-complete, but are nowhere near
a proof. Are there larger subfamilies of the two-level poset games that are in P?

A more open-ended goal is to apply the many results and techniques of com-
binatorial game theory, as we did in Theorem 4.13, to more families of games.

BEATCS no 116

74

Finally, we mention a long-standing open problem about a specific infinite
poset game: What is the outcome of the game N3 − {(0, 0, 0)}, where (x1, x2, x3) ≤
(y1, y2, y3) iff xi ≤ yi for all i ∈ {1, 2, 3}?

References
[1] E. R. Berlekamp, J. H. Conway, and R. Guy. Winning Ways for your Mathe-

matical Plays. Academic Press, 1982.

[2] C. L. Bouton. Nim, a game with a complete mathematical theory. Annals of
Mathematics, 3:35–39, 1901-1902.

[3] S. Byrnes. Poset game periodicity. INTEGERS: The Electronic Journal of
Combinatorial Number Theory, 3, 2003.

[4] Jin-Yi Cai and Merrick Furst. PSPACE survives constant-width bottlenecks.
Int. J. Found. Comput. Sci., 02(01):67, March 1991.

[5] J. H. Conway. On Numbers and Games. Academic Press, 1976.

[6] W. Deuber and S. Thomassé. Grundy sets of partial orders.
www.mathematik.uni-bielefeld.de/sfb343/preprints/pr96123.ps.gz.

[7] S. Even and R. E. Tarjan. A combinatorial problem which is complete in
polynomial space. Journal of the ACM, 23:710–719, 1976.

[8] Kousha Etessami. Counting quantifiers, successor relations, and logarithmic
space. Journal of Computer and System Sciences, 54(3):400–411, 1997.

[9] S. A. Fenner, R. Gurjar, A. Korwar, and T. Thierauf. On two-level poset
games. Technical Report TR13-019, Electronic Colloquium on Computa-
tional Complexity, 2013.

[10] S. A. Fenner, D. Grier, J. Meßner, L. Schaeffer, and T. Thierauf. Game values
and computational complexity: An analysis via black-white combinatorial
games. Technical Report TR15-021, Electronic Colloquium on Computa-
tional Complexity, February 2015.

[11] D. Gale. A curious nim-type game. Amer. Math. Monthly, 81:876–879, 1974.

[12] M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman and
Company, 1979.

[13] Daniel Grier. Deciding the winner of an arbitrary finite poset game is
PSPACE-complete. In Proceedings of the 40th International Colloquium
on Automata, Languages and Programming, volume 7965-7966 of Lecture
Notes in Computer Science, pages 497–503. Springer-Verlag, 2013.

[14] P. M. Grundy. Mathematics and games. Eureka, 2:6–8, 1939.

[15] Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. Com-
pleteness results for graph isomorphism. Journal of Computer and System
Sciences, 66(3):549–566, 2003.

The Bulletin of the EATCS

75

[16] A. O. Kalinich. Flipping the winner of a poset game. Information Processing
Letters, 112(3):86–89, January 2012.

[17] Donald E. Knuth. Surreal Numbers. Addison-Wesley, 1974.

[18] J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered
concept. Journal of Combinatorial Theory, 13(3):297–305, 1972.

[19] David Lichtenstein and Michael Sipser. GO is polynomial-space hard. Jour-
nal of the ACM, 27(2):393–401, 1980.

[20] L. J. Stockmeyer and A. K. Chandra. Provably difficult combinatorial games.
SIAM Journal on Computing, 8(2):151–174, 1979.

[21] T. J. Schaefer. On the complexity of some two-person perfect-information
games. Journal of Computer and System Sciences, 16(2):185–225, 1978.

[22] F. Schuh. Spel van delers (game of divisors). Nieuw Tijdschrift voor
Wiskunde, 39:299, 2003.

[23] A. N. Siegel. Combinatorial Game Theory, volume 146 of Graduate Studies
in Mathematics. American Mathematical Society, 2013.

[24] M. Sipser. Introduction to the Theory of Computation (2nd Ed.). Course
Technology, Inc., 2005.

[25] R. P. Sprague. Über mathematische Kampfspiele. Tohoku Mathematical Jour-
nal, 41:438–444, 1935-1936.

[26] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Sci-
ence, 3:1–22, 1977.

[27] H. Spakowski and J. Vogel. θ2
p-completeness: A classical approach for new

results. In Proceedings of the 20th Conference on Foundations of Software
Technology and Theoretical Computer Science (FST TCS), number 1974 in
Lecture Notes in Computer Science, pages 348–360, 2000.

[28] T. Thierauf, 2009. Private communication.

[29] J. Úlehla. A complete analysis of Von Neumann’s Hackendot. International
Journal of Game Theory, 9:107–113, 1980.

[30] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel
digraphs. SIAM Journal on Computing, 11:298–313, 1982.

[31] F. Wagner, 2009. Private communication.

76

The Bulletin of the EATCS

77

The Distributed Computing Column
by

Panagiota Fatourou

Department of Computer Science, University of Crete
P.O. Box 2208 GR-714 09 Heraklion, Crete, Greece

and
Institute of Computer Science (ICS)

Foundation for Research and Technology (FORTH)
N. Plastira 100. Vassilika Vouton

GR-700 13 Heraklion, Crete, Greece
faturu@csd.uoc.gr

BEATCS no 116

78

Distributed Computing Column
Maurice Herlihy’s 60th Birthday Celebration

Panagiota Fatourou
FORTH ICS & University of Crete

faturu@csd.uoc.gr

Maurice Herlihy is one of the most renowned members of the Distributed
Computing community. He is currently a professor in the Computer Science De-
partment at Brown University. He has an A.B. in Mathematics from Harvard Uni-
versity, and a Ph.D. in Computer Science from M.I.T. He has served on the fac-
ulty of Carnegie Mellon University and on the staff of DEC Cambridge Research
Lab. He is the recipient of the 2003 Dijkstra Prize in Distributed Computing, the
2004 Gödel Prize in theoretical computer science, the 2008 ISCA influential pa-
per award, the 2012 Edsger W. Dijkstra Prize, and the 2013 Wallace McDowell
award. He received a 2012 Fullbright Distinguished Chair in the Natural Sciences
and Engineering Lecturing Fellowship, and he is a fellow of the ACM, a fellow
of the National Academy of Inventors, and a member of the National Academy of
Engineering and the American Academy of Arts and Sciences.

On the occasion of his 60th birthday, the SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), which was held in Paris, France
in July 2014, hosted a celebration which included several technical presentations
about Maurice’s work by colleagues and friends. This column includes a summary
of some of these presentations, written by the speakers themselves. In the first arti-
cle, Vassos Hadzilacos overviews and highlights the impact of Maurice’s seminal
paper on wait-free synchronization. Then, Tim Harris provides a perspective on
hardware trends and their impact on distributed computing, mentioning several
interesting open problems and making connections to Maurice’s work. Finally,
Michael Scott gives a concise retrospective on transactional memory, another area
where Maurice has been a leader. This is a joint column with the Distributed
Computing Column of ACM SIGACT News (June 2015 issue), edited by Jennifer
Welch. Many thanks to Vassos, Tim, and Michael for their contributions!

The Bulletin of the EATCS

79

A Quarter-Century of Wait-Free Synchronization1

Vassos Hadzilacos
Department of Computer Science

University of Toronto, Canada
vassos@cs.toronto.edu

It is an honour and a pleasure to have the opportunity to speak about what
in my opinion is Maurice Herlihy’s most influential paper, and indeed one of the
most significant papers in the theory of distributed computing. I am referring to
his work on wait-free synchronization, which appeared in preliminary form in
PODC 1988 [8] and in its final form in TOPLAS three years later [10]. I will first
review the key contributions of this paper and then I will discuss its impact.

1 Review of the key contributions
The context for this work is a distributed system in which processes take steps
asynchronously and communicate by accessing shared objects. Here asynchrony
means that between successive steps of a process other processes may take an
arbitrary number of steps. Processes are subject to crash failures, meaning that
they may stop taking steps altogether, even though they have not reached the end
of their computation. For convenience, we assume that a process is designed to
take steps (perhaps no-ops) forever, and so we can define a process to have crashed
if it takes only finitely many steps in an infinite execution. Minimally, the shared

1Remarks on the occasion of Maurice Herlihy’s 60th birthday in PODC 2014. Based on the
transparencies used in an oral presentation on July 15, 2014, Paris, France. I have tried to preserve
the informal tone of that oral presentation here. Supported in part by a grant from the Natural
Sciences and Engineering Council of Canada.

BEATCS no 116

80

objects that the processes use to communicate are registers accessible via separate
but atomic write and read operations. The shared objects can also include registers
with additional operations such as fetch-and-add, whereby a process atomically
increments the value of the register by a specified amount and reads the value of
the register before it was incremented; or even other types of shared objects, such
as queues or stacks.

The key question that animates the paper is the following:

“For given object types A and B, in a system with n processes, can we
implement an object of type A using objects of type B and registers?”

In what follows, we will take registers (with atomic write and read operations) for
granted. So, the above question will be simplified to “in a system of n processes,
can we implement an object of type A using objects of type B?”

Here are some specific instances of this question:

• Can we implement a queue shared by two processes using only registers?
Herlihy showed that the answer to this question is negative.

• Can we implement a register with a fetch-and-add operation, shared by five
processes, using registers with a compare-and-swap operation?1 Herlihy
showed that the answer to this question is affirmative.

What is significant about this paper is not so much the answer to these specific
questions, but the tools that it gave us to answer such questions in general.

Having set the general context for the paper, I will now describe its main
contributions.

Contribution 1: Model of computation

The type of an object specifies what operations can be applied to an object (of that
type) and how the object is supposed to behave when operations are applied to it
sequentially. For example, the type queue tells us that we can access the object via
enqueue and dequeue operations only, and that in a sequence of such operations
items are dequeued in the order in which they were enqueued. But how should a
shared queue behave if operations are applied to it by processes concurrently?

1A compare-and-swap operation applied to register X takes two parameters, values old and
new, and has the following effect (atomically): If the present value of X is equal to old then X
is assigned the value new and the value “success” is returned; otherwise, the value of X is not
changed and the value “failure” is returned.

The Bulletin of the EATCS

81

More generally, what exactly are the properties that an implementation of an
object of type A (shared by n processes) should have? Herlihy requires two prop-
erties of such an implementation: linearisability and wait freedom.2

Linearisability: The implemented object should behave as if each operation took
effect instantaneously, at some point between its invocation and its response.

Wait freedom: An operation on the implemented object invoked by a nonfaulty
process eventually terminates, regardless of whether other processes are
fast, slow, or even crash.

Note that the requirement of wait freedom implies that implementations

(a) may not use locks: otherwise, a process that crashes while holding a lock
could prevent all others from terminating, and

(b) must be starvation free: not only must the system as a whole make progress
but each individual nonfaulty process must complete all its operations.

The first important contribution of the paper was the articulation of a com-
pelling, elegant, and pragmatic model of computation.

Contribution 2: Comparing the power of object types
Recall the basic question the paper addresses: In a system of n processes, can we
implement an object of type A using objects of type B? An affirmative answer
to such a question presents no methodological difficulties: One presents an im-
plementation and a proof that it satisfies the two requisite properties. But what
if the answer is negative? How can we prove that A cannot be implemented us-
ing B? One way to do so is to show that there is some task C that A can do,
and that B cannot do. So, task C is a “yardstick” that can be used to compare
A and B. Another key contribution of the paper is the identification of the right
kind of yardstick to compare types, namely, solving the consensus problem. This
problem, which under various forms and guises had been studied extensively in
fault-tolerant distributed computing before Herlihy’s paper, can be described as
follows:

• Each process starts with an input.

2In my oral presentation, I referred to linearisability as a safety property, and to wait freedom
as a liveness property. Rachid Guerraoui, who was in the audience, brought to my attention a paper
of his with Eric Ruppert in which they show that this is not quite right [6]: There are types with
infinite non-determinism for which linearisability is not a safety property; for types with bounded
non-determinism, however, linearisability is indeed a safety property.

BEATCS no 116

82

• Each nonfaulty process produces an output.

• The output of any process is the input of some process (validity), and is no
different than the output of any other process (agreement).

Note that we are interested in wait-free solutions for this problem. Let us exam-
ine some examples of the use of this “yardstick” to prove non-implementability
results.
Example 1: To show that in a system of two processes we cannot implement a
queue using registers we prove that

(1) using queues we can solve consensus for two processes; and

(2) using registers we cannot solve consensus for two processes.

From (1) and (2) we conclude that we cannot implement queues using only reg-
isters: For, if we could, we would combine such an implementation with (1) to
obtain an algorithm that uses registers and solves consensus for two processes,
contradicting (2).
Example 2: To show that in a system of three processes we cannot implement a
register with the compare-and-swap operation using registers with a fetch-and-add
operation we prove that

(1) using registers with compare-and-swap we can solve consensus for three pro-
cesses; and

(2) using registers with fetch-and-add we cannot solve consensus for three pro-
cesses.

Using similar reasoning as in Example 1, from (1) and (2) we conclude that we
cannot implement compare-and-swap using only fetch-and-add.

So, to capture the “power” of an object type A, Herlihy attaches to A a con-
sensus number, namely the unique integer n such that:

• using objects of type A we can solve consensus for n processes, and

• using objects of type A we cannot solve consensus for n + 1 processes.

If no such integer n exists, the consensus number of A is ∞. The following,
methodologically very useful, theorem follows immediately from this definition.

Theorem 1.1 ([8, 10]). If type A has consensus number n and type B has consen-
sus number m < n, then A cannot be implemented from B in a system with more
than m processes.

The Bulletin of the EATCS

83

This leads us to Herlihy’s consensus hierarchy of object types: A type A is
at level n of the consensus hierarchy if and only if its consensus number is n —
i.e., if and only if A solves consensus for n, but not for n + 1, processes. Thus, by
Theorem 1.1, “stronger” types are at higher levels of this hierarchy.

Figure 1 illustrates the consensus hierarchy. I now briefly explain the types
mentioned in that figure that I have not already defined.

• The test-and-set type (at level 2) refers to a register initialised to 0, with
an operation that atomically sets the register to 1 and returns the value of
the register before the operation. (So, the operation that is linearised first
returns 0, and all others return 1.)

• The n-consensus type (at level n) refers to an object with a Propose(v) oper-
ation, where v is an arbitrary value (say a natural number); the object returns
the value proposed by the first operation to the first n Propose operations ap-
plied to it, and returns an arbitrary value to subsequent operations. (Thus, it
is an object designed to solve consensus for n processes.)

• The n-peekable queue type (also at level n) refers to a kind of queue to
which a maximum of n values can be enqueued (any values subsequently
enqueued are lost) and which allows a process to “peek” at the first value
enqueued without dequeuing it.

• The n-assignment type (at level 2n−2) allows a process to atomically assign
n specified values to n specified registers.

• The consensus type (at level ∞) is similar to n consensus, except that it
returns to all Propose operations (not only to the first n) the value proposed
by the first one.

• Finally, the memory-to-memory swap type (also at level∞) allows a process
to atomically swap the values of two specified registers.

Contribution 3: Universality of consensus
We have seen how Herlihy used consensus as a “yardstick” to compare the relative
power of object types. But why is consensus the right yardstick? In principle, we
could have taken any task and used it as a yardstick. For example, consider the
leader election problem:

• Each nonfaulty process outputs “winner” or “loser”.

• At most one process outputs “winner”.

BEATCS no 116

84

consensus

queue, stack

mem-to-mem swap

compare-and-swap

fetch-and-add

test-and-set

register

n-consensus

n-peekable queue

n-assignment

Level ∞

Level 2n− 2

Level n

Level 2

Level 1

...

...

...

Figure 1: The consensus hierarchy

• Some process outputs “winner” or crashes after taking at least one step.

We could define the “leader election number” of type A to be the maximum num-
ber of processes for which A can solve the leader election problem — by analogy
to the definition of the consensus number, but using a different problem as the
yardstick. There is nothing in principle wrong with this, except that the resulting
“leader election hierarchy” would not be very interesting: it would consist of just
two levels: all types in levels two to infinity of the consensus hierarchy would
coalesce into a single level! In other words, unlike consensus, the leader election
yardstick is not a very discriminating one. So, what is special about consensus
that makes it the right yardstick? The answer lies in the following important fact:

Theorem 1.2 ([8, 10]). Any object type B with consensus number n is universal
for n processes: it can implement an object of any type A, shared by n processes.

The Bulletin of the EATCS

85

The proof of this theorem is through an intricate algorithm that has come to
be known as Herlihy’s universal construction. Given a function that defines the
sequential behaviour of an arbitrary type A, this construction shows how to im-
plement an object of type A shared by n processes using only registers and n-
consensus objects. So, given any object of type B with consensus number n, we
can solve the consensus problem for n processes (by definition of consensus num-
ber), and therefore we can implement n-consensus objects. Then, using Herlihy’s
universal construction, we can implement an object of type A shared by n pro-
cesses.

At a very high level, the intuition behind this theorem is simple: Processes
use consensus to agree on the order in which to apply their operations on the
object they implement. Between this intuition and an actual working algorithm
that satisfies wait freedom, however, there is a significant gap. Herlihy’s universal
construction is an algorithm well worth studying carefully, and returning to every
now and then!

2 Impact

The impact of the paper is accurately reflected by its citation count. A Google
Scholar search conducted in July 2014 showed over 1400 citations for [10] and
over 200 for [8]. Let us look beyond the numbers, however, into the specific ways
in which Herlihy’s paper on wait-free synchronisation has influenced the field of
distributed computing.

Impact 1: The model

The model of asynchronous processes communicating via linearisable, wait-free
shared objects that was articulated in a complete form in this paper has been a very
influential one. As noted earlier, it is mathematically elegant but also pragmatic. It
is certainly true that different aspects of this model appeared earlier, but I believe
that this was the first paper that presented the complete package. It is nevertheless
useful to trace the heritage.

Shared memory: The asynchronous shared memory model goes back to Dijk-
stra’s seminal paper on mutual exclusion [3].

Wait freedom: The concept of wait-free implementations (though not under this
name) originated in Lamport’s and Peterson’s work on implementations of
shared registers [15, 19, 16, 17].

BEATCS no 116

86

Linearisability: The concept of linearisability as the correctness criterion for the
behaviour of shared objects was introduced by Herlihy and Wing [12, 13].

Impact 2: Lock-free data structures

The idea of synchronising access to data structures without relying on locks has
had a significant impact on the practice of concurrent programming. Although
locking is still (and may well remain) the predominant mechanism employed to
coordinate access to data structures by multiple processes, Herlihy’s paper helped
highlight some of its shortcomings (potential for deadlock, unnecessary restric-
tions to concurrency, intolerance to even crash failures, priority inversions) and
pointed the way to the possibility of synchronising without using locks. There is,
by now, an extensive literature on so-called lock-free data structures. In this con-
text, lock free doesn’t necessarily mean wait free. It is a term that encompasses
wait freedom as well as the weaker non-blocking property, which requires that
progress be made by some non-faulty process, not necessarily every non-faulty
process.3

Impact 3: Weaker liveness properties

Linearisable wait-free implementations tend to be complex, and one culprit seems
to be wait freedom. The most intricate aspect of Herlihy’s universal construction is
the so-called helping mechanism, which ensures that “no process is left behind”. If
one is willing to settle for the less demanding non-blocking property, the universal
construction becomes much simpler.

The observation that wait freedom seems to complicate things and that it is
perhaps too strong a liveness property has led researchers to investigate other live-
ness properties, weaker than wait freedom, easier to implement, but hopefully
still useful in practice. The following are some examples of objects with relaxed
liveness requirements:

Obstruction-free objects: Every operation invoked by a nonfaulty process that
eventually runs solo (i.e., without interference from other processes) termi-
nates [4, 11].

“Pausable” objects: Every operation invoked by a live process eventually returns
control to the caller, either by completing normally, or by aborting without
taking effect, or by “pausing” so that another operation can run solo and ter-
minate. An operation can abort or pause only if it encounters interference.

3The terms “lock free” and “non-blocking” are not used consistently in the literature; in some
papers their meaning is as given here, in others it is reversed.

The Bulletin of the EATCS

87

A nonfaulty process whose operation was paused is required to resume the
paused operation and complete it (normally or by aborting) before it can do
anything else [2].

Nondeterministic abortable objects: Every operation invoked by a nonfaulty pro-
cess eventually returns to the caller either by completing normally or by
aborting. An operation can abort only if it encounters interference. An
aborted operation may or may not have taken effect, and the caller doesn’t
know which of these two possibilities is the case [1].

Abortable objects: Every operation invoked by a nonfaulty process eventually re-
turns to the caller either by completing normally or by aborting. An oper-
ation can abort only if it encounters interference. An aborted operation is
guaranteed not to have taken effect [7].

Impact 4: Structure of the “A implemented by B” relation

Though the consensus number of an object type A encapsulates much information
about A’s ability to implement other types, it does not tell the whole story. By
Theorem 1.2, if A has consensus number n, it can support the implementation
of any object shared by n processes; but what about the implementation of even
“weak” objects, i.e., objects of types whose consensus number is no greater than
n, shared by more than n processes? In this setting, there are phenomena that run
counter to the notion that the higher the consensus number of a type the greater its
power to implement other types.

Consider the following question: Are all object types at the same level of the
consensus hierarchy equivalent? That is, if A and B are two types at the same level
n of the consensus hierarchy, can an object of type A, shared by any number m
of processes, be implemented using objects of type B? Or, equivalently (in view
of Theorem 1.2), can any object of a type with consensus number n, shared by
any number of processes, be implemented using n-consensus? Herlihy himself
proved that this is not the case for level 1: He demonstrated a type at level 1 that
cannot be implemented from registers (which are also at level 1) [9]. Rachman
proved that this is the case for every level [20]: For every positive integer n, he
demonstrated a type Tn at level n of the consensus hierarchy such that an object
of type Tn shared by 2n + 1 processes cannot be implemented using n-consensus
objects.4 (In fact, Rachman’s result is more general: for any positive integers n,m
such that m ≤ n, there is a type Tm at level m of the consensus hierarchy such that

4My account in this paragraph differs from my oral presentation in Paris, as a result of things I
learned in the meanwhile — but should have known then!

BEATCS no 116

88

an object of type Tm, shared by 2n + 1 processes, cannot be implemented using
n-consensus objects.)

A related set of investigations concern the matter of “robustness” of the con-
sensus hierarchy. Consider a system with n processes. By the definition of con-
sensus number, objects of a type with consensus number less than n cannot im-
plement an n-consensus object. Is it possible, however, to use objects of multiple
“weak” types (with consensus number less than n) to implement n-consensus? If
this is possible, we say that the consensus hierarchy is not robust. Jayanti was the
first to identify and study the issue of robustness; he proved that under a restricted
definition of implementation of one type by others, the consensus hierarchy is not
robust [14]. Later, Schenk proved that under a restricted definition of wait free-
dom, the consensus hierarchy is not robust [21]. Lo and Hadzilacos proved that
under the usual definitions of implementation and wait freedom, the consensus
hierarchy is not robust [18].

Impact 5: Elevating the status of the bivalency argument

George Pólya and Gabor Szegö made a famous quip about the distinction between
a trick and a method:

“An idea that can be used only once is a trick. If one can use it more
than once, it becomes a method.” (Problems and Theorems in Analy-
sis, 1972.)

Fischer, Lynch, and Paterson gave us the bivalency argument as a brilliant trick
in their proof of the impossibility of consensus in asynchronous message-passing
systems [5]. With his masterful use of the same argument to prove that consensus
among n processes cannot be solved using objects of type B (for several choices
of n and B), Herlihy elevated bivalency to the more exalted status of a method!

Impact 6: Design of multiprocessors?

I put a question mark for this impact, because here I am speculating: I do not really
know why, in the late 1980s and early 1990s, multiprocessor architects abandoned
operations with low consensus number in favour of universal ones. But the timing
is such that I wouldn’t be surprised to learn that these architects were influenced,
at least in part, by Herlihy’s discovery that, from the perspective of wait-free syn-
chronisation, much more is possible with operations such as compare-and-swap
or load-linked/store-conditional than with operations such as test-and-set or fetch-
and-add.

The Bulletin of the EATCS

89

Great papers answer important questions, but also open new ways of thinking,
and perhaps even influence practice. Herlihy’s paper on wait-free synchronisation
delivers on all these counts!

Acknowledgements
I am grateful to Naama Ben-David and David Chan for their comments on this
paper.

References
[1] Marcos K. Aguilera, Sven Frolund, Vassos Hadzilacos, Stephanie Horn, and Sam

Toueg. Abortable and query-abortable objects and their efficient implementation.
In PODC ’07: Proceedings of the 26th Annual ACM Symposium on Principles of
Distributed Computing, pages 23–32, 2007.

[2] Hagit Attiya, Rachid Guerraoui, and Petr Kouznetsov. Computing with reads and
writes in the absence of step contention. In DISC ’05: Proceedings of the 19th
International Symposium on Distributed Computing, pages 122–136, 2005.

[3] Edgar W. Dijkstra. Solution of a problem in concurrent programming control. Com-
mununications of the ACM, 8(9):569, 1965.

[4] Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of randomized
synchronization. Journal of the ACM, 45(5):843–862, 1998.

[5] Michael Fischer, Nancy Lynch, and Michael Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[6] Rachid Guerraoui and Eric Ruppert. Linearizability is not always a safety property.
In Networked Systems - Second International Conference, NETYS 2014, pages 57–
69, 2014.

[7] Vassos Hadzilacos and Sam Toueg. On deterministic abortable objects. In PODC
’13: Proceedings of the 32nd ACM Symposium on Principles of Distributed Com-
puting, pages 4–12, 2013.

[8] Maurice Herlihy. Impossibility and universality results for wait-free synchroniza-
tion. In PODC ’88: Proceedings of the 7th Annual ACM Symposium on Principles
of Distributed Computing, pages 276–290, 1988.

[9] Maurice Herlihy. Impossibility results for asynchronous PRAM. In SPAA ’91:
Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 327–336, 1991.

[10] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):124–149, 1991.

BEATCS no 116

90

[11] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchroniza-
tion: Double-ended queues as an example. In ICDCS ’03: Proceedings of the 23rd
International Conference on Distributed Computing Systems, pages 522–529, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[12] Maurice Herlihy and Jeannette Wing. Axioms for concurrent objects. In POPL
’87: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 13–26, New York, NY, USA, 1987. ACM Press.

[13] Maurice Herlihy and Jeannette Wing. Linearizability: A correctness condition
for concurrent objects. Transactions on Programming Languages and Systems,
12(3):463–492, July 1990.

[14] Prasad Jayanti. On the robustness of Herlihy’s hierarchy. In PODC ’93: Proceedings
of the 12th Annual ACM Symposium on Principles of Distributed Computing, pages
145–157, 1993.

[15] Leslie Lamport. On concurrent reading and writing. Communications of the ACM,
20(11):806–811, November 1977.

[16] Leslie Lamport. On interprocess communication. Part I: Basic formalism. Dis-
tributed Computing, 1(2):77–85, 1986.

[17] Leslie Lamport. On interprocess communication. Part II: Algorithms. Distributed
Computing, 1(2):86–101, 1986.

[18] Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any of is: wait-free
hierarchies are not robust. In STOC ’97: In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pages 579–588, 1997.

[19] Gary Peterson. Concurrent reading while writing. ACM Transactions of Program-
ming Languages and Systems, 5(1):46–55, 1983.

[20] Ophir Rachman. Anomalies in the wait-free hierarchy. In WDAG ’94: Proceedings
of the 8th International Workshop on Distributed Algorithms, pages 156–163, 1994.

[21] Eric Schenk. The consensus hierarchy is not robust. In PODC ’97: In Proceedings
of the 16th Annual ACM Symposium on Principles of Distributed Computing, page
279, 1997.

The Bulletin of the EATCS

91

Hardware Trends: Challenges and Opportunities in
Distributed Computing

Tim Harris
Oracle Labs

Cambridge, UK
timothy.l.harris@oracle.com

This article is about three trends in computer hardware, and some of the challenges
and opportunities that I think they provide for the distributed computing commu-
nity. A common theme in all of these trends is that hardware is moving away from
assumptions that have often been made about the relative performance of different
operations (e.g., computation versus network communication), the reliability of
operations (e.g., that memory accesses are reliable, but network communication
is not), and even some of the basic properties of the system (e.g., that the contents
of main memory are lost on power failure).

Section 1 introduces “rack-scale” systems and the kinds of properties likely in
their interconnect networks. Section 2 describes challenges in systems with shared
physical memory but without hardware cache coherence. Section 3 discusses non-
volatile byte-addressable memory. The article is based in part on my talk at the
ACM PODC 2014 event in celebration of Maurice Herlihy’s sixtieth birthday.

1 Rack-Scale Systems
Rack-scale computing is an emerging research area concerned with how we design
and program the machines used in data centers. Typically, these data centers are
built from racks of equipment, with each rack containing dozens of discrete ma-
chines. Over the last few years researchers have started to weaken the boundaries

BEATCS no 116

92

between these individual machines, leading to new “rack-scale” systems. These
architectures are being driven by the need to increase density and connectivity
between servers, while lowering cost and power consumption.

Different researchers mean somewhat different things by “rack-scale” systems.
Some systems are built from existing components. These are packaged together
for a particular workload, providing appropriate hardware, and pre-installed soft-
ware. Other researchers mean systems with internal disaggregation of compo-
nents: rather than having a rack of machines each with its own network interface
and disk, there might be a pool of processor nodes, disk nodes, and networking
nodes, all connected over an internal intra-machine interconnect. The interconnect
can be configured to connect sets of these resources together in different ways.

Initial commercial systems provide high-density processor nodes connected
through an in-machine interconnect to storage devices or to external network in-
terfaces. Two examples are the HP MoonShot [12] and AMD SeaMicro [22]
single-box cluster computers. Many further ideas are now being explored in re-
search projects—for instance, the use of custom system-on-chip (SoC) processors
in place of commodity chips.

These systems should not just be seen as a way to build a faster data cen-
ter. Communicating over a modern interconnect is different from communicating
over a traditional packet-switched network. Some differences are purely trends in
performance—a round-trip latency for over InfiniBand is around 1µs, not much
longer than the time it takes to access data stored in DRAM on a large shared-
memory multiprocessor. The Scale-Out NUMA architecture provides one exam-
ple of how latencies may be reduced even further: it exposes the interconnect
via a specialized “remote memory controller” (RMC) on a multi-core SoC [18].
Threads in one SoC can instruct the RMC to transfer data to or from memory at-
tached to other processors in the system. Threads communicate with their RMC
over memory-mapped queues (held in the SoC’s local caches). These operations
have much lower latency than accessing a traditional network interface over PCI-
express. If network latencies continue to fall, while memory access latencies
remain constant, then this will change the optimization goals when designing a
protocol.

Other differences are qualitative: as with the Scale-Out NUMA RMC, the
main programming interface in many rack-scale systems is RDMA (remote direct
memory access). To software, RDMA appears as a transfer from a region of a
sender’s address space into a region in the receiver’s address space. Various forms
of control message and notification can be used—e.g., for a receiver to know
when data has arrived, or for a sender to know when transmission is complete.
Flow control is handled in hardware to prevent packet loss.

Some network devices provide low-latency hardware distribution of data to
multiple machines at once (for instance, the ExaLINK matrix switches advertise

The Bulletin of the EATCS

93

5ns latency multicasting data from an input port to any number of output ports [1]).
Researchers are exploring how to use this kind of hardware as part of an atomic
broadcast mechanism [7].

Research questions: What are the correct communication primitives to let ap-
plications benefit from low-latency communication within the system? What are
the likely failure modes and how do we achieve fault tolerance? What is the ap-
propriate way to model the guarantees provided by the interconnect fabric in a
rack-scale system? How should the interconnect fabric be organized, and how
should CPUs, DRAM, and storage be placed in it?

2 Shared Memory Without Cache Coherence
The second trend I will highlight is toward systems with limited support for cache
coherence in hardware: Some systems provide shared physical memory, but rely
on threads to explicitly flush and invalidate their local caches if they want to com-
municate through them. Some researchers argue that cache coherence will be
provided within a chip, but not between chips [15].

This kind of model is not entirely new. For instance, the Cray T3D system
distributed its memory across a set of processor nodes, providing each node with
fast access to its local memory, and slower access to uncacheable remote mem-
ory [6]. This kind of model makes it important to keep remote memory accesses
rare because they will be slow even in the absence of contention (for instance,
lock implementations with local spinning are well suited in this setting [16]).

One motivation for revisiting this kind of model is to accommodate special-
ized processors or accelerators. The accelerator can transfer data to and from
memory (and sometimes to and from the caches of the traditional processors) but
does not need to participate in a full coherence protocol. A recent commercial
example of this kind of system is the Intel Xeon Phi co-processor accessed over
PCI-express [13].

A separate motivation for distributing memory is to provide closer coupling
between storage and computation. The IRAM project explored an extreme ver-
sion of this with the processor on the same chip as its associated DRAM [19].
Close coupling between memory and storage can improve the latency and energy
efficiency of memory accesses, and permit the aggregate bandwidth to memory to
grow by scaling the number of memory-compute modules.

Some research systems eschew the direct use of shared memory and instead
focus on programming models based on message passing. Shared memory buffers
can be used to provide a high-performance implementation of message passing
(for instance, by using a block of memory as a circular buffer to carry messages).

BEATCS no 116

94

This approach means that only the message passing infrastructure needs to be
aware of the details of the memory system. Also, it means that software written
for a genuinely distributed environment is able to run correctly (and hopefully
more quickly) in an environment where messages stay within a machine.

Systems such as K2 [14] and Popcorn [4] provide abstractions to run existing
shared-memory code in systems without hardware cache coherence, using ideas
from distributed shared memory systems.

Conversely, the Barrelfish [5] and FOS [23] projects have been examining the
use of distributed computing techniques within an OS. Barrelfish is an example of
a multikernel in which each core runs a separate OS kernel, even when the cores
operate in a single cache-coherent machine. All interactions between these ker-
nels occur via message-passing. This design avoids the need for shared-memory
data structures to be managed between cores, enabling a single system to operate
across coherence boundaries. While it is elegant to rely solely on message passing,
this approach seems better suited to some workloads than to others—particularly
when multiple hardware threads share a cache, and could benefit from spatial and
temporal locality in the data they are accessing.

Research questions: What programming models and algorithms are appropri-
ate for systems which combine message passing with shared memory? To what
extent should systems with shared physical memory (without cache coherence) be
treated differently from systems without any shared memory at all?

3 Non-Volatile Byte-Addressable Memory
There are many emerging technologies that provide non-volatile byte-addressable
memory (NV-RAM). Unlike ordinary DRAM, memory contents are preserved
on power loss. Unlike traditional disks, locations can be read or written at a fine
granularity—nominally individual bytes, although in practice hardware will trans-
fer complete cache lines. Furthermore, unlike a disk, these reads and writes may
be performed by ordinary memory access instructions (rather than using RDMA,
or needing the OS to orchestrate block-sized transfers to or from a storage device).

This kind of hardware provides the possibility of an application keeping all of
its data structures accessible in main memory. Researchers are starting to explore
how to model NV-RAM [20]. Techniques from non-blocking data structures pro-
vide one starting point for building on NV-RAM. A power loss can be viewed as
a failure of all of the threads accessing a persistent object. However, there are
several challenges which complicate matters:

First, the memory state seen by the threads before the power loss is not nec-
essarily the same as the state seen after recovery. This is because, although the

The Bulletin of the EATCS

95

NV-RAM is persistent, the remainder of the memory system may hold data in or-
dinary volatile buffers such as processor caches and memory controllers. When
power is lost, some data will transiently be in these volatile buffers. Aggressively
flushing every update to NV-RAM may harm performance. Some researchers
have explored flushing updates upon power-loss, but that approach requires care-
ful analysis to ensure that there is enough residual power to do so [17].

The second problem is that applications often need to access several structures—
for instance, removing an item from one persistent collection object, processing
it, and adding it to another persistent collection. If there is a power loss during the
processing step, then we do not want to lose the item.

Transactions provide one approach for addressing these two problems. It may
be possible to optimize the use of cache flush/invalidate operations to ensure that
data is genuinely persistent before a transaction commits, while avoiding many
individual flushes while the transaction executes. As with transactional memory
systems, transactions against NV-RAM would provide a mechanism for compos-
ing operations across multiple data structures [10]. What is less clear is whether
transactions are appropriate for long-running series of operations (such as the ex-
ample of processing an object when moving it between persistent collections).

Having an application’s data structures in NV-RAM could be a double-edged
sword. It avoids the need to define translations between on-disk and in-memory
formats, and it avoids the time taken to load data into DRAM for processing. This
time saving is significant in “big data” applications, not least when restarting a
machine after a crash. However, explicit loading and saving has benefits as well
as costs: It allows in-memory formats to change without changing the external
representation of data. It allows external data to be processed by tools in a generic
way without understanding its internal formats (backup, copying, de-duplication,
etc.). It provides some robustness against transient corruption of in-memory for-
mats by restarting an application and re-loading data.

It is difficult to quantify how significant these concerns will be. Earlier expe-
rience with persistent programming languages explored many of these issues [3].
Recent work on dynamic software updates is also relevant (e.g., Arnold and Kaashoek
in an OS kernel [2], and Pina et al. in applications written in Java [21]).

Research questions: How should software manage data held in NV-RAM, and
what kinds of correctness properties are appropriate for a data structure that is
persistent across power loss?

BEATCS no 116

96

4 Discussion

This article has touched on three areas where developments in computer hard-
ware are changing some of the traditional assumptions about the performance and
behavior of the systems we build on.

Processor clock rates are not getting significantly faster (and, many argue, core
counts are unlikely to increase much further [9]). Nevertheless, there are other
ways in which system performance can improve such as by integrating special-
ized cores in place of general-purpose ones, or by providing more direct access
to the interconnect, or by removing the need to go through traditional storage
abstractions to access persistent memory.

I think many of these trends reflect a continued blurring of the boundaries
between what constitutes a “single machine” versus what constitutes a “distributed
system”. Reliable interconnects are providing hardware guarantees for message
delivery, and in some cases this extends to guarantees about message ordering as
well even in the presence of broadcast and multicast messages. Conversely, the
move away from hardware cache coherence within systems means that distributed
algorithms become used in systems which look like single machines—e.g., in the
Hare filesystem for non-cache-coherent multicores [8].

Many of these hardware developments have been proceeding ahead of the ad-
vancement of formal models of the abstractions being built. Although the use of
verification is widespread at low levels of the system – especially in hardware –
I think there are important opportunities to develop new models of the abstrac-
tions exposed to programmers. There are also opportunities to influence the di-
rection of future hardware evolution—perhaps as with how the identification of
the consensus hierarchy pointed to the use of atomic compare and swap in today’s
multiprocessor systems [11].

References
[1] EXALINK Fusion (web page). Apr. 2015. https://exablaze.com/
exalink-fusion.

[2] J. Arnold and M. F. Kaashoek. Ksplice: automatic rebootless kernel updates. In
Proc. 4th European Conference on Computer Systems (EuroSys), pages 187–198,
2009.

[3] M. Atkinson and M. Jordan. A review of the rationale and architectures of PJama: a
durable, flexible, evolvable and scalable orthogonally persistent programming plat-
form. Technical report, University of Glasgow, Department of Computing Science,
2000.

The Bulletin of the EATCS

97

[4] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichandran, C. Kendir,
A. Murray, and B. Ravindran. Popcorn: bridging the programmability gap in
heterogeneous-ISA platforms. In EuroSys ’15: Proc. 10th European Conference
on Computer Systems (EuroSys), page 29, 2015.

[5] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania. The Multikernel: A new OS architecture for
scalable multicore systems. In SOSP ’09: Proc. 22nd Symposium on Operating
Systems Principles, pages 29–44, 2009.

[6] Cray Research Inc. CRAY T3D System Architecture Overview Manual.
1993. ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/
T3D.overview.html.

[7] M. P. Grosvenor, M. Fayed, and A. W. Moore. Exo: atomic broadcast for the rack-
scale computer. 2015. http://www.cl.cam.ac.uk/~mpg39/pubs/workshops/
wrsc15-exo-abstract.pdf.

[8] C. Gruenwald III, F. Sironi, M. F. Kaashoek, and N. Zeldovich. Hare: a file system
for non-cache-coherent multicores. In EuroSys ’15: Proc. 10th European Confer-
ence on Computer Systems, page 30, 2015.

[9] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark silicon in
servers. IEEE Micro, 31(4):6–15, 2011.

[10] T. Harris, M. Herlihy, S. Marlow, and S. Peyton Jones. Composable memory trans-
actions. In PPoPP ’05: Proc. 10th Symposium on Principles and Practice of Parallel
Programming, June 2005.

[11] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, Jan. 1991.

[12] HP Moonshot system: a new class of server. http://www.hp.com/go/moonshot,
Accessed 9 July 2014.

[13] Intel Corporation. Intel Xeon Phi coprocessor system software developers guide.
2012. IBL Doc ID 488596.

[14] F. X. Lin, Z. Wang, and L. Zhong. K2: a mobile operating system for heterogeneous
coherence domains. In ASPLOS ’14: Proc. Conference on Architectural Support for
Programming Languages and Operating Systems, pages 285–300, 2014.

[15] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip cache coherence is here
to stay. Commun. ACM, 55(7):78–89, 2012.

[16] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–
65, Feb. 1991.

[17] D. Narayanan and O. Hodson. Whole-system persistence. In ASPLOS ’12: Proc.
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 401–410, 2012.

BEATCS no 116

98

[18] S. Novaković, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot. Scale-Out NUMA.
In ASPLOS ’14: Proc. 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2014.

[19] D. A. Patterson, K. Asanovic, A. B. Brown, R. Fromm, J. Golbus, B. Gribstad,
K. Keeton, C. E. Kozyrakis, D. B. Martin, S. Perissakis, R. Thomas, N. Treuhaft,
and K. A. Yelick. Intelligent RAM (IRAM): the industrial setting, applications and
architectures. In Proceedings 1997 International Conference on Computer Design:
VLSI in Computers & Processors, ICCD ’97, Austin, Texas, USA, October 12-15,
1997, pages 2–7, 1997.

[20] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency. In Proceeding of the
41st Annual International Symposium on Computer Architecuture, ISCA ’14, pages
265–276, Piscataway, NJ, USA, 2014. IEEE Press.

[21] L. Pina, L. Veiga, and M. Hicks. Rubah: DSU for Java on a stock JVM. In OOPSLA
’14: Proc. Conference on Object-Oriented Programming Languages, Systems, and
Applications, Oct. 2014.

[22] A. Rao. SeaMicro SM10000 system overview, June 2010. http://www.
seamicro.com/sites/default/files/SM10000SystemOverview.pdf.

[23] D. Wentzlaff and A. Agarwal. Factored operating systems (FOS): the case for a
scalable operating system for multicores. SIGOPS Oper. Syst. Rev., 43(2):76–85,
Apr. 2009.

The Bulletin of the EATCS

99

Transactional Memory Today1

Michael Scott
Computer Science Department

University of Rochester, NY, USA
scott@cs.rochester.edu

It was an honor and a privilege to be asked to participate in the celebration, at
PODC 2014, of Maurice Herlihy’s many contributions to the field of distributed
computing—and specifically, to address the topic of transactional memory, which
has been a key component of my own research for the past decade or so.

When introducing transactional memory (“TM”) to people outside the field, I
describe it as a sort of magical merger of two essential ideas, at different levels of
abstraction. First, at the language level, TM allows the programmer to specify that
certain blocks of code should be atomic without saying how to make them atomic.
Second, at the implementation level, TM uses speculation (much of the time, at
least) to execute atomic blocks in parallel whenever possible. Each dynamic exe-
cution of an atomic block is known as a transaction. The implementation guesses
that concurrent transactions will be mutually independent. It then monitors their
execution, backing out and retrying if (and hopefully only if) they are discovered
to conflict with one another.

The second of these ideas—the speculative implementation—was the focus of
the original TM paper, co-authored by Maurice with Eliot Moss [22]. The first
idea—the simplified model of language-level atomicity—is also due largely to
Maurice, but was a somewhat later development.

1Based on remarks delivered at the Maurice Herlihy 60th Birthday Celebration, Paris, France,
July 2014

BEATCS no 116

100

1 Motivation
To understand the original motivation for transactional memory, consider the typi-
cal method of a nonblocking concurrent data structure. The code is likely to begin
with a “planning phase” that peruses the current state of the structure, figuring
out the operation it wants to perform, and initializing data—some thread-private,
some visible to other threads—to describe that operation. At some point, a critical
linearizing instruction transitions the operation from “desired” to “performed.”
In some cases, the identity of the linearizing instruction is obvious in the source
code; in others it can be determined only by reasoning in hindsight over the his-
tory of the structure. Finally, the method performs whatever “cleanup” is required
to maintain long-term structural invariants. Nonblocking progress is guaranteed
because the planning phase has no effect on the logical state of the structure, the
linearizing instruction is atomic, and the cleanup phase can be performed by any
thread—not just the one that called the original operation.

Two issues make methods of this sort very difficult to devise. The first is the
need to effect the transition from “desired” to “performed” with a single atomic
instruction. The second is the need to plan correctly in the face of concurrent
changes by other threads. By contrast, an algorithm that uses a coarse-grained
lock faces neither of these issues: writes by other threads will never occur in the
middle of its reads; reads by other threads will never occur in the middle of its
writes.

2 The Original Paper
While Maurice is largely celebrated for his theoretical contributions, the original
TM paper was published at ISCA, the leading architecture conference, and was
very much a hardware proposal. We can see this in the subtitle—“Architectural
Support for Lock-Free Data Structures”—and the abstract: “[TM is] . . . intended
to make lock-free synchronization as efficient (and easy to use) as conventional
techniques based on mutual exclusion.”

The core idea is simple: a transaction runs almost the same code as a coarse-
grain critical section, but with special load and store instructions, and without
the actual lock. The special instructions allow the hardware to track conflicts
between concurrent transactions. A special end-of-transaction commit instruction
will succeed (and make transactionally written values visible to other threads) only
if no concurrent conflicting transaction has committed. Here “conflict” means
that one transaction writes a cache line that another reads or writes. Within a
transaction, a special validate instruction allows code to determine whether it still
has a chance to commit successfully—and in particular, whether the loads it has

The Bulletin of the EATCS

101

performed to date remain mutually consistent. In response to a failed validate or
commit, the typical transaction will loop back (in software) and start over.

Looking back with the perspective of more than 20 years, the original TM pa-
per appears remarkably prescient. Elision of coarse-grain locks remains the prin-
cipal use case for TM today, though the resulting algorithms are “lock-free” only
in the informal sense of “no application-level locks,” not in the sense of livelock-
free. Like almost all contemporary TM hardware, Herlihy & Moss (H&M) TM
was also a “best-effort-only” proposal: a transaction could fail due not only to
conflict or to overflow of hardware buffers, but to a variety of other conditions—
notably external interrupts or the end of a scheduling quantum. Software must be
prepared to fall back to a coarse-grain lock (or some other hybrid method) in the
event of repeated failures.

Speculative state (the record of special loads and stores) in the H&M pro-
posal was kept in a special “transactional cache” alongside the “regular” cache (in
1993, processors generally did not have multiple cache layers). This scheme is
still considered viable today, though commercial offerings vary: the Intel Haswell
processor leverages the regular L1 data cache [40]; Sun’s unreleased Rock ma-
chine used the processor store buffer [10]; IBM’s zEC12 uses per-core private
L2s [25].

In contrast with current commercial implementations, H&M proposed a “re-
sponder wins” coherence strategy: if transaction A requested a cache line that had
already been speculatively read or written by concurrent transaction B, B would
“win” and A would be forced to abort. Current machines generally do the op-
posite: “responder loses”—kill B and let A continue. Responder-loses has the
advantage of compatibility with existing coherence protocols, but responder-wins
turns out to be considerably less vulnerable to livelock. Nested transactions were
not considered by H&M, but current commercial offerings address them only by
counting, and subsuming the inner transactions in the outer: there is no way to
abort and retry an inner transaction while keeping the outer one live.

Perhaps the most obvious difference between H&M and current TM is that the
latter uses “modal” execution, rather than special loads and stores: in the wake of
a special tm-start instruction, all ordinary memory accesses are considered spec-
ulative. In keeping with the technology of the day, H&M also assumed sequential
consistency; modern machines must generally arrange for tm-start and commit
instructions to incorporate memory barriers.

While designers of modern systems—both hardware and software—think of
speculation as a fundamental design principle—comparable to caching in its de-
gree of generality—this principle was nowhere near as widely recognized in 1993.
In hindsight, the H&M paper (which doesn’t even mention the term) can be seen
not only as the seminal work on TM, but also as a seminal work in the history of
speculation.

BEATCS no 116

102

3 Subsequent Development
Within the architecture community, H&M TM was generally considered too am-
bitious for the hardware of the day, and was largely ignored for a decade. There
was substantial uptake in the theory community, however, where TM-like seman-
tics were incorporated into the notion of universal constructions [3, 5, 24, 28, 35].
In 1997, Shavit and Touitou coined the term “Software Transactional Memory,”
in a paper that shared with H&M the 2012 Dijkstra Prize [33].

And then came multicore. With the end of uniprocessor performance scal-
ing, the difficulty of multithreaded programming became a sudden and pressing
concern for researchers throughout academia and industry. And with advances in
processor technology and transistor budgets, TM no longer looked so difficult to
implement. Near-simultaneous breakthroughs in both software and hardware TM
were announced by several groups in the early years of the 21st century.

Now, another decade on, perhaps a thousand TM papers have been published
(including roughly a third of my own professional output). Plans are underway for
the 10th annual ACM TRANSACT workshop. Hardware TM has been incorpo-
rated into multiple “real world” processors, including the Azul Vega 2 and 3 [7];
Sun Rock [10]; IBM Blue Gene/Q [36], zEnterprise EC12 [25], and Power8 [6];
and Intel Haswell [40]. Work on software TM has proven even more fruitful, at
least from a publications perspective: there are many more viable implementa-
tion alternatives—and many more semantic subtleties—than anyone would have
anticipated back in 2003. TM language extensions have become the synchroniza-
tion mechanism of choice in the Haskell community [16], official extensions for
C++ are currently in the works (a preliminary version [1] already ships in gcc),
and research-quality extensions have been developed for a wide range of other
languages.

4 Maurice’s Contributions
Throughout the history of TM, Maurice has remained a major contributor. The
paragraphs here touch on only a few of his many contributions. With colleagues
at Sun, Maurice co-designed the DSTM system [18], one of the first software
TMs with semantics rich enough—and overheads low enough—to be potentially
acceptable in practice. Among its several contributions, DSTM introduced the
notion of out-of-band contention management, a subject on which Maurice also
collaborated with colleagues at EPFL [13, 14]. By separating safety and liveness,
contention managers simplify both STM implementation and correctness proofs.

In 2005, Maurice collaborated with colleagues at Intel on mechanisms to vir-
tualize hardware transactions, allowing them to survive both buffer overflows and

The Bulletin of the EATCS

103

context switches [30]. He also began a series of papers, with colleagues at Brown
and Swarthmore, on transactions for energy efficiency [12]. With student Eric
Koskinen, he introduced transactional boosting [20], which refines the notion
of conflict to encompass the possibility that concurrent operations on abstract
data types, performed within a transaction, may commute with one another at an
abstract level—and thus be considered non-conflicting—even when they would
appear to conflict at the level of loads and stores. With student Yossi Lev he
explored support for debugging of transactional programs [21]. More recently,
again with the team at Sun, he has explored the use of TM for memory manage-
ment [11].

Perhaps most important, Maurice became a champion of the promise of trans-
actions to simplify parallel programming—a promise he dubbed the “transactional
manifesto” [19]. During a sabbatical at Microsoft Research in Cambridge, Eng-
land, he collaborated with the Haskell team on their landmark exploration of com-
posability [16]. Unlike locks, which require global reasoning to avoid or recover
from deadlock, transactions can easily be combined to create larger atomic oper-
ations from smaller atomic pieces. While the benefits can certainly be oversold
(and have been—though not by Maurice), composability represents a fundamen-
tal breakthrough in the creation of concurrent abstractions. Prudently employed,
transactions can offer (most of) the performance of fine-grain locks with (most of)
the convenience of coarse-grain locks.

5 Status and Challenges
Today hardware TM appears to have become a permanent addition to processor
instruction sets. Run-time systems that use this hardware typically fall back to
a global lock in the face of repeated conflict or overflow aborts. For the over-
flow case, hybrid systems that fall back to software TM may ultimately prove
to be more appropriate. STM will also be required for TM programs on legacy
hardware. The fastest STM implementations currently slow down critical sections
(though not whole applications!) by factors of 3–5, and that number is unlikely to
improve. With this present status as background, the future holds a host of open
questions.

5.1 Usage Patterns
TM is not yet widely used. Most extant applications are actually written in Haskell,
where the semantics are unusually rich but the implementation unusually slow.
The most popular languages for research have been C and C++, but progress has
been impeded, at least in part, by the lack of high quality benchmarks.

BEATCS no 116

104

The biggest unknown remains the breadth of TM applicability. Transactions
are clearly useful—from both a semantic and a performance perspective—for
small operations on concurrent data structures. They are much less likely to be
useful—at least from a performance perspective—for very large operations, which
may overflow buffer limits in HTM, run slowly in STM, and experience high con-
flict rates in either case. No one is likely to write a web server that devotes a
single large transaction to each incoming page request. Only experience will tell
how large transactions can become and still run mostly in parallel.

When transactions are too big, and frequently conflict, programmers will need
tools to help them identify the offending instructions and restructure their code
for better performance. They will also need advances, in both theory and software
engineering, to integrate transactions successfully into pre-existing lock-based ap-
plications.

5.2 Theory and Semantics
Beyond just atomicity, transactions need some form of condition synchronization,
for operations that must wait for preconditions [16, 37]. There also appear to be
cases in which a transaction needs some sort of “escape action” [29], to generate
effects (or perhaps to observe outside state) in a way that is not fully isolated from
action in other threads. In some cases, the application-level logic of a transaction
may decide it needs to abort. If the transaction does not restart, but switches to
some other code path, then information (the fact of the abort, at least) has “leaked”
from code that “did not happen” [16]. Orthogonally, if large transactions prove
useful in some applications, it may be desirable to parallelize them internally, and
let the sub-threads share speculative state [4]. All these possibilities will require
formalization.

A more fundamental question concerns the basic model of synchronization.
While it is possible to define the behavior of transactions in terms of locks [27],
with an explicit notion of abort and rollback, such an approach seems contrary
to the claim that transactions are simpler than locks. An alternative is to make
atomicity itself the fundamental concept [8], at which point the question arises:
are aborts a part of the language-level semantics? It’s appealing to leave them out,
at least in the absence of a program-level abort operation, but it’s not clear how
such an approach would interact with operational semantics or with the definition
of a data race.

For run-time–level semantics, it has been conventional to require that every
transaction—even one that aborts—see a single, consistent memory state [15].
This requirement, unfortunately, is incompatible with implementations that “sand-
box” transactions instead of continually checking for consistency, allowing doomed
transactions to execute—at least for a little while—down logically impossible

The Bulletin of the EATCS

105

code paths. More flexible semantics might permit such “transactional zombies”
while still ensuring forward progress [32].

5.3 Language and System Integration

For anyone building a TM language or system, the theory and semantic issues of
the previous section are of course of central importance, but there are other issues
as well. What should be the syntax of atomic blocks? Should there be atomic
expressions? How should they interact with existing mechanisms like try blocks
and exceptions? With locks?

What operations can be performed inside a transaction? Which of the standard
library routines are on the list? If routines must be labeled as “transaction safe,”
does this become a “viral” annotation that propagates throughout a code base?
How much of a large application must eschew transaction-unsafe operations?

In a similar vein, given the need to instrument loads and stores inside (but not
outside) transactions, which subroutines must be “cloned”? How does the choice
interact with separate compilation? How do we cope with the resulting “code
bloat”?

Finally, what should be done about repeated aborts? Is fallback to a global lock
acceptable, or do we need a hybrid HTM/STM system? Does the implementation
need to adapt to observed abort patterns, avoiding fruitless speculation? What
factors should influence adaptation? Should it be static or dynamic? Does it
need to incorporate feedback from prior executions? How does it interact with
scheduling?

5.4 Building and Using TM Hardware

With the spread of TM hardware, it will be increasingly important to use that
hardware well. In addition to tuning and adapting, we may wish to restructure
transactions that frequently overflow buffers. We might, for example—by hand
or automatically—reduce a transaction’s memory footprint by converting a read-
only preamble into explicit (nontransactional) speculation [2, 39]. One of my
students has recently suggested using advisory locks (acquired using nontransac-
tional loads and stores) to serialize only the portions of transactions that actually
conflict [38].

Much will depend on the evolution of hardware TM capabilities. Nontrans-
actional (but immediate) loads and stores are currently available only on IBM
Power machines, and there at heavy cost. Lightweight implementations would
enable not only partial serialization but also ordered transactions (i.e., specu-
lative parallelization of ordered iteration) and more effective hardware/software

BEATCS no 116

106

hybrids [9, 26]. As noted above, there have been suggestions for “responder-
wins” coherence, virtualization, nesting, and condition synchronization. With
richer semantics, it may also be desirable to “deconstruct” the hardware inter-
face, so that features are available individually, and can be used for additional
purposes [23, 34].

6 Concluding Thoughts

While the discussion above spans much of the history of transactional memory,
and mentions many open questions, the coverage has of necessity been spotty,
and the choice of citations idiosyncratic. Many, many important topics and pa-
pers have been left out. For a much more comprehensive overview of the field,
interested readers should consult the book-length treatise of Harris, Larus, and
Rajwar [17]. A briefer overview can be found in chapter 9 of my synchronization
monograph [31].

My sincere thanks to Hagit Attiya, Shlomi Dolev, Rachid Guerraoui, and Nir
Shavit for organizing the celebration of Maurice’s 60th birthday, and for giving
me the opportunity to participate. My thanks, as well, to Panagiota Fatourou and
Jennifer Welch for arranging the subsequent write-ups for BEATCS and SIGACT
News. Most of all, my thanks and admiration to Maurice Herlihy for his seminal
contributions, not only to transactional memory, but to nonblocking algorithms,
topological analysis, and so many other aspects of parallel and distributed com-
puting.

References

[1] A.-R. Adl-Tabatabai, T. Shpeisman, and J. Gottschlich, editors. Draft Specification
of Transaction Language Constructs for C++. Version 1.1, IBM, Intel, and Sun
Microsystems, Feb. 2012.

[2] Y. Afek, H. Avni, and N. Shavit. Towards Consistency Oblivious Programming.
In Proc. of the 15th Intl. Conf. on Principles of Distributed Systems, pages 65-79.
Toulouse, France, Dec. 2011.

[3] Y. Afek, D. Dauber, and D. Touitou. Wait-Free Made Fast. In Proc. of the 27th ACM
Symp. on Theory of Computing, 1995.

[4] K. Agrawal, J. Fineman, and J. Sukha. Nested Parallelism in Transactional Memory.
In Proc. of the 13th ACM Symp. on Principles and Practice of Parallel Program-
ming, Salt Lake City, UT, Feb. 2008.

The Bulletin of the EATCS

107

[5] G. Barnes. A Method for Implementing Lock-Free Shared Data Structures. In Proc.
of the 5th ACM Symp. on Parallel Algorithms and Architectures, Velen, Germany,
June–July 1993.

[6] H. W. Cain, B. Frey, D. Williams, M. M. Michael, C. May, and H. Le. Robust
Architectural Support for Transactional Memory in the Power Architecture. In Proc.
of the 40th Intl. Symp. on Computer Architecture, Tel Aviv, Israel, June 2013.

[7] C. Click Jr. And now some Hardware Transactional Memory comments. Au-
thor’s Blog, Azul Systems, Feb. 2009. blogs.azulsystems.com/cliff/2009/
02/and-now-some-hardware-transactional-memory-comments.html.

[8] L. Dalessandro, M. L. Scott, and M. F. Spear. Transactions as the Foundation of a
Memory Consistency Model. In Proc. of the 24th Intl. Symp. on Distributed Com-
puting, Cambridge, MA, Sept. 2010. Earlier but expanded version available as TR
959, Dept. of Computer Science, Univ. of Rochester, July 2010.

[9] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F.
Spear. Hybrid NOrec: A Case Study in the Effectiveness of Best Effort Hardware
Transactional Memory. In Proc. of the 16th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Newport Beach, CA, Mar. 2011.

[10] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early Experience with a Commercial
Hardware Transactional Memory Implementation. In Proc. of the 14th Intl. Conf. on
Architectural Support for Programming Languages and Operating Systems, Wash-
ington, DC, Mar. 2009.

[11] A. Dragojević, M. Herlihy, Y. Lev, and M. Moir. On The Power of Hardware Trans-
actional Memory to Simplify Memory Management. In Proc. of the 30th ACM Symp.
on Principles of Distributed Computing, San Jose, CA, June 2011.

[12] C. Ferri, A. Viescas, T. Moreshet, I. Bahar, and M. Herlihy. Energy Implica-
tions of Transactional Memory for Embedded Architectures. In Wkshp. on Exploit-
ing Parallelism with Transactional Memory and Other Hardware Assisted Methods
(EPHAM), Boston, MA, Apr. 2008. In conjunction with CGO.

[13] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Contention Management in
SXM. In Proc. of the 19th Intl. Symp. on Distributed Computing, Cracow, Poland,
Sept. 2005.

[14] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a Theory of Transactional Con-
tention Managers. In Proc. of the 24th ACM Symp. on Principles of Distributed
Computing, Las Vegas, NV, Aug. 2005.

[15] R. Guerraoui and M. Kapałka. On the Correctness of Transactional Memory. In
Proc. of the 13th ACM Symp. on Principles and Practice of Parallel Programming,
Salt Lake City, UT, Feb. 2008.

[16] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable Memory Trans-
actions. In Proc. of the 10th ACM Symp. on Principles and Practice of Parallel
Programming, Chicago, IL, June 2005.

BEATCS no 116

108

[17] T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory, Synthesis Lectures on
Computer Architecture. Morgan & Claypool, second edition, 2010.

[18] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software Transactional
Memory for Dynamic-sized Data Structures. In Proc. of the 22nd ACM Symp. on
Principles of Distributed Computing, Boston, MA, July 2003.

[19] M. Herlihy. The Transactional Manifesto: Software Engineering and Non-blocking
Synchronization. In Invited keynote address, SIGPLAN 2005 Conf. on Programming
Language Design and Implementation, Chicago, IL, June 2005.

[20] M. Herlihy and E. Koskinen. Transactional Boosting: A Methodology for Highly-
Concurrent Transactional Objects. In Proc. of the 13th ACM Symp. on Principles
and Practice of Parallel Programming, Salt Lake City, UT, Feb. 2008.

[21] M. Herlihy and Y. Lev. tm_db: A Generic Debugging Library for Transactional
Programs. In Proc. of the 18th Intl. Conf. on Parallel Architectures and Compilation
Techniques, Raleigh, NC, Sept. 2009.

[22] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for
Lock-Free Data Structures. In Proc. of the 20th Intl. Symp. on Computer Architec-
ture, San Diego, CA, May 1993. Expanded version available as CRL 92/07, DEC
Cambridge Research Laboratory, Dec. 1992.

[23] M. D. Hill, D. Hower, K. E. Moore, M. M. Swift, H. Volos, and D. A. Wood. A Case
for Deconstructing Hardware Transactional Memory Systems. Technical Report
1594, Dept. of Computer Sciences, Univ. of Wisconsin–Madison, June 2007.

[24] A. Israeli and L. Rappoport. Disjoint-Access Parallel Implementations of Strong
Shared Memory Primitives. In Proc. of the 13th ACM Symp. on Principles of Dis-
tributed Computing, Los Angeles, CA, Aug. 1994.

[25] C. Jacobi, T. Slegel, and D. Greiner. Transactional Memory Architecture and Imple-
mentation for IBM System z. In Proc. of the 45th Intl. Symp. on Microarchitecture,
Vancouver, BC, Canada, Dec. 2012.

[26] A. Matveev and N. Shavit. Reduced Hardware Transactions: A New Approach to
Hybrid Transactional Memory. In Proc. of the 25th ACM Symp. on Parallelism in
Algorithms and Architectures, Montreal, PQ, Canada, July 2013.

[27] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L. Hudson, B.
Saha, and A. Welc. Practical Weak-Atomicity Semantics for Java STM. In Proc.
of the 20th ACM Symp. on Parallelism in Algorithms and Architectures, Munich,
Germany, June 2008.

[28] M. Moir. Transparent Support for Wait-Free Transactions. In Proc. of the 11th Intl.
Wkshp. on Distributed Algorithms, 1997.

[29] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B.
Moss, B. Saha, and T. Shpeisman. Open Nesting in Software Transactional Mem-
ory. In Proc. of the 12th ACM Symp. on Principles and Practice of Parallel Pro-
gramming, San Jose, CA, Mar. 2007.

The Bulletin of the EATCS

109

[30] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. In Proc. of
the 32nd Intl. Symp. on Computer Architecture, Madison, WI, June 2005.

[31] M. L. Scott. Shared-Memory Synchronization. Morgan & Claypool, 2013.

[32] M. L. Scott. Transactional Semantics with Zombies. In Invited keynote address, 6th
Wkshp. on the Theory of Transactional Memory, Paris, France, July 2014.

[33] N. Shavit and D. Touitou. Software Transactional Memory. Distributed Computing,
10(2):99-116, Feb. 1997. Originally presented at the 14th ACM Symp. on Principles
of Distributed Computing, Aug. 1995.

[34] A. Shriraman, S. Dwarkadas, and M. L. Scott. Implementation Tradeoffs in the De-
sign of Flexible Transactional Memory Support. Journal of Parallel and Distributed
Computing, 70(10):1068-1084, Oct. 2010.

[35] J. Turek, D. Shasha, and S. Prakash. Locking Without Blocking: Making Lock
Based Concurrent Data Structure Algorithms Nonblocking. In Proc. of the 11th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, Van-
couver, BC, Canada, Aug. 1992.

[36] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera,
and M. Michael. Evaluation of Blue Gene/Q Hardware Support for Transactional
Memories. In Proc. of the 21st Intl. Conf. on Parallel Architectures and Compilation
Techniques, Minneapolis, MN, Sept. 2012.

[37] C. Wang, Y. Liu, and M. Spear. Transaction-Friendly Condition Variables. In Proc.
of the 26th ACM Symp. on Parallelism in Algorithms and Architectures, Prague,
Czech Republic, June 2014.

[38] L. Xiang and M. L. Scott. Conflict Reduction in Hardware Transactions Using Ad-
visory Locks. In Proc. of the 27th ACM Symp. on Parallelism in Algorithms and
Architectures, Portland, OR, June 2015.

[39] L. Xiang and M. L. Scott. Software Partitioning of Hardware Transactions. In Proc.
of the 20th PPoPP, San Francisco, CA, Feb. 2015.

[40] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance Evaluation of In-
tel Transactional Synchronization. In x. f. H.-P. Computing, editor, Proc., SC2013:
High Performance Computing, Networking, Storage and Analysis, pages 1-11. Den-
ver, Colorado, Nov. 2013.

110

The Bulletin of the EATCS

111

The Distributed Computing Column
by

Stefan Schmid

TU Berlin
T-Labs, Germany

stefan.schmid@tu-berlin.de

BEATCS no 116

112

Fault-tolerant Distributed Systems
in Hardware

Danny Dolev (Hebrew University of Jerusalem)
Matthias Függer (MPI for Informatics)

Christoph Lenzen (MPI for Informatics)
Ulrich Schmid (TU Vienna)

Andreas Steininger (TU Vienna)

Very large-scale integrated (VLSI) hardware designs can be seen as distributed
systems at several levels of abstraction: from the cores in a multicore architecture
down to the Boolean gates in its circuit implementation, hardware designs com-
prise of interacting computing nodes with non-negligible communication delays.
The resulting similarities to classic large-scale distributed systems become even
more accented in mission critical hardware designs that are required to operate
correctly in the presence of component failures.

We advocate to act on this observation and treat fault-tolerant hardware de-
sign as the task of devising suitable distributed algorithms. By means of problems
related to clock generation and distribution, we show that (i) design and analy-
sis techniques from distributed computing can provide new and provably correct
mission critical hardware solutions and (ii) studying such systems reveals many
interesting and challenging open problems for distributed computing.

The Bulletin of the EATCS

113

1 Introduction
Very large-scale integrated (VLSI) circuits bear several similarities with the sys-
tems studied by the distributed computing community:

• They are formed by an increasing number of interacting computing nodes.

• Communication delays are not negligible.

• The cost of communication, such as area and power consumption, is not
negligible.

In fact, this view is correct at different levels of abstraction. We will elaborate
on two such levels that significantly differ from each other with respect to the
computational power of the system’s nodes, their means of communication, and
the problems they solve.

(I) Viewed from a low-level perspective, every digital circuit is a network of
logic gates with delays, which continuously compute their current output state
from their input history and interact via binary-valued, continuous-time signals.
We stress the fact, however, that this is already a (convenient) abstraction, as real
gates are electronic devices that process analog (continuous-valued) signals: A
signal that is above a certain threshold voltage is considered high, otherwise low.
Whereas analog signals (like a good clock signal) that swing fast from low volt-
ages to high voltages are represented reasonably well by the resulting digital ab-
straction, this is obviously not the case for every signal: Just consider an analog
signal that stays very close to the threshold voltage and just, e.g., due to very
small noise, occasionally crosses it. It will turn out that this modeling inaccuracy
causes serious problems both for synchronization and fault-tolerance, which must
be considered explicitly.

Analogously to distributed computing, there are two fundamentally different
ways to design digital circuits (i.e., algorithms in hardware), which correspond to
synchronous and asynchronous algorithms in distributed computing.

The classic design paradigm relies on the synchronous computational model.
It abstracts away the timing of gates and interconnects by considering gate outputs
only at predetermined instants dictated by a central periodic clock signal. While
this approach allows the designer to solely concentrate on the stable outputs of a
network of gates, it relies critically on the guarantee that all signals have settled
and all transients have vanished at the occurrence of the next clock transition.
Inherently, such designs run at the speed of the clock period that is determined
from worst-case bounds on gate and interconnect delays. Due to increasingly
pronounced delay variations [52, 84] this results in highly conservative bounds
and thus in considerable performance loss.

BEATCS no 116

114

In contrast, designs that do not rely on the convenient discrete time abstraction
provided by a clock signal are called clockless or asynchronous.1 Such circuits
must rely on different techniques to enforce some ordering between signal tran-
sitions. Suitable techniques range from aggressively timed circuits that explicitly
use information on the delays along certain paths [80, 91, 97] to circuits that toler-
ate (certain) delay variations by means of some forms of handshaking. Prominent
examples of the latter are delay insensitive (DI) circuits [72], speed-independent
(SI) circuits and quasi-delay insensitive (QDI) circuits [74, 75]. While DI circuits
are guaranteed to behave correctly in the presence of arbitrary gate and intercon-
nect delay variations, SI resp. QDI circuits assume that all resp. certain signal
forks in the interconnect are isochronic, i.e., have roughly equal propagation de-
lays along all their fork teeth.

The robustness to delay variations in DI circuits comes at a high price, how-
ever: Martin [73] showed that the expressiveness of circuits that are DI at gate-
level is severely limited. In fact, the only two-input gate allowed in such circuits
is the C-Element, which is an AND gate for signal transitions; it produces a, say,
rising transition at its output when it observed a rising transition at all its inputs.
This clearly restricts the usability of DI circuits for real applications.

SI and QDI circuits, on the other hand, are Turing-complete [70]. Intuitively,
the isochronic fork assumption guarantees that a gate whose output drives an
isochronic fork implicitly performs a handshake with all its successor gates while
just handshaking with one of its successors. A precise characterization of the con-
ditions on the propagation delay that have to hold on certain paths in SI circuits
was derived in [56].

(II) With the increasing number of computing nodes in System-on-Chip (SoC)
and Network-on-Chip (NoC) architectures, problems that used to be relevant only
in large-scale computer networks also become relevant within a single chip. Ex-
amples range from establishing a common time base over data communication
and routing between nodes to load balancing.

In the hardware context, establishing a common time base among all nodes
is of particular interest, because this sets the base for a synchronous computa-
tional model: Rather than being implemented entirely clockless, higher-level ser-
vices like routing and load balancing could then also exploit synchrony proper-
ties. Unfortunately, however, the GHz clock speeds and sizes of modern VLSI
circuits make it increasingly difficult to distribute a central clock signal through-
out the whole circuit [43, 96]. Modern SoCs and NoCs hence typically rely on
the globally asynchronous locally synchronous (GALS) approach [14], where
different parts of a chip are clocked by different clock sources. Using inde-

1We will use the term “clockless” in the following, as such circuits do not always allow for
arbitrarily large and unknown delays.

The Bulletin of the EATCS

115

pendent and hence unsynchronized clock domains would give away the advan-
tages of global synchrony and also requires non-synchronous cross-domain com-
munication mechanisms or synchronizers [59, 58]. A promising alternative is
mesochronous clocking [79] (sometimes also called multi-synchronous clocking
[93]) as it guarantees some upper bound on the skew between clock domains. In
this article, we will thus focus on discussing methods for providing a common
time in GALS architectures.

Fault-tolerance. Besides an increasing number of components and non-negli-
gible communication costs both at gate and system level, there is a further trend
that advocates the application of distributed computing methods for designing
VLSI chips: the increasing susceptibility to failures. Indeed, fault-tolerance has
been identified as a key challenge in the International Technology Roadmap for
Semiconductors [52] for years. Besides the increasing susceptibility of nanome-
ter VLSI technology to permanent failures caused by manufacturing process varia-
tions and excessive operating conditions (supply voltage, temperature) [62],
steadily decreasing feature sizes and signal voltage swings also led to dramati-
cally increased transient failure rates [16], caused by ionizing particles hitting the
junction of transistors [6], electro-magnetic cross-talk between signal wires and
supply-voltage variations caused by simultaneous switching activities [78, 85].

Unfortunately, even relatively simple faults unveil the very limited ability of
the convenient digital signal abstraction to properly describe reality. For example,
an out-of-spec output driver of a gate that drives a fork to two different gate inputs
may be able to reach the threshold voltage at one input but not at the other, causing
those to interpret the gate output inconsistently. Similarly, a single-event transient
(SET) [6] caused by an ionizing particle that hits the output driver of such a gate
may be visible at one input but not at the other, depending on the latter’s input
capacitances. It is hence apparent that classic benign failure models from dis-
tributed computing, where a message is either lost or transmitted correctly, do not
cover such faults. In fact, faulty gates have to be assumed to potentially behave
arbitrarily, i.e., Byzantine [86].

While there is a huge body of work on fault mitigation techniques at the tech-
nological level (like silicon-on-insulator (SOI) technology [76]) and gate level
(like the SET-tolerant DICE latch [83]), keeping the overall error rate acceptable
[89, 22] despite the tremendously increasing number of gates/cores on a single
chip demands for additional architectural solutions. At the same time, solutions
that require central knowledge of the current system state (i) become infeasible
due to the high communication costs and (ii) would themselves form a single
point of failure. Algorithmic solutions that use only local knowledge, studied by
the distributed computing community for decades, are hence promising in this

BEATCS no 116

116

context.
Classic architectural fault-tolerance approaches [87] like Dual Modular Re-

dundancy (DMR) and Triple Modular Redundancy (TMR) fail in absence of a
global time base, as it becomes unclear over which values to vote. Jang and
Martin [53] adapted this method to QDI designs and applied it to build a micro-
controller tolerating certain transient faults [54], in particular, single-event upsets
(SEUs), where a state-holding device may flip its state due to a particle hit. Their
solution duplicates each gate and adds two succeeding cross-coupled C-Elements
whose inputs are connected to the outputs of the duplicated gates. In case of a
spurious state transition of one of the duplicated gates, both C-Elements do not
propagate the spurious output value until it is matched by the other gate’s output
also (which can be proved to eventually happen). While this method tolerates
SEUs, it neither allows to tolerate SETs nor permanent faults.

Tolerating such faults necessarily requires to extend the circuit’s control logic
not to wait for all of its predecessors’ outputs. In contrast to the AND-causality
semantics of the C-Element, this requires OR-causality semantics. Interestingly,
there has been research in this direction in a different context: In certain cases, a
Boolean function’s value can already be determined from a subset of its param-
eters. This fact can be used to speed up clockless circuits [17, 95]. Instead of
waiting for all of a module’s inputs to arrive, the module waits until its outcome
is determined and then immediately produces a new output value. Care must
be taken not to mix up current input data with lately arriving input data from a
previous computation, however. The approach thus requires additional timing as-
sumptions and ways to memorize which input values a module already took into
account when computing its output.

A similar strategy can also be applied to design clockless circuits that tol-
erate a certain fraction of its input nodes to fail permanently. In particular, it
has also been employed in the DARTS Byzantine fault-tolerant clock generation
approach [49, 44] for mesochronous GALS architectures, which comprises a net-
work of interconnected OR-causality gates whose outputs generate tightly syn-
chronized clock pulses. The approach is discussed in more detail in Section 3.1.3.

The limit of the fault-tolerant hardware solutions discussed above is that they
allow only a certain subset of the components to fail. Even if these components
start to operate according to their specification again later on, their state may re-
main corrupted, preventing them from recommencing correct operation. For mas-
sive transient failures, which are likely to occur e.g. in space missions and may
corrupt the entire system state, the above solutions are not adequate. To attack
this problem, the concept of self-stabilizing distributed algorithms [33] has suc-
cessfully been applied to digital circuits. A self-stabilizing circuit is guaranteed to
eventually behave correctly again after its state was arbitrarily corrupted. For ex-
ample, a self-stabilizing token passing algorithm implemented in clockless hard-

The Bulletin of the EATCS

117

ware was presented in [11], and S. Dolev and Haviv [34] built and proved correct
a self-stabilizing microprocessor.

From a robustness point of view, a combination of resilience to permanent
faults and self-stabilization is most desirable: Appropriate solutions operate cor-
rectly in the presence of not too many permanent faults and even recover from
massive transient disruptions. In [27, 28] the fault-tolerant and self-stabilizing
pulse generation algorithm FATAL and its hardware implementation were pre-
sented and proven correct. This solution is discussed in more detail in Sec-
tion 3.1.4.

Additional challenges. While we highlighted major similarities between VLSI
designs and classic distributed systems, there are also important differences. In
most cases, these advise against a naive implementation of distributed algorithms
in hardware.

First and foremost, this is the absence of computationally powerful atomic
actions at the gate level in clockless circuits: Explicit means such as handshaking
must be employed to synchronize activities in such a circuit, which is not only
costly but also imperfect in terms of synchronization accuracy. This, in turn,
is also a source for a unique problem called metastability, which arises when a
circuit must handle input signals that bear no well-defined timing relation to its
own state transitions. Consider a simple R/W register in a shared memory system
that my be read by a processor at the time it is written by some other processor.
Distributed computing models based on regular or even atomic registers assume
that either the previous or the newly written value is returned by the read. In
reality, the situation is even worse than assumed for safe registers, which allow
an arbitrary return value in this case: The register may reach a metastable state,
which moves its output voltage to a non-digital level for an unpredictable time!

Another unique problem arises from the imperfect coverage of the digital
abstraction for analog signals in the case of failures. In distributed computing,
Byzantine behavior is considered the worst a component can do to a system. Un-
fortunately, in digital circuits, generating an arbitrary binary-valued continuous-
time signal is not the worst behavior of a component. Rather, a component may
produce an arbitrary analog signal on its output, e.g., an output voltage that re-
mains very close to the threshold voltage arbitrarily long, which is actually one
manifestation of metastability (creeping metastability) [7, 13]. We will discuss
these issues in more detail in Section 2.

Structure of this article. We start in Section 2 with a discussion on the pecu-
liarities of SoCs in comparison to classic distributed systems, and the challenges
arising in the definition of an appropriate distributed system model. In Section 3,

BEATCS no 116

118

we discuss the problem of obtaining a common time base for multi-synchronous
GALS architectures, which is both fundamental to the solution of other problems
and exemplarily captures the challenges of adapting distributed algorithms for use
on a chip. The problem is divided into three parts: (i) Section 3.1 discusses the
problem of generating synchronous pulses. (ii) Section 3.2 deals with establishing
local counters. Here we provide more technical details, with the primary goal of
illustrating how techniques from distributed computing find application in VLSI
design. (iii) Section 3.3 finally is concerned with distributing the clock over a
wider area. The work is concluded in Section 4.

2 Modeling Issues
While we pointed out the similarities of VLSI circuits and fault-tolerant dis-
tributed systems in Section 1, a simple migration of classic solutions in distributed
computing is not favorable and most of the time even infeasible. The most promi-
nent obstacles are:

(i) Gates continuously compute their output state from their input states. They
generate events, i.e., binary transitions, in a fully parallel way and are capable of
very simple computations, such as the logical AND of two binary inputs, only.
Any kind of event sequencing and atomic actions that group several binary transi-
tions into more powerful computations requires explicit synchronization between
the concurrently operating gates, e.g., by handshaking or timing assumptions.
Note that this includes even “simple” computations such as the sum or the product.

(ii) Communication and computation is costly, especially if the proposed so-
lution is meant to “only” provide low-level services to the application running on
top. For example, clock generation algorithms must not use more than a few wires
between nodes to be able to compete with classic clock distribution networks. Ex-
change of data, even a few bits, requires parallel or serial coding and decoding
logic and thus typically cannot be afforded for low-level services. Rather, solu-
tions must resort to signaling a few status bits only. Exchanging data of more than,
say, 32 bits, is usually also difficult for high-level services.

(iii) Non-digital low-level effects must be taken into account. Every binary
valued model necessarily abstracts from the analog signals in real gate implemen-
tations. While it is perfectly valid to resort to binary abstractions most of the time,
these models come to their limits when synchronization and failures enter the pic-
ture: Marino [71] showed that any bistable element, e.g., a binary memory cell,
may get stuck arbitrarily long in between its two stable states. This may result in
spontaneous, unpredictably late transitions on its output, and even in an inconsis-
tently perceived input at multiple successor gates. While classic designs prevent
these scenarios by ensuring that certain timing constraints on the input signals

The Bulletin of the EATCS

119

are not violated, this is not always possible and inherently cannot be assumed in
fault-tolerant circuits.

In order to be able to predict the behavior of a circuit and reason formally about
its correctness and performance at early design stages, i.e., before fabrication, a
suitable circuit model is required. Clearly, any such model should be sufficiently
simple to support fast predictions and formal analysis, while at the same time
ensure that the results reflect reality sufficiently accurate. We will briefly sketch
common approaches.

Discrete time state machines. Synchronously clocked circuits of any kind can
be modeled by a discrete-time, discrete-value synchronous communicating state
machine model, for which very efficient and fast timing prediction and formal
analysis tools are available. Unfortunately, this abstraction does not cover all
existing circuits. This is obvious for clockless circuits, but also for the timing
analysis of clocked circuits, which is mandatory for validating the clock timing
requirements for justifying the synchronous abstraction. The latter is particularly
important with the advent of aggressively timed high-speed synchronous circuits,
where clock speed must be traded against the increasing rate of manufacturing
errors and other sources of timing failures. In that case one has to resort to con-
tinuous time models.

Continuous time models. Arguably, the most accurate models used in circuit
design today are fully-fledged continuous-time analog valued ones as, e.g., in-
stantiated by Spice [81]. However, excessive analog simulation times prohibit its
use for analyzing more than a fairly small part of a VLSI circuit, over fairly short
periods of simulated real-time. Discrete-value models, and specifically binary-
valued ones, are hence an attractive alternative. Modern digital design approaches
e.g. based on description languages such as VHDL [5] incorporate digital timing
simulators that are typically based on zero-time Boolean gates interconnected by
non-zero-delay channels. Popular instances are simple pure (i.e., constant-delay)
and inertial delay channels (i.e., constant-delay channels that suppress short in-
put pulses) [94], but also more elaborate ones like the Delay Degradation Model
(DDM) [8] or the empirical Synopsis CCS Timing model [92]. Continuous time,
discrete-value models can be either state-based or trace-based, as detailed in the
following.

Clockless, state-based models. At the gate level, clockless circuits are typi-
cally modeled by a binary state vector representing the global circuit state and,
potentially time-annotated, guard-action pairs [4, 72] that describe the gates. An
execution, i.e., signal trace, of the circuit is a sequence of global states over time

BEATCS no 116

120

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

Time [ns]

S
ig
n
al

vo
lt
ag
e
[V

]

Figure 1: Analog simulation traces of a storage loop (e.g., a 2-input OR gate with
the output fed back to one input) that can persistently memorize a high state of its
(other) input. The blue dashed curves (the medium line actually corresponding to
8 almost identical pulses) show the real analog shape of short input pulse signals
of different duration, the solid green ones give the corresponding output signals of
the storage loop.

generated by a parallel execution of the guard-action pairs. Note that executions
need not necessarily be unique, accounting for potential delay variations within
the circuit. Like the models used in classic distributed computing, such as the
Alur-Dill Timed Automata [2] and the Timed I/O Automata by Keynar et al. [55],
these models all act on the explicitly given state-space of the underlying system.

While this view serves as a good level of abstraction in clockless circuits oper-
ated in closed environments, it comes to its limits when signals do not necessarily
stabilize before they change again. For instance, consider a gate that produces
a very short low-high-low pulse at its output: In reality, this means that the gate
driver circuitry has only started to drive the output signal to high when it is turned
off again. This results in a short, potentially non-full-swing waveform that may
quite unpredictably affect the subsequent gate. An example is shown in the blue
dashed pulse shape in Figure 1.

In this example, the subsequent gate is a memory flag, which persistently mem-
orizes a high state at its input, until it is reset again to 0. A straightforward im-
plementation is given by a storage loop, e.g. consisting of a 2-input OR gate with
its output fed back to its other input. The solid green lines represent the output
signals of the storage loop corresponding to the blue dashed inputs. The largest
input pulse causes the storage loop to flip to the high state immediately, while
the smallest one does not cause any effect on the initial low output. The medium
input pulse, however, which actually represents 8 different ones that differ only
marginally from each other, causes the loop to enter a metastable state: The input
pulses are too short to allow the storage loop, which has some short but non-

The Bulletin of the EATCS

121

zero delay, to settle to a stable value. Depending on minor variations of the input
pulses, the metastable state eventually resolves after some unpredictable and pos-
sibly large resolution time. The memory flag does not operate as intended during
this time, possibly affecting the downstream logic in a similar way.

Such situations cannot be prevented from happening in open environments in
which a circuit cannot control all of its inputs. The same holds in fault-tolerant
circuits, where the signals provided by faulty nodes may be arbitrary. Thus they
must be reasonably covered by an appropriate digital circuit model. Unfortu-
nately, however, this is not the case for any model used in modern timing circuit
simulators today. Besides the complete lack of modeling and analysis support
for fault-tolerance, it was shown in [48] that none of the existing analytic chan-
nel models, including the popular pure and inertial delay channels [94] as well as
the DDM model [8], faithfully model the propagation of short pulses in physical
circuits. Specifically, it has been shown that these models are inconsistent with
possibility and impossibility results concerning the implementation of a one-shot
inertial delay channel: a channel that, like an inertial delay channel, suppresses
short pulses, but is required to work correctly only in presence of a single input
pulse (one-shot).

Recently, however, a candidate delay model [47] based on involution channels
has been proposed that does not have this shortcoming: It is not only consistent
with the theoretical results on the one-shot inertial delay problem [48], but also
achieves a promising level of accuracy [82]. As a consequence, there is a prospect
of eventually identifying a tractable delay model that can form the basis for a
comprehensive modeling framework for digital circuits.

Clockless, trace-based models. Existing frameworks for designing clockless
digital circuits also have shortcomings at higher abstraction levels. In particular,
we are not aware of any modeling framework (except the one we proposed in
[27]) that supports fault-tolerance. Instead of blowing up the state space of ex-
isting state-based models – like Alur-Dill Timed Automata [2], Lamport’s TLA
[63], Timed IO Automatons by Keynar et al. [55], discrete abstractions for hybrid
systems [3], or state-space-based control theory [64] – with error states and/or
using non-determinism or probabilistic state transitions for modeling faults, it ad-
vocates the use of solely trace-based models, which focus on the externally visible
behavior of a circuit only.

Examples of earlier trace-based approaches are Ebergen’s trace theory for
clockless circuits [37] and Broy and Stølen’s FOCUS [12]. In both approaches,
a module is specified exclusively in terms of the output signal traces that it may
exhibit in response to a given input signal trace, without referring to internal state.
The trace-based approach introduced in Dolev et al. [27] allows to express tim-

BEATCS no 116

122

ing conditions via (dense) real-time constraints relating input/output signal tran-
sitions, and supports fault-tolerance by allowing (sub-)modules to behave erro-
neously, i.e., deviate from their specified behavior according to some fault model
(e.g. Byzantine behavior [86]). It provides concepts for expressing the composi-
tion and implementation of circuits by other circuits, which also allow to rigor-
ously specify self-stabilizing [33] circuits. The model has been used to precisely
specify the modules of the Byzantine fault-tolerant and self-stabilizing FATAL
clock generation algorithm, which will be described in Section 3.1.4, at a level of
abstraction that allows for a direct implementation in hardware.

Compared to state-based approaches, it may be more involved to apply a be-
havioral approach, in particular, in settings like fully synchronous or fully asyn-
chronous systems, where state-space-based descriptions are reasonably simple.
After all, in general, it is even difficult to decide whether behavioral specifica-
tions match at interface boundaries [21]. On the other hand, it is much better
suited for systems with a complex evolution of the system state over time and/or
in which the internal state of system components is too complex or even unknown,
which is typically the case for self-stabilizing algorithms. Another attractive side-
effect is the inherent support of hierarchical design using (pre-existing or yet to
be built) building blocks, without the need to define interface state machines. One
can easily build a system and/or its model in a modular way, by composing sub-
components and/or their models, whose implementation can be provided (typi-
cally by different designers) and verified at a later stage.

Nevertheless, it is understood that behavioral constraints translate into appro-
priate constraints on the modules’ states implicitly. Although making this relation
explicit is not part of our modeling framework, this definitely is part of the effort
to implement a module and to prove that it indeed exhibits the specified behaviors.
The latter may of course involve any appropriate technique, e.g. timed automata
[2] and related verification techniques [1].

Open problems. Although the model of [27] explicitly avoids metastable up-
sets in fault-free executions, it cannot deal explicitly with metastable upsets and
metastability propagation. The work by Ginosar [51], which provides several
examples of synchronizer circuits where current prediction models drastically un-
derestimate the probability of metastable upsets, shows the importance for such
an extension. The challenge here is to bound metastability resolution times and
propagation effects, potentially in a probabilistic manner, to be able to quantify
upset probabilities and stabilization times.

Besides the need to extend the model [27] by standard tools like simulation
relations and abstractions, the integration with a faithful digital circuit model like
[82] remains a challenge. The ultimate goal is a comprehensive modeling frame-

The Bulletin of the EATCS

123

work for modern digital circuits, which facilitates (semi-automated) formal veri-
fication of circuits, correctness proofs and accurate performance analysis as well
as design parameter synthesis, ideally via supporting tools.

3 Generating and Distributing a System Clock

Simulating a synchronous system in the presence of both transient and perma-
nent failures is a challenging task. The traditional approach to generating and
distributing the clock signal, a clock tree [43], follows the master/slave principle:
the signal of a single quartz oscillator is distributed to all logical gates by means
of a tree topology. This approach is trivially self-stabilizing, but it must be aban-
doned due to the possibility of permanent faults; a failure of the tree’s root (i.e.,
the oscillator) or a node close to the root breaks the entire system.

In the severe failure model considered in this article, this fundamental prob-
lem was first studied by S. Dolev and Welch [35, 36]. It was motivated by the
observation that the assumption of only a fraction of the node being affected by
transient faults is too optimistic for the typically long mission times (e.g., space
missions) during which clock synchronization has to be provided.

The ultimate goal is to simulate synchronous rounds that are consistently la-
beled (at all correct nodes) by a round counter modulo C ≥ 2, where C usually is
fairly large. Dolev and Welch give a protocol that stabilizes in exponential time.
While this does not seem very exciting at first glance, at this time the big surprise
was that the problem was solvable at all!

For the sake of clarity of presentation, let us break down the task into three
subproblems:

1. Pulse Synchronization: Simulating unlabeled synchronous rounds in a sys-
tem with bounded communication delay and local clocks of bounded drift.

2. Counting: Computing consistent round counters in a synchronous system
with unnumbered rounds.

3. Clock Distribution: Distributing pulses and/or round numbers efficiently,
i.e., using a low-degree topology.

We remark that it is not imperative to follow this structure when solving the prob-
lem. However, the discussion will reveal why this is a fairly natural decomposition
of the task.

BEATCS no 116

124

3.1 Pulse Synchronization
In the pulse synchronization problem, we are given a fully connected system of
n nodes, f < n/3 of which may be Byzantine faulty. Nodes communicate by
messages that are delayed between 0 and 1 time units,2 which also accounts for
any delay incurred by local computations. Each node i ∈ {1, . . . , n} is equipped
with a local clock Ci : R+

0 → R of bounded drift, i.e.,

∀t > t′ : t − t′ ≤ Ci(t) −Ci(t′) ≤ ϑ(t − t′)

for a constant ϑ > 1. As we require self-stabilization, the initial states of the
nodes, including the values of their local clocks, are arbitrary.

Pulse synchronization now requires nodes to regularly trigger pulses in a syn-
chronized way. For a time T ≥ 0, denote by t(k)

i and i ∈ {1, . . . , n}, k ∈ N, the time
when node i generates its kth pulse at or after time T (we omit T from the nota-
tion). A pulse synchronization algorithm of precision ∆, accuracy bounds Amin,
Amax, and stabilization time S satisfies in any execution that there is some time
T ≤ S so that

precision: ∀i, j, k : |t(k)
i − t(k)

j | ≤ ∆ and

accuracy: ∀i, k : Amin ≤ |t
(k+1)
i − t(k)

i | ≤ Amax .

Here it is implicit that indices i, j refer to correct nodes only, as we cannot make
any guarantees on Byzantine nodes’ behavior. Note that typically Amin will be a
given parameter and the goal is to minimize Amax − Amin as a function of Amin (or
vice versa). Due to the drifting local clocks and delayed messages, indistinguisha-
bility arguments show that always ∆ ≥ 1 and Amax ≥ max{ϑAmin, 1}.

3.1.1 Approaches by the Distributed Community

The results from [36] prompted the question whether pulse synchronization could
also be solved efficiently, i.e., with a small stabilization time. In a series of papers,
the stabilization time was first reduced to polynomial [20] and then linear [18, 29]
in n.3 These works also revealed that randomization is not essential to solve the
problem: the latter algorithm is based on running multiple instances of determin-
istic consensus concurrently.

Together, these results indicated that the problem could admit solutions suit-
able for hardware implementation. However, none of the above algorithms was a

2This is a normalization. In all existing algorithms, the maximum delay affects stabilization
times, etc. linearly.

3Linear stabilization time was claimed earlier [19], but the algorithm contained non-trivial
errors that were fixed in [18].

The Bulletin of the EATCS

125

good candidate, due to unacceptable stabilization time [36], the need for highly
accurate local clocks [20], or message size Θ(n log n) and too involved local com-
putations [18, 29]. Malekpour provides an alternative linear-time solution [68, 69]
with small messages and simple computations, but uses a simplified model (in par-
ticular, it is assumed that ϑ = 1, i.e., there is no clock drift).

3.1.2 Approaches by the Hardware Community

Frequently, designers of fault-tolerant architectures consider the clocking mecha-
nism sufficiently reliable and hence do not add any measures for fault-tolerance.
The typical rationale is that a clock distribution network has very strong drivers
and is therefore not susceptible to transient disturbances. Permanent defects, on
the other hand, will make the system stop operation completely, which may be
considered safe in some cases. In reality, however, the clock distribution infras-
tructure is already so complicated that a “partial” defect can easily occur (imagine
a driver responsible for a sub-net failing). Moreover, considering that the clock
tree is virtually always the most widespread network, showing the highest activity
(in terms of transition frequency), it is not so clear why it should not be affected
from transient faults as well. These arguments become even more dominant when
talking about requirements of, e.g., a failure probability smaller than 10−9 per
hour. For such a degree of reliability, it is unrealistic to assume that the system
can be just “tried out” before being used, and the cost associated with a design
error can be extremely high.

As a single clock source like a crystal oscillator constitutes a single point of
failure, practitioners aiming for fault-tolerant clocking often turn to the alternative
of using multiple clock sources. While this approach is indeed capable of solv-
ing the fault-tolerance issue, it at the same time introduces a new problem, namely
that of synchronization. In the single-clock case we have a single timing domain to
which all activities are synchronized.4 Within this synchronous domain it is easy
to perform communication based on known time bounds, to establish a clear or-
dering/precedence of events, and to avoid metastability caused by setup/hold time
violations (i.e., too short input pulses) at storage elements. When using multiple
clock sources, we immediately leave this safe area. It does not matter whether
we use multiple clocks with the same nominal frequency or not – the only im-
portant distinction is whether the clocks are correlated (i.e., originate at the same
source) or uncorrelated. In the latter case, one can never reason about their relative
phase (which is essential for avoiding setup/hold time violations), which makes
it mandatory to use explicit synchronizers that can, beyond causing performance

4The difficulty of providing this time information with the required phase accuracy all over
a large system is, besides the fault-tolerance aspect, a key reason why this globally synchronous
design paradigm is being challenged.

BEATCS no 116

126

and area overheads, never attain complete protection from metastable upsets in
the general case [60, 71].

With respect to the precision of existing approaches to synchronization, dis-
tinguishing “microticks” and “macroticks” has become common. Ultimately, this
boils down to dealing with a large value of ∆ by dividing the clock frequency
(which is between 1/Amax and 1/Amin in our model) with respect to communica-
tion, so that ∆ � 1/Amin. In other words, slowing down communication suffi-
ciently, one can make the system work despite large ∆. However, this is obvi-
ously detrimental to performance, and one hence must strive for minimizing ∆.
The software-based clock synchronization mechanisms found in practical appli-
cations like the Time-Triggered Protocol TTP [61] or FlexRay [42, 45] rely on
adjusting local microtick counters appropriately to attain synchrony on macrotick
level. However, both protocols are, essentially, variants of synchronous approxi-
mate agreement [32]. Hence, they require pre-established synchrony for correct
operation, implying that they are not self-stabilizing.

Modern application-specific integrated circuits (ASICs) are typically com-
posed of many internally synchronous function blocks that “solve” the issue of
synchronization in an even simpler way. Instead of relying on any kind of syn-
chronization between different clock domains, these blocks communicate with-
out making any assumptions on timing (one needs still to avoid buffer overflows,
however). This paradigm is called globally asynchronous locally synchronous
(GALS) in the literature [14]. The intention here is mainly to mitigate the clock
distribution problem, but this also provides a foundation for establishing fault-
tolerance. Due to the consequent existence of multiple clock domains, such ar-
chitectures feature copious amounts of synchronizers (to avoid metastability) and
arbiters (to establish precedence). This works in practice, but comes with the as-
sociated performance penalties. Moreover, due to the current lack of tractable
models accounting for metastability, there is no satisfying answer to the question
“how many synchronizers suffice?”

What is needed to get rid of the performance and area overheads incurred by
the GALS approach is correlated clocking all over the system, even if the phase
is not perfectly matched in all places. Such clocks are called mesosynchronous.
Probably the most natural implementation of such a distributed correlated clock
source is a ring oscillator. The underlying principle is to use the delay along a
cyclic path (gates plus interconnect) as a time reference. More specifically, such
a path is implemented in an inverting fashion (odd number of inverting elements),
such that the level is periodically inverted with the loop delay defining the half
period of the oscillation. Examples of such approaches are the circuits presented
by Maza et al, [77] and Fairbanks et al. [38]. They are ring oscillators in that they
both exploit the fact that a circle formed by an odd number of inverters will oscil-
late, and the frequency of the produced clock is determined by circuit delays. In

The Bulletin of the EATCS

127

contrast to the simple basic ring oscillator scheme, multiple “rings” are connected
to form meshes of inverters that distribute “clock waves”, thereby also generating
new ones. In forming the mesh, output signals of inverters are joined by simply
hardwiring them and forked by wire forks.

While these approaches can indeed provide a fast clock that is perceived as
“correlated” all over the system, the clock is still not intended and claimed to be
fault-tolerant by the authors.

3.1.3 DARTS

One may view the above hardware realizations of distributed clock generators
as very simple distributed algorithms, in which the algorithmic steps are deter-
mined by the laws of superposition at the merging points. From a theoretical
point of view, this results in extremely limited options for the designer of the al-
gorithm. Thus, it is quite tempting to try out more sophisticated algorithms and
prove strong(er) fault-tolerance properties. To this end, a suitable algorithm must
be chosen and the hardwiring be replaced by an implementation based on logic
gates.

This idea was at the heart of the DARTS project [50]. The overall goal of the
project was to implement the fault-tolerant synchronization algorithm by Srikanth
and Toueg [90] in hardware. The pseudo-code of the algorithm, given in Algo-
rithm 1, is executed at each node of a fully connected network of n > 3 f nodes,
where f is the number of Byzantine faulty nodes it can tolerate. The code is
extremely simple, yet one should not be fooled: its implementation in hardware
required to overcome non-trivial obstacles [44].

Algorithm 1 Pseudo-code of a node to synchronously generate round(k) mes-
sages.
Upon bootup

1: k ← 0;
2: broadcast round(0);

Upon reception of a message
3: if received round(`) from at least f + 1 distinct nodes with ` > k then
4: broadcast round(k + 1), . . . , round(`);
5: k ← `;
6: end if
7: if received round(k) from at least 2 f + 1 distinct nodes then
8: broadcast round(k + 1);
9: k ← k + 1;

10: end if

BEATCS no 116

128

According to the algorithm’s assumptions, a fully connected communication
structure was established, which also provides the highest possible degree of fault-
tolerance. The implementation of the merging points, i.e., the actual algorithm,
was done in clockless logic. This avoids the issue of having to synchronize the
local clock source to the correlated “global” time provided by the algorithm (oth-
erwise one would have to rely on synchronizers again), but in turn requires a care-
ful algorithmic design and timing analysis of the entire system [49]. Interestingly,
this means that the only timing sources in DARTS are lower and upper bounds
on wire delays, without any formal local clocks. Thus, it is quite close in spirit
to the solutions inspired by ring oscillators discussed previously. The hardware
implementation of a DARTS node is shown in Figure 2.

The implementation of these hardware nodes, which were called “tick genera-
tion algorithm (TG-Alg) nodes,” was a very insightful example for how difficult it
is to map algorithms that were, at best, developed with a software implementation
in mind, to hardware. Assumptions that seem simple at the level of an algorithm
may turn out extremely painful when having to be realized in hardware. Exam-
ples here are the existence of unbounded counters (such as "k" in Algorithm 1),
the request for mutual exclusive execution of tasks, the generous use of operators
(multiplication is expensive to implement in hardware), etc.

The identification of relevant timing constraints was a challenging issue in
the design of the DARTS prototype ASIC as well. Recall that metastability can,
in principle, not be avoided (in the general case) for uncorrelated clock sources.
However, one can show that in fault-free executions, metastability does not oc-
cur. This is not straight-forward due to the following cyclic dependencies: Under
the assumption of proper function of the algorithm one can rely on its guaranteed
properties (e.g. precision) when establishing the timing closure to avoid setup/hold
time violations. In turn, the freedom from setup/hold time violations is a prereq-
uisite for correct functionality.5 Note that such timing guarantees are essential,
as metastability, a possible result of setup/hold violations, results in unspecified
behavior not covered by the analysis of the algorithm.

Several key techniques were applied for overcoming the above challenges:

• the use of difference counters for the cycle number, thus mitigating the prob-
lem of unlimited counting;

• the implementation of these counters through Muller pipelines, thus avoid-
ing metastability issues that would arise from concurrent increase and de-
crease operations of the same counter;

5For DARTS, “only” an inductive argument was required. When turning to self-stabilization,
establishing that the most basic timing assumptions eventually hold tends to be the most difficult
aspect of the reasoning.

The Bulletin of the EATCS

129

C

C

C

C

Reset

Rremote,in

C

C

C

C

Rlocal,in

NAND2

NOR2

NOR1

NAND3

NAND4

NAND5

GEQe

GR
e

GEQ
o

GR
o

Counter Module 3f+1 of 3f+1

Local Pipe
Diff-

Gate
Remote Pipe

Pipe Compare Signal Gen.

...

...

≥2f+1 ≥2f+1

≥f+1 ≥f+1

...
...

...
...

Threshold Gates

GEQ
e

GR
e

GEQ
o

GR
o

...

3f+1

...

Ctop

LocalClk

s0

s1

i0 i1 i2 i3 i4 i5 i6
i7 i8 i9

Set

RemoteClk

r s

r

s

r

s

r

s

r

s

r

s
r

s

r

s

r

s

r s

Pipe Compare Signal Gen.

Diff-Gate

Local PipeRemote Pipe

Counter Module 1 of 3f+1

C

Tick

Generation

r s

LocalClk_self

Figure 2: Hardware implementation of a DARTS node in clockless logic.

• a careful mix of event-based and state-based logic;

• the separated treatment of rising and falling signal edges in order to sub-
stantially relax the timing constraints.

The project succeeded in developing a working prototype chip, demonstrating
that it was indeed feasible to use a distributed algorithm for generating a system-
wide clock and prove that its implementation provides respective guarantees:

• bounded precision and accuracy,

• tolerance of Byzantine faults, and

• use of standard hardware libraries, with one exception: a C-Element must
be added.

While the third property might seem like an oddball here, one should be aware
that novel circuit components need to be designed on transistor level, layouted,
characterized and validated (by simulation) as well. The existing standard libraries
had to be augmented by a C-Element for DARTS.

BEATCS no 116

130

While DARTS constituted a breakthrough in terms of bringing theory and
practice closer to each other, the resulting solution exhibits a number of deficien-
cies calling for further research:

• full connectivity between nodes;

• lack of recovery from transient faults: even if only a minority of nodes
undergoes transient faults at any time, there is no mechanism to recover to
a correct state;

• too small frequency, limited by the propagation delay of a long loop;

• non-trivial initialization due to fairly strict demands on initial synchrony.

3.1.4 FATAL

In light of the theoretical results from Section 3.1.1 and the proof-of-concept that
Byzantine fault-tolerance is viable in low-level hardware provided by DARTS,
the obvious next question is whether self-stabilization can be added on the circuit
level, too. This was answered affirmatively in [26].

The FATAL algorithm builds on the idea of adding a recovery mechanism to a
pulse generation mechanism based on threshold voting. On an abstract level, the
FATAL algorithm can be viewed as an implementation of the Srikanth-Toueg al-
gorithm (c.f., Algorithm 1) that avoids having to keep book on tick/pulse numbers
by making sure that the time between pulses is sufficiently large: instead of broad-
casting round(k) messages, we simply broadcast round messages in Algorithm 1.
Another interpretation is that of having a DARTS system that runs slow enough
to operate with “pipes of length one”, i.e., simple memory cells.

The basic principle is illustrated in Figure 3, depicting a state machine each
node runs a copy of. Circles represent states, arrows state transitions that happen
when the condition next to the arrow is satisfied, and the box with “propose” on
the state transition from pulse to ready indicates that the nodes’ memory flags are
reset during this state transition. Each node continuously broadcasts whether it is
in state propose or not, and when a node perceives another in this state according
to this signal (including itself), its respective memory flag is set (i.e., each node
has one memory cell for each node, including itself). The condition “3ϑ local time
passed” means that node i will transition from pulse to ready at the time t when
its local clock reads Ci(t) = Ci(t′) + 3ϑ, where t′ is the time when it switched to
pulse. Nodes generate a pulse when switching to pulse.

It is not hard to verify that, if all nodes start in ready with their memory flags
cleared, this algorithm will solve pulse synchronization with ∆ = 2, Amin = 3+3ϑ,
and Amax = 3+3ϑ+3ϑ2. By making nodes wait longer in one of the transitions by

The Bulletin of the EATCS

131

pulse

ready

propose

3ϑ local time passed

3ϑ2 local time passed
or ≥ f + 1 propose

≥ n − f propose

propose

Figure 3: Simple pulse synchronization requiring consistent initialization.

ϑx local time, we can actually have Amin = 3+3ϑ+ x and Amax = 3+3ϑ+3ϑ2 +ϑx,
for any x ≥ 0, i.e., Amax → ϑAmin for x→ ∞.

We believe that the recovery mechanism developed for FATAL is a potential
key building block of further improvements in the future. In [26], the above basic
algorithm is modified so that the task of “stabilizing” the routine, i.e., getting it
into a (global) state as if it had been initialized correctly, is reduced to generat-
ing a single pulse by an independent algorithm. More precisely, all correct nodes
need to trigger a “start stabilization” event within a reasonably small time win-
dow and then not trigger another such event for Θ(1) time in order to guarantee
stabilization.

The easier task of generating a single “helper pulse” for the purpose of recov-
ery from transient faults is then solved by relying on randomization. The solution
used in [25] generates such a pulse with probability 1−2−Ω(n) within O(n) time, re-
sulting in an overall stabilization time of Θ(n). Hence, the algorithm matches the
best known stabilization time of O(n). The improvement lies in the communica-
tion complexity and the amount of local computations: Apart from a few memory
flags for each other node, each node runs a state machine with a constant number
of states; each node continuously broadcasts only a few bits about its own state.
Moreover, the algorithm can operate with arbitrary values of ϑ, permitting to use
very simple oscillators as local clock sources.

In [25], the approach is implemented and evaluated in hardware. The experi-
ments confirm the theoretical results from [26]. However, the algorithm cannot be
used for clocking as-is, for several reasons:

• The algorithm generates pulses every Θ(1) time, but the involved constants
are impractically large. Naive application of the approach would result in

BEATCS no 116

132

slowing down systems by several orders of magnitude.

• The pulses are anonymous, i.e., the counting problem discussed in the next
section needs to be solved.

• The system is fully connected, which is infeasible in large circuits.

These issues will be discussed next.

3.2 Counting
Once pulse synchronization is solved, it can be used to simulate synchronous
rounds: One adjusts the accuracy lower bound Amin such that it allows for the
maximal sum of the communication delay between neighbors, the local compu-
tations for a round, and a safety margin proportional to ∆ (recall that a pulse is
not issued at all nodes precisely at the same instant of time). However, due to
the strong fault model, it is non-trivial to achieve agreement on a round counter.
Round counters are highly useful for, e.g., applying pre-determined time division
multiple access (TDMA) schemes to shared resources (memory, communication
network, etc.) or scheduling synchronized operations (measurements, snapshots,
etc.) that are to be executed regularly.

We will now discuss how a self-stabilizing round counter can be constructed in
a synchronous system with f < n/3 Byzantine faults. The problem of C-counting,
where C is an integer greater than 2, is formalized as follows. In each round r ∈ N,
each node i outputs a counter ci(r) ∈ {0, . . . ,C − 1}. The algorithm stabilizes in
S ∈ N rounds, if for all r ≥ S we have

agreement: ∀i, j : ci(r) = c j(r) and

counting: ∀i : ci(r + 1) = ci(r) + 1 mod C .

In this subsection, the discussion will be more technical, with the goal of
illustrating how the fault-tolerance techniques that have been developed by the
distributed computing community are canonical tools for designing fault-tolerant
algorithms in hardware. We remark that the inclined reader should feel free to
skip the technical proofs, as they are not essential to the remaining discussion in
this article.

3.2.1 Equivalence to Consensus

The task of (binary) consensus requires that, given an input bi ∈ {0, 1} at each node
at the beginning of round 1, each correct node computes an output oi satisfying

agreement: ∀i : oi = o for some o ∈ {0, 1} (we refer to o as the output),

The Bulletin of the EATCS

133

validity: if ∀i : bi = b then o = b, and

termination: all (correct) nodes eventually set their output (exactly once)
and terminate.

In practice, one usually requires explicit bounds on when nodes terminate. By an
R-round consensus algorithm, we will refer to an algorithm in which all correct
nodes terminate by the end of round R.

The counting problem is equally hard as consensus with respect to asymptotic
time complexity. We show this for deterministic algorithms and binary consensus
algorithms here, but extensions to non-binary consensus and randomized algo-
rithms are straightforward.

Lemma 3.1 (Counting solves consensus). Given an algorithm for C-counting sta-
bilizing in R rounds, binary consensus (with f < n/3 Byzantine nodes) can be
solved in R rounds.

Proof. Denote by x(0) and x(1) state vectors such that the counting algorithm
would properly count starting from 0 and 1, respectively (regardless of the subset
of faulty nodes). Such states must exist, because after stabilization the algorithm
will count modulo C and Byzantine nodes may pretend correct operation to avoid
detection until after stabilization. Given an input vector b ∈ {0, 1}n, initialize each
(correct) node i with state xi(bi) and run the algorithm for R rounds. Then each
node outputs ci(R) − R mod 2.

Clearly, this algorithm terminates in R rounds and, by the agreement property
of the counting protocol, all nodes output the same value. Hence it remains to
show that this output value is valid, i.e., equals b if bi = b for all correct nodes.
This follows from the choice of x(0) and x(1) and the counting property, which
implies that, for all correct nodes i, ci(R) = R mod C if b = 0 and ci(R) = R +

1 mod C if b = 1. �

The other direction was shown in [30]. We present a simpler variant in the
following lemma. It makes use of consensus for non-binary values, i.e., bi, oi ∈

{0, . . . ,C − 1} (this case can be reduced to binary consensus in a straightforward
manner).

Lemma 3.2 (Consensus solves counting). Given a synchronous consensus algo-
rithm for inputs 0, . . . ,C−1 terminating in R rounds that tolerates f < n/3 Byzan-
tine nodes, C-counting can be solved with stabilization time O(R).

Proof. Given the consensus algorithm, we solve C-counting as follows. In each
synchronous round, we start a new consensus instance that will generate an output
value ci(r + R) at each node i exactly R rounds later (which will double as node

BEATCS no 116

134

node 2

node 1

3

0

r4

1

0

r4

0

0

r4

0

0

r4

0

0

r3

0

1

r3

0

2

r3

0

3

r2

0

3

r2

0

3

r2

0

3

r2

3

0

r4

3

0

r4

3

0

r4

0

0

r4

o

input

rule

1

4

r1

2

5

r1

3

6

r1

0

0

r4

0

0

r4

0

0

r3

0

1

r3

0

2

r3

0

3

r2

0

3

r2

0

3

r2

3

0

r4

3

0

r4

3

0

r4

0

0

r4

o

input

rule

agreement on o(r)

agreement on input(r) and applied rule

o(r) = input(r −R)

Figure 4: Part of an execution of two nodes running the C-counting algorithm
given in the proof of Lemma 3.2, for C = 8 and R = 3. The execution progresses
from left to right, each box representing a round. On top of the input field the
applied rule (1 to 4) to compute the input is displayed. Displayed are the initial
phases of stabilization: (i) after R rounds agreement on the output is guaranteed
by consensus, (ii) then agreement on the input and the applied rule is reached, and
(iii) another R rounds later the agreed upon outputs are the agreed upon inputs
shifted by 3 rounds.

i’s counter value). Note that, while we have no guarantees about the outputs in
the first R rounds (initial states are arbitrary), in all rounds r ≥ R all correct nodes
will output the same value o(r) = oi(r) (by the agreement property of consensus).
Hence, if we define the input value Fi(r) of node i as a function of the most recent
O(R) output values at node i, after O(R) rounds all nodes will start using identical
inputs F(r) = Fi(r) and, by validity of the consensus algorithm, reproduce these
inputs as output R rounds later (cf. Figure 4). In light of these considerations, it
is sufficient to determine an input function F from the previous O(R) outputs to
values 0, . . . ,C − 1 so that counting starts within O(R) rounds, assuming that the
output of the consensus algorithm in round r + R equals the input determined at
the end of round r.

The Bulletin of the EATCS

135

nodes 1 & 2

0

0

r4

0

0

r3

0

1

r3

0

2

r3

0

3

r2

1

4

r2

2

5

r2

3

6

r1

4

7

r1

5

0

r1

6

1

r1

7

2

r1

0

3

r1

1

4

r1

2

5

r1

o

input

rule

counting correctly modulo 8

Figure 5: Extension of the execution shown in Figure 4. Nodes have already
agreed upon inputs and outputs so that the latter just reproduce the inputs from R
rounds ago. The rules now make sure that the nodes start counting modulo 8 in
synchrony, always executing rule 1.

We define the following input function, where all values are taken modulo C:

input(r) :=

c + R if (o(r − R + 1), . . . , o(r)) = (c − R + 1, . . . , c)

x + R if
(o(r − 2R + 1 − x), . . . , o(r)) = (0, . . . , 0, 1, . . . , x)
for some x ∈ {0, . . . ,R − 1}

x if
(o(r − R + 1 − x), . . . , o(r)) = (0, . . . , 0)
for maximal x ∈ {0, . . . ,R − 1}

0 else .

In the setting discussed above, it is straightforward to verify the following proper-
ties of input:

• Always exactly one of the rules applies, i.e., input is well-defined.

• If the outputs counted modulo C for 2R consecutive rounds, they will do so
forever (by induction, using the first rule); c.f. Figure 5.

• If this does not happen within O(R) rounds, there will be R consecutive
rounds where input 0 will be used (by the third and the last rule), c.f. Fig-
ure 5.

• Once R consecutive rounds with input 0 occurred, inputs 1, . . . , 2R will be
used in the following 2R rounds (by the second and third rule).

• Finally, the algorithm will commence counting correctly (by the first rule).

Overall, if each node i computes its input Fi(r) from its local view of the previous
outputs using input, the algorithm will start counting correctly within S ∈ O(R)
rounds. �

These two lemmas imply that there is no asymptotic difference in the round
complexity of consensus and the stabilization time of counting. However, note

BEATCS no 116

136

that the conversion of a consensus algorithm into a counting algorithm given by
Lemma 3.2 is very “lossy” in terms of communication complexity and computa-
tional efficiency, as R instances of consensus run concurrently! Hence, the main
question is whether there are fast solutions to counting that are efficient in terms
of communication and computation as well.

3.2.2 Counting Using Shared Coins

The pulse synchronization algorithm by S. Dolev and Welch [36] is conceptually
based on a counting algorithm given in the same article, yielding an exponential
time randomized solution.

This was improved by Ben-Or et al. [9]. We explain a simpler variant of the
algorithm here. The solution is based on shared coins. A (weak) shared coin
guarantees that there are probabilities p0, p1 > 0 so that with at least probability
p0, all correct nodes output 0, and with at least probability p1, all correct nodes
output 1. We call p := min{p0, p1} the defiance of the shared coin. Moreover,
we require that the value of the coin is not revealed before the round in which
the outputs are generated, so that faulty nodes cannot exploit this knowledge to
prevent stabilization.

Observe that we neither require p0 + p1 = 1 nor that all correct nodes always
output the same value. In particular, a trivial shared coin with defiance 2−n is given
by each node flipping a coin independently. The algorithm from [36] essentially
makes use of this trivial shared coin, which results in its expected exponential
stabilization time.

The first step of the algorithm from [9] is to solve 2-counting.

Lemma 3.3 (2-counting from shared coin). Given a stream of weak shared coins
with constant defiance, 2-counting can be solved with constant expected stabiliza-
tion time.

Proof. In each round r, each node i

1. broadcasts ci(r);

2. if it received at least n− f times value ci(r)− 1 mod 2 in round r − 1, it sets
ci(r + 1) := ci(r) + 1 mod 2; and

3. otherwise, ci(r + 1) is set to the output of the shared coin at i in round r.

Before we prove the claim, note that Step 2 depends on messages that were
broadcasted in round r − 1 instead of messages broadcasted in step 1 during the
same round r. The reason for this is to avoid that the faulty nodes exploit so-
called rushing: As the value of the coin for round r is revealed in round r, faulty

The Bulletin of the EATCS

137

nodes may exploit this information to affect the outcome of the broadcast (in terms
of what correct nodes observes) exactly so that in Step 3 the “wrong” action is
taken by correct nodes relying on the coin. By referring to the broadcast of the
previous round instead, the faulty nodes are forced to commit to an outcome of
the broadcast before the coin is revealed, making sure that with probability at least
p the “right” action is taken by correct nodes in Step 3.

To see that the algorithm indeed stabilizes, observe first that in cannot happen
that, in the same broadcast, a correct node sees value 0 at least n − f times and
another correct node sees value 1 at least n − f times: this implies that at least
n − 2 f correct nodes each have ci(r) = 0 and ci(r) = 1, respectively, but we have
only n − f < n − f + (n − 3 f) = 2(n − 2 f) correct nodes (here we used that
f < n/3). Assume that c ∈ {0, 1} is the unique value such that some node receives
c at least n − f times in round r − 1. If there is no such value, choose c arbitrarily.
With probability at least pc, all correct nodes set ci(r + 1) := c + 2 mod 2 =

c in round r. Similarly, in round r + 1 all nodes set ci(r + 2) to c + 1 mod 2
with probability at least p1−c. Once this happened, the clocks of correct nodes
will start counting deterministically, as always Step 2 will be executed. Hence,
the algorithm stabilizes with (independent) probability p0 p1 ≥ p2 every other
round. �

Once 2-counting is available, the generalization to C-counting is achieved by a
similar approach. The key difference is that we now use a two-round protocol con-
trolled by the output of the 2-counting algorithm to solve C-counting. We remark
that the algorithm essentially performs a gradecast ([40]) followed by achieving a
consistent choice with constant probability using the shared coin.

Lemma 3.4 (C-counting from shared coin and 2-counting). Given a stream of
weak shared coins with constant defiance and a 2-counter, C-counting can be
solved with constant expected stabilization time.

Proof. In each round r, each node i performs the following steps.

1. If the 2-counter reads 0:

(a) broadcast ci(r);

(b) if received value c , ⊥ at least n− f times, set helper variable hi(r) :=
c, otherwise hi(r) := ⊥;

(c) if bi(r−1) = 1 or the shared coin shows 1 at i in round r, set ci(r+1) :=
ci(r) + 1 mod C, and otherwise ci(r + 1) := 0.

2. If the 2-counter reads 1:

(a) broadcast hi(r − 1);

BEATCS no 116

138

(b) if received value c , ⊥ at least n− f times, set ci(r + 1) = c + 1 mod C
and bi := 1;

(c) else if received value c , ⊥ at least n − 2 f times, set ci(r + 1) =

c + 1 mod C and bi(r) := 0;

(d) else set ci(r + 1) := 1 and bi(r) := 0.

To see why this stabilizes with constant probability within O(1) rounds, observe
that the following holds once the 2-counter stabilized:

• If in an even round r all correct nodes agree on the clock value and have
bi(r − 1) = 1, the algorithm will count correctly forever.

• The same holds if they agree on the clock and the shared coin shows 1 at all
nodes in round r.

• As f < n/3, there can be at most one value c , ⊥ with correct nodes setting
hi(r) := c in an even round r.

• If any correct node i receives this unique value c at least n − f times in the
subsequent odd round r + 1, all correct nodes receive c at least n− 2 f times.
Hence, either it holds that (b) or (c) applies at all correct nodes or (c) or (d)
apply at all nodes.

• In the first case, all correct nodes have the same clock value. Hence, the
shared coin showing 1 in round r + 2 guarantees stabilization.

• In the second case, all correct nodes set bi(r + 1) := 0. Hence, if the coin
shows 0 at all nodes in round r+2, they all set ci(r+3) := 0 and, subsequently
ci(r + 4) := 1. If the coin shows 1 at all nodes in round r + 4, this implies
stabilization.

Hence, the algorithm stabilizes with (independent) probability min{p1, p0 p1} ≥ p2

within every 4 rounds once the 2-counter counts correctly. �

Composing the two algorithms yields a C-counter with expected constant sta-
bilization time. We stress the similarity of the routine to solutions to consensus
based on shared coins [88]; the ideas and concepts developed for consensus trans-
late directly to the counting problem, even if it might be harder in terms of the
required communication.

Unfortunately, this approach to solving counting suffers from the same prob-
lem as consensus algorithms based on shared coins: theoretically sound protocols
that generate shared coins based on the private randomness of the nodes are highly
expensive in terms of communication and computation.

The Bulletin of the EATCS

139

3.2.3 Constructing Large Counters from Small Counters

There are several techniques for constructing large counters from small coun-
ters, indicating that the key challenge is to obtain a 2-counter. One is given by
Lemma 3.4, which however necessitates the presence of a shared coin. Another
one is very basic, but inefficient time-wise, as C enters the stabilization time as a
factor.

Lemma 3.5 (C-counting from 2-counting [31]). Given a 2-counting algorithm
with stabilization time S , for any k ∈ Nwe can solve 2k-counting with stabilization
time 2kS and at most factor 2 more communication.

Proof. The proof goes by induction over k, the base case being covered by as-
sumption. For the step, we simply execute the 2-counting algorithm slower, by
performing one round when the 2k-counter switches to 0. This way, concate-
nating the clock bit of the slow 2-counter and the 2k-counter, we obtain a 2k+1-
counter. The stabilization time is 2kS for the slowed-down 2-counter plus the
stabilization time of the 2k-counter, yielding by induction a total stabilization time
of
∑k

l=1 2lS < 2k+1S . The communication bounds of the 2-counting algorithm
together with the slow-down yield the claim concerning the amount of communi-
cation.6 �

A simple variant on the theme achieves faster stabilization at the cost of in-
creased message size.

Lemma 3.6 (C-counting from 2-counting, faster stabilization). Assuming we are
given a 2-counting algorithm with stabilization time S , for any k ∈ N we can solve
2k-counting with stabilization time 2k + kS and at most factor k more communica-
tion.

Proof. The proof goes by induction over k, the base case being covered by as-
sumption. For the step, we execute another copy of the 2-counting algorithm with
a minor change: If the already constructed 2k-counter reads 0, we skip a round of
the 2-counting algorithm. Thus, the 2-counter will proceed by 2k − 1 mod 2 = 1
every 2k rounds. The 2k+1-counter is now given by the 2k-counter and an addi-
tional leading bit, which is the value the 2-counter had when the 2k-counter most
recently was 0. By the above considerations, the 2k+1-counter will count correctly
once (i) both counters stabilized and (ii) the 2k-counter had value 0 once after this
happened.

6Note that one can also ensure that the maximum message size does not increase by more than
factor 2, by shifting the communication pattern so that no more than 2 instances of the 2-counting
algorithm communicate in the same round.

BEATCS no 116

140

The stabilization time bound now follows: once the 2k-counter is correctly
operating, the 2-counter stabilizes within S +1 rounds, and the 2k-counter will be-
come 0 again within another 2k rounds; summation yields

∑k
l=0 2l +S < 2k+1 + (k +

1)S rounds for stabilization of the constructed 2k+1-counter. The communication
bound is trivially satisfied. �

Even if 2-counting can be solved efficiently, these techniques are slow if C is
large. Motivated by this issue, in [46] large clocks are constructed from small ones
by encoding clock values over multiple rounds. This enables to increase the clock
range exponentially. Specifically, the paper provides two main results. The first is
essentially a reduction to consensus (with only one instance running at any given
time), and it is similar to the approach taken in Lemma 3.4. The key changes are
the following:

1. To enable 1-bit messages, broadcasts of clock values are replaced by dlog Ce
rounds each in which the clock bits are transmitted sequentially.

2. Instead of relying on shared coins, nodes run an instance of consensus with
the variables bi determined in odd “rounds” as input. The output of the
consensus algorithm is used by all nodes to decide whether c (shifted by the
number of rounds passed) is the next clock value or 0.

3. In all other rounds, clock values are locally increased by 1 modulo C.

Due to the use of consensus, the correctness argument becomes simpler. If the
consensus algorithm outputs 1, there must be a node that used input 1 and there-
fore received n − f times c in the second broadcast. This implies that all nodes
received n − 2 f ≥ f + 1 times c and therefore can determine the new clock value.
Otherwise, the algorithm is certain to default to resetting clocks to 0.

This approach replaces the need for a shared coin with the need for an efficient
consensus algorithm and a sufficiently large counter. We instantiate the result for
the phase king protocol [10] in the following corollary.

Corollary 3.7 (Large counters from small counters and consensus [46]). Given a
C-counter for C ∈ O(n) sufficiently large, a 2Ω(C)-counter with stabilization time
O(n) can be constructed deterministically using 1-bit broadcast messages.

Note that one can combine this corollary with Lemma 3.5 or Lemma 3.6 to
construct large counters from 2-counters. In [46], a randomized alternative to
these lemmas is given that constructs larger counters from an O(1)-counter at
smaller overhead. Using either of the two lemmas to obtain the required O(1)-
counter, the following corollary can be derived.

The Bulletin of the EATCS

141

Corollary 3.8 (Large counters from 2-counters using randomization [46]). Given
a 2-counter, C-counting can be solved with expected stabilization timeO(n+log C)
and O(log∗C) broadcasted bits per node and round.

3.2.4 Counting from Pulse Synchronization

Ironically, the obstacle of solving 2-counting disappears if it is feasible to remove
one level of abstraction and exert some control over how (perfect) synchrony is
simulated. More concretely, in all existing pulse synchronization algorithms one
can increase Amin (the minimum time between consecutive pulses) at will, so that
Amax grows proportionally. In particular, this can be used to allow for more than
a single synchronous round to be simulated in between pulses. Initializing the
simple (non-self-stabilizing) pulse synchronization algorithm given in Figure 3
consistently, we thus can allow for sufficient time to generate a tunable number C
of “sub-pulses” before the next pulse occurs. Counting locally modulo C by re-
initializing the counter to 0 at each pulse and increasing it by 1 on each sub-pulse,
we can use the sub-pulses as round delimiters for simulating synchronous rounds
with a self-stabilizing C-counter that comes “for free”.

To be precise, this counter does not come entirely for free; apart from the addi-
tional logic, increasing Amin may also result in increasing the stabilization time of
the pulse synchronization algorithm. However, one can obtain a 2-counter or, in
fact, any O(1)-counter, without asymptotically affecting the stabilization time of
the underlying pulse synchronization algorithm. The techniques for constructing
larger counters based on small counters given in [46] then can take it from there.

From an abstract perspective, this can be seen as an implementation of the
Srikanth-Toueg algorithm [90] that counts only up to O(1) and then is restarted.
This approach is followed by FATAL+, an extended version of FATAL analyzed
in [26] and implemented and evaluated in [25]. Owing to the simplicity of the
algorithm given in Figure 3, the sub-pulses can actually be produced at a higher
frequency and with better precision than offered by the basic FATAL algorithm.

We remark that the method of coupling the two algorithms in FATAL+ may be
of independent interest. We expect that it can also be applied to couple FATAL
or FATAL+ to non-stabilizing pulse synchronization protocols based on approxi-
mate agreement, like the earlier discussed TTP and FlexRay protocols. This bears
the promise of obtaining a pulse synchronization protocol that (i) can run at even
higher frequencies (i.e., Amin is smaller) and (ii) achieves a precision in the order
of the uncertainty of the communication delay, i.e., if messages are underway be-
tween 1 − ε and 1 time unit, then ∆ ∈ O(ε). This is to be contrasted to algorithms
like DARTS or FATAL, which use explicit voting for resynchronization at each
pulse and therefore have ∆ ≥ 1 even if there is a lower bound on the communi-
cation delay. Note that the uncertainty of the communication delay is known to

BEATCS no 116

142

be a lower bound on the worst-case precision of any clock synchronization proto-
col [67], implying that ∆ ∈ Ω(ε) is unavoidable.

3.2.5 Constructing Counters from Scratch

Modifying the system on such a deep level as how the clock signal is provided may
not always be possible, e.g., when one designs a submodule in a larger circuit. In
this case, one may still have to solve 2-counting directly.

Recent research has started to tackle this issue. In [31], efficient solutions for
the special case of f = 1 are designed and proved optimal in terms of the trade-
off between stabilization time and number of local states using computer-aided
design. However, as the space of algorithms to consider is huge, this method does
not scale; even the case f = 2 is currently beyond reach.

In [66], a recursive approach is taken to avoid that each node participates in
Θ(R) concurrent instances of an R-round consensus algorithm used for establish-
ing agreement on clock values. The target is to, in each step of the recursion,
boost the resilience of the protocol to faults, while increasing neither the number
of required nodes nor the time for stabilization too much. The result is an algo-
rithm of slightly suboptimal resilience f < n1−o(1), but linear stabilization time
O(f) and only O(log2 n/ log log n + log C) state bits per node. These state bits are
broadcasted to all other nodes in each round. For deterministic algorithms, this
implies an exponential improvement in communication complexity as compared
to the solution from Lemma 3.2, since deterministic consensus algorithms satisfy
that R > f (see [41]).

To sketch the idea of the approach, consider a system of n nodes. Each node
i runs a 0-resilient Ci-counter (for some Ci we will determine shortly). This is
nothing but a local counter modulo Ci: it is increased in each round, and it works
correctly so long as i does not fail. We use these counters to let nodes deter-
mine temporary leaders that will assist with stabilization if required; once the
system is stabilized, the corresponding communication will be ignored. The cur-
rent leader’s local counter is used to provide a temporarily working counter to all
nodes. This counter is used to run an O(f)-round consensus algorithm, the phase
king protocol [10], to agree on the counter values. It is straightforward to show
that agreement cannot be destroyed by this mechanism once it is achieved, even if
the temporary counter produces garbage later on.

In short, this mechanism reduces the task to ensuring that eventually a correct
leader will emerge and persist for R ∈ O(f) rounds. We achieve this as follows:
Node 1 will cycle through all possible leaders, where it keeps “pointing” to the
same node for Θ(R) consecutive rounds. Node 2 does the same, albeit slower by a
factor of 2n. This guarantees that, for any other node j, nodes 1 and 2 eventually
consider it the leader for R consecutive rounds. We proceed inductively, slowing

The Bulletin of the EATCS

143

down the “leader pointer” of node j by a factor of (2n) j−1 compared to the one
of node 1. Clearly, eventually all correct nodes will point to a correct node for R
consecutive rounds.

The downside of this approach is that the stabilization time is exponential,
since the slowest pointer takes R · (2n)n rounds to complete a single cycle. Here
the recursion comes into play. Instead of using single nodes, on each level of
the recursion one groups the nodes into a small number k ∈ O(1) of clusters.
Each cluster runs an f -resilient counter that is used to determine to which leader
the node currently points. The “leaders” now are also clusters, meaning that the
slowest clock takes R · (2k)k ∈ O(R) rounds for a cycle. Now the same principle
can be applied, assuming that we can also convince correct nodes in blocks with
more than f faults to point to the “correct” leader the blocks with at most f faults
will eventually choose. Requiring that fewer than half of the k blocks have more
than f faults, this is ensured by an additional majority vote. The resilience of
the compound algorithm therefore becomes dk/2e(f + 1) − 1 (one fault less than
required to make half of the blocks contain f + 1 faults). Crunching numbers and
tuning parameters, one obtains the claimed result.

Maybe the most interesting aspect of this construction is its resemblance to
recursive approaches for improving the communication complexity of consensus
protocols [10, 15, 57]. The additional challenge here is the lack of a common
clock, which is overcome by relying on the guarantees from the lower levels to-
gether with the simple leader election mechanism explained above. From this
point of view, the construction can be interpreted as a natural generalization of
the recursive phase king algorithm given in [10]. Accordingly, one may hope that
also for counting, it is possible to achieve optimal resilience in a similar way.

3.3 Clock Distribution
All the algorithms so far assume full connectivity, which is unrealistic if the num-
ber of nodes is not quite small. In principle, one could seek for solutions to the
pulse synchronization and counting problems in low-degree topologies directly.
However, it is much easier to solve these tasks in a small, fully connected “core”
and then distribute the results redundantly using a sparse interconnection topol-
ogy. The advantage is that for the distribution problem, it now is sufficient to have
pre-defined master/slave relations, i.e., a pre-defined direction of propagation of
the clock signal throughout the system. This greatly simplifies the job, as it cir-
cumvents the need for reaching any sort of agreement: the clock information is
plainly dictated by the nodes further upstream.

When using a sparse network, we must also decrease our expectations in terms
of fault-tolerance. Solving clock synchronization (or consensus, for that matter)
in the presence of f faults requires minimum node degrees of 2 f + 1, as otherwise

BEATCS no 116

144

column

layer

i − 1 i i + 1

` − 1

`

` + 1

Figure 6: Node i in layer ` of a HEX grid and its incident links. The node prop-
agates a pulse when having received it from both nodes on the previous layer. If
one fails, the second signal is provided by one of its neighbors in the same layer.

0 2 4 6 8 10 12 14 16 18 0
10

20
300

4

8

12

16

20

24

28

column
layer

tr
ig
ge
r
ti
m
e
[d

+
]

Figure 7: Pulse propagation in HEX with a single Byzantine node. The figure
shows pulse trigger times of nodes in a grid: initially nodes (0 to 19) in layer 0
generate pulses in synchrony, feeding these pulses into the grid. The Byzantine
faulty node 19 in layer 1 generates a “ripple” in trigger times that is clearly visible
in the next layer, but smoothes out over the following layers.

The Bulletin of the EATCS

145

it may happen that a correct node does not have a majority of correct neighbors,
rendering it impossible to falsify a claim jointly made by its faulty neighbors [23].
Respecting this, we require only that, for a given parameter f , the system tolerates
up to f faulty nodes in the neighborhood of correct nodes.

Following these two paradigms – local fault-tolerance and directed clock prop-
agation – and requiring a “nice” interconnect topology (planarity, connections to
physically close nodes) led to HEX [24]. In a HEX grid, each node has 6 neigh-
bors arranged in a hexagon, and the clock information spreads along the layers
of the grid, cf. Figure 6. Nodes simply wait for the second signal indicating the
current clock pulse, where nodes in the same layer send redundant signals in case
one of the nodes in the preceding layer fails. Accordingly, a HEX grid tolerates
f = 1 local fault, while having small node degrees and a planar topology.7

In order to prove precision bounds for HEX, we assumed that communication
delays vary by at most ε � 1. Clearly, this implies that the precision cannot
deteriorate by more than ε per layer. Surprisingly, a much stronger bound of
1 + ∆0 + O(ε2W) can be shown on the precision of adjacent nodes, where ∆0

reflects the precision of the core and W is the width of the HEX grid.
This is an example of a non-trivial gradient property, a concept introduced by

Fan and Lynch [39]. Finding clock distribution mechanisms that are suitable for
hardware realization, fault-tolerant, and provide non-trivial gradient properties is
of great interest, as a strong gradient property enables adjacent chip components
to communicate at smaller delays in a synchronous, clock-driven fashion. In par-
ticular, it directly affects the time required to simulate a synchronous round and
hence the operational frequency of the entire system.

Unfortunately, the worst-case precision of HEX deteriorates by Θ(f) in the
presence of f faults, cf. Figure 7. While the simulations show that this is most
likely overly pessimistic [65], the adverse effects of even a single fault are prob-
lematic in comparison to the surprisingly good performance of the system in ab-
sence of faults. We hope that topologies that feature at least 2 f + 1 links to the
preceding layer will offer much better precision in face of faults; the idea is illus-
trated in Figure 8.

Open problems. In Section 3.2.2 we discussed efficient approaches to construct
2-counters from shared coins. While generating shared coins assuming Byzantine
failures is prohibitively costly in terms of communication, it is interesting whether
there are efficient shared coin protocols under weaker failure assumptions that are
realistic for the considered hardware setting.

Clearly, the search for clock distribution topologies that can be implemented

7Clearly, the principle can be generalized to larger values of f adding edges, but degrees in-
crease and planarity is lost.

BEATCS no 116

146

p
ro
p
a
g
a
ti
o
n

Figure 8: Local structure of a clock propagation approach similar too HEX. Using
three connections from the previous layer helps to further mitigate the effect of
faults on precision, as the redundant third clock signal does not propagate along a
longer path.

with a small number of layers, balanced link delays and sufficiently high degree
to tolerate more than 1 local node failure is of central interest. It is also not clear
of how to adapt the pulse triggering rules in these HEX-variants to obtain optimal
guaranteed precision bounds.

Improving the precision of fault-tolerant self-stabilizing approaches to clock-
ing is an important challenge to achieve utility in practice. As mentioned ear-
lier, it is promising to couple existing solutions with weak precision bounds to
algorithms based on approximate agreement to combine high precision and self-
stabilization.

Last but not least, an important question is how to verify the correctness of
designs prior to production. Striving for algorithms that are sufficiently simple
to be implemented in practice bears the promise of enabling formal verification
of (parts of) the resulting systems. Given that suitable models can be devised,
a grand challenge is the full verification of a fault-tolerant clocking mechanism
bottom to top, from gates and wires up to the synchronous abstraction.

4 Conclusion
Due to the continuously increasing scale and complexity of today’s VLSI circuits,
it becomes insufficient to ensure their reliability by fault mitigation techniques at
technological and gate level only, as manufactures will not be able to support the
combination of exponentially growing numbers of transistors and decreasing fea-

The Bulletin of the EATCS

147

ture size indefinitely. Error correction, on the other hand, is restricted to storing
information, neglecting the issue of dependable computation. Hence, one must
strive for algorithmic fault-tolerance above the gate level, but below the abstrac-
tion of a synchronous, computationally powerful machine.

The distributed computing community has developed many concepts and al-
gorithmic ideas that can be applied to VLSI circuits once we see them as what
they truly are: distributed systems in their own right. The main challenges are

• to adapt and extend the existing theory beyond the abstraction of computa-
tionally powerful nodes;

• to devise models of computation that account for faults and metastability in
a tractable manner;

• to come up with simple, yet efficient algorithms suitable for hardware im-
plementation; and

• to reason about their correctness in ways ensuring that produced chips will
work.

We believe that the examples given in this article demonstrate that the existing
techniques are essential tools in tackling these challenges. The task that lies ahead
is to fill the gap between fault-tolerance in theory and the design of practical,
dependable hardware.

References
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic Analysis of Hybrid Systems.
Theoretical computer science, 138(1):3–34, Feb. 1995.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[3] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstractions of hybrid
systems. Proceedings of the IEEE, 88(7):971–984, July 2000.

[4] J. H. Anderson and M. G. Gouda. A new explanation of the glitch phenomenon.
Acta Informatica, 28(4):297–309, 1991.

[5] P. J. Ashenden. The designer’s guide to VHDL, volume 3. Morgan Kaufmann, 2010.

[6] R. Baumann. Radiation-Induced Soft Errors in Advanced Semiconductor Technolo-
gies. IEEE Transactions on Device and Materials Reliability, 5(3):305–316, Sept.
2005.

BEATCS no 116

148

[7] S. Beer, R. Ginosar, J. Cox, T. Chaney, and D. M. Zar. Metastability challenges for
65nm and beyond; simulation and measurements. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1297–1302. IEEE, 2013.

[8] M. Bellido, J. Chico, and M. Valencia. Logic-timing Simulation And the Degrada-
tion Delay Model. Imperial College Press, 2006.

[9] M. Ben-Or, D. Dolev, and E. N. Hoch. Fast Self-Stabilizing Byzantine Tolerant
Digital Clock Synchronization. In 27th Symposium on Principles of Distributed
Computing (PODC), pages 385–394, 2008.

[10] P. Berman, J. A. Garay, and K. J. Perry. Bit Optimal Distributed Consensus, pages
313–321. Plenum Press, New York, NY, USA, 1992.

[11] G. Brown, M. Gouda, and C. lin Wu. Token systems that self-stabilize. IEEE
Transactions on Computers, 38(6):845–852, Jun 1989.

[12] M. Broy and K. Stølen. Specification and Development of Interactive Systems: Fo-
cus on Streams, Interfaces, and Refinement. Springer-Verlag New York, Inc., 2001.

[13] T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and arbiter
circuits. IEEE Transactions on Computers, 22(4):421–422, 1973.

[14] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis,
Stanford University, 1984.

[15] B. A. Coan and J. L. Welch. Modular Construction of a Byzantine Agreement Proto-
col with Optimal Message Bit Complexity. Information and Computation, 97(1):61–
85, 1992.

[16] C. Constantinescu. Trends and Challenges in VLSI Circuit Reliability. IEEE Micro,
23(4):14–19, 2003.

[17] J. Cortadella and M. Kishinevsky. Synchronous Elastic Circuits with Early Evalua-
tion and Token Counterflow. In 44th Annual Design Automation Conference (DAC),
pages 416–419, New York, NY, USA, 2007. ACM.

[18] A. Daliot and D. Dolev. Self-Stabilizing Byzantine Pulse Synchronization. Com-
puting Research Repository, abs/cs/0608092, 2006.

[19] A. Daliot, D. Dolev, and H. Parnas. Linear Time Byzantine Self-Stabilizing Clock
Synchronization. In 7th International Conference on Principles of Distributed Sys-
tems (OPODIS), volume 3144 of LNCS, pages 7–19. Springer Verlag, Dec 2003. A
revised version appears in Cornell ArXiv: http://arxiv.org/abs/cs.DC/0608096.

[20] A. Daliot, D. Dolev, and H. Parnas. Self-Stabilizing Pulse Synchronization Inspired
by Biological Pacemaker Networks. In 6th Symposium on Self-Stabilizing Systems
(SSS), pages 32–48, 2003.

[21] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed Interfaces. In Embedded
Software (EMSOFT), pages 108–122, 2002.

[22] A. Dixit and A. Wood. The Impact of New Technology on Soft Error Rates. In IEEE
Reliability Physics Symposium (IRPS), pages 5B.4.1–5B.4.7, Apr 2011.

The Bulletin of the EATCS

149

[23] D. Dolev. The Byzantine Generals Strike Again. Journal of Algorithms, 3:14–30,
1982.

[24] D. Dolev, M. Függer, C. Lenzen, M. Perner, and U. Schmid. HEX: Scaling Honey-
combs is Easier than Scaling Clock Trees. In 25th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2013.

[25] D. Dolev, M. Függer, C. Lenzen, M. Posch, U. Schmid, and A. Steininger. Rigor-
ously Modeling Self-Stabilizing Fault-Tolerant Circuits: An Ultra-Robust Clock-
ing Scheme for Systems-on-Chip. Journal of Computer and System Sciences,
80(4):860–900, 2014.

[26] D. Dolev, M. Függer, C. Lenzen, and U. Schmid. Fault-tolerant Algorithms for
Tick-generation in Asynchronous Logic: Robust Pulse Generation. Journal of the
ACM, 61(5):30:1–30:74, 2014.

[27] D. Dolev, M. Függer, M. Posch, U. Schmid, A. Steininger, and C. Lenzen. Rig-
orously modeling self-stabilizing fault-tolerant circuits: An ultra-robust clocking
scheme for systems-on-chip. Journal of Computer and System Sciences, 80(4):860–
900, 2014.

[28] D. Dolev, M. Függer, U. Schmid, and C. Lenzen. Fault-tolerant Algorithms for Tick-
generation in Asynchronous Logic: Robust Pulse Generation. Journal of the ACM,
61(5):30:1–30:74, Sept. 2014.

[29] D. Dolev and E. Hoch. Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model.
In 9th Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS),
volume 4280, pages 350–362, 2007.

[30] D. Dolev and E. Hoch. On Self-stabilizing Synchronous Actions Despite Byzantine
Attacks. In 21st Symposium on Distributed Computing (DISC), pages 193–207,
2007.

[31] D. Dolev, J. H. Korhonen, C. Lenzen, J. Rybicki, and J. Suomela. Synchronous
Counting and Computational Algorithm Design. In 15th Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), pages 237–250, 2013.

[32] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching Ap-
proximate Agreement in the Presence of Faults. Journal of the ACM, 33:499–516,
1986.

[33] S. Dolev. Self-Stabilization. MIT Press, 2000.

[34] S. Dolev and Y. Haviv. Self-stabilizing microprocessor: analyzing and overcoming
soft errors. IEEE Transactions on Computers, 55(4):385–399, April 2006.

[35] S. Dolev and J. L. Welch. Self-Stabilizing Clock Synchronization in the Presence
of Byzantine Faults (Abstract). In 14th Symposium on Principles of Distributed
Computing (PODC), page 256, 1995.

[36] S. Dolev and J. L. Welch. Self-Stabilizing Clock Synchronization in the Presence of
Byzantine Faults. Journal of the ACM, 51(5):780–799, 2004.

BEATCS no 116

150

[37] J. C. Ebergen. A formal approach to designing delay-insensitive circuits. Distributed
Computing, 5(3):107–119, 1991.

[38] S. Fairbanks and S. Moore. Self-Timed Circuitry for Global Clocking. In 11th
International Symposium on Asynchronous Circuits and Systems (ASYNC), pages
86–96, 2005.

[39] R. Fan and N. Lynch. Gradient Clock Synchronization. In 23rd ACM Symposium
on Principles of Distributed Computing (PODC), pages 320–327, 2004.

[40] P. Feldman and S. Micali. Optimal algorithms for Byzantine agreement. In ACM
Symposium on Theory of Computing, pages 148–161, 1988.

[41] M. J. Fischer and N. A. Lynch. A Lower Bound for the Time to Assure Interactive
Consistency. Information Processing Letters, 14:183–186, 1982.

[42] FlexRay Consortium et al. FlexRay communications system-protocol specification.
Version 2.1, 2005.

[43] E. G. Friedman. Clock Distribution Networks in Synchronous Digital Integrated
Circuits. Proceedings of the IEEE, 89(5):665–692, 2001.

[44] G. Fuchs and A. Steininger. VLSI Implementation of a Distributed Algorithm for
Fault-Tolerant Clock Generation. Journal of Electrical and Computer Engineering,
2011(936712), 2011.

[45] M. Függer, E. Armengaud, and A. Steininger. Safely Stimulating the Clock Syn-
chronization Algorithm in Time-Triggered Systems – A Combined Formal and Ex-
perimental Approach. IEEE Transactions on Industrial Informatics, 5(2):132–146,
2009.

[46] M. Függer, M. Hofstätter, C. Lenzen, and U. Schmid. Efficient Construction of
Global Time in SoCs despite Arbitrary Faults. In 16th Conference on Digital System
Design (DSD), pages 142–151, 2013.

[47] M. Függer, R. Najvirt, T. Nowak, and U. Schmid. Towards Binary Circuit Models
That Faithfully Capture Physical Solvability. In Design, Automation, and Test in
Europe (DATE), 2015.

[48] M. Függer, T. Nowak, and U. Schmid. Unfaithful Glitch Propagation in Existing
Binary Circuit Models. In 19th International Symposium on Asynchronous Circuits
and Systems (ASYNC), pages 191–199, 2013.

[49] M. Függer and U. Schmid. Reconciling Fault-Tolerant Distributed Computing and
Systems-on-Chip. Distributed Computing, 24(6):323–355, 2012.

[50] M. Függer, U. Schmid, G. Fuchs, and G. Kempf. Fault-Tolerant Distributed Clock
Generation in VLSI Systems-on-Chip. In 6th European Dependable Computing
Conference (EDCC), pages 87–96, 2006.

[51] R. Ginosar. Fourteen Ways to Fool Your Synchronizer. In 9th International Sympo-
sium on Asynchronous Circuits and Systems (ASYNC), pages 89–96, 2003.

[52] International Technology Roadmap for Semiconductors, 2012. http://www.itrs.net.

The Bulletin of the EATCS

151

[53] W. Jang and A. J. Martin. SEU-Tolerant QDI Circuits. In 11th International Sym-
posium on Asynchronous Circuits and Systems (ASYNC), pages 156–165, 2005.

[54] W. Jang and A. J. Martin. A soft-error-tolerant asynchronous microcontroller. In
13th NASA Symposium on VLSI Design, 2007.

[55] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O
Automata. Morgan & Claypool Publishers, 2006.

[56] S. Keller, M. Katelman, and A. J. Martin. A Necessary and Sufficient Timing As-
sumption for Speed-Independent Circuits. In 15th Symposium on Asynchronous
Circuits and Systems (ASYNC), pages 65–76, 2009.

[57] V. King and J. Saia. Breaking the O(N2) Bit Barrier: Scalable Byzantine Agreement
with an Adaptive Adversary. Journal of the ACM, 58(4):18:1–18:24, 2011.

[58] D. J. Kinniment. Synchronization and Arbitration in Digital Systems. Wiley, Chich-
ester, 2008.

[59] D. J. Kinniment, A. Bystrov, and A. V. Yakovlev. Synchronization Circuit Perfor-
mance. IEEE Journal of Solid-State Circuits, SC-37(2):202–209, 2002.

[60] L. Kleeman and A. Cantoni. On the Unavoidability of Metastable Behavior in Dig-
ital Systems. IEEE Transactions on Computers, C-36(1):109–112, 1987.

[61] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
91(1):112–126, 2003.

[62] I. Koren and Z. Koren. Defect tolerance in VLSI circuits: Techniques and yield
analysis. Proceedings of the IEEE, 86(9):1819–1838, Sep 1998.

[63] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, 1994.

[64] E. A. Lee and P. Varaiya. Structure and Interpretation of Signals and Systems.
LeeVaraiya.org, 2nd edition, 2011.

[65] C. Lenzen, M. Perner, M. Sigl, and U. Schmid. Byzantine Self-Stabilizing Clock
Distribution with HEX: Implementation, Simulation, Clock Multiplication. In 6th
Conference on Dependability (DEPEND), 2013.

[66] C. Lenzen, J. Rybicki, and J. Suomela. Towards Optimal Synchronous Counting. In
34th Symposium on Principles of Distributed Computing (PODC), 2015.

[67] J. Lundelius and N. Lynch. An Upper and Lower Bound for Clock Synchronization.
Information and Control, 62(2-3):190–204, 1984.

[68] M. Malekpour. A Byzantine-Fault Tolerant Self-stabilizing Protocol for Distributed
Clock Synchronization Systems. In 9th Conference on Stabilization, Safety, and
Security of Distributed Systems (SSS), pages 411–427, 2006.

[69] M. Malekpour. A Self-Stabilizing Byzantine-Fault-Tolerant Clock Synchronization
Protocol. Technical report, NASA, 2009. TM-2009-215758.

BEATCS no 116

152

[70] R. Manohar and A. J. Martin. Quasi-delay-insensitive circuits are turing-complete.
Technical report, Pasadena, CA, USA, 1995.

[71] L. Marino. General Theory of Metastable Operation. IEEE Transactions on Com-
puters, C-30(2):107–115, 1981.

[72] A. J. Martin. Compiling communicating processes into delay-insensitive VLSI cir-
cuits. Distributed Computing, 1(4):226–234, 1986.

[73] A. J. Martin. The Limitations to Delay-insensitivity in Asynchronous Circuits. In
Sixth MIT Conference on Advanced Research in VLSI, AUSCRYPT ’90, pages 263–
278, Cambridge, MA, USA, 1990. MIT Press.

[74] A. J. Martin. Synthesis of asynchronous VLSI circuits. Technical report, DTIC
Document, 2000.

[75] A. J. Martin and M. Nystrom. Asynchronous Techniques for System-on-Chip De-
sign. Proceedings of the IEEE, 94(6):1089–1120, Jun 2006.

[76] D. Mavis and P. Eaton. SEU and SET Modeling and Mitigation in Deep Submicron
Technologies. In 45th Annual IEEE International Reliability physics symposium,
pages 293–305, April 2007.

[77] M. Maza and M. Aranda. Interconnected Rings and Oscillators as Gigahertz Clock
Distribution Nets. In 14th Great Lakes Symposium on VLSI (GLSVLSI), pages 41–
44, 2003.

[78] M. S. Maza and M. L. Aranda. Analysis of Clock Distribution Networks in the
Presence of Crosstalk and Groundbounce. In International IEEE Conference on
Electronics, Circuits, and Systems (ICECS), pages 773–776, 2001.

[79] D. G. Messerschmitt. Synchronization in Digital System Design. IEEE Journal on
Selected Areas in Communications, 8(8):1404–1419, 1990.

[80] C. Myers and T. H. Y. Meng. Synthesis of timed asynchronous circuits. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 1(2):106–119, June
1993.

[81] L. W. Nagel and D. Pederson. SPICE (Simulation Program with Integrated Circuit
Emphasis). Technical Report UCB/ERL M382, EECS Department, University of
California, Berkeley, 1973.

[82] R. Najvirt, M. Függer, T. Nowak, U. Schmid, M. Hofbauer, and K. Schweiger. Ex-
perimental Validation of a Faithful Binary Circuit Model. 2015. (appears in Proc.
GLSVLSI’15).

[83] R. Naseer and J. Draper. DF-DICE: A scalable solution for soft error tolerant circuit
design. IEEE International Symposium on Circuits and Systems (ISCAS), May 2006.

[84] S. Nassif, K. Bernstein, D. Frank, A. Gattiker, W. Haensch, B. Ji, E. Nowak, D. Pear-
son, and N. Rohrer. High Performance CMOS Variability in the 65nm Regime and
Beyond. In Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pages
569–571, Dec 2007.

The Bulletin of the EATCS

153

[85] A. K. Palit, V. Meyer, W. Anheier, and J. Schloeffel. Modeling and Analysis of
Crosstalk Coupling Effect on the Victim Interconnect Using the ABCD Network
Model. In 19th IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems (DFT), pages 174–182, Oct 2004.

[86] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of
Faults. Journal of the ACM, 27:228–234, 1980.

[87] M. Peercy and P. Banerjee. Fault Tolerant VLSI Systems. Proceedings of the IEEE,
81(5):745–758, May 1993.

[88] M. O. Rabin. Randomized byzantine generals. In 24th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 403–409, 1983.

[89] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling the Effect
of Technology Trends on the Soft Error Rate of Combinational Logic. International
Conference on Dependable Systems and Networks (DSN), pages 389–398, 2002.

[90] T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. Journal of the ACM,
34(3):626–645, 1987.

[91] K. Stevens, R. Ginosar, and S. Rotem. Relative timing [asynchronous design]. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 11(1):129–140, Feb
2003.

[92] Synopsis. CCS Timing. Technical white paper v2.0, 2006.

[93] P. Teehan, M. Greenstreet, and G. Lemieux. A Survey and Taxonomy of GALS
Design Styles. IEEE Design and Test of Computers, 24(5):418–428, 2007.

[94] S. H. Unger. Asynchronous Sequential Switching Circuits with Unrestricted Input
Changes. IEEE Transactions on Computers, 20(12):1437–1444, 1971.

[95] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and M. Pietkiewicz-
Koutny. On the models for asynchronous circuit behaviour with OR causality. For-
mal Methods in System Design, 9(3):189–233, 1996.

[96] C. Yeh, G. Wilke, H. Chen, S. Reddy, H. Nguyen, T. Miyoshi, W. Walker, and
R. Murgai. Clock Distribution Architectures: a Comparative Study. In 7th Sympo-
sium on Quality Electronic Design (ISQED), pages 85–91, 2006.

[97] T. Yoneda and C. Myers. Synthesis of Timed Circuits Based on Decomposition.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
26(7):1177–1195, July 2007.

154

The Bulletin of the EATCS

155

The Education Column
by

Juraj Hromkovič

Department of Computer Science
ETH Zürich

Universitätstrasse 6, 8092 Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

BEATCS no 116

156

Informatics – New Basic Subject

Walter Gander
Department of Computer Science

ETH Zürich
gander@inf.ethz.ch

Abstract
Informatics, as Computer Science is called in Europe, has become a

leading science. It is high time that it be adopted as a basic subject in schools
like mathematics or physics. We discuss in this article some recent develop-
ments in Europe concerning informatics in schools.

1 Computers have been invented for computing!
The first computers were calculating machines designed to solve engineering
problems faster and with fewer errors. Consider for instance two typical repre-
sentatives of computer pioneers:

1. Howard Aiken (1900-1973), a physicist, who encountered a system of dif-
ferential equations during his PhD studies in 1939 which could not be solved
analytically. He therefore needed to compute a numerical approximation, a
tedious work by hand calculations.

He envisioned an electro-mechanical computing device that
could do much of the tedious work for him. This computer
was originally called the ASCC (Automatic Sequence Controlled
Calculator) and later renamed Harvard Mark I. With engineering,
construction, and funding from IBM, the machine was completed
and installed at Harvard in February, 1944.1

2. Konrad Zuse (1910-1995), civil engineer, had to solve linear equations for
static calculations. This tedious calculations motivated him to think about
constructing a machine to do this work. Unlike Aiken he did not look for
a sponsor but installed 1936 a workshop for constructing a computer in the
living room of his parents! [8]

1http://en.wikipedia.org/wiki/Howard_H._Aiken

The Bulletin of the EATCS

157

His greatest achievement was the world’s first programmable
computer; the functional program-controlled Turing-complete
Z3 became operational in May 1941. Thanks to this machine and
its predecessors, Zuse has often been regarded as the inventor of
the modern computer.2

2 From Numerical Computing to Information Pro-
cessing

After World War II the interest in developing and using computers grew. Pio-
neers in several countries started to built their own machines: in USA, in the
UK and also in Switzerland and in Germany. ETH Zürich built 1950-1956 the
ERMETH, TUM the Technical University in Munich developed 1952-1956 the
PERM. Heinz Rutishauser (ETH) and Friedrich L. Bauer (TUM) developed to-
gether with GAMM3 and ACM4 members ALGOL60 [2, 3]. ALGOL60 was
focussed on numerical calculations. It can be considered as the “Latin of the
programming languages” since many features of ALGOL60 have been inherited
into modern programming languages.

Computers are not only fast calculators, capable of performing millions of op-
erations per second, but have also the capability to store vast amounts of data,
coded as bit-strings. Manipulating such data by storing and retrieving informa-
tion, sorting and interpreting their contents required new programming languages
and finally changed the calculating machines to information processing agents.
George Forsythe, the founder of the Computer science Department in Stanford
and one of the fathers of Silicon Valley wrote already in 1963 [4]:

Machine-held strings of binary digits can simulate a great many kinds
of things, of which numbers are just one kind. For example, they
can simulate automobiles on a freeway, chess pieces, electrons in a
box, musical notes, Russian words, patterns on a paper, human cells,
colors, electrical circuits, and so on. To think of a computer as made
up essentially of numbers is simply a carryover from the successful
use of mathematical analysis in studying models
. . .
Enough is known already of the diverse applications of computing for
us to recognize the birth of a coherent body of technique, which I call
computer science.

2http://en.wikipedia.org/wiki/Konrad_Zuse
3International Association of Applied Mathematics and Mechanics https://www.gamm-ev.de/
4Association for Computing Machinery https://www.acm.org/

BEATCS no 116

158

Today, some 50 years later, computers determine our lives, we indeed live in a
digital world. All our communication by cell-phone, e-mail, sms, through social
networks is digital and based on computers. We are writing using text-processing
programs and spreadsheets and use presentation tools for our lectures. Books are
available as electronic files: the Digital Book Index, for instance, provides links
to more than 165’000 full-text digital books from more than 1’800 commercial
and non-commercial publishers, universities, and various private sites. More than
140’000 of these books, texts, and documents are available free5. Also the way we
store music has changed. Vinyl records have been replaced, music is digitized and
a memory stick can store the music of a whole former collection of records. Ra-
dio and television have also been digitized. It became possible to listen or watch
missed emissions on the Internet. The video portal YouTube added another di-
mension by providing a platform for uploading digital files and making available
everybody’s own videos. Photography has changed completely: software has re-
placed chemically processed films. Finally, search machines have revolutionized
the way we acquire our information – Wikipedia has become our encyclopedia,
libraries and archives are digitized and became accessible on-line.

3 CS Education in Switzerland
In spite of the impressive digital revolution, computer science was for a long time
not recognized by academia as a new basic science in Switzerland. It took years
till the pressure from industry was large enough to convince the ETH management
to finally introduce 1981 a curriculum for computer science studies at ETH.

In schools the computer was first seen as calculator. Pocket calculators re-
placed gradually the slide rule. It was only with the advent of the personal com-
puter (PC) around 1984 that those responsible for education showed interest to
introduce computers in schools. Committees were formed to develop teaching
material and to study how to integrate computer science as a new subject in the
STEM-oriented tracks of the Swiss Gymnasia. At that time a PC was essen-
tially bare of software, thus it was necessary to develop applications by own pro-
grams, often written in Pascal [5, 6]. Spirit of discovery and creativity inspired
the students, though at the same time many teachers were frustrated by frequent
breakdowns and system changes. Many of those enthusiastic former high-school
students – the first generation educated in computer science – are now successful
computer scientists.

In the following years many applications were developed. Computers became
ubiquitous, easier to handle and there was no need to program own applications.

5http://www.digitalbookindex.com/about.htm

The Bulletin of the EATCS

159

The Internet was born and connected the world. Therefore a strong movement
emerged 1995 in Switzerland that teaching programming in schools was no longer
necessary. Instead one should concentrate on teaching skills to make good use of
the computers. As the applications became more sophisticated and more complex,
teachers had to be trained first. The computer industry, in particular Microsoft
and Intel, made agreements with whole countries to train the schools on their
products6.

This paradigm change, shifting away from constructing programs toward just
consuming and applying programs had a disastrous effect. It lead to an complete
wrong image what computer science is. Skills were overemphasized and funda-
mentals of the discipline completely neglected. Many freshman entered ETH for
computer science studies only to drop out soon because of their completely wrong
picture of informatics as a science. Unease grew in industry and academia.

ICTSwitzerland7 the umbrella organization of the Swiss IT-industry urged in
2010 with a memorandum to introduce real computer science in schools not only
to teach how to use computers. The Hasler-Foundation8 supported with the project
FIT in IT in the last ten years the introduction of computer science as basic sci-
ence in schools. In Fall 2014 finally the ministers of educations of the 21 German
speaking Cantons in Switzerland decided to introduce informatics as a basic sub-
ject in all schools.

4 European Initiative
Computer science education developed differently in Europe. Eastern Europe kept
focusing on fundamentals and on programming while Western states concentrated
on just using computers with similar consequences as in Switzerland.

Informatics Europe9 and ACM Europe10 created a common task force to study
that problem. The task force completed a report in 2013 on Informatics Education
in Schools with the title Informatics education: Europe cannot afford to miss the
boat[1].

At first it was necessary to define terms since many persons equate computer
science with using new media. Fruitless discussions and disagreements are un-

6See for instance http://www.saarland.de/17657.htm
7http://www.ictswitzerland.ch
8The purpose of the Hasler Foundation is to promote information and communications tech-

nology (ICT) for the well-being and benefit of Switzerland as an intellectual and industrial cen-
tre.http://www.haslerstiftung.ch/en/home

9The association of computer science departments and research laboratories in Europe and
neighbouring areas. http://www.informatics-europe.org/

10European Chapter of ACM, the world’s largest educational and scientific computing society.
http://europe.acm.org/

BEATCS no 116

160

avoidable when people use the same words for different meanings, contents and
in different contexts. The task force defined therefore

Computer Science in Schools = Digital Literacy + Informatics

and specified:

• Digital literacy covers fluency with computer tools and the Internet.

• Informatics covers the science behind information technology. Informatics
is a distinct science, characterized by its own concepts, methods, body of
knowledge and open issues. It has emerged, in a role similar to that of math-
ematics, as a cross-discipline field underlying today’s scientific, engineering
and economic progress.

The report makes the following observations:

• Informatics is a major enabler of technology innovation, the principal re-
source for Europe’s drive to become an information society, and the key to
the future of Europe’s economy.

• European countries are making good progress in including digital literacy
in the curriculum. The teaching of this topic should emphasize the proper
use of information technology resources and cover matters of ethics such as
privacy and plagiarism.

• Informatics education, unlike digital literacy education, is sorely lacking in
most European countries. The situation has paradoxically worsened since
the 70s and 80s.

• Not offering appropriate informatics education means that Europe is harm-
ing its new generation of citizens, educationally and economically.

• Unless Europe takes resolute steps to change that situation, it will turn into
a mere consumer of information technology and miss its goal of being a
major player.

Therefore the report makes the following recommendations

1. All students should benefit from education in digital literacy, starting from
an early age and mastering the basic concepts by age 12. Digital literacy
education should emphasize not only skills but also the principles and prac-
tices of using them effectively and ethically.

The Bulletin of the EATCS

161

2. All students should benefit from education in informatics as an independent
scientific subject, studied both for its intrinsic intellectual and educational
value and for its applications to other disciplines.

3. A large-scale teacher training program should urgently be started. To boot-
strap the process in the short term, creative solutions should be developed
involving school teachers paired with experts from academia and industry.

4. The definition of informatics curricula should rely on the considerable body
of existing work on the topic and the specific recommendations of the
present report.

The report triggered similar activities in France and Germany. The Académie
des Sciences published in May 2013 a report with the title “L’enseignement de
l’informatique en France. Il est urgent de ne plus attendre”.11 A resolution was
taken in November 2013 at the Fakultätentag Informatik in Germany with the title
“Informatik in der Schulbildung: Wir dürfen den Anschluss nicht verlieren!”.12

A parallel development happened in the UK. Michael Gove, the Secretary
of State for Education, lamented the state of computer science education in his
famous speech of January 201213

The UK had been let down by an ICT curriculum that neglects the
rigorous computer science and programming skills which high-tech
industries need.
. . .
In short, just at the time when technology is bursting with potential,
teachers, professionals, employers, universities, parents and pupils
are all telling us the same thing: ICT in schools is a mess.

Michael Gove urges to reform the computer science education in the UK and
refers to the PC-area when the computer inspired discovery and creativity of the
students who were fascinated by using and exploring this new tool:

With minimal memory and no disk drives, the Raspberry Pi computer
can operate basic programming languages, handle tasks like spread
sheets, word-processing and games, and connect to wifi via a dongle
– all for between £16 and £22. This is a great example of the cutting
edge of education technology happening right here in the UK. It could
bring the same excitement as the BBC Micro did in the 1980s.

11http://www.academie-sciences.fr/activite/publi.htm
12https://www.ft-informatik.de/52.html
13https://www.gov.uk/government/speeches/michael-gove-speech-at-the-bett-show-2012

BEATCS no 116

162

Since Fall 2014 big changes are going on in the UK in informatics education.
Simon Peyton Johnes describes in his TED talk with the title “Teaching creative
computer science”14 on YouTube the changes and the motivation for teaching in-
formatics. On his slides he make the distinction between skills=ICT and disci-
pline=informatics. The new concept for teaching is illustrated in this table:

What we want instead
Ideas as well as technology
Create as well as consume
Write as well as read
Understand as well as use
Knowledge rather than magic

5 Why Informatics as Basic Subject in Schools?
The goals of informatics as a basic subject is

1. To teach the students to understand the principles and functioning of today’s
digital world.

2. To train the students in constructive problem solving.

Jan Cuny, Larry Snyder, and Jeannette M. Wing coined the term “Computational
Thinking”15. What they mean is:

Computational Thinking is the thought processes involved in formu-
lating problems and their solutions so that the solutions are repre-
sented in a form that can be effectively carried out by an information-
processing agent.

Jeannette M. Wing wrote in [7]:

It [Computational Thinking] represents a universally applicable at-
titude and skill set everyone, not just computer scientists, would be
eager to learn and use.

Computational thinking is a methodology for anyone to be used to solve problems.
Especially it applies to problems solving with computers. It involves the following
steps

• Analyze a task or problem, model and formalize it.
14https://www.youtube.com/watch?v=Ia55clAtdMs
15http://www.cs.cmu.edu/~CompThink/

The Bulletin of the EATCS

163

• Search for a way to solve it, find or design an algorithm.

• Program.

• Run the program: let the computer work, maybe correct, modify the pro-
gram, interpret the results.

Programming is an essential step in this process. It is an important activity for
all the students in general education. It is creative since there are often many
ways to solve a problem. It is constructive. The solution has to be constructed
like an engineer constructs a machine. Running the program is like starting a
virtual machine. Programming finally teaches precise working since any small
error prevents the solution and trains computational thinking.

6 Conclusions
Computer Science is the leading science of the 21st century. It is used like math-
ematics in all sciences. It has to become part of general knowledge in education.

Informatics Europe and ACM Europe convincingly state that computer science
in the school must consist of two parts:

1. Learn to make good use of IT and its devices. This is called Digital Literacy,
often also ICT. These skills are short living knowledge, they change with
technology.

2. Learn the fundamentals of computer science which are essential to under-
stand our digital world. This is called Informatics. It is long living knowl-
edge which lasts forever and does not change with technology.

References
[1] Informatics Europe and ACM Europe: Informatics education: Europe can-

not afford to miss the boat. Report of the joint Informatics Europe & ACM
Europe Working Group on Informatics Education, April 2013 http://www.

informatics-europe.org/images/documents/informatics-education-europe-report.pdf

[2] F. L. Bauer, H. Bottenbruch, H. Rutishauser, K. Samelson. Proposal for a
universal language for the description of computing processes. In: J. W.
Carr (ed.), Computer Programming and Artificial Intelligence, University of
Michigan Summer School 1958, pages 355-373.

BEATCS no 116

164

[3] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A .J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaar-
den, M. Woodger; edited by Peter Naur. Revised Report on the Algorithmic
Language ALGOL 60.

[4] George Forsythe. Educational implications of the computer revolution. Ap-
plications of Digital Computers, W. F. Freiberger and William Prager (eds.),
Ginn, Boston, 1963, pp. 166-178.

[5] Kathleen Jensen, Niklaus Wirth. Pascal User Manual and Report. ISO Pascal
Standard. Springer-Verlag, 4th ed. 1991,

[6] http://www.emsps.com/oldtools/borpasv.htm

[7] Jeannette M. Wing: Computational Thinking, COMMUNICATIONS OF
THE ACM, Vol. 49, No. 3, (2006)

[8] Zuse, Konrad: The Computer – My Life. Springer-Verlag, (1993)

The Bulletin of the EATCS

165

166

The Bulletin of the EATCS

167

The Formal Language Theory Column
by

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano

20135 Milano, Italy
pighizzini@di.unimi.it

BEATCS no 116

168

Average Size of Automata Constructions
from Regular Expressions∗

Sabine Broda†

sbb@dcc.fc.up.pt
António Machiavelo†

ajmachia@fc.up.pt

Nelma Moreira†

nam@dcc.fc.up.pt
Rogério Reis†

rvr@dcc.fc.up.pt

Abstract

Because of their succinctness and clear syntax, regular expressions are the
common choice to represent regular languages. Deterministic finite au-
tomata are an excellent representation for testing equivalence, containment
or membership, as these problems are easily solved for this model. How-
ever, minimal deterministic finite automata can be exponentially larger than
the associated regular expression, while the corresponding nondeterministic
finite automata can be linearly larger. The worst case of both the complexity
of the conversion algorithms, and of the size of the resulting automata, are
well studied. However, for practical purposes, estimates for the average case
can provide much more useful information. In this paper we review recent
results on the average size of automata resulting from several constructions
and suggest several directions of research. Most results were obtained within
the framework of analytic combinatorics.

1 Introduction
The methods to convert regular expressions (REs) into equivalent automata can
be divided in three major classes, depending on whether the resulting automaton
is deterministic (DFA), nondeterministic without ε-transitions (NFA) or nondeter-
ministic with ε-transitions (ε-NFA). Paradigmatic methods of each class are Brzo-
zowski’s [13], Glushkov’s [21] and Thompson’s [47] constructions, respectively.

∗This work was partially supported by CMUP (UID/MAT/00144/2013), which is funded by
FCT (Portugal) with national (MEC) and European structural funds through the programs FEDER,
under the partnership agreement PT2020.

†CMUP, DCC & DM, Faculdade de Ciências da Universidade do Porto, Portugal.

The Bulletin of the EATCS

169

Brzozowski’s method introduces the notion of derivative of a regular expres-
sion with respect to a symbol, a syntactic equivalent of the notion of left quotient
for languages. It is well-known that regular languages have a finite number of
left-quotients. To obtain a finite number of derivatives, it is necessary to consider
regular expressions modulo some equational axioms, namely the associativity,
commutativity and idempotence of union (ACI). A nondeterministic version of
derivatives was introduced by Mirkin [35] and Antimirov [2]. Instead of a deriva-
tive being a regular expression, a set of regular expressions (partial derivatives)
is considered. This avoids the necessity of using derivatives modulo equational
axioms, but the associated construction (partial derivative automata) yields NFAs
instead of DFAs.

Glushkov construction uses the positions of the letters occurring in a regular
expression. The partial derivative automaton is a quotient of the Glushkov (or
position) automaton, and very often is its smallest quotient [15, 22, 31]. If ε-
transitions are eliminated from the Thompson automaton, the Glushkov automa-
ton is obtained. Finally, the determination of the Glushkov automaton (by subset
construction) produces the McNaughton-Yamada DFA [34].

The worst case of both the complexity of the conversion algorithms, and of
the size of the resulting automata, are well studied [12, 16, 15] (see also [25]
for a survey). However, for practical purposes, an estimate for the average case
constitute a much more useful information.

In this paper we review recent results on the average size of automata result-
ing from several constructions, and suggest several directions of research. Most
results were obtained within the framework of analytic combinatorics, a powerful
tool for asymptotic average analysis, by relating the enumeration of combinatorial
objects to the algebraic and complex analytic properties of generating functions.
An introduction to this method, and a derivation of the asymptotic average size
of several conversions between regular expressions and ε-NFAs, can be found
in Broda et al [9]. Another approach to average complexity is to consider uni-
form random generators and to perform statistically significant experiments. The
drawback of this approach is that it only gives results for a small range of object
sizes and, due to their combinatorial nature, only modest ranges can usually be
considered. However, whenever we refer to experimental results we mean results
obtained in this limited context. Both in experimental and analytic results we
consider the average with respect to the uniform distribution.

In the conversions from regular expressions to NFAs without ε-transitions,
although position based methods can provide recursive definitions that endow an-
alytic analysis, we will emphasise the role of derivatives when considering ex-
tended regular expressions, or other algebraic structures such as Kleene algebras
with tests.

We briefly review some basic definitions about regular expressions and finite

BEATCS no 116

170

automata. For more details, we refer the reader to Kozen [27] or Sakarovitch [44].
The set R of regular expressions over a finite alphabet Σ is the smallest set con-
taining ∅ and all the expressions generated by the following grammar:

α := ε | σ1 | · · · | σk | (α + α) | (α · α) | α? (1)

where σi ∈ Σ are letters and the operator · (concatenation) is often omitted. The
language L(α) ⊆ Σ? associated to α is inductively defined as L(ε) = {ε}, L(σ) =

{σ} for σ ∈ Σ, L((α + β)) = L(α) ∪ L(β), L((α · β)) = L(α) · L(β), and L(α?) =

L(α)?. Also, L(∅) = ∅. The size |α| of α ∈ R is the number of symbols in α,
where parentheses are not counted; the alphabetic size |α|Σ is its number of letter
occurrences. We define ε(α) as ε(α) = ε if ε ∈ L(α), and ε(α) = ∅ otherwise.
Two regular expressions α and β are equivalent if L(α) = L(β), and we write
α = β. With this interpretation, the algebraic structure (R,+, ·, ∅, ε) constitutes
an idempotent semiring, and with the unary operator ?, a Kleene algebra (KA).
Given a language L ⊆ Σ? and a word w ∈ Σ?, the left-quotient of L w.r.t. w is
the language w−1L = { x | wx ∈ L }. A nondeterministic finite automaton (NFA)
is a tuple A= (Q,Σ, δ, I, F) where Q is a finite set of states, Σ is the alphabet,
δ ⊆ Q× (Σ∪{ε})×Q is the transition relation, I ⊆ Q is the set of initial states, and
F ⊆ Q is the set of final states. When I = {q0}, we just write q0 instead of {q0}.
The size of an NFA,A, is |A| = |Q| + |δ|, the number of states |A|Q = |Q|, and the
number of transitions |A|δ = |δ|. An NFA that has transitions labelled with ε is an
ε-NFA. An NFA is deterministic (DFA) if |I| = 1 and for each pair (q, σ) ∈ Q × Σ

there exists at most one q′ such that (q, σ, q′) ∈ δ. The language accepted by an
automaton A is L(A) = { w ∈ Σ∗ | δ(I,w) ∩ F , ∅ }. An equivalence relation E
over Q is right invariant (or a bisimulation) if E ⊆ (Q\F)2∪F2, and for any p, q ∈
Q, σ ∈ Σ if p E q, then1 δ(p, σ)/E = δ(q, σ)/E. The quotient automaton A/E =

(Q/E,Σ, δE, [q0]E, F/E), where δE = { ([p]E, σ, [q]E) | (p, σ, q) ∈ δ }, satisfies
L(A) = L(A/E). The largest bisimulation, i.e. the union of all bisimulation
relations on Q, is called bisimilarity (≡b).

2 Generating Functions and Analytic Methods
A combinatorial class C is a set of objects on which a non-negative integer func-
tion (size) | · | is defined, and such that for each n ≥ 0, the number of objects of
size n, cn, is finite. The generating function C(z) of C is the formal power series
C(z) =

∑
c∈C z|c| =

∑∞
n=0 cnzn. We let [zn]C(z) denote the coefficient of zn, cn. The

symbolic method [19] is a framework that allows to express a combinatorial class
C in terms of simpler ones, B1,. . . ,Bn, by means of specific operations, yielding

1Denoting by S/E the set { [s]E | s ∈ S }.

The Bulletin of the EATCS

171

the generating function C(z) as a function of the generating functions Bi(z) of Bi,
for 1 ≤ i ≤ n. For example, given two disjoint combinatorial classes A and B, with
generating functions A(z) and B(z), respectively, the union A∪B is a combinatorial
class whose generating function is A(z) + B(z). Other usual admissible operations
are the cartesian product and the Kleene closure.

Multivariate generating functions are used in order to obtain estimates about
the asymptotic behaviour of parameters associated to combinatorial classes. Con-
sidering t weighting functions, pi : C → C, for 1 ≤ i ≤ t, let ck1,...,kt ,n be the number
of objects c of size n with p1(c) = k1, . . . , pt(c) = kt, one has the following multi-
variate weighting generating function

C(u1, . . . , ut, z) =
∑

n,k1,...,kt≥0

ck1,...,kt ,n uk1
1 · · · u

kt
t zn.

The functions (pi)i give the respective weights of t features under consideration.
Note that since C is a combinatorial class, the number of objects with a given size
is finite, and therefore, for a fixed n, there is only a finite number of ck1,...,kt ,n which
are different from 0. Also,

∂C(u1, ... , ut, z)
∂ui

∣∣∣∣∣
ui=1

=
∑
n,k j≥0

j,i

∑
ki≥0

kick1,...,kt ,n

 uk1
1 ···u

ki−1
i−1 uki+1

i+1 ···u
kt
t zn,

where
∑

ki≥0 kick1,...,kt ,n accounts for the cumulative presence of weight pi in the
objects of size n.

2.1 Analytic Asymptotics

Generating functions can be seen as complex analytic functions, and the study of
their behaviour around their dominant singularities gives us access to an asymp-
totic estimate for their coefficients. We refer the reader to Flajolet and Sedgewick
for an extensive study on this topic. Here we only state the results relevant
for this paper. For ρ ∈ C, R > 1 and 0 < φ < π/2, consider the domain
∆(ρ, φ,R) = { z ∈ C | |z| < R, z , ρ, and |Arg(z − ρ)| > φ }, where Arg(z)
denotes the argument of z ∈ C. A region is a ∆-domain at ρ if it is a ∆(ρ, φ,R), for
some R and φ. The generating functions we consider have always a unique domi-
nant singularity, and satisfy one of the two conditions of the following proposition,
used by Nicaud [37].

Proposition 1. Let f (z) be a function that is analytic in some ∆-domain at ρ ∈ R+.
If at the intersection of a neighborhood of ρ and its ∆-domain,

BEATCS no 116

172

1. f (z) = a − b
√

1 − z/ρ + o
(√

1 − z/ρ
)
, with a, b ∈ R, b , 0, then

[zn] f (z) ∼
b

2
√
π
ρ−nn−3/2.

2. f (z) = a√
1−z/ρ

+ o
(

1√
1−z/ρ

)
, with a ∈ R, and a , 0, then

[zn] f (z) ∼
a
√
π
ρ−nn−1/2.

2.2 Generating Functions for Regular Expressions
For the regular expressions given in (1), an average case analysis of different
descriptional measures, including the number of letters, has been presented by
Nicaud [36, 37]. Here we introduce some of those results, deriving them in a
slight different way and using a parametrised weighted generating function based
on Broda et al. [9].

Using the recursive definition of R given by (1), the associated generating
function Rk(z) satisfies Rk(z) = (k + 1)z+zRk(z) +2zRk(z)2. Solving this equation
for Rk(z), and considering that Rk(0) = a0 = 0, one obtains Rk(z) =

1−z−
√

∆k(z)
4z ,

where ∆k(z) = 1 − 2z − (7 + 8k)z2. The zeros of ∆k(z) are ρk = 1
1+
√

8k+8
and

ρ̄k = 1
1−
√

8k+8
. The coefficients of the series of R̃k(z) = 4zRk(z) + z = 1 −

√
∆k(z),

have the same asymptotical behaviour of the ones of Rk(z). Now ∆k(z) = (7 +

8k)(z − ρk)ρk(1 − z/ρk), and since (7 + 8k)(ρk − ρk) = 4
√

2k + 2, one has

R̃k(z) = 1 −
√

∆k(z) = 1 − 2
4√
2k + 2

√
ρk

√
1 − z/ρk + o

(√
1 − z/ρk

)
.

By Proposition 1, one obtains

[zn](4zRk(z) + z) ∼
4√2k + 2

√
ρk

√
π

ρ−n
k n−3/2,

[zn]Rk(z) ∼
4√2k + 2

√
ρk

4
√
π

ρ−(n+1)
k (n + 1)−3/2, (2)

where [zn]Rk(z) is the number of regular expressions α with |α| = n.
To obtain estimates for the average value relative to some other measures on

regular expressions, one can consider parameters (cε, cσ, c+, c•, c?), where cκ is the
contribution of the operation κ expressed in the measure under consideration. This
allows to consider a parametrized weighted generating function and an asymptotic
estimation of its coefficients. For each set of parameters, one obtains estimations

The Bulletin of the EATCS

173

for the associated measure, such as number of letters, number of operators of a
given type (concatenation, star, etc) and, as we will see in Section 3.1, the size of
some automata constructions.

The general bivariate generating function, corresponding to those parameters,
satisfies the following equation

Ck(u, z) = (ucε + kucσ)z + (uc+ + uc•)zCk(u, z)2 + uc?zCk(u, z).

Solving this equation for Ck(u, z), and choosing the root that has positive coeffi-
cients, one sees that

Ck(u, z) =
1 − uc?z −

√
(1 − uc?z)2 − 4(kucσ + ucε)(uc+ + uc•)z2

2(uc+ + uc•)z
.

Deriving in order to u, and taking u = 1, the cumulative generating function
obtained is

Ck(z) =
ak(z)

√
∆k(z) + bk(z)

8z
√

∆k(z)
, (3)

where ∆k(z) is as above, and

ak(z) = (c+ + c• − 2c?) z − (c+ + c•)

bk(z) = (4 (2cσ − c+ − c•) k + 8cε − 3(c+ + c•) − 2c?) z2+

+ 2 (c? − c+ − c•) z + c+ + c•.

Considering Gk(z) = 8z Ck(z) − ak(z) =
bk(z)
√

∆k(z)
, proceeding in a similar way to

what was done to Rk(z), and applying Proposition 1, one obtains

[zn]Gk(z) ∼
bk(ρk)

2 4√2k + 2
√
ρk
√
π
ρ−n

k n−
1
2 . (4)

One concludes that for n ≥ 2,

[zn]Ck(z) ∼
bk(ρk)

16 4√2k + 2
√
ρk
√
π
ρ−(n+1)

k (n + 1)−
1
2 (5)

=
c?
√

2k + 2 + (c+ + 2cσ + c•)k + (c+ + 2cε + c•)

4
√
π

4√2k + 2
ρ

1
2−n
k (n + 1)−

1
2 . (6)

The following expression gives, for n ≥ 2, the parametrised asymptotic estimate
for the average size, for a given measure, for regular expressions of size n.

[zn]Ck(z)
[zn]Rk(z)

∼
bk(ρk)

4ρk
√

2k + 2
(n + 1) =

= ρk

c? + (c+ + c•)

√
k + 1

2
+ (cσk + cε)

√
2

k + 1

 (n + 1).

BEATCS no 116

174

Thus, for the considered measure, the average of its value per character of the
original regular expression is, asymptotically,

lim
n→∞

[zn]Ck(z)
n[zn]Rk(z)

= ρk

c? + (c+ + c•)

√
k + 1

2
+ (cσk + cε)

√
2

k + 1

 . (7)

The generating function for the number of letters occurring in a regular ex-
pression, Letk(z), can be obtained from (3) by making cσ = 1 and null all the other
parameters, giving

Letk(z) =
kz
√

∆k(z)
, (8)

and (6) yields

[zn]Letk(z) ∼
k
√
ρk

2
√
π

4√2k + 2
ρ−n

k (n + 1)−
1
2 , (9)

from which it follows that

[zn]Letk(z)
n[zn]Rk(z)

∼
2kρk
√

2k + 2
−−−→
k→∞

1
2
. (10)

In the same manner one can easily obtain approximate values for the number of
concatenations, disjunctions and stars.

3 Regular Expressions to NFAs

Because of their succinctness and clear syntax, regular expressions are the com-
mon choice to represent regular languages. DFAs are an excellent representation
for testing equivalence, containment or membership, as these problems are easily
solved for this model. For instance, recognition of a word w is O(|w|) for DFAs,
while it is O(|w| · |Q|2) for NFAs. However, minimal DFAs can be exponentially
larger than the associated REs, while the corresponding NFAs can be linearly
larger. Since NFA minimisation is PSPACE-complete, the aim is to obtain di-
rectly from the REs small NFAs usable for practical purposes. In this section we
summarise the known results on the average size of different NFA constructions
from REs.

3.1 Average Size of ε-NFAs

We consider here three constructions, introduced respectively by Thompson in
1968 [47] (AT), by Sippu and Soisalon-Soininen in 1990 [46] (AS S S), and by
Ilie and Yu in 2003 [26] (Aε− f ol), that transform a regular expression α into an

The Bulletin of the EATCS

175

equivalent ε-NFA. Generically, denoting the result by Nα, all three algorithms
associate with the (atomic) regular expressions ε and σ the same ε-NFAs, as given
in Figure 1.

Nε :
ε

Nσ :
σ

Figure 1: ε-NFAs for atomic expressions

Thus, for all three constructions we have

|Nε| = |Nε|Q + |Nε|δ = 2 + 1 = 3
|Nσ| = |Nσ|Q + |Nσ|δ = 2 + 1 = 3.

The ε-NFA’s for compound regular expressions are constructed inductively from
the automata corresponding to their subexpressions. In Thompson’s construction,
the automaton Nβ1+β2 (in Figure 2) is built from Nβ1 and Nβ2 introducing a new
initial state with ε-transitions to the initial states of both Nβ1 and Nβ2 , as well as
a new final state and ε-transitions from the final states of Nβ1 and Nβ2 . It follows
that this construction introduces exactly 2 new states and 4 new transitions for
each + operator. Thus, we have

|Nβ1+β2 |Q = |Nβ1 |Q + |Nβ2 |Q + 2
|Nβ1+β2 |δ = |Nβ1 |δ + |Nβ2 |δ + 4,

(11)

and consequently,
|Nβ1+β2 | = |Nβ1 | + |Nβ2 | + 6. (12)

The remaining construction cases are presented in Figure 2.
To obtain the weighted generating function for the size of the resulting au-

tomata, according to a given measure, we consider the parameters (cε, cσ, c+, c•, c?)
represented in Table 1.

ε-NFAs States Transitions Combined Size
AT (2, 2, 2, 0, 2) (1, 1, 4, 1, 4) (3, 3, 6, 1, 6)
AS S S (2, 2, 0,−1, 2) (1, 1, 2, 0, 3) (3, 3, 2,−1, 5)
Aε− f ol (2, 2,−2,−1, 1) (1, 1, 0, 0, 2) (3, 3,−2,−1, 3)

Table 1: Parameters for the 3 constructions

Now, note that for all the constructions here considered, the worst-case com-
plexity is reached for expressions with only one letter and n − 1 stars. For such
an expression (which has size n), the size of the corresponding AT , AS S S and
Aε− f ol automaton is, respectively, 6n − 3, 5n − 2 and 3n. In Table 2, we illustrate

BEATCS no 116

176

Nβ1+β2 : Nβ1β2 : Nβ∗ :
AT

ε

ε ε

ε
Nβ1

Nβ2

εNβ∞ Nβ∈

ε

ε

ε

ε

Nβ

AS S S

ε ε

Nβ1

Nβ2

Nβ1 Nβ2

ε

ε

ε

Nβ

Aε− f ol

Nβ1

Nβ2

Nβ1 Nβ2

ε ε

Nβ

Figure 2: AT ,AS S S andAε− f ol constructions

the discrepancy between the average and the worst case, for the combined size, by
presenting the values of the expression in Equation (7) for different values of k, the
limit as k goes to infinity, and the size of the worst case, which does not depend
on k. As the alphabet grows, the size of the obtained ε-NFA’s is much smaller,
asymptotically and on average, than in the worst case. For instance, in the case of
the Aε− f ol, the ratio between these values is 0.25. This construction also exhibits
the best behaviour of the three.

k 2 10 50 100 ∞ worst-case
AT 3.72 3.51 3.38 3.34 3.25 6
AS S S 2.30 2.06 1.90 1.86 1.75 5
Aε− f ol 1.13 0.97 0.86 0.83 0.75 3

Table 2: Average vs. worst-case combined size

3.2 Average Size of the Glushkov Automata
Let Pos(α) = {1, 2, . . . , |α|Σ} be the set of positions for α ∈ R, and let Pos0(α) =

Pos(α)∪{0}. We consider the expression α obtained by marking each letter with its

The Bulletin of the EATCS

177

position in α, i.e. L(α) ∈ Σ
?
, where Σ = { σi | σ ∈ Σ, 1 ≤ i ≤ |α|Σ }. For α ∈ R and

i ∈ Pos(α), let the sets first, last and follow be ft(α) = { i | ∃w ∈ Σ
?
, σiw ∈ L(α) },

lt(α) = { i | ∃w ∈ Σ
?
,wσi ∈ L(α) } and fw(α, i) = { j | ∃u, v ∈ Σ

?
, uσiσ jv ∈

L(α) }, respectively. These sets can be inductively defined as follows:

ft(∅) = ft(ε) = ∅

ft(σi) = {i}
ft(α?) = ft(α)

ft(α + β) = ft(α) ∪ ft(β)

ft(αβ) =

ft(α) ∪ ft(β) if ε(α) = ε

ft(α) otherwise,
(13)

fw(∅) = fw(ε) = fw(σi) = ∅

fw(αβ) = fw(α) ∪ fw(β)
fw(αβ) = fw(α) ∪ fw(β) ∪ lt(α) × ft(β)
fw(α?) = fw?(α)
fw?(∅) = fw?(ε) = ∅

fw?(σi) = {(i, i)}
fw?(α + β) = fw?(α) ∪ fw?(β) ∪ cs(α, β)

fw?(αβ) =

fw?(α) ∪ fw?(β) ∪ cs(α, β) if ε(α) = ε(β) = ε

fw?(α) ∪ fw(β) ∪ cs(α, β) if ε(β) = ε

fw(α) ∪ fw?(β) ∪ cs(α, β) if ε(α) = ε

fw(α) ∪ fw(β) ∪ cs(α, β) otherwise

fw?(α?) = fw?(α),

(14)

with cs(α, β) = lt(α) × ft(β) ∪ lt(β) × ft(α). The Glushkov automaton for α is
Apos(α) = (Pos0(α),Σ, δpos, 0, F), with δpos = { (0, σ j, j) | j ∈ ft(α) } ∪ { (i, σ j, j) |
j ∈ fw(α, i) } and F = lt(α) ∪ {0} if ε(α) = ε, and F = lt(α), otherwise.

The definition of lt is almost identical, differing only in the case of concate-
nation, where the branches are swapped. The definition of the fw function here
presented deviates from the usual one in the case of the ? operator. This version
ensures that the unions are all disjoint. The same result can be obtained if the
regular expression is first transformed into star normal form, i.e. such that for all
subexpressions β∗ one has ε < L(β) [12].

The number of states of Apos(α) is exactly n + 1 where n = |α|Σ. Thus, the
average number of its states coincides with the average number of letters deter-
mined in Equation (10), i.e. asymptotically and on average the number of states
of Apos(α) is half the size of α. On the other hand, the number of transitions in
Apos(α) is, in the worst case, n2 + n. Nicaud’s main result in [37] is that, on aver-
age, the number of transitions is O(|α|). However, his computation of the number
of transitions was not exact because the definition used for the fw function did not

BEATCS no 116

178

take into account the possible non-disjoint unions of its results. The version of the
fw function presented above allows for an exact counting.

The generating function for the number of transitions is Tk(z) = Fk(z) + Ek(z),
where Fk(z) and Ek(z) are the generating functions associated with ft and fw, re-
spectively. By symmetry, the generating function Lk(z) for lt is the same as Fk(z),
which was computed by Nicaud: Lk(z) = Fk(z) = kz

1−z−3zRk(z)−zRk,ε(z) , where Rk,ε(z)
denotes the generating function for regular expressions whose languages contain
ε and is given by Rk,ε(z) =

z+zRk(z)
1−2zRk(z) . An estimate for the number of transitions of

Apos was given in [7] as

[zn]Tk(z) ∼
(1 + ρk)(2 + 16ρk + 10ρ2

k − 12ρ3
k)

8ρk
√
π(1 − 5ρ2

k)
√

2 − 2ρk

ρ−n
k n−

1
2 . (15)

Hence, an estimate for the average number of transitions per state is

[zn]Tk(z)
[zn]Letk(z)

∼
(1 + ρk)(2 + 16ρk + 10ρ2

k − 12ρ3
k)

(1 − 2ρk − 7ρ2
k)(1 − 5ρ2

k)
. (16)

An estimate for the average number of transitions per regular expression is:

[zn]Tk(z)
[zn]Rk(z)

∼
(1 + ρk)(1 + 8ρk + 5ρ2

k − 6ρ3
k)

(1 − ρk)(1 − 5ρ2
k)

n. (17)

Since ρk tends to 0 as k goes to∞, it follows that for large values of k, the average
number of transitions per state is approximately 2, while the average number of
transitions per automaton is approximately the size of the original regular expres-
sion.

3.3 Average Size of the Partial Derivative Automata
The partial derivative automaton of a regular expression was introduced, indepen-
dently and through two distinct approaches, by Mirkin [35] and Antimirov [2].
Champarnaud and Ziadi [18] proved that the two formulations are equivalent. For
a RE α and a symbol σ ∈ Σ, the set of partial derivatives of α w.r.t. σ is defined
inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅

∂σ(σ′) =

{ε}, if σ′ = σ

∅, otherwise

∂σ(α + β) = ∂σ(α) ∪ ∂σ(β)
∂σ(αβ) = ∂σ(α)β ∪ ε(α)∂σ(β)
∂σ(α?) = ∂σ(α)α?,

(18)

where, for any S ⊆ R, β ∈ R, S ∅ = ∅S = ∅, S ε = εS = S , and S β = { αβ | α ∈ S }
if β , ∅, and β , ε. The definition of partial derivative can be naturally extended

The Bulletin of the EATCS

179

to sets of regular expressions, words, and languages. One has
⋃

τ∈∂w(α)L(τ) =

w−1L(α), and the set of all partial derivatives of α w.r.t. words is denoted by
PD(α) =

⋃
w∈Σ? ∂w(α). Note that the set PD(α) is always finite [2], as opposed to

the set of Brzozowski’s derivatives, which is only finite modulo ACI.
The partial derivative automaton is defined by Apd(α) = (PD(α),Σ, δpd, α,

Fpd), where δpd = { (τ, σ, τ′) | τ ∈ PD(α) ∧ τ′ ∈ ∂σ(τ) }, and Fpd = { τ ∈
PD(α) | ε(τ) = ε }. Mirkin’s construction of the Apd(α) is based on solving
a system of equations of the form αi = σ1αi1 + . . . + σkαik if ε(αi) = ∅, and
αi = σ1αi1 + . . . + σkαik + ε otherwise, with α0 ≡ α and αi j, 1 ≤ j ≤ k, linear
combinations the αi, 0 ≤ i ≤ n, n ≥ 0. A solution (called the support of α)
π(α) = {α1, . . . , αn} can be obtained recursively on the structure of α as follows:

π(∅) = ∅

π(ε) = ∅

π(σ) = {ε}

π(α ∪ β) = π(α) ∪ π(β)
π(αβ) = π(α)β ∪ π(β)
π(α?) = π(α)α?.

(19)

Champarnaud and Ziadi [18] proved that PD(α) = π(α) ∪ {α} and that the two
constructions lead to the same automaton. As noted by Broda et al. [7], Mirkin’s
algorithm to compute π(α) also provides an recursive definition of the set of tran-
sitions of Apd(α). Let ϕ(α) = { (σ, γ) | γ ∈ ∂σ(α), σ ∈ Σ } and λ(α) = { α′ | α′ ∈
π(α), ε(α′) = ε }, where both sets can be recursively defined using (18) and (19).
We have, δpd = {α} × ϕ(α) ∪ F(α) where the result of the × operation is seen as a
set of triples and the set F is defined inductively by:

F(∅) = F(ε) = F(σ) = ∅, σ ∈ Σ

F(α + β) = F(α) ∪ F(β)
F(αβ) = F(α)β ∪ F(β) ∪ λ(α)β × ϕ(β)
F(α?) = F(α)α? ∪ (λ(α) × ϕ(α))α?.

(20)

For all α ∈ R,Apd(α) = (π(α) ∪ {α},Σ, {α} × ϕ(α) ∪ F(α), α, λ(α) ∪ ε(α){α}).
In his original paper, Mirkin showed that |π(α)| ≤ |α|Σ. Since Apd(α) is a

quotient of the Glushkov automaton [17], we know that it has at most |α|Σ+1 states.
But this upper bound is reached if and only if, at every step during the computation
of π(α), all unions are disjoint. There are however two cases in which this clearly
does not happen. Whenever ε ∈ π(β) ∩ π(γ), |π(β + γ)| = |π(β) ∪ π(γ)| ≤ |π(β)| +
|π(γ)|−1 and also |π(βγ?)| = |π(β)γ?∪π(γ?)| = |π(β)γ?∪π(γ)γ?| ≤ |π(β)|+|π(γ)|−1.
These observations lead to the computation of a lower bound of the number of
state mergings [6]. The respective generating function is Ik(z) =

(z+z2)Rπ,k(z)2
√

∆k(z)
, where

Rπ,k(z) is the generating function of α ∈ RE such that ε ∈ π(α). The asymptotic
estimate of the (cumulative) number of mergings is

[zn]Ik(z) ∼
1 + ρk

64

(
ak(ρk) + b(ρk)2 − 2b(ρk)

√
ak(ρk)

)
√
π
√

2 − 2ρk

ρ−(n+1)
k n−1/2, (21)

BEATCS no 116

180

where now ak(z) = 16z4 − 24z3 + (64k + 1)z2 + 6z + 1 and b(z) = −4z2 + 3z + 1.
From (2) and (21) one easily gets the following asymptotic estimate for the

average number of mergings

[zn]Ik(z)
[zn]Rk(z)

∼ λk n, (22)

where λk =
(1+ρk)

16(1−ρk)

(
ak(ρk) + b(ρk)2 − 2b(ρk)

√
ak(ρk)

)
. Using again the fact that

lim
k→∞

ρk = 0, and that lim
k→∞

ak(ρk) = 9, while lim
k→∞

b(ρk) = 1, one gets that limk→∞ λk =

1
4 . This means that, for a RE of size n, the average number of state mergings is,
asymptotically, about n

4 .
In order to obtain a lower bound for the reduction in the number of states of

the Apd automaton, as compared to the ones of the Apos automaton, it is enough
to compare the number of mergings for an expression α with the number of letters
in α. From (9) and (22) one gets

[zn]Ik(z)
[zn]Lk(z)

∼
1 − ρk

4kρ2
k

λk. (23)

It is easy to see that limk→∞
1−ρk

4kρ2
k
λk = 1

2 . In other words, asymptotically, the average
number of states of theApd automaton is about one half of the number of states of
theApos automaton, and about one quarter of the size of the corresponding RE.

In [7] the same technique was used for the estimation of the number of tran-
sitions of Apd. Observing the equations (20), in this case one first estimates the
number of mergings that occur in λ(α) and then the corresponding number of
transition mergings. Letting Itz being the generating function for the number of
transitions mergings, one has

[zn]Itk(z) ∼
(1 + ρk)

(
a(ρk)

√
b(ρk) + c(ρk)

)
16
√
π ρk

√
2 − 2ρk (1 − 5ρ2

k)d(ρk)
ρ−n

k n−
1
2 (24)

where a(z), b(z), c(z), and d(z) are some fixed polynomials. Therefore, a lower
bound for the average number of mergings per transition of the Glushkov automa-
ton is given by

[zn]
Itk(z)
Tk(z)

∼
a(ρk)

√
b(ρk) + c(ρk)

4(1 + 8ρk + 5ρ2
k − 6ρ3

k)d(ρk)
. (25)

Because limk→∞[zn] Itk(z)
Tk(z) = 1

2 , asymptotically with respect to k, the number of
transitions inApd is at most half the number of transitions inApos.

The Bulletin of the EATCS

181

3.4 Other NFAs and Open Problems

Another well-known quotient of the Glushkov automaton is the follow automa-
ton, A f , which can also be obtained by eliminating the ε-transitions from the
Aε− f ol [26]. It is known that if the regular expression is in star normal form, the
Apd is always smaller than or equal toA f . The conversion to star normal form is
linear and experimental results suggest that, on average, regular expressions are
in that form [22]. Although it is an open problem to theoretically show that this is
the case, we believe that on average theA f is not smaller thanApd. Experimental
results also suggest that on average theApd almost coincides with the bisimilarity
of Apos, Apos�≡b. Maia et al. [31] characterised, for finite languages, the graph
properties ofApd, and determined under which conditionsApd '

Apos�≡b. It is an
open problem to obtain an asymptotic average behaviour of these two construc-
tions.

There are some related constructions of automata from regular expressions.
Instead of left quotients one can consider right quotients. Given a language L,
the right-quotient of L w.r.t. a word w is the language Lw−1 = { x | xw ∈ L }.
It is not difficult to verify that Lw−1 = (wR)−1LR, where ()R represents the rever-
sal operation. Then sets of right-partial derivatives and the right-partial derivative
automaton (

←−
Apd) can be naturally defined. However, as (Apd(αR))R '

←−
Apd, we can

conclude that the number of states of
←−
Apd are, asymptoticaly and on average, half

of the number of states of Apos. Yamamoto [48] introduced the prefix automaton
of a RE, Apre, as a quotient of the Thompson automaton that corresponds also to
the quotient of the Glushkov automaton by a right-invariant relation that identifies
states ofApos with the same left language. Maia et al. [32] characterised theApre

automaton as a solution of a system of equations, and presented a recursive defi-
nition ofApre akin to the one given forApd in equations (19) and (20). Using the
framework of analytic combinatorics and techniques similar to the ones described
in Section 3.3, it was shown that, as the size of alphabet grows, the average num-
ber of states of the Apre automaton approaches the number of states of the Apos

automaton.

Finally, given the set of positions of a RE α, Pos(α), instead of considering the
fw function as in theApos automaton, one can consider the pr function, that gives
the set of positions that can precede a given position i.e. pr(α, j) = { i | uaia jv ∈
L(α) }, for j ∈ Pos(α). The previous automaton Apre is defined akin to Apos, but
considering a unique distinct final state. It follows that Aprev(α) ' (Apos(αR))R.
Thus, the number of states coincides with the number of states of Apos. The
interest in this construction relies in its connection to the recent au point DFA
construction [4, 39] that we will mention in Section 5.

BEATCS no 116

182

4 Extended Regular Expressions to NFAs

Although regular languages are trivially closed for boolean operations, the ma-
nipulation of intersection and complementation with regular expressions or non-
deterministic finite automata is non-trivial and leads to an exponential blow up.
However, there are several applications where extended regular expressions are
used to represent information and it is important to study their conversion to au-
tomata. Caron et al. [14] extended the notion of partial derivatives and partial
derivative automaton to regular expressions with intersection and complementa-
tion.

Broda et al. [11] extended the same notions to regular expressions with shuffle
and studied the average number of states of the corresponding partial derivative
automaton. The complexity of the shuffle (or interleaving) operation is well stud-
ied in the worst case. Mayer and Stockmeyer [33] showed that for REs with
shuffle, of size n, an equivalent NFA needs at most 2n states, and presented a fam-
ily of REs with shuffle, of size O(n), for which the corresponding NFAs have at
least 2n states. Gelade [20], and Gruber and Holzer [24] showed that there exists a
double exponential trade-off in the translation from REs with shuffle to standard
REs. Gelade also gave a tight double exponential upper bound for the translation
of REs with shuffle to DFAs.

Broda et al. showed that the number of states of the partial derivative automata
is in the worst case at most 2m, where m is the number of letters in the expression,
while asymptotically and on average it is no more than (4

3)m. Considering the
grammar for regular expressions (1) with one more rule for shuffle α� α, we can
extend the definition of the support π in (19) by:

π(α� β) = π(α)� π(β) ∪ π(α)� {β} ∪ {α}� π(β), (26)

where for S ,T ⊆ R, S �T = { α�β | α ∈ S , β ∈ T }, and {ε}� S = S � {ε} = S .
With this expression it is easy to see that now |π(α)| ≤ 2|αΣ | and this bound is
reachable for the family of regular expressions αn = a1 � · · ·� an, where n ≥ 1,
ai , a j for 1 ≤ i , j ≤ n. Let Pk(z) be the generating function for an upper bound
for the number of elements in π. For expressions of size n, one has,

[zn]Pk(z) ∼
−(3 + 3k)

1
4ρ
−n− 1

2
k + (3 + 4k)

1
4 (ρ′k)

−n− 1
2

2
√
π

(n + 1)−
3
2 ,

where now ρk = −1+2
√

3+3k
11+12k and ρ′k = −1+2

√
3+4k

11+16k .
For a regular expression α of size n, let avP and avL be the average size of π

and the average alphabetic size, respectively. Taking into account the worst case
upper bound, we have compared the values of log2 avP and avL, obtaining

lim
n,k→∞

log2 avP
avL

= log2
4
3
∼ 0.415.

The Bulletin of the EATCS

183

Therefore, one has the following significant improvement, when compared with
the worst case, for the average-case upper bound: for large values of k and n an
upper bound for the average number of states ofApd is (4

3 + o (1))|α|Σ .
Regular expressions with intersection have a worst-case behaviour similar to

shuffle [20, 24]. The definition of the support π in this case is just π(α ∩ β) =

π(α)∩π(β) (with the ∩ for sets of REs defined as above for�, only interchanging
the operators). However, the analytic analysis of the correspondent generating
function is much harder and an estimation of an upper bound of the average size
is an on-going work by the authors of this paper. Despite that, experimental results
suggest that the average number of states in Apd automata is much smaller than
2|α|Σ .

We note that for both intersection and complementation is not clear how to
extend the position based constructions.

5 Regular Expressions to DFAs

A word derivative w.r.t. a RE α, w−1α is such thatL(w−1α) = w−1L(α). The set of
word derivatives D(α) is finite modulo the ACI axioms. The Brzozowski deriva-
tive automaton can be defined by: AB(α) = (D(α),Σ, δ, [α], F), where F = { [d] ∈
D(α) | ε(d) = ε }, and δ([q], σ) = [σ−1q], for all [q] ∈ D(α), σ ∈ Σ. McNaughton
and Yamada [34] presented a DFA construction from an RE that coincides with
the determinization of the Apos automaton. Recently, Asperti [4] introduced a
DFA construction from an RE that uses pointed REs α′ where some letters are
annotated with a point and L(α′) is the set words that start at some pointed letter.
All these constructions lead to DFAs that have a size that is, in the worst case, ex-
ponential in the size of the initial RE. For all these constructions, no average-case
complexity results are known, as far as the authors are aware of. Some experimen-
tal results suggest that au point is on average smaller then the other constructions.
To understand why this happens and to find estimates of the average size of each
construction is thus an open problem.

6 KATs to NTAs

Kleene algebra with tests (KAT) [28] is a decidable equational system combining
Kleene and Boolean algebras, and is specially suited to capture and verify prop-
erties of simple imperative programs. The equational theory of KAT is PSPACE-
complete. The decidability, conciseness and expressiveness of KAT motivated its
recent automatisation within several theorem provers [40, 41, 3] and functional
languages [1, 42]. Most of those implementations use (variants of) the coalge-

BEATCS no 116

184

braic automaton on guarded strings developed by Kozen [30]. In that approach,
derivatives are considered over symbols of the from vp, where p is an alpha-
betic program symbol and v a valuation of boolean variables (the guard, normally
called atom). This induces an exponential blow-up on the number of states or tran-
sitions of the automata. This exponential growth was avoided in Silva [45], and in
Broda et al. [8, 10], by using for KAT standard finite automata, where transitions
are labeled both with program symbols and boolean tests (instead of atoms).

The abstract syntax of KAT expressions, over an alphabet P = {p1, . . . , pk} of
program symbols and T = {t0, . . . , tl−1} of boolean variables (tests), can be given by
the following unambiguous grammar, suitable for applying the symbolic method.

BExp : b → 0 | 1 | t | ¬b | (b + b) | (b · b) (27)
AExp : a → p | (a + a) | (a + b) | (b + a) | (a · a) | (a · b) | (b · a) | a? (28)

Exp : e → b | a. (29)

Here BExp, AExp, and Exp represent sets of boolean expressions, KAT expres-
sions with at least one program symbol p ∈ P, and KAT expressions, respec-
tively. For simplicity, the grammar excludes subexpressions of the form b?, as
their semantics correspond to the set of all boolean assignments and thus are
equivalent to 1. For the negation of test symbols we use t instead of ¬t. The
set At, of atoms over T, is the set of all boolean assignments to all elements of T,
At = { x0 · · · xl−1 | xi ∈ {ti, ti}, ti ∈ T }. Elements of At are denoted by v, and we
write v ≤ b, if v→ b is a boolean tautology.

The set of guarded strings over P and T is GS = (At · P)? · At. Regular sets
of guarded strings form the standard language-theoretic model for KAT [29]. A
(nondeterministic) automaton with tests (NTA) over the alphabets P and T is a
tuple A = 〈Q, q0, o, δ〉, where Q is a finite set of states, q0 ∈ Q is the initial
state, o : Q → BExp is the output function, and δ ⊆ Q × (BExp × P) × Q is the
transition relation. A guarded string v0σ1 . . . σnvn, with n ≥ 0, is accepted by
the automaton A if and only if there is a sequence of states q0, q1, . . . , qn ∈ Q,
where q0 is the initial state, and, for i = 0, . . . , n − 1, one has vi ≤ bi for some
(qi, (bi, σi+1), qi+1) ∈ δ, and vn ≤ o(qn).

Silva [45] presented the Glushkov construction for KAT, and Broda et al. [8,
10] defined the partial derivative automaton for KAT. The asymptotic average size
of both constructions were studied in [8]. It was shown that, contrary to other
automata constructions for KAT expressions, they enjoy the same descriptional
complexity behaviour as their counterparts for regular expressions.

Consider the generating function

Rm(z) =
1 − z −

√
∆m(z)

4z
, where ∆m(z) = 1 − 2z − (15 + 8m)z2, (30)

The Bulletin of the EATCS

185

for the number of regular expressions generated by the grammar in (1), including
∅, which is almost identical to the one in Subsection 2.2. It is easy to see that
Bl(z) = Rl(z) and Ek,l(z) = Rk+l(z), where l and k are respectively the sizes of P
and T, and Bl(z) and Ek,l(z) respectively the generating functions for BExp and
Exp. Using the technique presented in Section 2 applied to (30), the asymptotic
estimates for the number of regular expressions of size m is

[zn]Rm(z) ∼
√
ρm

4√2m + 4

4
√
π

ρ−(m+1)
m (m + 1)−

3
2 , (31)

where ρm = −1+2
√

2m+4
15+8m is the radius of convergence of Rm(z). Let Pk,l(z) denote the

generating function for the number of program symbols in KAT expressions. Then,
we have Pk,l = k

k+l Letk+l(z), with Letm(z) as in (8). Therefore, the probability, for
a uniform distribution, that a symbol in a KAT expression of size n is a program
symbol is

[zn]Pk,l(z)
n [zn]Ek,l(z)

∼

(
4(k + l) + 8 −

√
2(k + l) + 4

)
k

(15 + 8 (k + l)) (k + l + 2)

(
1 +

1
n

)3/2

= ηk,l,n. (32)

The average number of program symbols, as k + l increases, tends to 1
2(c+1) , where

c = l
k . For instance, if l = k, l = 2k, and l = 1

2k, this limit is, respectively, 1
4 , 1

6 ,
and 1

3 . Furthermore, for any ratio c, the asymptotic average number of states in
Glushkov automata is less than half the size of the corresponding expressions.

Since for KAT the recursive definition of the support π just differs by adding
π(b) = ∅, which does not affect the computations, one can apply the method used
in Subsection 3.3 in order to get an upper bound for the state complexity of the
partial derivative automaton. One obtains,

[zn]Ik,l(z)
[zn]Ek,l(z)

∼ λk,l n, (33)

where λk,l =
1+ρk+l

16(1−ρk+l)

(
ak(ρk+l) + b(ρk+l)2 − 2b(ρk+l)

√
ak(ρk+l)

)
, with ak(z) = 16z4 −

24z3 + (64k + 1)z2 + 6z + 1, and b(z) = −4z2 + 3z + 1. Therefore

[zn]Ik,l(z)
[zn]Pk,l(z)

∼
λk,l

ηk,l,n
. (34)

One can see that, for a fixed value of l this ratio approaches 1
2 , as k grows. This

means that the number of states in the equation automaton is asymptotically, and
on average, half the number of states in the Glushkov automaton.

It is more difficult to obtain a sufficiently accurate upper bound for the average
number of transitions in the Glushkov NTAs. In particular, several grammars for

BEATCS no 116

186

expressions with different properties, such as for KAT expressions that have no
atom v ∈ At in their associated language, have to be considered. In this case the
computations no longer mirror the ones for regular expressions, but nevertheless
the same result is reached: asymptotically, and on average, the number of transi-
tions of the Glushkov automaton is linear in the size of the KAT expression. To
estimate the average number of transitions in the Apd for KAT expressions is an
open problem.

6.1 SKA and SKAT

Synchronous Kleene algebra (SKA), introduced by Prisacariu [43], combines KA
with a synchrony model of concurrency. Synchronous here means that two con-
current processes execute a single action simultaneously at each time instant of a
unique global clock.

A SKA over a finite set AB is given by a structure (A,+, ·,×, ∗, 0, 1,AB), where
AB ⊆ A, (A,+, ·, ∗, 0, 1) is a Kleene algebra, and × is a binary operator that is as-
sociative, commutative, distributive over +, with absorvent element 0 and identity
1. Furthermore, it satisfies a × a = a, ∀a ∈ AB, as well as the following equation
for synchrony: (α× · α) × (β× · β) = (α× × β×) · (α × β), where α× and β× are of the
form a1 × · · · × an, for ai ∈ AB.

Broda et al. [5] defined the partial derivative automaton Apd for SKA. It was
shown that the worst-case upper bound for the number of states of this automaton
coincides with the one for the Apd for regular expressions with shuffle. This
implies the same upper bound for the average number of states of the Apd for
SKA. Prisacariu also generalised Kleene algebra with tests to the synchronous
setting (SKAT). Broda et al. extended NTA’s for SKAT, as well as the derivative
based methods already developed for SKA. Also in this case, experimental results
suggest that on average the size ofApd for both SKA and SKAT are much smaller
than the worst-case upper bound. Thus, a more fine-grained study of the average-
case complexity of these automata in the analytic combinatorics framework is
worthwhile.

7 Conclusions

We presented recent results on the average size of automata obtained from regular
expressions and some extended expressions. The framework of analytic combi-
natorics was the main tool for estimating the asymptotic number of states and
of transitions for automata, as a function of the expressions’ size. In general it
is necessary to obtain generating functions associated with the measures under

The Bulletin of the EATCS

187

consideration and then to be able to estimate the asymptotic behaviour of their
coefficients.

Both tasks may turn out to be very hard, and small differences on recursive
definitions can lead to functions with completely different analytic behaviours.

We finish by pointing out some future directions of work. Concerning ε-NFAs,
there are other conversions from REs to automata with better worst-case complex-
ity. In particular, Gruber and Gulan’s construction is optimal w.r.t. the alphabetic
size of regular expressions [23, 25]. This construction corresponds to applying
the ε-follow construction to the star normal form of the initial expression. Thus, if
one is able to estimate the asymptotic number of expressions in star normal form
of a given size, one can proceed as in Section 3.1 and obtain the average size of
this construction.

Concerning DFAs, the main ingredient is to tackle the subset construction, i.e.
determinization, within the analytic framework. Any progress in this direction
will allow to obtain estimates for the average-case complexity of the RE to DFA
conversions.

Nicaud et al. [38] studied the average number of transitions of Glushkov au-
tomata under the non-uniform distribution, inspired by random binary search
trees (BST-like). With this distribution, the average number of transitions of the
Glushkov automaton is quadratic with respect to the size of the regular expres-
sion. We believe that the same result is valid for the partial derivative automaton.
However, we think that one needs a better understanding of the relevance of the
different distributions for REs before this approach is applied to all the previous
described constructions.

References
[1] Ricardo Almeida. Decision Algorithms for Kleene Algebra with Tests and Hoare

Logic. Master’s thesis, Faculdade de Ciências da Universidade do Porto, 2012.

[2] Valentin M. Antimirov. Partial Derivatives of Regular Expressions and Finite Au-
tomaton Constructions. Theoretical Computer Science, 155(2):291–319, 1996.

[3] Alasdair Armstrong, Georg Struth, and Tjark Weber. Program Analysis and Verifica-
tion Based on Kleene Algebra in Isabelle/HOL. In Sandrine Blazy, Christine Paulin-
Mohring, and David Pichardie, editors, 4th Inter. Conference ITP 2013, Rennes,
France. Proceedings, volume 7998 of Lecture Notes on Computer Science, pages
197–212. Springer, 2013.

[4] Andrea Asperti, Claudio Sacerdoti Coen, and Enrico Tassi. Regular Expressions, au
point. CoRR, abs/1010.2604, 2010.

[5] Sabine Broda, Sílvia Cavadas, Miguel Ferreira, and Nelma Moreira. Derivative
Based Methods for Deciding SKA and SKAT. Submitted.

BEATCS no 116

188

[6] Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. On the Av-
erage State Complexity of Partial Derivative Automata: an Analytic Combinatorics
Approach. International Journal of Foundations of Computer Science, 22(7):1593–
1606, 2011.

[7] Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. On the
Average Size of Glushkov and Partial Derivative Automata. International Journal
of Foundations of Computer Science, 23(5):969–984, 2012.

[8] Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. On the
Average Size of Glushkov and Equation Automata for KAT Expressions. In 19th
Inter. Symposium on Fundamentals of Computation Theory, volume 8070 of Lecture
Notes on Computer Science, pages 72–83. Springer, 2013.

[9] Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. A Hitch-
hiker’s Guide to Descriptional Complexity through Analytic Combinatorics. Theo-
retical Computer Science, 528:85–100, 2014.

[10] Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. On the
Equivalence of Automata for KAT-expressions. In Arnold Beckmann, Erzsébet
Csuhaj-Varjú, and Klaus Meer, editors, Language, Life, Limits - 10th Conference
on Computability in Europe, CiE 2014, Budapest, Hungary, June 23-27, 2014.
Proceedings, volume 8493 of Lecture Notes on Computer Science, pages 73–83.
Springer, 2014.

[11] Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. Partial
Derivative Automaton for Regular Expressions with Shuffle. In Jeffrey Shallit and
Alexander Okhotin, editors, Proceedings of the 17th Int. Workshop on Descriptional
Complexity of Formal Systems (DCFS15). Springer, 2015.

[12] Anne Brüggemann-Klein. Regular Expressions into Finite Automata. Theoretical
Computer Science, 48:197–213, 1993.

[13] John Brzozowski. Derivatives of Regular Expressions. J. Association for Computer
Machinery, 11(4):481–494, 1964.

[14] Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. Partial Derivatives
of an Extended Regular Expression. In Adrian Horia Dediu, Shunsuke Inenaga,
and Carlos Martín-Vide, editors, Language and Automata Theory and Applications
— 5th International Conference, LATA 2011, Tarragona, Spain, May 26-31, 2011.
Proceedings, volume 6638 of Lecture Notes in Computer Science, pages 179–191.
Springer, 2011.

[15] Jean-Marc Champarnaud, Faissal Ouardi, and Djelloul Ziadi. Follow Automaton
versus Equation Automaton. In Lucian Ilie and Detlef Wotschke, editors, DCFS,
volume Report No. 619, pages 145–153. Department of Computer Science, The
University of Western Ontario, Canada, 2004.

[16] Jean-Marc Champarnaud and Djelloul Ziadi. Computing the Equation Automaton
of a Regular Expression in Space and Time. In Amihood Amir and Gad M. Landau,

The Bulletin of the EATCS

189

editors, CPM, volume 2089 of Lecture Notes in Computer Science, pages 157–168.
Springer, 2001.

[17] Jean-Marc Champarnaud and Djelloul Ziadi. Canonical Derivatives, Partial Deriva-
tives and Finite Automaton Constructions. Theoretical Computer Science, 289:137–
163, 2002.

[18] Jean-Marc Champarnaud and Djelloull Ziadi. From Mirkin’s Prebases to An-
timirov’s Word Partial Derivatives. Fundamenta Informaticae, 45(3):195–205,
2001.

[19] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge Uni-
versity Press, 2009.

[20] Wouter Gelade. Succinctness of Regular Expressions with Interleaving, Intersection
and Counting. Theoretical Computer Science, 411(31-33):2987–2998, 2010.

[21] V. M. Glushkov. The Abstract Theory of Automata. Russian Math. Surveys, 16(5):1–
53, 1961.

[22] Hugo Gouveia, Nelma Moreira, and Rogério Reis. Small NFAs from Regular Ex-
pressions: Some Experimental Results. In Fernando Ferreira, Hélia Guerra, Elvira
Mayordomo, and João Rasga, editors, Proceedings of 6th Conference on Com-
putability in Europe (CIE 2010), pages 194–203, Ponta Delgada, Azores, Portugal,
June/July 2010. CMATI.

[23] Hermann Gruber and Stefan Gulan. Simplifying Regular Expressions. In Adrian Ho-
ria Dediu, Henning Fernau, and Carlos Martín-Vide, editors, 4th International Con-
ference on Language and Automata Theory and Applications, LATA 2010. Proceed-
ings, volume 6031 of Lecture Notes on Computer Science, pages 285–296, Trier,
Germany, 05 2010. Springer.

[24] Hermann Gruber and Markus Holzer. Finite Automata, Digraph Connectivity, and
Regular Expression Size. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, 35th
ICALP, volume 5126 of Lecture Notes on Computer Science, pages 39–50. Springer,
2008.

[25] Hermann Gruber and Markus Holzer. From Finite Automata to Regular Expressions
and Back-A Summary on Descriptional Complexity. In Zoltán Ésik and Zoltán
Fülöp, editors, Proceedings 14th International Conference on Automata and Formal
Languages, AFL 2014, Szeged, Hungary, May 27-29, 2014., volume 151 of EPTCS,
pages 25–48, 2014.

[26] Lucien Ilie and Sheng Yu. Follow Automata. Information and Computation,
186(1):140–162, 2003.

[27] Dexter Kozen. Automata and Computability. Springer, 1997.

[28] Dexter Kozen. Kleene Algebra with Tests. Trans. on Prog. Lang. and Systems,
19(3):427–443, 05 1997.

BEATCS no 116

190

[29] Dexter Kozen. Automata on Guarded Strings and Applications. Matématica Con-
temporânea, 24:117–139, 2003.

[30] Dexter Kozen. On the Coalgebraic Theory of Kleene Algebra with Tests. Comput-
ing and Information Science Technical Reports http://hdl.handle.net/1813/
10173, Cornell University, May 2008.

[31] Eva Maia, Nelma Moreira, and Rogério Reis. Partial Derivative and Position Bisim-
ilarity Automata. In Markus Holzer and Martin Kutrib, editors, Implementation and
Application of Automata, 19th International Conference (CIAA 2014), volume 8587
of Lecture Notes on Computer Science, pages 264–277. Springer, 2014.

[32] Eva Maia, Nelma Moreira, and Rogério Reis. Prefix and Right-Partial Derivative
Automata. In Mariya Soskova and Victor Mitrana, editors, Computability in Eu-
rope (CiE 2015), number 9136 in Theoretical Computer Science and General Issues,
pages 1–10. Springer, 2015.

[33] Alain J. Mayer and Larry J. Stockmeyer. Word Problems—This Time with Inter-
leaving. Information and Computation, 115(2):293–311, 1994.

[34] R. McNaughton and H. Yamada. Regular Expressions and State Graphs for Au-
tomata. IEEE Transactions on Electronic Computers, 9:39–47, 1960.

[35] B. G. Mirkin. An Algorithm for Constructing a Base in a Language of Regular
Expressions. Engineering Cybernetics, 5:51–57, 1966.

[36] Cyril Nicaud. Étude du comportement en moyenne des automates finis et des lan-
gages rationnels. PhD thesis, Université de Paris 7, 2000.

[37] Cyril Nicaud. On the Average Size of Glushkov’s Automata. In Adrian Horia Dediu,
Armand-Mihai Ionescu, and Carlos Martín-Vide, editors, Proc. 3rd LATA, volume
5457 of Lecture Notes on Computer Science, pages 626–637. Springer, 2009.

[38] Cyril Nicaud, Carine Pivoteau, and Benoît Razet. Average Analysis of Glushkov
Automata under a BST-Like Model. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2010, December
15-18, 2010, Chennai, India, pages 388–399, 2010.

[39] Tobias Nipkow and Dmitriy Traytel. Unified Decision Procedures for Regular Ex-
pression Equivalence. Archive of Formal Proofs, 2014, 2014.

[40] David Pereira. Towards Certified Program Logics for the Verification of Imperative
Programs. PhD thesis, University of Porto, 2013.

[41] Damien Pous. Kleene Algebra with Tests and Coq Tools for while Programs. In
Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, editors, Interac-
tive Theorem Proving — 4th International Conference, ITP 2013, Rennes, France,
July 22-26, 2013. Proceedings, volume 7998 of Lecture Notes in Computer Science,
pages 180–196. Springer, 2013.

[42] Damien Pous. Symbolic Algorithms for Language Equivalence and Kleene Algebra
with Tests. In Sriram K. Rajamani and David Walker, editors, 42nd POPL 2015,
pages 357–368. ACM, 2015.

The Bulletin of the EATCS

191

[43] Cristian Prisacariu. Synchronous Kleene algebra. J. Log. Algebr. Program.,
79(7):608–635, 2010.

[44] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009.

[45] Alexandra Silva. Position Automata for Kleene Algebra with Tests. Sci. Ann. Comp.
Sci., 22(2):367–394, 2012.

[46] Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory, volume II: LR(k) and
LL(k) Parsing of EATCS Monographs on Theoretical Computer Science. Springer,
1990.

[47] K. Thompson. Regular Expression Search Algorithm. Communications of the ACM,
11(6):410–422, 1968.

[48] Hiroaki Yamamoto. A New Finite Automaton Construction for Regular Expres-
sions. In Suna Bensch, Rudolf Freund, and Friedrich Otto, editors, Sixth Workshop
on Non-Classical Models for Automata and Applications - NCMA 2014, Kassel,
Germany, July 28-29, 2014. Proceedings, volume 304 of books@ocg.at, pages 249–
264. Österreichische Computer Gesellschaft, 2014.

The Logic in Computer Science Column
by

Yuri Gurevich

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

193

Selected Papers from the 1st Workshop
“Logic, Language, and Information”

Guido Sciavicco
Dept. of Information and Communication Engineering

University of Murcia, Spain
guido@um.es

Alfredo Burrieza
Dept. of Phylosophy

university of Málaga, Spain
burrieza@uma.es

This issue’s Logic Column in Computer Science features five selected pa-
pers from the 1st Workshop “Logic, Language, and Information", held in Málaga
(Spain) from the November 3rd to November 5th, 2014, and co-edited by Prof.
Guido Sciavicco (University of Murcia) and Prof. Alfredo Burrieza (University
of Málaga).

The workshop was held as the foundational act of the recently created Logic,
Language and Information Research Unit (UILLI-AT), which features research
groups from the University of Málaga and Sevilla, under the control of the institute
Andalucia Tech. External researchers are also involved in the unit, and the basic
areas of interests are logic, linguistics, computer science, and cognitive science,
particularly focused on information management and representation. There were
16 contributions and 3 invited talks at the workshop.

Although the contributions to the workshop were focused on very different
areas, the common denominator to all of them was logic. Among the areas that
have been discussed during this event, we mention: formal analysis of concepts,
information extraction models for metabolic networks, interval temporal logics,
preference change logics in the context of social networks, automatic proof sys-
tems in databases, formal methods for analysis of spoken language, epistemic
logics for collective awareness, bio-informatics analysis methods, transformation
of programs, belief revision methods, abductive processes, and mereology in the
context of temporal reasoning.

The selected papers, that underwent a full review process, are the following
ones. Distributed Explicit Knowledge and Collective Awareness, by Alfredo Bur-

BEATCS no 116

194

rieza and Claudia Fernández: in this paper the authors present an approach to
model the communication among a group of agents with limited knowledge re-
sources; this leads to the introduction of the concept of collective awareness,
which allows one to transform implicit distrbuited knowledge into explicit one. A
Logical Approach for Direct-Optimal Basis of Implications, by Estrella Rodríguez-
Lorenzo, Pablo Cordero, Manuel Enciso and Angel Mora: here the authors con-
sider the problem of formal concept analysis, and in particular the problem of
analyzing data by means of sets of implications; optimization is taken care of by
means of Simplification Logic, presented by the authors, and shown to be equiv-
alent to Armstrong axiomatization. Abductive Reasoning in Dynamic Epistemic
Logic - Generation and Selection of Hypothesis, by Ismael Delgado-Arróniz: the
paper aims to represent abductive reasoning in the context of epistemic logic; in
particular, it is focused on highlighting the role of experience as a tool to select
the best explaining hypothesis, and several methods are presented. LCC-Program
Transformers through Brzozowski’s Equations, by Enrique Sarrión-Morillo: an
alternative to classic Kleene translation based on equational methods for program
transformation is presented, aimed to dealing with the Logic of Change and Com-
munication; this alternative method is studied in terms of complexity, formulas’
length, and simplicity of implementation. And, finally, Mereology and Temporal
Structures, by Pedro González Núñez: is this paper a semantic structure based
on Kamp frames is presented as the theoretical basis to deal with mereological
concepts such as part of in a spatio-temporal context; a first-order multi-modal
language is described with a non-classical semantics to work with such structures.

The Bulletin of the EATCS

195

Distributed explicit knowledge and
collective awareness

Alfredo Burrieza Claudia Fernández-Fernández
Universidad de Málaga, Andalucía Tech

Departamento de Filosofía, España
burrieza@uma.es, clau5anj@gmail.com

Abstract

Our goal is to model communication in a group among agents with lim-
ited resources. Therefore we redefine the concept of distributed knowledge in
order to distinguish between implicit and explicit knowledge. The most useful
tool to do this is the concept of awareness, as a way of limiting and selecting
what the agents really know. In this sense we propose a collective awareness
that ensures full explicit communication and shows the dynamic aspects of
the information exchange in a group. Depending on the definition of this col-
lective awareness we are able to model the various ways in which the agents
behave during communication.

1 Introduction
The standard definition of distributed knowledge (see [2]) intends to capture the
knowledge flow between the agents in a group. The group is treated as another
agent (the ‘wise man’) and acquires some knowledge that no individual agent on his
own could posses. This new knowledge is derived from the information exchange
between the agents in the group. Consider the standard epistemic language with
the distributed knowledge operator DG (where G is a set of agents). Let M =

(S ,R1, . . . ,Rn,V) be any Kripke model (more details below) and |= be the usual
satisfaction relation, defined on the model. Then we have that for any s ∈ S :

M, s |= DGϕ iff M, t |= ϕ, for all t such that (s, t) ∈ �i∈G Ri (D1)

This definition gives rise to strange cases in which we can model a group knowl-
edge that has been established without a justified information exchange between the
agents in the group, we could call these type of situations ‘mysterious knowledge’.
Imagine a simple case: Agent 1 knows that the movie X is not shown at at 17:00h,
agent 2 knows it, too; but both (as a group), after communication, know that the
movie is shown at 17:00h (p). How is this possible? Consider the following model
Mmovie = (S ,R1,R2,V), where:

BEATCS no 116

196

• S = {s, t, u}; R1 = {(s, s), (s, t)}; R2 = {(s, s), (s, u)}; V(q) = ∅ for all atom q
of the language.

We have that M, s |= DG p, i.e., the group G (where G = {1, 2}) knows p at s,
according to the definition above, in (D1) (since

�
i∈G Ri = ∅). But p is no logical

consequence of the combined knowledge of the agents at s, since this knowledge is
consistent and ¬p is part of it. This is a case of ‘mysterious knowledge’ where we
cannot justify coherently how the group acquires their knowledge. In our example
we use a frame with no special properties on the accessibility relations. In [5]
the authors present another case of mysterious knowledge where the accessibility
relations are equivalence relations.

To avoid this kind of situations, we can use a different distributed knowledge
definition that considers the logical consequences of the knowledge of the group
members, as in [3]. But, although this situation could be fixed, the information flow
happens in an ideal context. The communication that is being modelled focuses
on implicit knowledge and belief. It does not take into account agents with limited
reasoning, real agents. Our goal is to approach the distributed knowledge of a group
whose members have limited reasoning resources.

When a group of agents establishes communication they exchange different
kinds of information: knowledge, beliefs, doubts, mistakes, etc. If we focus only
on the knowledge, then it should be clear that this knowledge is always explicit. If
the agents have limited reasoning resources then we need an appropriate tool that
distinguishes between what is implicit or explicit. Fagin et al., in [2], refer to the
awareness of the agent as a way of limiting their knowledge (see also [1]).

The information exchange between the agents in a group modifies each individ-
ual awareness. Therefore the explicit knowledge of the group, seen as the knowl-
edge of the wise man, depends on the awareness of the group. We could then
consider a ‘collective awareness’ that will be applied to the explicit knowledge of
the group in the same way that the individual awareness is applied to the explicit
knowledge of the agent. In other words, if we have Ke

i ϕ ≡ Kiϕ ∧ Aiϕ, where Ke
i ϕ

means ‘agent i explicitly knows ϕ’, Kiϕ means ‘agent i implicitly knows ϕ’ and Aiϕ
means ‘agent i is aware of ϕ’; we can establish in a natural way that for any group of
agents G we have: De

Gϕ ≡ DGϕ ∧ AGϕ, where De
Gϕ means ‘ϕ is distributed explicit

knowledge among the agents in G’, DGϕmeans ‘ϕ is distributed implicit knowledge
among the agents in G’ and AGϕ means ‘group G is aware of ϕ’.

Our aim is to present the minimum conditions under which we can define the
collective awareness, that is, under which expressions such as ‘group G is aware of

The Bulletin of the EATCS

197

ϕ’ make sense. We want to analyze the results of combining this notion with two
different senses of DG in order to describe the different concepts of explicit group
knowledge: (D1) previously defined and (D2) presented later.

Group knowledge attempts to reflect how the knowledge is gained after an in-
formation exchange between the members of the group. This can be thought of
as a new agent representing the group (the wise man) who possesses the informa-
tion resulting from the exchange. Since the information being exchanged is explicit
knowledge, the awareness of the wise man needs to be the result of the interaction
of the individual awarenesses. In a natural way this knowledge exchange needs to
have an impact on the collective awareness of the group.

On the formal account we can reduce the collective awareness to the intersection
of all the information of the individual awarenesses (pure awareness intersection).
Nevertheless, being less strict about this matter we can suppose that the collective
awareness will contain at least this intersection (awareness intersection) (AI). This
less strict version enables us to reflect the dynamic aspects of communication, the
fact that after the information exchange the individual awarenesses acquire the new
shared information. The way in which we represent this notion is by allowing the
collective awareness of the wise man to include the additional information that re-
sults from communication and that does not belong to, or cannot be a result of, the
awareness intersection.

On the other hand, the new information of the collective awareness, that does
not belong to any individual, has its origin in the communication itself. Then we
can state the principle of limited collective awareness (PLCA), according to which
the content of the collective awareness can only be generated by the interaction of
the information of the individual awarenesses.

In general, the agents can communicate everything they know or not, depending
on the context. Thus, there will be some information that they will not commu-
nicate to the others, but which nevertheless belongs to their individual awareness.
We can consider both these type of models and, furthermore, distinguish between
those cases where all the information they communicate is knowledge (full rational
communication) and where not necessarily all of it is knowledge (partial rational
communication).

2 Epistemic logic with distributed knowledge and col-
lective awareness

Consider a countable set of propositional letters P and a finite set of agents Ag =
{1, . . . , n}, the language LDAc

of epistemic logic with distributed knowledge and
collective awareness is given by the following definition:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ→ ϕ | Kiϕ | Ke
i ϕ | DGϕ | De

Gϕ | Aiϕ | AGϕ

(where p ∈ P, i ∈ G ⊆ Ag)

BEATCS no 116

198

A frame is a tuple F = (S ,R1, . . . ,Rn,A1, . . . ,An,AG), where:

1. S is a non-empty set of sates (also called ‘worlds’).

2. Ri ⊆ S × S for all 1 ≤ i ≤ n. Each Ri is an accessibility relation for agent i.

3. Ai : S −→ 2L
DAc

for all 1 ≤ i ≤ n.

4. AG : S −→ 2L
DAc

, whereAG satisfies: for any s ∈ S ,

(AI):
�

i∈GAi(s) ⊆ AG(s),

(PLCA): AG(s) ⊆ For(ATOM(
�

i∈GAi(s))).

where

For(ATOM(
�

i∈GAi(s))) is the set of formulas generated by the atoms that
appear in the formulas of

�
i∈GAi(s) (the awareness set in s).

Note that we did not specify any special properties for the individual awareness
on item 3. It is wellknown [2] that Ai can have different properties (closed under
subformulas, generated by a subset of primitive propositions, etc.). Analogous con-
siderations can be expressed regarding collective awareness and depending on the
properties of the individual awarenesses. Note also that the two general conditions
of ‘awareness intersection’ and ‘limited collective awareness’, included on item
4, are the minimum intuitive requirements we impose on the collective awareness
frames.

(AI) says thatAG(s) contains at least the intersection of individual awarenesses
(before communication) and it can be expanded with new information (after com-
munication). This new information represents the modifications of the individual
awarenesses after communication. This mechanism works similarly to the DG op-
erator. This operator collects what the agents know after communication, but the
model can only reflect, as a picture, what the agents know before communication.
In this regard we are dealing with static models.

(PLCA) says that after communication, the collective awareness cannot have
more information than the information contained by the set of formulas generated
by the atoms of the awareness set. For instance, if no agent in the group has notice
about the trigeminus, it is impossible that the information ‘the trigeminus is a nerve’
can appear in the collective awareness after communication.

A model is a tupleM = {F ,V}, where F is a frame and V is a valuation function
V : P −→ 2S such that V associates every p ∈ P with a subset of S , intuitively the
states in which p is true. In addition, a satisfaction relation |= between models and
formulas in LDAc

can be defined. We writeM, s |= ϕ to mean that the formula ϕ is
true at (satisfied in) state s inM and it can be inductively defined as follows:

The Bulletin of the EATCS

199

M, s |= p iff s ∈ V(p) (for each p ∈ P)
M, s |= ¬ϕ iff M, s �|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ andM, s |= ψ
M, s |= ϕ→ ψ iff M, s �|= ϕ orM, s |= ψ
M, s |= Kiϕ iff for all t such that (s, t) ∈ Ri:M, s |= ϕ
M, s |= Aiϕ iff ϕ ∈ Ai(s)
M, s |= Ke

i ϕ iff M, s |= Kiϕ andM, s |= Aiϕ
M, s |= AGϕ iff ϕ ∈ AG(s)

We can extend the satisfaction relation with both the following alternatives for dis-
tributed knowledge, (D1) introduced before and (D2) below (see [3]):
M, s |= DGϕ iff M, t |= ϕ, for all t such that (s, t) ∈ �i∈G Ri (D1)
M, s |= DGϕ iff {ψ ∈ LAc | M, s |= Kiψ for some i ∈ G} � ϕ (D2)

We also have:
M, s |= De

Gϕ iff M, s |= DGϕ andM, s |= AGϕ

Note that in (D2) we use LAc
, i.e., the language resulting from LDAc

by dropping
DG and De

G, avoiding this way circularity in the definition, as pointed out in [3]. On
the other hand, the symbol � is a relation of logical consequence between a set of
formulas and one formula. In general, Φ � ϕ means that for every modelM and
every state s inM , if all formulas in Φ are satisfied in s, ϕ is also satisfied in s. In
addition, the notions of satisfiability and validity are defined as usual.

Example 1. In the following model M = (S ,R1,R2,A1,A2,AG,V) we take s as
the actual state and G = {1, 2}. We define the model only attending to atoms p, q, r:

• S = {s, t, u}.
• R1 = {(s, s), (s, t)}; R2 = {(s, s), (s, u)}.
• A1(s) = {p, r}; A2(s) = {p→ q};A1(t) = A2(t) = A1(u) = A2(u) = ∅.

• AG(s) is defined below in different ways;AG(t) = AG(u) = ∅.

BEATCS no 116

200

• V(p) = {s, t}; V(q) = {s}; V(r) = S .

Before communication we have:

• M, s |= K1 p M, s |= K1r M, s |= K2(p→ q)

The agents can interchange information. And what happens after communica-
tion? We can contemplate several possibilities. In all of them we have the same
result using (D1) or (D2):

1. • AG(s) =
�

i∈GAi(s) = ∅ (there is no communication at all)
The distributed implicit knowledge is infinite (M, s |= DG p,M, s |= DGr, . . .),
and the distributed explicit knowledge does not increase (it was empty and
remains empty).

2. • AG(s) = {r}
1 does not speak about all his knowledge. 2 does not speak at all. We will
focus on the distributed explicit knowledge. As a consequence: M, s |= De

Gr
(only!).

3. • AG(s) = {p, q, r, p→ q}
1 speaks about all his knowledge. 2 speaks about all his knowledge. In par-
ticular they can conclude q, sinceM, s |= DGq and, as q ∈ A(s), we obtain
M, s |= De

Gq.

4. • AG(s) = {p, p→ q}
1 speaks about part of his knowledge. 2 speaks about all his knowledge.
Although they communicate p and p → q they cannot conclude q despite
all (they may lack Modus Ponens). Indeed, though M, s |= DGq we have
M, s �|= De

Gq, since q � A(s).

3 Models with rational information flow
We say that there is ‘rational information flow’ in a group whenever the collective
awareness of a group acquires knowledge from the individual agents after com-
munication. We can define two versions of rational information flow: (i) all the
acquired information needs to be knowledge (strong version), or (ii) at least part
of the acquired information is knowledge (weak version). We can also specify two
ways in which the information flows: either all explicit knowledge is acquired or
only part of it.

We are interested in collecting classes of structures with rational communica-
tion flow and in defining the concept of explicit distributed knowledge in relation to
this property. Note that the minimum conditions (AI) and (PLCA) do not commit
themselves to neither of these versions. There is also no guarantee that those inter-
sections cannot be empty. However, if there is a real knowledge exchange between

The Bulletin of the EATCS

201

the agents in the group those sets can never be empty. The rational communication
flow models are of interest because they ensure fruitful knowledge exchange, where
the agents have really learned new information.

In what follows we will use the following notation: We will call KS G(M, s) and
KS e

G(M, s) respectively implicit knowledge set and explicit knowledge set of a group
of agents G in a state s of a modelM, defined as follows:

KS G(M, s) = {ψ ∈ LDAc | M, s |= Kiψ for some i ∈ G}
KS e

G(M, s) = {ψ ∈ LDAc | M, s |= Ke
i ψ for some i ∈ G}

Consider the following four possibilities for AG that reflect different forms of com-
munication:

AG(s) =
�

i∈GAi(s) (A1)
AG(s) ⊆ {ψ ∈ LDAc | KS e

G(M, s) � ψ} (A2)
{ψ ∈ LDAc | KS e

G(M, s) � ψ} ⊆ AG(s) (A3)
{ψ ∈ LDAc | KS e

G(M, s) � ψ} ∩AG(s) � ∅ (A4)

Combining these notions of AG with (D1) and (D2) we are able to model many
ways of knowledge transfer between the agents.

If we assume (A1), then two different things may happen: either there is no
communication at all, or everything the agents communicate is already known by
them. If we assume (A2), (A3) or (A4) there can be information that the group
explicitly knows without the need that any of their members do. The group acquires
this knowledge after deriving it from the knowledge of their members. On the other
hand, regarding the specific case of (A2), the collective awareness is only ‘rational’;
that is, it only contains the logical consequences of the explicit knowledge of their
members.

In the case of (A3) and (A4) the collective awareness has a ‘rational core’,
{ψ ∈ LDAc | KS e

G(M, s) � ψ}, standing for the information that can be derived
from the explicit knowledge set. Regarding (A3) the agents communicate all their
knowledge. But the collective awareness is not necessarily reduced to its rational
core. This strikes us more intuitive since the awareness can contain inconsistent
information. Assuming (A4), there can be members of the group that do not com-
municate all their knowledge. This has a direct impact on the explicit knowledge of
the group which does not contain everything its members really know.

4 Classes of models and full explicit communication
The Principle of Full Communication establishes that whenever ϕ is considered
group knowledge, it should be possible for the members of the group to establish
ϕ through communication. It is argued by Van der Hoek et al., in [5], that group
knowledge should comply with this principle. They formulate it as follows:

BEATCS no 116

202

M, s |= DGϕ implies KS G(M, s) � ϕ

The authors use the language LD (resulting from LDAc
by dropping the explicit

epistemic and awareness operators). A dissertation about the class of models that
comply with this principle using (D1) can be found in [4]. Since we want to deal
with real agents whose reasoning resources are limited, the knowledge that is being
established through communication needs to be explicit. Hence we can establish
the principle of full explicit communication:

M, s |= De
Gϕ implies KS e

G(M, s) � ϕ

Full explicit communication can be studied combining the definitions of dis-
tributed implicit knowledge, (D1) or (D2), and the conditions on the collective
awareness, (A1)-(A4) above. The result of this combination is given by the fol-
lowing propositions:

Proposition 1. In the following classes of models distributed explicit knowledge
does not comply with the principle of full explicit communication:

1. The class of models that satisfies (D1) and either (A1) or (A3) or (A4).

2. The class of models that satisfies (D2) and either (A1) or (A3) or (A4).

Proof. We will prove in item 2 the case (D2) and (A4). Let G = {1, 2} and consider
the model (S ,R1,R2,A1,A2,AG,V), where:
S = {s}; R1 = {(s, s)}; R2 = ∅; A1(s) = {p, q};A2(s) = ∅; V(p) = {s}; V(ϕ) = ∅ for
all atom ϕ in P distinct of p. Assume also thatAG(s) = {p, q} which satisfies (A4),
because KS e

G(M, s) = {p}. Now, we have thatM, s |= DGq (sinceM, s |= K2q) and
as q ∈ AG(s), we obtainM, s |= De

Gq, but {p} = KS e
G(M, s) � q. �

The following result is immediate:

Proposition 2. In the following classes of models distributed knowledge complies
with the principle of full explicit communication:

1. The class of models that satisfies (D1) and (A2).

2. The class of models that satisfies (D2) and (A2).

5 Conclusions and future work
We have seen that collective awareness is an adequate concept for modeling com-
munication with information exchange in a group of agents. This notion reflects,
in a static way, the dynamics of communication allowing changes and integrating
new information. But there are still many unexplored areas in this field, such as:
(i) Exploring more classes of models that comply with the principle of full explicit
communication and defining formal systems to deal with this concept syntactically.
(ii) Redefining explicit distributed knowledge specifying the type of information

The Bulletin of the EATCS

203

that collective awareness can contain. (iii) Analyzing the concepts of distributed
explicit knowledge and collective awareness from the perspective of Dynamic Epis-
temic Logic (DEL) and Public Announcement Logic (PAL).

Acknowledgements. This paper was partially supported by the Spanish Research
Project TIN2012-39353-C04-01.

References
[1] R. Fagin, J.Y. Halpern. Belief, Awareness, and Limited Reasoning. Artificial Intelli-

gence, 34: 39–76, 1988.

[2] R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi. Reasoning About Knowledge. The MIT
Press, 1995.

[3] J. Gerbrandy. Distributed Knowledge. Twendial’98: Formal Semantics and Pragmat-
ics of Dialogue. (Joris Hulstijn and Anton Nijholt, eds.), TWLT 13: 111–124, 1998.

[4] F. Roelofsen. Distributed knowledge. Journal of Applied Non-Classical Logics, 17:2,
255–273, 2007.

[5] W. van der Hoek, B. van Linder, John-Jules Meyer. Group knowledge is not always
distributed (neither is it always implicit). Mathematical Social Sciences, 38: 215–240,
1999.

BEATCS no 116

204

A logical approach for direct-optimal basis
of implications

Estrella Rodríguez-Lorenzo, Pablo Cordero,
Manuel Enciso, Angel Mora

Universidad de Málaga, Andalucía Tech- Spain
estrellarodlor,amora@ctima.uma.es, pcordero,enciso@uma.es

Abstract

In Formal Concept Analysis, knowledge extracted from a data set is rep-
resented in two alternative ways: concept lattices and sets of implications.
The sets of implications are optimized under different criteria linked to sev-
eral properties. In this paper the optimization task is strongly based on the
Simplification Logic. Specifically, we present a review of how minimal sets
of implications (basis) with different properties can be calculated with a
logical style. Therefore, different techniques to manipulate them are out-
lined. Our logic-based approach property fits with the logic programming
paradigm and, thus, a Prolog implementation to calculate direct basis from
a set of implications is also sketched .

1 Introduction and background

Formal Concept Analysis (FCA) is an useful tool for mining information from a
dataset. FCA has been used in different areas: Artificial Intelligence, Databases,
Software Engineering, Data Mining, and recently in the Semantic Web.

In this section, we summarize the main concepts regarding FCA. For a more
detailed explanation, we refer the reader to [7]. Data are represented through
binary tables, named formal contexts K := (G,M, I), in which a set of objects
G and a set of attributes M are related via the binary relation I. From K, two
mappings are defined:

• ()′ : 2G → 2M where A′ = {m ∈ M | g I m for all g ∈ A} for all A ⊆ G.

• ()′ : 2M → 2G where B′ = {g ∈ G | g I m for all m ∈ B} for all B ⊆ M.

The Bulletin of the EATCS

205

In FCA several automated method have been introduced to extract knowledge
from formal concepts. This knowledge is extracted in the shape of concepts and
they can be represented in the so called Concept Lattice. A concept is a pair
〈A, B〉 ∈ 2G × 2M such that A′ = B and B′ = A (i.e. a set of objects that are
precisely characterized by a set of attributes) and an order relation is established
providing a hierarchy in the concept set.

In this paper, we deal with an alternative way to represent this knowledge, that
is the set of implications. An attribute implication is an expression A → B where
A and B are sets of attributes. A formal context satisfies A→ B if every object that
has all the attributes in A also has all the attributes in B. In other terms, A → B
holds (is valid) in K whenever A′ ⊆ B′.

The set of all valid implications in a context, called full implicational system,
gathers the same knowledge as its corresponding concept lattice. However, the
first -alternative- approach provides an interesting advantage: since it satisfies the
Armstrong’s axioms [?], some subsets can be considered as representatives of the
full implicational systems. Thus, an implicational system (briefly IS) for K is a
set Σ of implications satisfing that the valid implications on K are those that can
be derived from Σ using Armstrong’s axioms. That is, the implicational system
Σ represents all the knowledge obtained from K in a shorten way. Implicational
System knowledge representation is strongly related with two issues:

1. Do Armstrong’s axioms can be used efficiently?

2. Since several implicational systems can represent the same knowledge, there
is an optimal one?

The first question use to be addressed with indirect methods based on the seman-
tics, avoiding a direct syntactic manipulation provided by Armstrong’s inference
system. An alternative way that remains faithful to the logic point of view stems
from the Simplification Logic. In Section 2 we present this logic that allows an
efficient reasoning with implications.

The second question is addressed by characterizing those implicational sys-
tems fulfilling some minimality criteria. Such Implicational Systems are usually
called basis. Among the different basis definitions, the Duquenne-Guigues ba-
sis [8], also called Stem basis, has been widely accepted in FCA. This basis is min-
imal in the number of implications. Nevertheless, as it is shown in [6], Duquenne-
Guigues bases tend to have redundant attributes and therefore, an equivalent one
having the same cardinality but less attributes can be provided. In that paper, we
also propose a method to obtain a basis with minimal size in the left-hand side of
the implications.

Other well-known property used to define another kind of bases is directness,
i.e., a single traversal of the implicational system is enough to compute the clo-

BEATCS no 116

206

sure of an given set of attributes. A basis fulfilling this property is named direct
basis. This property is usually accompanied by some minimality criteria. We are
particularly interested in those ones with minimum size (number of attributes).
In [2, 3, 11] several methods to calculate the direct-optimal basis are introduced,
where minimality and directness have been joined in the same notion of basis.

Here, our main issue is how to calculate such a direct-optimal basis, provid-
ing a tool for a very efficient computation of attribute closures. Our method to
calculate the direct-optimal basis [11] is based on Simplification Logic [5], SL

FD
,

a sound and complete inference system for Implicational Systems. Our logic is
strongly based on the Simplification Rule, which describes the redundancy re-
moval of attributes. This method based on SL

FD
is more efficient than previous

methods appeared in the literature. To prove this fact, we have developed an illus-
trative empirical test using Prolog.

2 Simplification Logic and closures
Armstrong’s Axioms [1] is the former system introduced to manage implications
in a logical style. In this section, we briefly present Simplification Logic (SL

FD

for short), which is an equivalent logic that arises from the idea of simplifying the
set of implications by efficiently removing redundant attributes [10]. 1

The language: Given a non-empty finite alphabet S (namely attributes set), the
language of SL

FD
is LS = {A→ B | A, B ⊆ S }.

In order to distinguish between language and metalanguage, inside implica-
tions, AB means A ∪ B and A-B denotes the set difference A r B.

Semantics: A context K is said to be a model for A → B ∈ LS , denoted by
K |= A → B, if this implication holds in the context. For an IS Σ, K |= Σ means
K |= A → B for all A → B ∈ Σ. If Σ1 and Σ2 are implicational systems, Σ1 ≡ Σ2

denotes the equivalence of the two sets of implications (i.e. K |= Σ1 iff K |= Σ2 for
all context K).

Syntactic derivations: Reflexivity as axiom scheme and the following inference
rules named fragmentation, composition and simplification are considered in SL

FD
.

[Ref]
A→ A

[Frag]
A→ BC
A→ B

[Comp]
A→ B, C → D

AC → BD
[Simp]

A→ B, C → D
A(C-B)→ D

1 See [9] for a more detailed presentation of the Simplification Logic and its advantadges.

The Bulletin of the EATCS

207

Given a set of implications Σ and an implication A → B, Σ ` A → B denotes that
A→ B can be derived from Σ by using the axiomatic system in a standard way. If
any implication valid in a formal context K can be derived from Σ and vice versa,
then Σ is called an implicational system (IS) for K.

The main advantage of SL
FD

is that its inferences rules induce equivalence
relations among sets of implications. Moreover, these equivalencies are enough
to compute all the derivations (see [9] for further details and proofs).

Theorem 2.1 ([9]). In SL
FD

logic, the following equivalences hold:

1. Fragmentation Equivalency [FrEq]: {A→ B} ≡ {A→ B-A}

2. Composition Equivalency [CoEq]: {A→ B, A→ C} ≡ {A→ BC}

3. Simplification Equivalency [SiEq]: If A ∩ B = ∅ and A ⊆ C then

{A→ B,C → D} ≡ {A→ B,C-B→ D-B}

Note that these equivalencies (read from left to right) remove redundant infor-
mation, approaching our main spirit when creating SL

FD
.

Definition Let Σ ⊆ LS be an IS and X ⊆ S . The closure of X wrt Σ is the largest
subset of S , denoted X+

Σ
, such that Σ ` X → X+

Σ
.

3 Direct-Optimal basis
A mainstream topic in FCA is the study of different properties to be fulfilled by
implicational systems. As we have mentioned in the introduction, our goal is the
minimization of the computation of attribute closure computations. In [3], Bertet
and Monjardet present a survey concerning implicational systems and basis. They
show the equality among five basis presented in different works. They also study
the properties they satisfy, including directness and minimality. The conclude that
all the presented bases are equivalent to the so called direct-optimal basis.

The formal definition of these properties (minimality, optimality and direct-
ness) is the following:

Definition An IS Σ is said to be:

• minimal if Σ r {A→ B} . Σ for all A→ B ∈ Σ,

• minimum if Σ′ ≡ Σ implies |Σ| ≤ |Σ′|, for all IS Σ′,

• optimal if Σ′ ≡ Σ implies ‖Σ‖ ≤ ‖Σ′‖, for all IS Σ′,

BEATCS no 116

208

where |Σ| is the cardinal of Σ and ‖Σ‖ denotes its size, i.e. ‖Σ‖ =
∑

A→B∈Σ(|A|+ |B|).

An IS is said to be a basis if it is minimal. We are looking for bases satisfying
this property because the less cardinal of the IS, the better the performance of clo-
sure computation. Moreover, to reduce the cost of the computation of closures, we
demand for another criterion: directness. It ensures that the closure computation
only needs one traversal of the IS.

Although closure is a linear task, the search for fast and easy closure methods
is a hot topic because several problems are addressed by exhaustively computing
closures. Thus, many of the classical algorithms in FCA are solved by intensively
computing the closure of a set of attributes. A significant reduction in the per-
formance of closure methods is relevant when a huge -sometimes exponential-
number of closures are executed to solve the original problem.

For this reason, we have paid attention to the notion of direct-optimal basis [2,
3], introduced as follows:

Definition Let S be a set of attributes, an IS Σ is said to be direct if, for all X ⊆ S :

X+
Σ = X ∪ {b ∈ B | A ⊆ X and A → B ∈ Σ}

Moreover, Σ is said to be direct-optimal if it is direct and, for any direct IS Σ′,
Σ′ ≡ Σ implies ‖Σ‖ ≤ ‖Σ′‖.

In other words, Σ is said to be direct-optimal if it is direct and it is optimal among
all the equivalent direct ISs. In [3], the existence and the unicity for a direct-
optimal basis equivalent to a given one was proved.

In the following section, we are introducing a method to calculate the direct-
optimal basis for any IS proposed in [11] and its improved version proposed
in [12].

4 Computing direct-optimal basis

This section deals with the integration of the techniques proposed by Bertet et
al. [2–4] and the Simplification Logic proposed by Cordero et al. [5]. First, we
developed a function to get the direct-optimal basis whose first step is the nar-
rowing of the implications (see [11]). To this end, in this paper we use reduced
ISs.

Definition An IS Σ is reduced if B , ∅ and A ∩ B = ∅ for all A→ B ∈ Σ.

The Bulletin of the EATCS

209

Obviously, an arbitrary IS Σ can be turned into a reduced equivalent one Σr by
applying [FrEq], and by removing implications of the form A → ∅. The method
proposed here to get a direct optimal basis begins with this transformation, pre-
serving reduceness in further steps.

In [3,4] the authors apply two completely separated stages, first is focussed in
directness and, later, an optimization stage is carried out by removing redundant
implications. In our method, we have introduced a new inference rule covering in
juts one step both properties: directness and minimality. The kernel of the new
method is the so named Strong Simplification:

[sSimp] If B ∩C , ∅ and D * A ∪ B,
A→ B,C → D

A(C-B)→ D-(AB)
(1)

The exhaustively application of this rule to a reduced IS renders an equivalent
direct and reduced implicational system, direct-reduced IS in the following. As
we proved in [12], the implicational system Σdr generated from an IS Σ is defined
as the smallest one containing Σ which is closed for [sSimp].

As a final step, the three first equivalencies from Theorem 2.1 are used to
remove redundant information preserving directness. The implicational system
generated in this way by applying these equivalences is named simplified IS.

To conclude, the method turns the direct-reduced implicational system ob-
tained in previous stages into an equivalent simplified-direct-reduced one Σsdr [12].
Indeed, Σsdr is exactly the direct-optimal basis.

Although the direct-optimal basis is unique, the cost of its computation varies
depending on the proposed method. So, to efficiently solve the original problem
demanding closure computation, a reduction in the computation of the basis is
demanded. The exponential cost of this process is due to the generation of the
direct implicational system. In [12], we reduce the input of this stage. The re-
duction step described above is substituted by simplification, providing a greater
reduction in the redundancy. Now, simplification is achieved by applying all the
four equivalences in Theorem 2.1 to remove all the redundant attributes in the
implications.

Finally, we include here a Prolog implementation2 based on SL
FD

to calculate
the direct-optimal basis from a IS. Due to the fact that our methods are based on
logic, Prolog prototypes can be developed in a more direct way.

The input of the Prolog program is a set of attributes S and a set of impli-
cations Σ over the attributes in S . The output is the direct optimal basis equiv-
alent to this set of implications. The main predicate of the method developed
is directoptimalSL. There are three main operations in the method: the first
one, applySL predicate, executes the four equivalences of SL

FD
the second one,

2Available at http://www.lcc.uma.es/~enciso/do2Simp.zip

BEATCS no 116

210

sSimp, is a predicate which applies exhaustively the [sSimp] rule (1) to any pair
of implications to obtain a direct IS. The last one applySimplification renders
the simplified-direct-reduced basis: Σsir. When an implication is added in one step
of this execution, the flag fixpoint takes the value false in order to repeat the
method again until the fixpoint is reached. An sketch of this process is showed
here.
directoptimalSL(Input,Output):-

...
fixPoint_Non,
applySL,
applysSimp,
applySimplification,!.

applySL:-
siEq, rSiEq, CoEq,FrEq,
applySL.

applySL.
applysSimp:-
read2implications(implication(A,B),

implication(C,D)),
sSimp(implication(A,B),implication(C,D),
fail.

applysSimp.
applySimplification:-

siEq, CoEq,FrEq,
applySimplification.

applySimplification.
sSimp(implication(A,B),implication(C,D),
implication(ACminusB,DminusAB)):-
union(A,C,AC), difference(AC,B,ACminusB),
union(A,B,AB), difference(D,AB,DminusAB),
fixpoint(false),!.

Example In this example, we will compute the direct ba-
sis of the following set of implications stored in a file called
ganter.txt:

implication([a],[b,c]).
implication([d],[b]).
implication([c],[b]).
implication([a,b,c,d],[e,g]).
implication([a,b,c,e],[d,g]).

We call the Prolog predicate:

directoptimalSL(’ganter.txt’,’Outganter.txt’).

-> Equivalences: CoEq + SiEq
implication([c],[b]) +

implication([a,b,c,e],[d,g]) |---
implication([a,c,e],[d,g]) added

....
*** A DIRECT IS
implication([c], [b]).
implication([d], [b]).
implication([a, b, c, e], [d, g]).
implication([a, b, c, d], [e, g]).
implication([a], [b, c]).
implication([a, c, e], [d, g]).
implication([a, c, d], [e, g]).
implication([a, e], [d, g]).
implication([a, d], [e, g]).

*** BEGIN Simplification **
->Equivalences: SiEq
implication([c],[b]) +
implication([a,b,c,e],[d,g]) |---
implication([a,b,c,e],[d,g]) removed
implication([a,c,e],[d,g]) yet exist

...
** OUTPUT: DIRECT OPTIMAL BASIS
implication([c], [b]).
implication([d], [b]).
implication([a], [b, c]).
implication([a, e], [d, g]).
implication([a, d], [e, g]).

5 Conclusions

In this work, we have outlined two methods to calculate the direct-optimal basis.
We apply such methods to reduce the cost in closure computations. In FCA,
several methods exhaustively calculate closures of attribute sets and this kind of
basis allows their computation in just one traverse of the Implicational System.
Prolog has been used as an useful tool to quickly develop prototypes of these
methods. Due to space limitations a comparison is omitted and it could be the
goal of an extended work. The development of an integrated tool with all the
algorithms to manipulate implications in the direct-optimal issue is a future work.

The Bulletin of the EATCS

211

Acknowledgment
This work has been partially supported by grants TIN11-28084 and TIN2014-59471-
P of the Science and Innovation Ministry of Spain.

References
[1] W W. Armstrong, Dependency structures of data base relationships, Proc. IFIP

Congress. North Holland, Amsterdam: 580–583, 1974.

[2] K. Bertet, M. Nebut, Efficient algorithms on the Moore family associated to an im-
plicational system, DMTCS, 6(2): 315–338, 2004.

[3] K. Bertet, B. Monjardet, The multiple facets of the canonical direct unit implicational
basis, Theor. Comput. Sci., 411(22-24): 2155–2166, 2010.

[4] K. Bertet, Some Algorithmical Aspects Using the Canonical Direct Implicationnal
Basis, CLA:101–114, 2006.

[5] P Cordero, A. Mora, M. Enciso, I.PéÂŐrez de Guzmán, SLFD Logic: Elimination of
Data Redundancy in Knowledge Representation, LNCS, 2527: 141–150, 2002.

[6] P. Cordero, M. Enciso, A. Mora, M. Ojeda-Aciego, Computing Left-Minimal Direct
Basis of implications. CLA: 293–298, 2013.

[7] B. Ganter, Two basic algorithms in concept analysis, Technische Hochschule,
Darmstadt, 1984.

[8] J.L. Guigues and V. Duquenne, Familles minimales d’implications informatives ré-
sultant d’un tableau de données binaires, Math. Sci. Humaines: 95, 5–18, 1986.

[9] A. Mora, M. Enciso, P. Cordero, and I. Fortes, Closure via functional dependence
simplification, I. J.of Computer Mathematics, 89(4): 510–526, 2012.

[10] A. Mora, M. Enciso, P. Cordero, and I. Pérez de Guzmán, An Efficient Prepro-
cessing Transformation for Functional Dependencies Sets Based on the Substitution
Paradigm, LNCS, 3040: 136–146, 2004.

[11] E. Rodríguez-Lorenzo, K. Bertet, P.Cordero, M.Enciso, and A. Mora, The Direct-
optimal basis via reductions, CLA, 145–156, 2014.

[12] E. Rodríguez-Lorenzo, K. Bertet, P.Cordero, M.Enciso, A. Mora, and M. Ojeda-
Aciego, From Implicational Systems to Direct-Optimal bases: A Logic-based Ap-
proach, Applied Mathematics & Information Sciences, 2L: 305–317, 2015.

BEATCS no 116

212

Abductive Reasoning in Dynamic Epistemic
Logic - Generation and Selection of

Hypothesis

Ismael D. Arroniz
Universidad de Sevilla, Andaluca Tech

ismdelarr@gmail.com

Abstract

We propose to represent abductive reasoning in a dynamic epistemic
logic framework. The framework emphasizes the role of experience, defined
as the result of a dynamic process over an agentTMs information, in the
generation of hypotheses and the selecting the best one. We collect several
insights of different contexts in logic, such as IBE or AKM model, and
we introduce two extra criteria. Besides the one based on experience, a
traditional criterion using the idea of minimality, a pragmatic one is also
explored. We also introduce a method to combine different orders.

1 Introduction
Abduction is one of the most important non-monotonic reasoning processes.
Traditionally described as the reasoning that goes from facts to their causes, in
the process of looking for explanations. Originally studied by Charles S. Peirce
we can present abduction with his words:

The surprising fact, C, is observed.
But if A were true, C would be a matter of course.
Hence, there is reason to suspect that A is true.

Abductive reasoning has been useful in fields such as philosophy of science and
cognitive science. Abductive reasoning is also useful in Artificial Intelligence,
where it has been applied to diagnosis and natural language understanding tasks
[11, 1, 8, 7].

Recent advances using Dynamic Epistemic Logic as framework[13, 10, 12]
allow us to study explicitly the actions involved in the abductive process,

The Bulletin of the EATCS

213

understand as a process that involves an agentTMs information. In this paper,
we try to add some components to dynamic epistemic logic in order to describe
abductive reasoning step by step. We focus on the semantics for space limit
reasons. This work is organisation as follows: We present a semantic model that
allows us to study the generation and selection of hypotheses based on experience
in Section 2. Then in Section 3 we present our basic definitions for the study of
abductive reasoning under this new framework. Section 4 presents a method to
select explanations using several criteria. Section 5 recalls other proposals that
present abductive reasoning like a belief change process. We finish in Section 6
with a summary of our proposal and further lines of inquiry for future work.

2 Semantic model
Epistemic logic and its possible worlds semantics are a powerful framework that
allows us to represent an agentTMs information not only about propositional facts,
but also to the agentTMs information. Other proposals also point to the importance
of experience in abductive reasoning [6][11]. In epistemic terms, we understand
the experience as the result of a dynamic process of an agentTMs information. In
this process, the agent will change not only their knowledge but also their beliefs.
We try to formalize this notion in the epistemic framework. Moreover, in order
to approximate us to a more realistic scenario we use a non-omniscient agent.
Logical omniscience, useful in some applications, is an unrealistic idealization in
some others. Most of the proposals to solve this problem focus on weakening the
properties of the agentTMs information (usually by distinguishing between implicit
and explicit information). We use a framework based on [14] for representing
implicit and explicit beliefs that combines a framework for representing implicit
and explicit information with plausibility models for representing beliefs. We add
some specific components for the purpose of our research.

Definition 2.1 (Best explanation model). A best explanation model BE is a
possible words model M = 〈W,≤,V, A, S ,�,C〉 where M = 〈W,≤,V〉 is a
plausibility model presented in [2] and where:

• A : W → ℘(L) is the acknowledgement set function, indicating the formulas
the agent has acknowledged as true at each possible world.

• S ⊆ L is a finite set of formula of the language. Any element will be
considerated an explanation (hypothesis).

• � ⊆ (S × S) is a locally well-preorder 1 priority relation over S

1For more details consult [2]

BEATCS no 116

214

� relation allow us to talk about the priority that an agent gives to each
explanation. If t � u, u is at least as priorly as t.

• C : L −→ N is the cost function, assigned a natural number for any formula
of the language. We all know that not every explanation is verifiable with
the same cost, whether economic or simplicity reasons. In some cases, itTMs
simpler, faster or cheaper to discard some possibilities that are not priorities
for what the agent knows or believes but for their easy verification.

In this framework, we can define the notions of implicit and explicit
knowledge and beliefs. The agent knows ϕ implicitly if and only if ϕ is true in
all the epistemically indistinguishable worlds. The agent knows ϕ explicitly if,
in addition, she acknowledges it as true in all these worlds. The agent believes
ϕ implicitly if and only if ϕ is true in the most plausible worlds and the agent
believes ϕ explicitly if, in addition, she acknowledges it as true in these best
worlds.

Implicit knowledge: KImϕ := [∼]ϕ
Explicit knowledge: KExϕ := [∼](ϕ ∧ Aϕ)
Implicit belief: BImϕ := 〈≤〉[≤]ϕ
Explicit belief: BExϕ := 〈≤〉[≤](ϕ ∧ Aϕ)

3 Abductive problem and abductive solution
When an agent observes a surprising fact, there is no element of uncertainty about
it. We use a public announcement definition [3] modified for our non-omniscient
logic to represent this action on the model.

Definition 3.1 (Observation). Given a BE model M = 〈W,≤,V, A, S ,�,C〉 and
a formula χ of propositional language χ ∈ Lp

2, the observation operation χ!
produces a model Mχ! = 〈W ′,≤′,V ′, A′, S ,�,C〉 where:

W ′ := {w ∈ W | (M,w) χ}
≤′:=≤ ∩(W ′ ×W ′) and
For all w ∈ W ′, V ′(w) := V(w) and A′(w) := A(w) ∪ {χ}

We eliminate all the worlds, where χ is false. Moreover, χ is added to A, a
function of acknowledgment. The agentTMs knowledge about χ becomes explicit.
In epistemic logic terms, we can say that an abductive problem is generated

2Formulas of propositional langugage Lp are given by:

ϕ::= p | ¬ϕ | ϕ ∨ ψ

The Bulletin of the EATCS

215

when there exists a formula that was not explicitly known prior to the agentTMs
observation.

Definition 3.2 (Abductive problem).

χ is an abductive problem iff χ ∈ Lp and (Mχ!,w) KExχ and (M,w) 1 KExχ

Knowing that (Mχ!,w) represents the sub-model obtained when χ is observed,
we define an abductive problem as a fact that is not known explicitly in the first
instance but it is before the observation and can be expressed in the propositional
language.3

After the observation, the agent tries to find what they could have been
able to infer from the observation that raised the problem. We define this
process as an action called Generation in our semantic model. We propose that
an abductive solution is a formula that, together with the background theory
(including knowledge and beliefs), entails the surprising observation.

Definition 3.3 (Generation). Given a model M = 〈W,≤,V, A, S ,�,C〉 y χ, and
an abductive problem in (M,w), the generation operation χ? produces a model
Mχ? = 〈W,≤,V, A, S ′,�′,C〉 where:

S ′ = {DNF(ψ) | ψ→ χ ∈ A(w)} for all w ∈ W

S is the explanation set where we generate all the possible candidates of
explanations; the antecedents of conditionals that have χ as consequent in the
acknowledgement function A We use DNF4 as a method to standardise and
identify any formula for its syntactic form. All candidates generated are sorted
based on the background theory and, therefore, on what we call experience.
�′ is defined as follows:

ψ1 �
′ ψ2 iff

(M,w) KEx(ψ2 → χ), or
(M,w) 1 KEx(ψ2 → χ) and exists
w1 ∈ MM(ψ1 → χ),w2 ∈ MM(ψ2 → χ) such that w1 � w2

Where M is the set of world where the implication is acknowledge

M(β1 → β2) = {w ∈ W | β1 → β2 ∈ A(w)}

3With this restriction, we avoid technical problems generated by more expressive languages.
4DNF(ψ) is a disjunctive normal form that validates the following relation:

` ψ↔ DNF(ψ)

BEATCS no 116

216

and MM is the maximum set of worlds in M

MM(β1 → β2) = {w ∈ M(β1 → β2) | for all u ∈ M(β1 → β2), u ≤ w}

In words, if an hypothesis is part of a implication that an agent knows
explicitly, she puts this hypothesis at the top in the priority order. If not, an
hypothesis will be more priorly that another if the most plausible world where
the agent is acknowledged of the implication that contain the hypothesis as
antecedent is more plausible that the maximum plausible world where the agent is
acknowledged of the implication that contain the second hypothesis as antecedent.

4 Selecting the best explanation
Some authors argue that abduction is just the Generation step, and together
with Selection is part of a more complex process called Inference to the Best
Explanation (IBE)[9]. We think the name is not important because everything is
part of an explanatory inference, and avoiding this debate, we make significant
advances in the study of the selection stage. Traditionally, the criteria to select the
best explanation was syntactic, referring to the complexity of the formula. Now
we try to formalize a more pragmatic approach. In addition to the experiential
criteria, we consider it appropriate to add more ways to sort explanations.
According to this, we introduce two criteria more than the experiential approach
with the requirement of a method to combine different criteria. We combine them
using social-choice techniques[5], and we apply a hierarchy to these criteria. At
the top, we consider the experience as the best way to prioritize explanations. We
use �′ relation detailed in Definition 3.3. At an inferior level, we consider a logic
order ≺log that follows a syntactic criterion.

ψ1 ≺log ψ2

if any of the following cases is true:

• ψ2 is a formula α, being α an atomic formula (a)

• ψ2 is a formula β and ψ1 is not a formula α, being β the negation of an
atomic formula (¬a)

• ψ2 is a formula γ and ψ1 is not a formula α nor β, being γ the disjunction of
literals (¬A ∨ B)

• ψ2 is a formula δ and ψ1 is not a formula α nor β neither γ, being δ the
conjunction of literals (¬A ∧ B)

The Bulletin of the EATCS

217

• ψ2 is a formula ε and ψ1 is not a formula ε, being ε the disjunction of
conjunctions (A ∧ ¬B) ∨C

Because all possible explanation generated in Definition 3.3 is in its disjunctive
normal form (DNF) we know their syntactic structure is α, β, γ, δ or ε kind.
Finally, we consider the context criteria �C that tells us about the contextual
differences between explanations. We assign a numerical value to any hypothesis
that defines the difficulty of the verification. Using the arithmetic symbol > we
state an order based on �C the component of the best explanation model BE

ψ1 �C ψ2 syss C(ψ1) > C(ψ2)

In some cases, we need to prioritize explanations based on their practicality.
Any of these orders act only when the superior order is not definitive enough
to order explanations, resolving the draw. In order to represent this notion in a
semantic model, we describe an action that combines three orders with a final
priority relation � f :

Definition 4.1 (Selection). Given a model M = 〈W,≤,V, A, S ,�,C〉 the operation
selection � produces a model M� = 〈W,≤,V, A, S ,� f ,C〉 where:
ψ1 � f ψ2 iff any of the following cases is true:

• ψ1 ≺ ψ2

• ψ1 - ψ2 and ψ1 ≺log ψ2

• ψ1 - ψ2 and ψ1 -log ψ2 y ψ1 �C ψ2

It is desirable that only one explanation is at maximum. Cases where the
final order result with two different explanations at the top may also occur. In
this situation, there is need to find some other criterion that distinguishes them.
Our method is perfectly applicable to different approaches in the hierarchy of the
various orders.

5 Belief revision
At the belief revision stage, we focus on the agentTMs information changes. Once
an agent establishes an explanation as a definitive best explanation, the agent
modifies their beliefs and, therefore, the information they hold about the situation.
As noted above, many studies have linked belief revision with abduction [4].
bductive reasoning does not guarantee that the hypothesis is correct. For that
reason it cannot eliminate such possible worlds where the best explanation is not
true, it just gives them a higher order of plausibility. In our model, we represent it
with an action of belief revision, based on other works [2].

BEATCS no 116

218

Definition 5.1 (Belief Revision). Let M = 〈W,≤,V, A, S ,�,C〉 be a model and
a let χ be a formula, the belief change ⇑ χ operation produces a model M⇑χ =

〈W,≤′,V, A, S ,�,C〉 differing from M in:
w ≤′ u iff any of the following cases is true:

• (M, u) χ ∧ Aχ and w ≤ u

• (M,w) ¬(χ ∧ Aχ) and w ≤ u

• (M,w) ¬(χ ∧ Aχ) and (M, u) χ ∧ Aχ and w ∼ u

A world u will be at least as plausible as a world w, if and only if they
already are of that order and u satisfies χ, or they already are of that order and
w satisfies ¬χ or they are comparable, w satisfies ¬χ and u satisfies χ. This
operation preserves the properties of the plausibility relation and hence preserves
plausibility models.

6 Summary and further work

From some existing tools of dynamic epistemic logic, we have argued that
experience plays a key role in abductive reasoning. We have extended the
language of a non-omniscient epistemic logic with some components that collect
some intuitions of deliberation about what explanations come to a surprising fact
and which one is the priority. In addition, our proposal emphasizes more than
other perspectives, the role of experience, understood as the prior information the
agent holds. We have also added a contextual component to the abduction. To
order the explanations, we have taken into account the practicality and efficiency
of verification.

As possible extensions of our proposal, we consider the fact that abductive
problems so far have been limited to phenomena and not epistemic problems. It
would be interesting to study how some basic intuitions about abduction would
be applicable to problems of the type Kϕ ∧ ¬ϕ. I know ϕ, however ¬ϕ is the
case. Another interesting research line is to consider a multi-agent system, where
concepts such as common knowledge or distributed knowledge, as well as public
and private announcements, are taken into account. This would be interesting to
study under an experience approach.

The Bulletin of the EATCS

219

References
[1] ALISEDA, A. Abduction as Epistemic Change: A Peircean Model in Artificial

Intelligence, P. A. Flach y A. C. Kakas, eds., Abduction and Induction, Kluwer,
Dordrecht, 2000, pages 45-58

[2] A. BALTAG and S. SMETS. A qualitative theory of dynamic interactive belief
revision. In G. Bonanno, W. van der Hoek, and M. Wooldridge, editors, Logic and
the Foundations of Game and Decision Theory (LOFT7), volume 3 of Texts in Logic
and Games, pages 13 60.

[3] A. Baltag, L. S. Moss, and S. Solecki. The logic of public announcements, common
knowledge and private suspicions. Technical Report SEN-R9922, CWI, Amsterdam,
1999.

[4] BOUTILLIER, C. BECHER, V. Abduction as belief revision, Artificial Intelligence
77, 1, 1995 pages 43-94

[5] CHEVALEYRE, Y. ENDRISS,U. LANG,J., MAUDET,N. A Short Introduction to
Computational Social Choice, SOFSEM 2007: Theory and Practice of Computer
Science, Springer, pages 51-69

[6] HOFFMANN, M. Hay una lgica de la abduccin?, Analoga Filosfica, M c©xico 12/1
(1998), pages 41-56

[7] KAKAS, A.C.; KOWALSKI, R.A.; TONI, F. (1993). Abductive Logic
Programming. Journal of Logic and Computation Vol. II,6. 1992 pages 719“770

[8] KUIPERS, T. Abduction aiming at empirical progress of even truth aproximation
leading to a challenge for computational modelling, Foundations of Science, Vol. IV,
1999. pages 307-323

[9] LIPTON, P. Inference to the best explanation W.H. Newton-Smith (eds.) A
Companion to the Philosophy of Science (Blackwell, 2000) pages 184-193.

[10] NEPOMUCENO, ., SOLER-TOSCANO, F., VELZQUEZ-QUESADA, F. An
epistemic and dynamic approach to abductive reasoning: selecting the best
explanation Logic Journal of the IGPL, Vol. XXI,6, 2013 pages 943-961

[11] SOLER TOSCANO, F. Razonamiento abductivo en lgica clsica, Cuadernos de
Lgica, epistemologa y lenguaje, College Publications, 2012

[12] SOLER-TOSCANO, F., VELZQUEZ-QUESADA, F. Generation and Selection of
Abductive Explanations for Non-Omniscient Agents, Journal of Logic, Language
and Information, Vol. XXIII, 2, 2014, pages 141-168

[13] VELZQUEZ-QUESADA, F., SOLER-TOSCANO, F., NEPOMUCENO, . An
epistemic and dynamic approach to abductive reasoning: Abductive problem and
abductive solution, Journal of Applied Logic, Vol. XI, 4, 2013, pages 505“522

[14] VELZQUEZ-QUESADA, F. Dynamic Epistemic Logic for Implicit and Explicit
Beliefs, Journal of Logic, Language and Information vol. XXIII,2 pages 107-140,
2014

BEATCS no 116

220

LCC-program transformers through
Brzozowski’s equations

Enrique Sarrión-Morillo. Universidad de Sevilla, Andalucía Tech.

Dpto. Filosofía y Lógica y Filosofía de la Ciencia. esarrion@us.es

Abstract

The original work about Logic of Communication and Change uses Kleene’s
translation from finite automata to regular expressions in program transform-
ers. It appears in the axioms set that accomplish to reduce LCC to PDL.
This work presents an elegant matrix treatment of Brzozowski’s equational
method for program transformers. The two alternatives generate equivalent
formulas although the obtained ones through Brzozowski’s method are usu-
ally much smaller; moreover this method possess computational advantages
because its complexity in typical cases (but not the worst) is polinomial,
whereas in the original LCC paper is always exponential.

Keywords: Brzozowski’s equational method, propositional dynamic logic,
logic of communication and change, program transformer.

1 Introduction
The Logic of Communication and Change (LCC) is a powerful logic system [10]
consisting of a Propositional Dynamic Logic [6] (PDL) interpreted epistemically
and the action models machinery [3, 2] for representing the knowledge about ac-
tions, allows to model diverse epistemic actions and also factual changes.

Such as other logical frameworks, LCC formulas are interpreted over epis-
temic models: an epistemic model M is a triple (W, �Ra�a∈Ag,V) where W � ∅ is
a set of worlds, Ra ⊆ (W ×W) is an epistemic relation for each agent a ∈ Ag and
V : Var→ ℘(W) is an atomic evaluation1.

Meanwhile, the action models (relational structures too), are used for repre-
senting the knowledge about actions in the system: if L be a language built upon
Var and Ag that can be interpreted over epistemic models, then anL action model2

1From now on, Ag is a finite set of agents and Var is a set of propositional variables.
2The language L is just a parameter.

The Bulletin of the EATCS

221

U is a tuple (E, �Ra�a∈Ag, pre, sub) where E = {e0, . . . , en−1} is a finite set of ac-
tions, Ra ⊆ (E × E) is a relation for each a ∈ Ag, pre : E → L is a precondition
map assigning a formula pre(e) ∈ L to each action e ∈ E, and sub : (E×Var)→ L
is a postcondition map assigning a formula sub(e, p) ∈ L to each atom p ∈ Var
at each action e ∈ E. With respect to the postcondition map, it is required that
sub(e, p) � p only for a finite number of atoms p. From now on, all action models
are assumed to be LLCC action models.

In order to obtain theLLCC language, formulas and programs, respectively, are
defined simultaneously with the notion of an LLCC action model (i.e. an action
model using LLCC for its precondition and postcondition functions):

ϕ ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ | [U, e]ϕ
π ::= a | ?ϕ | π1; π2 | π1 ∪ π2 | π∗

where p ∈ Var, a ∈ Ag, U is an LLCC action model and e an action in this model.
We establish semantics ofLLCC throught �·�M function, that collects the worlds

of a given epistemic model M in which a given LLCC formula holds or the the
pairs of worlds related by a given LLCC program: let M = (W, �Ra�a∈Ag,V) be an
epistemic model and U = (E, �Ra�a∈Ag, pre, sub) an action model. The function
�·�M, returning both those worlds in W in which an LLCC formula holds and those
pairs in W ×W in which an LLCC program holds, is given by

���M := W �a�M := Ra

�p�M := V(p) �?ϕ�M := Id�ϕ�M
�¬ϕ�M := W \ �ϕ�M �π1; π2�M := �π1�M ◦ �π2�M

�ϕ1 ∧ ϕ2�M := �ϕ1�M ∩ �ϕ2�M �π1 ∪ π2�M := �π1�M ∪ �π2�M
�[π]ϕ�M := {w ∈ W | ∀v((w, v) ∈ �π�M ⇒ v ∈ �ϕ�M)} �π∗�M := (�π�M)∗

�[U, e]ϕ�M := {w ∈ W | w ∈ �pre(e)�M ⇒ (w, e) ∈ �ϕ�M⊗U}
where ◦ and ∗ are the composition and the reflexive transitive closure operator,
respectively. Notice two special cases for test: �?⊥�M = ∅ and �?��M = IdW .

A key feature of this logic is that it characterises the effect of an action model’s
execution via reduction axioms: valid formulas through which it is possible to
rewrite a formula with update modalities as an equivalent one without them, thus
reducing LCC to PDL and hence providing a compositional analysis for a wide
range of informational events. In order to obtain an correct and complete axiom
system, is necessary to introduce the program transformer functions: let U =
(E, �Ra�a∈Ag, pre, sub) be an action model with E = {e0, . . . , en−1}. The program
transformer T U

i j (i, j ∈ {0, . . . , n − 1}) on the set of LCC programs is defined as:

� T U
i j (a) :=

?pre(ei); a if eiRae j

?⊥ otherwise
� T U

i j (?ϕ) :=

?(pre(ei) ∧ [U, ei]ϕ) if i = j
?⊥ otherwise

� T U
i j (π1; π2) :=

�n−1
k=0(T U

ik(π1); T U
k j(π2)) � T U

i j (π1 ∪ π2) := T U
i j (π1) ∪ T U

i j (π2)

� T U
i j (π

∗) := KU
i jn(π)

BEATCS no 116

222

with KU
i jn inductively defined as indicated below:

� KU
i j0(π) :=

?� ∪ T U

i j (π) if i = j

T U
i j (π) otherwise

� KU
i j(k+1)(π) =

(KU
kkk(π))∗ if i = k = j

(KU
kkk(π))∗; KU

k jk(π) if i = k � j

KU
ikk(π); (KU

kkk(π))∗ if i � k = j
KU

i jk(π) ∪ (KU
ikk(π); (KU

kkk(π))∗; KU
k jk(π)) if i � k � j

The axiom system for LCC, combines the known axiom system of its PDL
fragment ([6]) with recursion axioms for its action model fragment:

(taut) propositional tautologies (top) [U, e]� ↔ �
(K) [π](ϕ1 → ϕ2)→ ([π]ϕ1 → [π]ϕ2) (atm) [U, e]p↔ (pre(e)→ sub(e, p))

(test) [?ϕ1]ϕ2 ↔ (ϕ1 → ϕ2) (neg) [U, e]¬ϕ↔ (pre(e)→ ¬[U, e]ϕ)
(seq) [π1; π2]ϕ↔ [π1][π2]ϕ (conj) [U, e](ϕ1 ∧ ϕ2)↔ ([U, e]ϕ1 ∧ [U, e]ϕ2)

(choice) [π1 ∪ π2]ϕ↔ [π1]ϕ ∧ [π2]ϕ (prog) [U, ei][π]ϕ↔ �n−1
j=0[T U

i j (π)][U, e j]ϕ
(mix) [π∗]ϕ↔ ϕ ∧ [π][π∗]ϕ (NU) From � ϕ infer � [U, e]ϕ
(ind) ϕ ∧ [π∗](ϕ→ [π]ϕ))→ [π∗]ϕ (Nπ) From � ϕ infer � [π]ϕ
(MP) From � ϕ1 and � ϕ1 → ϕ2 infer � ϕ2

The crucial reduction axiom is the one characterising the effect of an action
model over epistemic PDL programs (prog). It is based on the correspondence
between action models and finite automata observed in [9]; its main component,
the program transformer function T U

i j , follows Kleene’s translation from finite au-
tomata to regular expressions [7]. The present work proposes an alternative defi-
nition that uses a matrix treatment of Brzozowski’s equational method for obtain-
ing an expression representing the language accepted by a given finite automaton
[4, 5]. This alternative definition posses several advantages: first, it have a lower
complexity in typical cases (i.e., when the relation differs sufficiently of the Carte-
sian product), thus allowing more efficient implementations of any LCC-based
method; second, the formulas which are obtained are usually much smaller (in
the original LCC paper, the size of the transformed formulas of type π∗ is always
exponential); and third, the matrix treatment presented here is more synthetic,
simple and elegant, thus allowing a simpler implementation.

This paper is organized as follows: after this Introduction, Section 2 explains
how we can obtain the corresponding expression to each program transformer’s
type, particularly for Kleene closure through Brzozowski’s equational method.
Then Section 3 introduces this paper’s matrix proposal and discusses the com-
plexity of it. Finally, Section 4 indicates briefly some conclusions.

The Bulletin of the EATCS

223

2 Program transformers through Brzozowski’s
equations

The new definition of program transformer differs mainly, but not only, on the
case for the Kleene closure operator. For every program π a matrix µU(π), whose
cells are LCC programs, is defined. In this matrix, µU(π)[i, j] (the cell in the ith

row and jth column) corresponds to the transformation (i.e. the path in M) of π
from ei to e j (i.e. the path in M ⊗ U). The matrix µU(π) can be interpreted as the
adjacency matrix of a labelled directed graph whose nodes are the actions in E
and each edge from ei to e j is labelled with the transformation of π from ei to e j.

Before presenting the formal definitions, we introduce our method in an in-
formal way. In the following paragraphs we introduce examples of action models
and label the edges both with an LCC program and its transformation. Labels have
two parts separated by a vertical bar, the left part is the LCC program and the right
part is its transformation. For example, the label a | ?pre(e0); a from e0 to e1 in
the agents’ diagram indicates that µU(a)[0, 1] = ?pre(e0); a.
Agents Suppose that U contains an edge from ei to e j labelled with agent a.
Let w be an state in an epistemic model M. What do we have to test in order
to ensure that, after executing (U, ei) over (M,w), an a-path from (w, ei) to some
state (w�, e j) will persist M⊗U? First, we need to test in M that ei is executable in
w, an then that an a-path exists from w to w�. Trivially, if there is no a-path from
ei to e j in U, then the transformation of a is ?⊥, that is, µU(a)[i, j] = ?⊥.

e0 e1
a | ?pre(e0); a

Test The transformation of a test from some ei to itself is just a test. But the
test has two parts, because in order to test ?ϕ in (w, ei) we should first test that
pre(ei) is true in w. Then, as the execution of action ei may change the valuation
function, what we test in w is not just ϕ but rather [U, ei]ϕ. The transformation of
a test from some state to a different one is always ?⊥.

ei

?ϕ | ?(pre(ei) ∧ [U, ei]ϕ)

Non-deterministic choice The transformation of the choice π1∪π2 is the choice
of the transformations of both programs π1 and π2. But, as the choice of some
program π with ?⊥ is equivalent to π, we can simplify some cases. In the diagram,
the transformations of some π1 and π2 are labelled with dashed lines. When such
a line between two nodes does not exist, the transformation should be ?⊥. Labels
of the form S jk

i represent LCC programs corresponding to the transformation of
πi from e j to ek. The transformations of π1 ∪ π2 are shown with continuous lines.

BEATCS no 116

224

e0 e1e2

π1 | S 01
1

π2 | S 01
2

π1 | S 02
1

π1 ∪ π2 | S 01
1 ∪ S 01

2π1 ∪ π2 | S 02
1

Sequential composition State ek is reachable from ei through the concatena-
tion of π1 and π2 iff there is some intermediate state e j that is reachable from ei

through a π1-path and there is a π2-path from e j to ek. But there can be different
intermediate states with these properties (e1 and e2 in the example below). So the
transformation of the concatenation π1; π2 is the choice of all the different possible
concatenations (see below).

e0

e1

e2

e3

π1
| S01

1

π1 | S 02
1

π2 | S 13
2

π2
| S23

2

π1; π2 | (S 01
1 ; S 13

2) ∪ (S 02
1 ; S 23

2)

Up to now, we proceed in a very similar way to that of original program trans-
former definition, just simplifying some trivial cases like π ∪ ?⊥, which is reduced
to π. The main novelty of our transformation is with Kleene closure. We use a
method proposed by Brzozowski [4], presented here in a matrix format.

Kleene closure The following graph will be used to illustrate the creation of the
transformations of π∗ given those of π. This is where our program transformers
are substantially different from those in [10].

e0 e1 e2

π | S 01

π | S 10

π | S 21

π | S 11 π | S 22

In the above graph, labels S i j represent the transformations of π from ei to e j
(when there is no arrow between two —equal or different— nodes, it is assumed
that the corresponding program is ?⊥). In order to find the labels Xi j for the
transformations of π∗, we follow an equational method first proposed by Brzo-
zowski [4]. Observe, for example, how a π∗-path from e1 to e0 might start with
S 10 (an instance of π from e1 to e0) and then continue with X00 (an instance of π∗
from e0 to e0), but it might also start with S 11 (an instance of π from e1 to e1) and
then continue with X10 (an instance of π∗ from e1 to e0). In this case, these are the
only two possibilities, and they can be represented by the following equation:

X10 = (S 10; X00) ∪ (S 11; X10) (1)

The Bulletin of the EATCS

225

The equations for X00 and X20 can be obtained in a similar way:
X00 = ?pre(e0) ∪ (S 01; X10) (2)

X20 = (S 22; X20) ∪ (S 21; X10) (3)
This yields an equation system of LCC programs with X00, X10 and X20 as

its only variables. Observe how, in (2), ?pre(e0) indicates that a possible π∗-path
from e0 to e0 is to do nothing, but the transformation should check whether e0 is
executable at the target state; hence the test ?pre(e0).

To solve the above system we proceed by substitution using properties of
Kleene algebra [8], such as associative and distributive properties of the opera-
tors. First, we can use (2) to replace X00 in (1):

X10 = (S 10; (?pre(e0) ∪ (S 01; X10))) ∪ (S 11; X10) = (S 10; ?pre(e0)) ∪
∪ (S 10; S 01; X10) ∪ (S 11; X10) = (S 10; ?pre(e0)) ∪ (((S 10; S 01) ∪ S 11); X10) =
= ((S 10; S 01) ∪ S 11)∗; S 10; ?pre(e0)

(4)

The last equality uses Arden’s Theorem [1]: X = B ∪ (A; X) implies X = A∗; B.
Now, we use (4) to substitute X10 in (2):

X00 = ?pre(e0) ∪ (S 01; ((S 10; S 01) ∪ S 11)∗; S 10; ?pre(e0)) (5)
Finally, we substitute X10 in (3) and apply Arden’s Theorem to solve X20:

X20 = (S 22; X20) ∪ (S 21; ((S 10; S 01) ∪ S 11)∗; S 10; ?pre(e0)) =

= (S 22)∗; S 21; ((S 10; S 01) ∪ S 11)∗; S 10; ?pre(e0)
(6)

After solving these equations, each X00, X10 and X20 represents a transformed
π∗-path from e0, e1 and e2 to e0, respectively.

By using a matrix calculus similar to that in chapter 3 of [5] we calculate all
Xi j in parallel and thus avoid repeating the process for each destination node. This
method is more synthetic, clear, elegant and allows a simpler implementation that
the original LCC paper. The following section will present the formal definition
of the matrix calculus; now, we just introduce the basis of the matrix calculus.
The equations used above can be represented in the following matrix:

e0 e1 e2 e0 e1 e2

e0 ?⊥ S 01 ?⊥ ?pre(e0) ?⊥ ?⊥
e1 S 10 S 11 ?⊥ ?⊥ ?pre(e1) ?⊥
e2 ?⊥ S 21 S 22 ?⊥ ?⊥ ?pre(e2)

The left part contains the π-paths from one node (row) to another one (column).
It is an accessibility matrix for the π-graph above. Call µU(π)[i, j] the cell corre-
sponding to row ei and column e j in this left part and AU[i, j] the cell with the
same position at the right part. Observe that AU[i, j] =?pre(ei) if i = j and ?⊥
otherwise. We may check that the equations for Xi j that we created above looking
at the π-graph can be created now by:

Xi j = (µU(π)[i, 0]; X0 j) ∪ (µU(π)[i, 1]; X1 j) ∪ (µU(π)[i, 2]; X2 j) ∪ AU[i, j] (7)
The greatest advantage of working with matrices is that we can transform several
equations at the same time by working in a row. Look at the following matrix,
which is the result of applying Arden’s Theorem to the e1 row.

BEATCS no 116

226

e0 e1 e2 e0 e1 e2

e0 ?⊥ S 01 ?⊥ ?pre(e0) ?⊥ ?⊥
e1 (S 11)∗; S 10 ?⊥ ?⊥ ?⊥ (S 11)∗; ?pre(e1) ?⊥
e2 ?⊥ S 21 S 22 ?⊥ ?⊥ ?pre(e2)

The transformation consists on replacing the position [e1, e1] in the left part
with ?⊥ and concatenate (S 11)∗ with the others cells in the row.

Not only Arden’s Theorem, but also the substitution operation can be done in
parallel using matrix operations. Look at the following matrix:

e0 e1 e2 e0 e1 e2

e0 ?⊥ S 01 ?⊥ ?pre(e0) ?⊥ ?⊥
e1 (S 11)∗; S 10 ?⊥ ?⊥ ?⊥ (S 11)∗; ?pre(e1) ?⊥
e2 (S 21; (S 11)∗; S 10) ?⊥ S 22 ?⊥ (S 21; (S 11)∗; ?pre(e1)) ?pre(e2)

The above matrix has been obtained from the previous one by applying one
substitution that has converted the left [e2, e1] position into ?⊥ and each (left/right)
position [e2, ei] (different to the left [e2, e1] position) contains now a program with
the form (B; C) ∪ D, where B is always the previous program in the left [e2, e1]
position (always S 21, in this case), C is the program in the (resp. left/right) [e1, ei]
position (that is, the program in the same column and the above row) and D is the
previous program in the position being modified.

3 A matrix calculus for program transformation
In this section we introduce the formal definitions of our matrix calculus.
Definition 3.1 (Program transformation matrix). Let U = (E,R, pre, sub) be an
action model with E = {e0, . . . , en−1}. The function µU : Π → Mn×n, with Π
the set of LCC programs andMn×n the class of n-square matrices, takes an LCC
program π and returns a n-square matrix µU(π) in which each cell µU(π)[i, j] is an
LCC program representing the transformation of π from ei to e j in the sense of
the program transformers T U

i j (π) of [10]. The recursive definition of µU(π) is:

• Agents:
µU(a)[i, j] :=

?pre(ei); a if eiRae j

?⊥ otherwise
(8)

• Test:
µU(?ϕ)[i, j] :=

?(pre(ei) ∧ [U, ei]ϕ) if i = j
?⊥ otherwise

(9)

• Non-deterministic choice:

µU(π1 ∪ π2)[i, j] := ⊕
�
µU(π1)[i, j], µU(π2)[i, j]

�
(10)

where ⊕Γ is the non-deterministic choice of the programs in Γ set after re-
moving occurrences of ?⊥, that is (being “

�
” the generalised non-deterministic

choice (“∪”) of a program non-empty set),

The Bulletin of the EATCS

227

⊕Γ :=

�
(Γ \ {?⊥}) if ∅ � Γ � {?⊥}

?⊥ otherwise
(11)

• Sequential composition:

µU(π1; π2)[i, j] := ⊕
�
µU(π1)[i, k] � µU(π2)[k, j] | 0 ≤ k ≤ n − 1

�
(12)

where σ � ρ is the sequential composition of σ and ρ after removing super-
fluous occurrences of ?⊥ and ?�, that is,

σ � ρ :=

σ; ρ if σ � ?⊥ � ρ and σ � ?� � ρ
σ if σ � ?� = ρ
ρ if σ = ?�
?⊥ otherwise

(13)

• Kleene closure:
µU(π∗) := S U

0

�
µU(π) | AU

�
(14)

where µU(π) | AU is the n × 2n matrix obtained by augmenting µU(π) with
AU, an n × n matrix defined as

AU[i, j] :=

?pre(ei) if i = j
?⊥ otherwise

(15)

The function S U
k (with 0 ≤ k ≤ n), defined as

S U
k (M | A) :=

A if k = n
S U

k+1(S ubsk(Ardk(M | A))) otherwise
(16)

receives an argument M | A and performs an iterative process applying
Arden’s Theorem to row k (via function Ardk : Mn×2n → Mn×2n) and sub-
stituting rows different from k (via function S ubsk :Mn×2n →Mn×2n) until
a k = n, then returning the right part of the augmented matrix. The two
auxiliary functions, Ardk and S ubsk, are given by

Ardk(N)[i, j] :=

N[i, j] if i � k
?⊥ if i = k = j
N[i, j] if i = k � j and N[k, k] = ?⊥
N[k, k]∗ � N[i, j] otherwise

(17)

S ubsk(N)[i, j] :=

N[i, j] if i = k
?⊥ if i � k = j
⊕{N[i, k] � N[k, j],N[i, j]} otherwise

(18)

Now it is possible to substitute the previous version of the crucial reduction
axiom by the following: [U, ei][π]ϕ ↔ � 0≤ j≤n−1

µU(π)[i, j]�?⊥
[µU(π)[i, j]][U, e j]ϕ

BEATCS no 116

228

3.1 Complexity
The program transformers in [10] require exponential time due to the use of
Kleene’s method [7]; moreover, the size of the transformed formulas of type π∗ is
also exponential because of the definition of KU

i jn. The advantage of our transform-
ers is that they can be executed in polynomial time in cases different to the worst
one3; moreover, in typical cases our method generates much smaller expressions.

Let M = (W, �Ra�a∈Ag,V) be an epistemic model with card(W) = n. If M is a
complete model, then the number of operators in µU(π∗)[n − 1, 0] is in the order
of 22n (i.e. our transformers produce an exponential output), which implies that
the required time is also exponential. If M is a chain model4, then the number of
operators in µU(π∗)[n − 1, 0] is in the order of 2n2 (i.e. in this case the length of
the output is polynomial), thus the required time is also polinomial.

An analysis of the operations involved in computing µU(π) for the different
kinds of programs π show that, while Kleene’s method forces the program trans-
formers to use an exponential number of operations, our proposal uses only a poly-
nomial number of matrix operations: if π is an agent, a test or a non-deterministic
choice, then the whole matrix µU(π) can be computed in O(n2); but, if π is a se-
quential composition or a Kleene closure, then µU(π) is computed in O(n3).

Just, the last is the crucial case; therefore it is analyzed with more detail. With
µU(π) given, computing µU(π∗) requires first to build (µU(π) | AU) and then n
iterations of S U

k (see (14)). Note that the size of (µU(π) | AU) is n× 2n and to build
each cell requires a constant number of operations. So building the initial matrix
is in O(n2). Now, each one of the n calls to S U

k is in O(n2), as Ardk (see (17)) only
changes the cells in row k, S ubsk only the cells in the other rows, and each cell
can be modified in constant time. So the n calls to S U

k are computed in O(n3). If
the matrices for subprograms are not given and g is the number of subprograms in
π, building µU(π) from scratch requires a number of matrix operations in O(g ·n3).

3.2 Possible improvements
The operators “⊕” and “�” used in the previous definition are versions, respec-
tively, of non-deterministic choice and sequential composition that remove unnec-
essary occurrences of ?⊥ and ?�; thus returning programs that are (potentially)
syntactically shorter but nevertheless semantically equivalent to their PDL coun-
terparts “∪” and “;”. The � operation’s definition can be modified to obtain even
simpler expressions. For example, σ� ρ might be defined as σ if σ � ?� = ρ and
as ρ if σ = ?�. Moreover, the algorithm implementing Ardk and S ubsk functions
can be improved by disregarding the N[i, j] elements with j < k or j > n+k (being
N[i, j] a n × 2n matrix), since those are necessarily equal to ?⊥. These changes,

3The worst cases are complete models, i.e. fully connected models.
4A chain model is a model with a linear order relation.

The Bulletin of the EATCS

229

despite not lowering the translation’s complexity order, would nevertheless make
it more efficient.

4 Conclusions
This work presents an alternative definition of the program transformers, which
are used in the crucial axiom of the axiom system for LCC. This system allows
us to reduce LCC to PDL. The proposal uses a matrix treatment of Brzozowski’s
equational method in order to obtain a regular expression representing the lan-
guage accepted by a finite automaton. While Brzozowski’s method and that used
in the original LCC paper [10] are equivalent, the first is computationally more
efficient in typical cases and generates much smaller expressions. Moreover, the
matrix treatment presented here is more synthetic, clear and elegant, thus allowing
a simpler implementation.

References
[1] D. N. Arden. Delayed-logic and finite-state machines. In SWCT (FOCS), pages

133–151. IEEE Computer Society, 1961.
[2] A. Baltag and L. S. Moss. Logics for epistemic programs. Synthese, 139(2):165–

224, 2004.
[3] A. Baltag, L. S. Moss, and S. Solecki. The logic of public announcements and

common knowledge and private suspicions. In I. Gilboa, editor, TARK, pages 43–
56, San Francisco, CA, USA, 1998. Morgan Kaufmann.

[4] J. A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481–494, 1964.

[5] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
[6] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, Cambridge, MA,

2000.
[7] S. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shan-

non and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University
Press, Princeton, NJ, 1956.

[8] D. Kozen. On kleene algebras and closed semirings. In B. Rovan, editor, MFCS,
volume 452 of Lecture Notes in Computer Science, pages 26–47. Springer, 1990.

[9] J. van Benthem and B. Kooi. Reduction axioms for epistemic actions. In R. Schmidt,
I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors, Advances in Modal Logic
(Number UMCS-04-09-01 in Technical Report Series), pages 197–211. Department
of Computer Science, University of Manchester, 2004.

[10] J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and change.
Information and Computation, 204(11):1620–1662, 2006.

BEATCS no 116

230

mereology and temporal structures

Pedro González Núñez
Universidad de Sevilla, Andalucía Tech

pegnunez@gmail.com

Abstract

We will propose a semantics for first order multimodal logics combining
necessity and temporal operators, which intends to reflect some philosophi-
cal insights brought up when discussing certain topics in ontology. Namely,
our proposal will allow us to construe a primarily semantic notion of part,
and specifically of temporal and spatial part, which will in turn enable an
easy and intuitive way of modeling some metaphysical claims, and also set
a solid framework to develop multimodal logics including temporal and non-
temporal operators.

1 Introduction
How to best conceive change and the notion of the flow of time are questions that
have an illustrious lineage in the history of philosophy. In contemporary literature
there are quite a handful of intertwined topics that are deployed when discussing
conceptions of time in relation with identity and constitution. We will present a
model theory 1 that is tailored to let us easily model some of these topics, which
include, but are not limited to, the use of the notion of “temporal part” to explain
maintenance of identity through change, and some approach to the idea that there
is a notion of “loose” or “vague” identity that is used in ordinary speech that
should be differentiated from the proper notion of (“strict”) identity”.

To achieve this, we are going to make some strong assumptions, necessary to
increase the manageability of the philosophical notions we will try to formalize.
First, we shall adopt the full law of Leibniz –i.e. both the principle of identity
of the indiscernibles and the principle of indiscernibility of the identicals– as a
given. This amounts to assuming that our language will be expressive enough
for the purposes of distinguishing the objects of our theories. Therefore it can be

1The basic structure for the treatment of time is heavily based on the so-called Kamp frames,
and in a variation on bundled tree structures found in [7]. More systematic work on the relation
between Kamp frames and bundled trees can be found in [12].

The Bulletin of the EATCS

231

understood as a way to limit the scope of our task rather than as an unjustified
metaphysical claim.

Secondly, as an application of the aforementioned principles we shall under-
stand that, for purpose of our models, it suffices for an object a to be a part of
another object b at some point of time and region of space, that they are undis-
tinguishable in that point and region. Although if understood as a philosophical
claim it would require an independent argument to be justified, we can take this
to be, like the one above, a methodological constraint we impose to ourselves.

Thirdly, we are going to adopt the following semantical stance: the truth of
the attribution of some predicate P to some term t at some state w is to be un-
derstood in a different way than the standard treatment. Instead, we shall define
the denotation of a predicate symbol as an element of some non-empty set, we
shall understand a “property” as the relativisation of the denotation of a predicate-
symbol (say, P) to a world (say, w), that is, as the pair 〈‖P‖,w〉. Then, we shall
understand the denotation of individual terms as sets of “properties” in the men-
tioned sense, and say that Pt is true in a world if the pair 〈‖P‖,w〉 is an element of
the denotation of t. Thus, with these guiding notions of basing parthood in same-
ness of “properties”, and construing individuals as sets of “properties” 2 we will be
able to draw semantical notions of parthood in terms of set-theoretical inclusion.

2 Temporal structures: language and semantics
Definition 1 (Language). The formulas of our basic language are defined by the
following grammar:

φ ::= Pt | ¬φ | φ ∧ φ | 〈F〉φ | 〈P〉φ | 〈S 〉φ | ∀xφ | t1 = t2

where t is either an individual constant or variable.

As can be seen, we are limiting ourselves to monadic predicate-letters.
The symbols of the form 〈∗〉 are to be understood as "possibility" operators.

〈P〉 is to be read as "at some point in the past"; 〈F〉 is to be read as "at some point
of the future"; 〈S 〉 will be given two alternate lectures depending on the kind of
discourse we are representing: we can either speak of alternative or counterfac-
tual histories, in which case it will be understood as "at this time in some other
history", or we can speak of states of affairs in different regions of space, in which
case it will be read as "in some spatial region". We will write [∗] for the dual of
any modal operator 〈∗〉. We shall also use the usual truth-functional conectives
definable by means of negation and conjunction, and the existential quantifier de-
fined by means of the universal quantifier and negation.

2Let us maintain the quotation marks as a reminder that here property has a meaning quite
different than in usual formal semantics.

BEATCS no 116

232

Definition 2 (Parallel histories frame). A parallel history frame is a 5-tuple
F = 〈W,≺,≈,U,D〉, where

• W is a non-empty set

• ≺ is a binary relation on W such that for all x, y, z, ∈ W

– ∀xyz(x ≺ y ∧ y ≺ z→ x ≺ z),

– ∀xy¬(x ≺ y ∧ y ≺ x),

– ∀xyz(x ≺ y ∧ x ≺ z→ (y ≺ z ∨ y = z ∨ z ≺ y)),

– ∀xyz(y ≺ x ∧ z ≺ x→ (y ≺ z ∨ y = z ∨ z ≺ y)),

• ≈ is an equivalence relation such that for all x, y, z,w, ∈ W

– ∀xy(x ≈ y→ ¬x ≺ y),

– ∀xyz(x ≺ y ∧ x ≈ z→ ∃w(w ≈ y ∧ z ≺ w)),

– ∀xy(¬(x ≺ y ∨ y ≺ x ∨ x = y)→ ∃z((x ≺ z ∨ z ≺ x ∨ x = z) ∧ z ≈ y))

• U is a non-empty set such that W
⋂

U = ∅

• D is a non-empty set such that D ⊆ ℘(U ×W)

Additionally, we shall say that w ∼ v, or informally, that w and v belong to the
same history, whenever w ≺ v, v ≺ w or v = w

Relation ≺ is constructed as an earlier-later relation as usual in Kamp frames
3. The relation ≈, however is a variation on the one used in Kamp frames. The
motivation for the variation is achieving a notion of necessity which check for all
histories in the model rather than only those with a common past up to the point
of evaluation, which is the norm in renderings of "historical" necessity.

Definition 3 (Parallel histories model). A parallel histories model is a tuple M =

〈W,≺,≈,U,D, I〉, where W,U,D,≺ and ≈ are as above and I is an interpretation
function that assigns elements of D to individual constants, and elements of U to
predicate symbols. We shall also have an assignment a which assigns elements
of D to the individual variables of our language. Note that we do not impose any
restrictions on the atoms that are true in worlds related by ≈.

Definition 4 (Semantic rules). The rules that govern the semantic interpretation
of our language, denoted by ‖ ∗ ‖, are as follows:

• For any constant symbol c, ‖c‖M,w,a = I(c)

3We follow [6], page 664 in our understanding of Kamp structures.

The Bulletin of the EATCS

233

• For any predicate symbol P, ‖P‖M,w,a = I(P)

• For any individual variable x, ‖x‖M,w,a = a(x)

• For any term t and predicate-symbol P, ‖Pt‖M,w,a = 1 iff 〈‖P‖M,w,a,w〉 ∈
‖t‖M,w,a

• For any terms, t1 and t2, ‖t1 = t2‖M,w,a = 1 iff ‖t1‖M,w,a = ‖t2‖M,w,a

For any well-formed formulae ϕ and ψ:

• M,w, a |= ¬ϕ syss M,w, a 2 ¬ϕ

• M,w, a |= ϕ ∧ ψ syss M,w, a |= ϕ and M,w, a |= ψ

• For any variable x M,w, a |= ∀xϕ iff every assignment a′ differing from a in
at most the value of a′(x) is such that M,w, a′ |= ϕ

• M,w, a |= 〈F〉ϕ iff exists v such that w ≺ v and M, v, a |= ϕ

• M,w, a |= 〈P〉ϕ iff exists v such that v ≺ w and M, v, a |= ϕ

• M,w, a |= 〈S 〉ϕ iff exists v such that v ≈ w and M, v, a |= ϕ

These semantic rules let us wiev, as stated in the introduction, each individual
as the set of "properties" which hold true of it. That is why we have limited
ourselves to unary predicates, since we cannot set such an straightforward way of
construing the interpretation of individual terms as being the set of interpretations
of both the monadic and poliadic relations which are true of them, for the latter
would involve the interpretation of some other individual terms. Trying to find a
relatively homogeneus treatment for poliadic relations is an objective set for future
investigations.

With this we have a semantics that enforces both Leibniz principles precisely
due to how we have set the semantics for terms, according to our described aim.
Beyond that, the changes in atomic sentences interpretation have no further im-
plications in terms of validities. The most salient feature of the temporal structure
is that every “history” is enforced to have the same topology, so to speech, so that
for every moment of every history, there is an equivalence class of moments that
are “simultaneous” to it. That enables another interpretation for the modality 〈S 〉,
as said above: instead of having alternative histories, we can view the structure
as modeling simultaneous histories, i.e. histories of different regions of space.
This is crucial, given that once having the notion of temporal part we can, with
some modifications, either use it to represent counterfactual discourse concerning
objects and their temporal parts, or discourse about the interaction of objects and
both their temporal and spatial parts within the same history. Let’s then define
such notions.

BEATCS no 116

234

3 Mereology: notions of parthood and some appli-
cations

Below we shall introduce new primitive relational symbols for parthood relation-
ships. In order to facilitate the formulation of the semantic rules, we shall intro-
duce an auxiliary definition.

Definition 5 (Reduction of an individual to a world). Given an individual d ∈ D
and a world v ∈ W we shall define the reduction of d to v as

red(d,w1) = {〈u,wi〉 ∈ d | wi = w1}

With this set-theoretical device, our mereological basic relations can be de-
fined as follows.

Definition 6 (Spatial parthood relation). Let us add to our basic language a bi-
nary relation symbol with interfixed notation vS to denote the notion ‘...‘is an
(improper) spatial part of...”. The semantic rule for this symbol is as follows:

M,w, a |= t1 v
S t2 iff:

∪{red(‖t1‖M,w,a, v)|v ≈ w} ⊆ ∪{red(‖t2‖M,w,a, v)|v ≈ w}, and red(‖t1‖M,w,a,w) , ∅

This says that some object a is a spatial part of b at some point of space and
time w if, provided that a has some property at w, then the reduction of a to
the spatio-temporal locations simultaneous with w is a subset of the respective
reduction of b. That is, the relation holds whenever the two individuals are indis-
tiguishable from each other at any state simultanous with the point of evaluation.

Definition 7 (Temporal parthood in counterfactual contexts). Let us add to our
basic language a binary relation symbol with interfixed notation vT1 to denote the
notion “... is an (improper) temporal part of...”. The semantic rule for this symbol
is as follows:

M,w, a |= t1 v
T1 t2 iff:

∪{red(‖t1‖M,w,a, v)|v ∼ w} ⊆ ∪{red(‖t2‖M,w,a, v)|v ∼ w}, and red(‖t1‖M,w,a,w) , ∅

This says that some object a is a temporal part (in a couterfactual context) of b
at some point of space and time w if, provided that a has some property at w, then
the reduction of a to the states in the history to which w belongs is a subset of the
respective reduction of b. That is, the relation holds whenever the two individuals
are indistiguishable from each other at any state in the same history as the point
of evaluation.

The Bulletin of the EATCS

235

Now, it is noteworthy that while the notion of spatial part as defined is intuitive
when the frame is interpreted as an spatio-temporal frame, that intuitive interpre-
tation is lost when we switch to the counterfactual histories interpretation of the
semantics. In a similar way, while the notion of some object being a temporal
part of another in a given history, whereas in some other history it might not be,
is perfectly intelligible, the notion of being a temporal part in a region of space
while possibly not being so in another defeats the notion of temporal part under
that interpretation: a is a temporal part of b at time t if and only if a is indistin-
guishable with b at that time, everywhere. While the relation of spatial parthood
is variable from time to time, the relation of temporal parthood is constant from
time to time and from place to place. Thus, an alternative should be construed to
represent the notion of temporal parthood when our language and semantics are
given the spatio-temporal interpretation.

Definition 8 (Temporal parthood (in spatio-temporal contexts)). We yet again ex-
tend our language with a second temporal parthood relation, expressed with the
symbol vT2, interpreted as follows:

M,w, a |= t1 v
T2 t2 iff:

{∪{red(‖t1‖M,w,a, v) | v ≈ w′} | ∪ {red(‖t1‖M,w,a, v) } , ∅,w′ ∼ w } ⊆

⊆ {∪{red(‖t2‖M,w,a, v) | v ≈ w′} | ∪ {red(‖t1‖M,w,a, v) } , ∅,w′ ∼ w },

and red(‖t1‖M,w,a,w) , ∅

.

This definition is a bit more complex, but not too much. It says that an object
a will in this sense be a temporal part of another object b iff, by considering the
unions of reductions of a respect to worlds simultanous to some world w′, and
collecting the set of all such unions such that they are non-empty and w′ is in the
history the point of evaluation belongs to, and doing the same with respect to b,
it happens that the set of such unions of reductions of a is included in the set of
said unions of reductions of b. This means that if a exists at some time, then a is
indistingueshable from b in any region and time in which some property hods true
of a.

It can be shown that these relations are transitive and reflexive, while for the
spatial and temporal in confterfactual context parthood relations their modal na-
ture makes antisymmetry fail. (I will subsequently omit superindexes of our
parthood symbols when the matter discussed is equally appliable to the three
of them, or the reference to one or another is clear from the context). While
a vi b ∧ b vi b → a = b when i ∈ {S ,T1} is not valid in every parallel histo-
ries frame, a modal version of it is so, different for each of the two problematic

BEATCS no 116

236

parthood relationships:

[P](a vS b ∧ b vS a) ∧ [F](a vS b ∧ b vS a)→ a = b

[S](a vT1 b ∧ b vT1 a)→ a = b

In general, it should be observed that adaptation of mereological axions for
S- and T1-parthood should replace occurances of identity with local equality or
indiscernibility, which can be defined as reciprocal parthood (a v b∧b v a). This
can be understood by examinating the usual definion of "proper parthood" which
we should symbolise @. If we adopt the usual definition x @ y =de f x v y ∧ ¬(x =

y), then we are putting forward a needlessly weak condition: In order to, say,
recognise that a is a proper spatial part of b at some time, we must demand that
they be distinct objects in our model, but also that they are distinguishable at the
time of evaluation, that is at some simultaneous state to the point of evaluation, and
mutatis mutandis with the @T1 relation. To achieve this relative inditinguishability,
we should require that x @ y =de f x v y ∧ ¬(y v x).

Now, this can allow us to fomally model puzzles such as that of the boat of
Theseus, or similar ones, as a case of certain individuals being part of others at
different times. This construction allow us to formally approach to notions of
“loose identity”: we can loosely say that two things are the same if they have
the same set of parts, as in the puzzle referred above, if the two are parts of the
same entity (e.g. me as a baby and me as an undergraduate can be construed
as two different individuals, being what identifies them the fact that the former
was indistinguishable from me as a whole when I was a baby and the later was
indistinguishable from me some years ago, therefore, they are “the same” in a
non-strict sense). Similar relations can be construed from qualitative similarities:
loose identity based on similarity would be strict identity of some subsets of the
individuals. Of course a study of all the different uses or “A and B are identical/the
same” is not the object of this work, but may this serve as a lead to possible
analyses of such phenomenon.

4 Possible formal developments
As it stands, we have a modal system that basically combines S5 for the [S]/〈S 〉
operators with the temporal system of choice. Searching for complete classes of
models for a given axiomatisation of the temporal aspect and the different rela-
tions of parthood –and it is noteworthy that some stipulations on the parthood
relations may impose restrictions not only in the composition of the domain of
the appropriate models, but also on the onderlying structure 〈W,R〉. Another very
compelling development possibility is refining the structure of the spatial aspect
of our models.

The Bulletin of the EATCS

237

Another line of investigation that can be started from this framework is the
embedding of counterpart-like semantics in our frames, by interpreting our modal
statements not as being about individuals which happen to be identical to those
referenced in the scope of the modality, bus as being about individuals which stand
in some “counterparthood” relation with them, relation that in principle need not
be an equivalence.

References
[1] Benthem, Johan van (2010) – Modal logic for open minds. Stanford, California,

CSLI Publications.

[2] Blackburn, P., de Rijke, M., Venema, Y. (2005) – Modal logic, Cambridge university
Press.

[3] Burgess, John P. (1979) – “Logic and Time” in The Journal of Symbolic Logic, Vol.
44, No. 4, pp. 566–582

[4] Fitting, M., Mendelsohn, R. L.(1990) – First-order modal logic. Dordrecht, Kluwer
Academic.

[5] Hawley, K., – “Temporal Parts”, The Stanford Encyclopedia of Philosophy (Winter
2010 Edition), Edward N. Zalta (ed.), http://plato.stanford.edu/archives/
win2010/entries/temporal-parts/

[6] Hodkinson, I., Reynolds, M. (2007) – Temporal logic. In Handbook of modal logic
(Vol. 11). Amsterdam; Boston: Elseiver.

[7] Nute, D. (1991) – “Historical Necessity and Conditionals” Noûs, Vol. 25, No. 2, pp.
161–175

[8] Oderberg, D. S. (2004) – “Temporal Parts and the Possibility of Change”, Philoso-
phy and Phe-nomenological Research Vol. LXIX, No. 3

[9] Steen, M. (2008) – “Chisholm’s changing conception of ordinary objects” , Grazer
Philosophische Studien 76, pp. 1–56.

[10] , “Mereology”, The Stanford Encyclopedia of Philosophy (Fall 2014 Edition),
Ed-ward N. Zalta (ed.), forthcoming http://plato.stanford.edu/archives/
fall2014/entries/mereology/

[11] Yourgrau, P. (1985) – “On the Logic of Indeterministic Time”, The Journal of Phi-
losophy, Vol. 82, No. 10, Eighty-Second Annual Meeting AmericanPhilosophical
Association, Eastern Division, pp. 548–559

[12] Zanardo, A. (1996) - “Branching-Time Logic with Quantification over Branches:
The Point of View of Modal Logic”, The Journal of Symbolic Logic, Vol. 61, No. 1,
pp. 1–39

BEATCS no 116

238

News and Conference
Reports

The Bulletin of the EATCS

241

Report from the Japanese Chapter
R. Uehara (JAIST)

EATCS-JP/LA Workshop on TCS and Presentation Awards
The twelfth EATCS/LA Workshop on Theoretical Computer Science was held at
Research Institute of Mathematical Sciences, Kyoto University, January 28 to Jan-
uary 30, 2014. (The program also can be found at
http://www2.infonets.hiroshima-u.ac.jp/lasymp/2014W/program/.)

By attendees’ voting, Prof. Hiroshi Imai (University of Tokyo) and Ms. Ai
Ishida (Tokyo Institute of Technology) were selected at the the twelfth EATCS/LA
Presentation Award:

Solving a Max Cut Benchmark by an Optimization Solver by Takuto
Ikuta, Hiroshi Imai, Yosuke Yano (The University of Tokyo)

Non-interactive Zero-Knowledge Proof Systems for Disavowal and
Its Applications by Ai Ishida (Tokyo Institute of Technology), Keita
Emura (National Institute of Information and Communications Tech-
nology), Goichiro Hanaoka, Yusuke Sakai (National Institute of Ad-
vanced Industrial Science and Technology), Keisuke Tanaka (Tokyo
Institute of Technology)

The award will be given them at the Summer LA Symposium held in July 2015.
We also established another presentation award, named “EATCS/LA Student

Presentation Award” to encourage students. Mr. Yuto Nakashima (Kyushu Uni-
veristy) who presented the following paper, was selected at the fourth EATCS/LA
Student Presentation Award:

Lyndon ≤ LZ77 Conjecture by Yuto Nakashima, Shunsuke Inenaga,
Hideo Bannai, Masayuki Takeda (Kyushu University)

The award (with some gift for playing in his laboratory) has been already given
him at the last day, January 30, 2015.

Congratulations!
This workshop is jointly organized with LA symposium, Japanese association

of theoretical computer scientists. Its purpose is to give a place for discussing
topics on all aspects of theoretical computer science. (In fact, I’ve heard some
different opinions that “L” stands for logic and/or language, and “A” stands for
algorithm and/or automaton.) That is, this workshop is an unrefereed familiar
meeting. All submissions are accepted for the presentation. There should be no

BEATCS no 116

242

problem of presenting these papers in refereed conferences and/or journals. We
hold it twice a year (January/February, and July/August). If you have a chance,
I recommend you to attend it. You can find the program of the last workshop in
Appendix of this report.

Forthcoming Events in Japan
I am very happy to announce that (again) the first ICALP outside Europe will

be held in Kyoto, Japan. That will be colocated with LICS 2015. You can find
more information on the conferences at
http://www.kurims.kyoto-u.ac.jp/icalp-lics2015/.

ICALP 2015
The 42nd International Colloquium on Automata, Languages and Programming
(ICALP 2015) will be held in Kyoto, Japan, during the week 6-10 July, 2015. The
conference will be held at Grand Prince Hotel Kyoto
(http://www.princehotels.com/en/kyoto/), and workshops will be held at
Kyoto University (http://www.kyoto-u.ac.jp/en).

LICS 2015
The 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2015) will be held in Kyoto, Japan, July 6–10, 2015. The details can be found at
http://lics.rwth-aachen.de/lics15/.

I am also happy to announce that ISAAC will be held in Nagoya, Japan:

ISAAC 2015
The 26th International Symposium on Algorithms and Computation (ISAAC 2015)
will be held in Nagoya, Japan, December 9–11, 2015. The important dates are as
follows (To make sure for these important dates, please check the web site at
http://www.al.cm.is.nagoya-u.ac.jp/isaac2015/):

Submission Deadline: June 19, 2015.

Notification of Acceptance: By August 31, 2015.

Camera Ready Copy: September 21, 2015.

Appendix:
Program of EATCS-JP/LA workshop on TCS (January 28th to 30th, 2015)
In the following program, “*” indicates that the talk is given in Student Session

(shorter than the ordinary talk).
New Algorithms for Order Preserving Pattern Matching*

Takahiro Aoki, Yoshiaki Matsuoka, Shunsuke Inenaga, Hideo Bannai, Masayuki
Takeda (Kyushu University)

Enumeration of α-Gapped Repeat on Overlap-Free Strings*

The Bulletin of the EATCS

243

Yuta Fujishige, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda (Kyushu
University)

Enumeration of α-Gapped Repeats in a Word*
Yuka Tanimura, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda (Kyushu
University)

Non-interactive Zero-Knowledge Proof Systems for Disavowal and Its Applications
Ai Ishida (Tokyo Institute of Technology), Keita Emura (National Institute of In-
formation and Communications Technology), Goichiro Hanaoka, Yusuke Sakai
(National Institute of Advanced Industrial Science and Technology), Keisuke
Tanaka (Tokyo Institute of Technology)

Streaming Algorithms for Sampling and Their Applications
Ryosuke Nakata (Tokyo Institute of Technology), Maxim Jourenko (Aachen Uni-
versity, Tokyo Institute of Technology), Keisuke Tanaka (Tokyo Institute of Tech-
nology/JST CREST)

On Arithmetic Garbled Circuits
Tomoyuki Komatsu (Tokyo Institute of Technology), Keisuke Tanaka (Tokyo Insti-
tute of Technology/JST CREST)

8k-Degree Grid Graph Representation of Tabular Diagrams
Takeo Yaku (Nihon University)

Online Computation of Fixed Gapped Palindrome*
Michitaro Nakamura, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda
(Kyushu University)

Computing a Longest Common Flexible Pattern Including a Constrained Flexible
Pattern*

Keita Kuboi, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda (Kyushu Uni-
versity)

All Five-Variable Logic Functions Can Be Computed by Three-Input Majority Gates
with Depth Four*

Masao Moriya, Kazuyoshi Takagi, Naofumi Takagi (Kyoto University)
Approximating the Connected 2-Edge Dominating Set Problem

Tomoaki Shimoda, Toshihiro Fujito (Toyohashi University of Technology)
On Computability and Constructive Provability for Existence Theorems

Makoto Fujiwara (Tohoku University)
Simple #SAT Algorithms for Bounded Width Circuits and Bounded Depth Formulas

Hiroki Morizumi (Shimane University)
Dynamic Compressed Index

Takaaki Nishimoto (Kyushu University), Tomohiro I (Technische Universitaet
Dortmund, Germany), Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda
(Kyushu University)

The Class of the Computational Complexity of the Coin-Exchange Problem of Frobe-
nius

Shunichi Matsubara (Aoyama Gakuin University)
Some Properties of Hippocratic Randomness

Hayato Takahashi (Gifu University)
On the Spanning Tree Congestion of Small Diameter Graphs*

Kohei Kubo, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita (Kyushu Uni-
versity)

BEATCS no 116

244

A Distributed Locomotion Algorithm for 3-Dimensional Metamorphic Robotic
System1*

Fengqi Chen, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita (Kyushu Uni-
versity)

The Team Assembling Problem for Heterogeneous Mobile Robots*
Zhiqiang Liu, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita (Kyushu Uni-
versity)

Tangle and Ideal
Koichi Yamazaki (Gunma University)

Analyses of Space Complexity of Tree Evaluation Problems
Kazuo Iwama (Kyoto University), Atsuki Nagao (Kyoto University/JSPS CD2
Research Fellow)

Analytic Continuation in iRRAM: Implementations Inspired by Real Complexity
Theory

Akitoshi Kawamura (University of Tokyo), Florian Steinberg, Holger Thies
(Technische Universitaet Darmstadt)

Space Complexity of Self-Stabilizing Leader Election in Population Protocol on Hy-
pernetworks*

Xiaoguang Xu, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita (Kyushu
University)

Lyndon ≤ LZ77 Conjecture*
Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda (Kyushu
University)

Randomized Approximation of the Frequency of Items in a Stream Using a Small
Space*

Heejae Yim, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita (Kyushu Uni-
versity)

Extracting LCS from Seaweed Diagrams
Yoshifumi Sakai (Tohoku University)

Polynomial-Time Learning of Formal Graph Systems with Bounded Tree-Width
Takayoshi Shoudai (Kyushu International University), Tomoyuki Uchida (Hi-
roshima City University)

Effective Method to Compute Frequencies of Order-Preserving n-Gram by Suffix
Counting Representation

Yusuke Sato, Kazuyuki Narisawa, Ayumi Shinohara (Tohoku University)
Solving a Max Cut Benchmark by an Optimization Solver

Takuto Ikuta, Hiroshi Imai, Yosuke Yano (The University of Tokyo)
The Number of Matrix Multiplications for the Evaluation of Matrix Polynomial I +
A + A2 + · · · + AN−1*

Kotaro Matsumoto, Naofumi Takagi, Kazuyoshi Takagi (Kyoto University)
Abstracting Weighted Path Orders for Proving Termination of Term Rewriting Sys-
tems*

Takanori Omae (Nagoya University), Keiichirou Kusakari (Gifu University), Aki-
hisa Yamada (National Institute of Advanced Industrial Science and Technology),
Toshiki Sakabe (Nagoya University)

A Fast Filtration for Order-Preserving Matching
Youhei Ueki, Kazuyuki Narisawa, Ayumi Shinohara (Tohoku University)

The Bulletin of the EATCS

245

The Japanese Chapter

Chair: Osamu Watanabe

Vice Chair: Ryuhei Uehara

Secretary: Takehiro Ito

email: eatcs-jp@is.titech.ac.jp

URL: http://www.jaist.ac.jp/~uehara/EATCS-J/

Reflections on
Influential Scientists
and Ideas

The Bulletin of the EATCS

249

Reflections on Influential Scientists and
Ideas

A new section of the Bulletin of the EATCS

Luca Aceto
Reykjavik University

The piece by David Avis (School of Informatics, Kyoto University) that you
are about to read offers a look at George Dantzig’s best known contribution, the
simplex method, and at its connections with theoretical computer science. In this
article, David Avis also provides some food for thought for our research commu-
nity and argues for a collaboration of the TCS and optimization communities to
settle the question of whether there is a polynomial time pivot selection rule for
the time-honoured simplex method.

Last year marked the centenary of George Bernard Dantzig’s birth, and Kazuo
Iwama originally commissioned this reflection piece to David Avis to celebrate
that anniversary. Upon receiving David’s article, Kazuo and I were struck by the
thought that readers of the Bulletin might enjoy reading short articles devoted to
anniversaries of influential scientists and to ideas related to theoretical computer
science at large. Such reflection pieces could provide a new look at the legacy
of pioneers and at some of the pearls of our subject, as well as possibly highlight
some of the challenges that still need to be met. We feel that they would be useful
to young members of our community, students and experienced researchers alike.

A list of upcoming anniversaries includes the 200th anniversary of the birth
of George Boole and the 100th anniversary of the birth of Richard Hamming in
2015, as well as the centenary of Claude Shannon in 2016. Please get in touch with
Kazuo if you are interested in contributing a reflection piece on any of those fig-
ures, or on a scientist or a “pearl of theoretical computer science” of your choice.

For the moment, Kazuo and I hope that you will enjoy David Avis’ piece that
gives this new section of the Bulletin an excellent start.

BEATCS no 116

250

George Dantzig: father of the simplex
method

David Avis
Kyoto University
avis@cs.mcgill.ca

100 years have passed since George Bernard Dantzig was born, about 70 years
since he started developing the simplex method, and 10 since he died. His main
legacy is the simplex method, which Computer Science and Engineering included
as one of the top 10 algorithms (sic) of the 20th century. In 2006 Martin Grötschel
said: “the development of linear programming is - in my opinion - the most im-
portant contribution of the mathematics of the 20th century to the solution of prac-
tical problems arising in industry and commerce." Yet linear programming, and
especially the simplex method, has had a tenuous relation to theoretical computer
science (TCS) over the years.

Let us begin with the fact that it is the simplex method not the simplex algo-
rithm. It is a method because it describes a class of algorithms. An algorithm
in the class is initialized at any vertex of a convex polyhedron and will follow
edges on the boundary of the polyhedron until reaching a vertex that maximizes a
given linear function1. These algorithms are specified by a pivot rule that is nor-
mally deterministic and defines a unique path along which the objective function
increases monotonically until an optimum vertex is reached. It may not be the
case that the algorithm makes progress along an edge at every step: it may make
repeated pivots at a given vertex before making progress, a phenomenon known as
stalling. Dantzig’s original (and still widely used) pivot rule has two unfortunate
properties. Firstly, it may stall indefinitely, going into an infinite loop. Secondly, it
may follow a path on the polyhedron of exponential length, as shown by Klee and
Minty in 1972. The first problem can be efficiently solved by the lexicographic
ratio test, a method that simulates simplicity and renders all pivot rules finite, or
by perturbation. The second problem has never been solved. Following Klee and
Minty, a series of papers gave exponential lower bounds for the then known pivot
rules, using variants of Klee-Minty cubes. These types of examples can be de-
feated by history based rules, such as those introduced by Zadeh in 1980. These

1For simplicity we omit the cases where the polyhedron is unbounded or empty.

The Bulletin of the EATCS

251

rules resisted analysis for more than 30 years, despite Zadeh’s offer of a $1000
prize.

Even with these serious limitations, the simplex method dominates optimiza-
tion, especially integer programming, where it is routinely used to optimally solve
large examples of NP-hard integer programming problems. For example the Con-
corde program of Applegate, Bixby, Cook and Chvátal has found the optimum
solution of traveling salesman problems (TSPs) with as many as 85,900 cities. It
is based on the branch-and-cut method that generates enormous numbers of ex-
tremely large linear programs. The 85,900 city TSP involved the solution of about
one million sparse LPs each with roughly 100,000 constraints and 170,000 vari-
ables. Each new LP is created by adding a number of cutting planes to an LP
with a fractional optimum solution. Using Dantzig’s dual simplex method and the
original optimum solution, this new LP can be optimized with ease in practice, but
of course there is no theoretical foundation for this. Incidentally this method was
pioneered by Dantzig, along with Fulkerson and Johnson, in their groundbreaking
1954 paper where they optimally solved a 49 city TSP by hand2!

Other methods for linear programming exist of course. Starting with the ellip-
soid method of Khachian in 1979 the competing class of interior point algorithms
has been extensively developed. To a TCS eye these are eminently preferable, be-
ing provably polynomial. Although the ellipsoid method is a non-starter for solv-
ing any problem encountered in practice, later algorithms are competitive with
the simplex method. However this should not ease TCS discomfort with the sim-
plex method. Imagine things were reversed: Dantzig had discovered an interior
method in 1947 and Khachian had proposed the simplex method in 1979. What
chance would Khachian have had of getting a non-finite, non-algorithm running
in exponential time for a problem in P accepted to FOCS/STOC/SODA? Would
it even have been programmed? When it comes to handling cutting planes the
simplex method wins hands down against interior point methods. And it is integer
programming that provides the huge bulk of LPs that need to be solved in practice.
The simplex method also delivers an optimal basis and a proof of optimality via
the dual multipliers that can be independently verified. But most uncomfortably
of all: it really does work in practice and seemingly flies in the face of a lot of
what TCS teaches students about P, NP-hardness, and exponential algorithms.

Given its importance why is it that Dantzig’s simplex method was largely ig-
nored in the TCS community until relatively recently? Most of us who studied
at Stanford’s Department of Operations Research, that Dantzig pioneered, largely
funded, and presided over, were not enamored by the rather opaque description

2Despite Michigan State computer scientist Randy Olson’s recent claims to the contrary: “With
50 landmarks to put in order, we would have to exhaustively evaluate 3 x 1064 possible routes to
find the shortest one." http://www.randalolson.com/2015/03/08/computing-the-optimal-road-trip-
across-the-u-s/)

BEATCS no 116

252

in his opus Linear Programming and Extensions. This may have delayed the
widespread understanding of the simplex method but was completely rectified by
Chvátal’s lucid description in the first few chapters of his now classic Linear Pro-
gramming. I always found it very impressive that my PhD supervisor, a 27 year
old nontenured assistant professor in the department at the time, dared to rewrite
Dantzig’s description in plain English3. Anyway he did, so there is no excuse for
anyone not to understand it.

Many TCS books on algorithms ignore linear programming altogether. Where
it is discussed it is often treated almost as a footnote. The encyclopedic Cormen,
Leiserson, Rivest and Stein’s Algorithms(3rd edition) describes it in Chapter 29
(of 35), Selected Topics. The excellent and highly readable Kleinberg and Tardos’
Algorithm Design treats it in Chapter 11 (of 13), a chapter on approximation algo-
rithms! This despite the fact that both texts contain many examples of the simplex
method in disguised form in earlier chapters: Dijkstra’s algorithm, Bellman-Ford,
network flows, matchings etc.

Early TCS interest in linear programming was shown by computational ge-
ometers. However algorithms that are exponential in the dimension and linear
in the number of constraints are of little interest when the number of variables is
counted in the hundreds of thousands. A major theoretical result appeared in 1991
with the joint discovery by Kalai and Matousek, Sharir & Welzl of a subexponen-
tial pivot selection method based on selecting random facets at the current vertex.
However this result has never been derandomized and, being recursive in the di-
mension, is not practical for the kinds of LPs encountered in practice. Another
line of research involved the probabilistic analysis of the simplex method, com-
mencing in the late 1970s with Borgwardt(Lanchester prize) and continuing into
this century with the smoothed analysis of Spielman and Teng(Gödel prize). This
is deep work indeed and gives considerable insight into the success of the simplex
method for certain types of problems. However large scale combinatorial prob-
lems hardly seem to fit these models. More recently, in 2011, Friedmann, Hansen
& Zwick gave subexponential lower bounds for the random facet rule and also for
the more intuitive random edge rule, receiving STOC’s best paper award. Also
in 2011, Friedmann gave a subexponential lower bound for Zadeh’s history based
rule, solving that 30 year open problem, and picked up a cheque for $1000 from
the man in person at an IPAM meeting in Los Angeles. Similar results followed.
Each simplex pivot generates a lot of information about the polyhedron, and for a
polynomial time pivot rule this entire history could be recorded. So history based
rules offer good candidates for polynomial upper bounds. Much work needs to be
done here. Surely the close collaboration of TCS and the optimization commu-

3Earlier Dantzig had asked Chvátal how old he was. When he heard, Dantzig replied: “Then I
pity you because you are going to have to live through all the shit that is coming up."

The Bulletin of the EATCS

253

nity would be able to settle this question: is there or is there not a polynomial time
pivot selection rule for the simplex method? Of course I think all of us, including
George, hope for a positive answer that is both strongly polynomial time and a
winner in practice!

Kyoto University
June 1, 2015

Contributions by
EATCS
Award Recipients

The Bulletin of the EATCS

257

Sampling from Discrete Distributions and
Computing Fréchet Distances

Abstract of Doctoral Thesis [8]

Karl Bringmann

1 Sampling from Discrete Distributions
Sampling from a probability distribution is a fundamental problem that lies at
the heart of randomized computation, and has never been as important as today,
as most sciences perform computer simulations of models involving randomness.
We approach this problem area from an algorithm theory perspective. The central
problem in the first part of this dissertation is proportional sampling, defined as
follows. We are given non-negative numbers p1, . . . , pn that define a probability
distribution on {1, . . . , n} by picking i with probability proportional to pi, i.e., the
probability of sampling i is pi∑

j p j
. The task is to build a data structure that supports

sampling from this distribution as a query. The classic solution to this problem
is the alias method by Walker from ’74 [38], which uses O(1) query time and
O(n) preprocessing time, i.e., the time for building the data structure is O(n). It is
easy to see that both time bounds of Walker’s method are optimal. We extend this
classic data structure in various directions as follows.

Succinct Sampling While the time bounds are well understood, space usage of
discrete sampling algorithms has received little attention. To bound its space us-
age, we show that Walker’s alias method can be implemented on the Word RAM
model of computation (where each cell stores w = Ω(log n) bits) with a space us-
age of n(w + 2 lg n + O(1)) bits [12]. Using the terminology of succinct data struc-
tures, this solution has a redundancy of 2n lg n+O(n) bits, i.e., it uses 2n lg n+O(n)
bits in addition to the information theoretic minimum required for storing the in-
put. We examine whether this space usage can be improved in two common mod-
els for data structures from the field of succinct data structures: In the systematic
model, in which the input is read-only, we present a novel data structure using
r +O(w) redundant bits, O(n/r) expected query time, and O(n) preprocessing time
for any r. This is an improvement in redundancy by a factor of Ω(log n) over the

BEATCS no 116

258

alias method for r = n, even though the alias method is not systematic. Moreover,
we complement this data structure with a lower bound showing that this trade-
off is tight for systematic data structures. In the non-systematic model, in which
the input numbers may be represented in more clever ways than just storing them
one-by-one, we demonstrate a very surprising separation from the systematic case:
With only 1 redundant bit, it is possible to support optimal O(1) expected query
time and O(n) preprocessing time! On the one hand, these results improve upon
the space requirement of the classic solution for a fundamental sampling prob-
lem, and on the other hand, they provide the strongest known separation between
the systematic and non-systematic model for any data structure problem. Finally,
we also believe that these upper bounds are practically efficient and simpler than
Walker’s alias method.

Restricted Inputs Since the preprocessing and query time bounds of Walker’s
alias method are optimal in the worst case, we examine the situation where we
have additional knowledge about the input distribution [14]. For example, assume
that we have the guarantee that the input is sorted. We show that, in this case,
the preprocessing time can be reduced to O(log n) while still achieving expected
query time O(1). Moreover, one can further reduce the preprocessing time at
the price of increasing the query time, specifically, any expected query time O(t)
can be achieved with O(logt n) preprocessing time. In particular, we can achieve
preprocessing and expected query time O(log n/ log log n). We also show tight
lower bounds for this trade-off curve at all of its points.

Subset Sampling Let us consider a different sampling problem [14]: In subset
sampling we are given p1, . . . , pn and consider n independent events, where event
i occurs with probability pi. The task is to sample the set of occurring events.
This problem can be seen as a generalization of proportional sampling, since we
show that any data structure for subset sampling can be transformed into a data
structure for proportional sampling with the same asymptotic running times. As
for proportional sampling, we consider sorted and unsorted input sequences and
in both cases present data structures with optimal preprocessing-query time trade-
offs. The situation is more complex than for proportional sampling, since the
running times now also depend on the expected size µ of the sampled subset. For
instance, we design a data structure for subset sampling on sorted inputs with
preprocessing and expected query time O(1 + µ +

log n
log(log(n)/µ)), which corresponds

to one point on an optimal trade-off curve.

Special distributions Particularly fast sampling methods are known for special
distributions such as Bernoulli, geometric, or binomial random variables. For

The Bulletin of the EATCS

259

instance, a geometric random variable Geo(p) can be sampled using the simple
formula

⌈ log R
log(1−p)

⌉
, where R is a uniformly random real in (0, 1). On a Real RAM,

this formula can be evaluated in constant time. However, on real-life computers
this formula is typically evaluated with the usual floating point precision, so that
it is not exact. Hence, we study whether special distributions can be sampled
exactly and efficiently on a bounded-precision machine such as the Word RAM.
We prove that a geometric random variable Geo(p) can be sampled in expected
time O(1 + log(1/p)/w) on the Word RAM [10]. This is optimal, as it matches
the expected number of output words. To this end, we have to avoid the simple
formula above, as it is a long-standing open problem to compute logarithms in
linear time. We also present optimal sampling algorithms on the Word RAM for
Bernoulli and binomial random variables as well as ErdÅŚsâĂŞRÃl’nyi random
graphs.

Applications The insights on the above fundamental problems also prove ben-
eficial for sampling more complex random structures motivated by physics. Con-
sider the following simple exemplary process. The Internal Diffusion Limited
Aggregation (IDLA [33]) process places particles on the initially empty integer
grid Z2. In every step, a new particle is born at the origin and performs a ran-
dom walk until it hits an empty grid cell and occupies it. This process models
certain chemical and physical phenomena such as corrosion and the melting of a
solid around a heat source. The emerging shape is roughly a ball. Proving this
rigorously turned out to be a challenging mathematical problem which has only
recently been resolved [32]. From a computational perspective, the trivial simu-
lation algorithm takes time O(n2) to generate an IDLA shape with n particles. We
prove that O(n log2 n) time and O(

√
n log n) space are sufficient for exactly sam-

pling from the IDLA distribution [15], which allows for experiments on a much
larger scale.

2 Computing Fréchet Distances
The second part of this dissertation belongs to the area of computational geometry
and deals with algorithms for the Fréchet distance, which is a popular measure of
similarity of curves. Intuitively, the (continuous) Fréchet distance of two curves
P,Q is the minimal length of a leash required to connect a dog to its owner, as
they walk along P and Q, respectively, without backtracking.

Alt and Godau introduced the Fréchet distance to computational geometry in
1991 [4, 27]. For polygonal curves P and Q with n and m vertices, respectively,
n ≥ m, they presented an O(nm log(nm)) algorithm. Since Alt and Godau’s semi-
nal paper, Fréchet distance has become a rich field of research, with many variants,

BEATCS no 116

260

extensions, and generalizations (see, e.g., [3, 17, 20, 24]). Being a natural mea-
sure for curve similarity, Fréchet distance has found applications in various areas
such as signature verification (see, e.g., [34]), map-matching tracking data (see,
e.g., [7]), and moving objects analysis (see, e.g., [18]).

A particular variant that we also discuss in this dissertation is the discrete
Fréchet distance. Here, intuitively the dog and its owner are replaced by two
frogs, and in each time step each frog can jump to the next vertex along its curve
or stay at its current vertex. Defined in [25], the original algorithm for the discrete
Fréchet distance has running time O(nm).

Quadratic time complexity? Recently, improved algorithms have been found
for the classic variants. Agarwal et al. [2] showed how to compute the dis-
crete Fréchet distance in (mildly) subquadratic time O

(
nm log log n

log n

)
. Buchin et

al. [19] designed algorithms for the continuous Fréchet distance with running
time O(n2

√
log n(log log n)3/2) on the Real RAM and O(n2(log log n)2) on the

Word RAM. However, the problem remained open whether there is a strongly
subquadratic1 algorithm for the Fréchet distance, i.e., an algorithm with running
time O(n2−δ) for any δ > 0. The only known lower bound shows that the Fréchet
distance takes time Ω(n log n) (in the algebraic decision tree model) [16]. The
typical way of proving (conditional) quadratic lower bounds for geometric prob-
lems is via 3SUM [26]. In fact, Helmut Alt conjectured that the Fréchet distance
is 3SUM-hard, but this conjecture remains open. Instead of relating the Fréchet
distance to 3SUM, we consider the Strong Exponential Time Hypothesis.

Strong Exponential Time Hypothesis (SETH) The hypothesis SETH, intro-
duced by Impagliazzo, Paturi, and Zane [30, 31], provides a way of proving con-
ditional lower bounds. SETH asserts that satisfiability has no algorithms that are
much faster than exhaustive search.

Hypothesis SETH: For no ε > 0, k-SAT can be solved in time O(2(1−ε)N) for all
k ≥ 3.

Note that exhaustive search takes time O∗(2N) and the best-known algorithms for
k-SAT have a running time of the form O(2(1−c/k)N) for some constant c > 0 [36].
Thus, SETH is a reasonable hypothesis and, due to lack of progress in the last
decades, can be considered unlikely to fail. It has been observed before this work
that SETH can be used to prove lower bounds for polynomial time problems such

1We use the term strongly subquadratic to differentiate between this running time and the
(mildly) subquadratic O(n2 log log n/ log n) algorithm from [2].

The Bulletin of the EATCS

261

as k-Dominating Set and others [35], the diameter of sparse graphs [37], and dy-
namic connectivity problems [1].

Main lower bound Our main result of the second part of this dissertation gives
strong evidence that the Fréchet distance may have no strongly subquadratic al-
gorithms by relating it to the Strong Exponential Time Hypothesis. We prove that
there is no O(n2−δ) algorithm for the (continuous or discrete) Fréchet distance
for any δ > 0, unless SETH fails [9]. Since SETH is a reasonable hypothesis,
by this result one can consider it unlikely that the Fréchet distance has strongly
subquadratic algorithms. In particular, any strongly subquadratic algorithm for
the Fréchet distance would not only give improved algorithms for k-SAT that are
much faster than exhaustive search, but also for various other problems such as
Hitting Set, Set Splitting, and NAE-SAT via the reductions in [22]. Alternatively,
in the spirit of [35], one can view the above theorem as a possible attack on k-SAT,
as algorithms for the Fréchet distance now could provide a route to faster k-SAT
algorithms. In any case, anyone trying to find strongly subquadratic algorithms
for the Fréchet distance should be aware that this is as hard as finding improved
k-SAT algorithms, which might be impossible.

We remark that all our lower bounds (unless stated otherwise) hold in the
Euclidean plane, and thus also in Rd for any d ≥ 2.

Extensions We extend our main lower bound in two important directions: We
show approximation hardness and we show tight lower bounds if one curve has
much fewer vertices than the other, m � n. In order to state our result, we first for-
malize that a statement holds for “m ≈ nγ for any γ”. We say that a statement holds
for any polynomial restriction of nγ0 ≤ m ≤ nγ1 if it holds restricted to instances
with nγ−δ ≤ m ≤ nγ+δ for any constants δ > 0 and γ0 + δ ≤ γ ≤ γ1 − δ. We prove
that there is no 1.001-approximation with running time O((nm)1−δ) for the (con-
tinuous or discrete) Fréchet distance for any δ > 0, unless SETH fails. This holds
for any polynomial restriction of 1 ≤ m ≤ n [9]. In recent work together with
Wolfgang Mulzer focussing on the discrete Fréchet distance [13], we improve
this result further by excluding 1.399-approximation algorithms even for one-
dimensional curves, assuming SETH. Moreover, we present an α-approximation
in time O(n2/α + n log n) for any α ≥ 1.

Realistic input curves In attempts to break the apparent quadratic time barrier
at least for realistic inputs, various restricted classes of curves have been con-
sidered, such as backbone curves [6], κ-bounded and κ-straight curves [5], and
φ-low density curves [24]. The most popular model of realistic inputs are c-
packed curves. A curve π is c-packed if for any point z ∈ Rd and any radius

BEATCS no 116

262

r > 0 the total length of π inside the ball B(z, r) is at most cr, where B(z, r)
is the ball of radius r around z. This model is well motivated from a practical
point of view. The model has been used for several generalizations of the Fréchet
distance [21, 23, 28, 29]. Driemel et al. [24] introduced c-packed curves and
presented a (1 + ε)-approximation for the continuous Fréchet distance in time
O(cn/ε + cn log n), which works in any Rd, d ≥ 2.

While this algorithm takes near-linear time for small c and 1/ε, is is not
clear whether its dependence on c and 1/ε is optimal for c and 1/ε that grow
with n. We give strong evidence that the algorithm of Driemel et al. has opti-
mal dependence on c for any constant 0 < ε ≤ 0.001. We prove that there is no
1.001-approximation with running time O((cn)1−δ) for the (continuous or discrete)
Fréchet distance on c-packed curves for any δ > 0, unless SETH fails. This holds
for any polynomial restriction of 1 ≤ c ≤ n [9]. Since we prove this claim for
any polynomial restriction c ≈ nγ, this result also excludes 1.001-approximations
with running time, say, O(c2 + n).

Regarding the dependence on ε, in any dimension d ≥ 5 we can prove a
conditional lower bound that matches the dependency on ε of the algorithm by
Driemel et al. up to a polynomial. We prove that in Rd, d ≥ 5, there is no (1 +

ε)-approximation for the (continuous or discrete) Fréchet distance on c-packed
curves running in time O(min{cn/

√
ε, n2}1−δ) for any δ > 0, unless SETH fails.

This holds for sufficiently small ε > 0 and any polynomial restriction of 1 ≤ c ≤ n
and ε ≤ 1 [9].

This, however, still leaves open a gap between the best-known upper and (con-
ditional) lower bounds. We resolve this issue positively by giving a faster algo-
rithm with time complexity O(cn log2(1/ε)/

√
ε + cn log n) [11]. This dependence

on c, n and ε is optimal in high dimensions apart from lower order factors, unless
SETH fails. In fact, the new algorithm was obtained by examining and exploiting
properties that prevent a stronger lower bound, thus demonstrating that SETH-
based lower bounds may also inspire algorithmic improvements. We leave open
the challenging problem of determining the optimal running time in dimensions
d = 2, 3, 4.

References

[1] A. Abboud and V. Vassilevska Williams. Popular conjectures imply strong
lower bounds for dynamic problems. In Proc. 55th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’14), 2014. To appear.

[2] P. Agarwal, R. B. Avraham, H. Kaplan, and M. Sharir. Computing the dis-

The Bulletin of the EATCS

263

crete Fréchet distance in subquadratic time. In Proc. 24th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’13), pages 156–167, 2013.

[3] H. Alt and M. Buchin. Can we compute the similarity between surfaces?
Discrete & Computational Geometry, 43(1):78–99, 2010.

[4] H. Alt and M. Godau. Computing the Fréchet distance between two polyg-
onal curves. International Journal of Computational Geometry & Applica-
tions, 5(1-2):78–99, 1995.

[5] H. Alt, C. Knauer, and C. Wenk. Comparison of distance measures for planar
curves. Algorithmica, 38(1):45–58, 2004.

[6] B. Aronov, S. Har-Peled, C. Knauer, Y. Wang, and C. Wenk. Fréchet dis-
tance for curves, revisited. In Proc. 14th Annual European Symposium on
Algorithms (ESA’06), volume 4168 of LNCS, pages 52–63. 2006.

[7] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle
tracking data. In Proc. 31st International Conference on Very Large Data
Bases (VLDB’05), pages 853–864, 2005.

[8] K. Bringmann. Sampling from discrete distributions and computing Fréchet
distances, 2014. Dissertation. http://scidok.sulb.uni-saarland.de/
volltexte/2015/5988/.

[9] K. Bringmann. Why walking the dog takes time: Frechet distance has no
strongly subquadratic algorithms unless SETH fails. In Proc. 55th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’14), 2014.
To appear.

[10] K. Bringmann and T. Friedrich. Exact and efficient generation of geometric
random variates and random graphs. In Proc. 40th International Colloquium
on Automata, Languages, and Programming (ICALP’13), volume 7965 of
LNCS, pages 267–278, 2013.

[11] K. Bringmann and M. Künnemann. Improved approximation for Fréchet
distance on c-packed curves matching conditional lower bounds, 2014. Sub-
mitted. Preprint at arXiv 1408.1340.

[12] K. Bringmann and K. G. Larsen. Succinct sampling from discrete distribu-
tions. In Proc. 45th Annual ACM Symposium on Symposium on Theory of
Computing (STOC’13), pages 775–782, New York, NY, USA, 2013. ACM.

BEATCS no 116

264

[13] K. Bringmann and W. Mulzer. Approximability of the discrete fréchet dis-
tance. In Proc. 31st International Symposium on Computational Geometry
(SoCG’15), 2015. To appear.

[14] K. Bringmann and K. Panagiotou. Efficient sampling methods for discrete
distributions. In Proc. 39th International Colloquium on Automata, Lan-
guages, and Programming (ICALP’12), volume 7391 of LNCS, pages 133–
144, 2012.

[15] K. Bringmann, F. Kuhn, K. Panagiotou, U. Peter, and H. Thomas. Internal
DLA: Efficient simulation of a physical growth model. In Proc. 41th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP’14),
volume 8572 of LNCS, pages 247–258, 2014.

[16] K. Buchin, M. Buchin, C. Knauer, G. Rote, and C. Wenk. How difficult is
it to walk the dog? In Proc. 23rd European Workshop on Computational
Geometry (EWCG’07), pages 170–173, 2007.

[17] K. Buchin, M. Buchin, and Y. Wang. Exact algorithms for partial curve
matching via the Fréchet distance. In Proc. 20th ACM-SIAM Symposium on
Discrete Algorithms (SODA’09), pages 645–654, 2009.

[18] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting
commuting patterns by clustering subtrajectories. International Journal of
Computational Geometry & Applications, 21(3):253–282, 2011.

[19] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four soviets walk
the dog - with an application to Alt’s conjecture. In Proc. 25th ACM-SIAM
Symposium on Discrete Algorithms (SODA’14), pages 1399–1413, 2014.

[20] E. W. Chambers, É. Colin de Verdière, J. Erickson, S. Lazard, F. Lazarus,
and S. Thite. Homotopic Fréchet distance between curves or, walking your
dog in the woods in polynomial time. Computational Geometry, 43(3):295–
311, 2010.

[21] D. Chen, A. Driemel, L. J. Guibas, A. Nguyen, and C. Wenk. Approx-
imate map matching with respect to the Fréchet distance. In Proc. 13th
Workshop on Algorithm Engineering and Experiments (ALENEX’11), pages
75–83, 2011.

[22] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Pa-
turi, S. Saurabh, and M. Wahlström. On problems as hard as CNF-SAT. In
Proc. 27th IEEE Conference on Computational Complexity (CCC’12), pages
74–84, 2012.

The Bulletin of the EATCS

265

[23] A. Driemel and S. Har-Peled. Jaywalking your dog: computing the Fréchet
distance with shortcuts. SIAM Journal on Computing, 42(5):1830–1866,
2013.

[24] A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance
for realistic curves in near linear time. Discrete & Computational Geometry,
48(1):94–127, 2012.

[25] T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technical
Report CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU
Vienna, Austria, 1994.

[26] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in com-
putational geometry. Computational Geometry: Theory and Applications, 5
(3):165–185, 1995.

[27] M. Godau. A natural metric for curves - computing the distance for polyg-
onal chains and approximation algorithms. In Proc. 8th Symposium on The-
oretical Aspects of Computer Science (STACS’91), volume 480 of LNCS,
pages 127–136, 1991.

[28] J. Gudmundsson and M. Smid. Fréchet queries in geometric trees. In Proc.
21st Annual European Symposium on Algorithms (ESA’13), volume 8125 of
LNCS, pages 565–576. 2013.

[29] S. Har-Peled and B. Raichel. The Fréchet distance revisited and extended.
In Proc. 27th Annual Symposium on Computational Geometry (SoCG’11),
pages 448–457, 2011.

[30] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

[31] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly ex-
ponential complexity? Journal of Computer and System Sciences, 63(4):
512–530, 2001.

[32] D. Jerison, L. Levine, and S. Sheffield. Logarithmic fluctuations for internal
DLA. Journal of the American Mathematical Society, 25:271–301, 2012.

[33] P. Meakin and J. M. Deutch. The formation of surfaces by diffusion limited
annihilation. The Journal of Chemical Physics, 85:2320, 1986.

[34] M. E. Munich and P. Perona. Continuous dynamic time warping for transla-
tion-invariant curve alignment with applications to signature verification. In

BEATCS no 116

266

Proc. 7th IEEE International Conference on Computer Vision, volume 1,
pages 108–115, 1999.

[35] M. Pătraşcu and R. Williams. On the possibility of faster SAT algorithms.
In Proc. 21nd ACM-SIAM Symposium on Discrete Algorithms (SODA’10),
pages 1065–1075, 2010.

[36] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time
algorithm for k-sat. Journal of the ACM, 52(3):337–364, 2005.

[37] L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for
the diameter and radius of sparse graphs. In Proc. 45th Annual ACM Sym-
posium on Symposium on Theory of Computing (STOC’13), pages 515–524,
2013.

[38] A. J. Walker. New fast method for generating discrete random numbers with
arbitrary distributions. Electronic Letters, 10(8):127–128, 1974.

Book Introduction
by the Authors

The Bulletin of the EATCS

269

Book Introduction by the Authors
Invited by

Luca Aceto

luca.aceto@gmail.com
President of EATCS

Reykjavik University, Reykjavik, Iceland

BEATCS no 116

270

Semantics of Probabilistic Processes
An Operational Approach

Yuxin Deng
Shanghai Jiaotong University
yuxindeng@sjtu.edu.cn

Subject matter

With the rapid development of computer network and communication technology,
the study of concurrent and distributed systems has become increasingly impor-
tant. Among various models of concurrent computation, process calculi have been
widely investigated and successfully used in the specification, design, analysis and
verification of practical concurrent systems. In recent years, probabilistic process
calculi have been proposed to describe and analyse quantitative behaviour of con-
current systems, which calls for the study of semantic foundations of probabilistic
processes.

In “Semantics of Probabilistic Processes” [4] we adopt an operational ap-
proach to describing the behaviour of nondeterministic and probabilistic processes.
The semantic comparison of different systems is based on appropriate behavioural
relations such as bisimulation equivalences and testing preorders.

This book mainly consists of two parts. The first part provides an elementary
account of bisimulation semantics for probabilistic processes from metric, logical
and algorithmic perspectives. The second part sets up a general testing framework
and specialises it to probabilistic processes with nondeterministic behaviour. The
resulting testing semantics is treated in depth. A few variants of it are shown to
coincide, and they can be characterised in terms of modal logics and coinductively
defined simulation relations. Although in the traditional (nonprobabilistic) setting,
simulation semantics is in general finer (i.e. it distinguishes more processes) than
testing semantics, for a large class of probabilistic processes, the gap between
simulation and testing semantics disappears. Therefore, in this case, we have a
semantics where both negative and positive results can be easily proved: to show
that two processes are not related in the semantics, we just give a witness test,
and to prove that two processes are related, we only need to establish a simulation
relation.

The Bulletin of the EATCS

271

Why yet another book?
Three decades have passed since the well-known books on process algebras by
Hoare [8], Milner [10], Baeten and Weijland [3], and Hennessy [7] were pub-
lished. In the meanwhile some excellent textbooks have appeared, including those
by Roscoe [13, 14], Milner [11], Fokkink[6], Sangiorgi and Walker [17], Aceto
et al. [1], Sangiorgi [15], as well as Sangiorgi and Rutten [16]. They are mainly
about classical (nonprobabilistic) process algebras. For probabilistic concurrency
theory, the book by Panangaden [12] is dedicated to the model of labelled Markov
Processes and the book by Doberkat [5] treats stochastic logics in depth. Proba-
bilistic model checking is well covered in the books by Baier and Katoen [2], and
Kwiatkowska et al. [9]. This book, however, collects some recent developments
in probabilistic testing semantics and gives an elementary account of probabilistic
bisimulation semantics. Below we give a rough overview of the book’s contents.

Mathematical preliminaries
In order to study the semantics of probabilistic processes, several mathematical
concepts and results turn out to be very useful. They are collected in Chapter 2,
including, for example, continuous functions over complete lattices, the Knaster-
Tarski fixed-point theorem, induction and coinduction proof principles, compact
sets in topological spaces, the separation theorem in geometry, the Banach fixed-
point theorem in metric spaces, the π-λ theorem in probability spaces and the
duality theorem in linear programming. The purpose of introducing these contents
is to make the proofs in later chapters more accessible to postgraduate students and
junior researchers entering the discipline of theoretical computer science.

Probabilistic bisimulation
In this book we work within a framework that features the co-existence of proba-
bility and nondeterminism. More specifically, we deal with probabilistic labelled
transition systems (pLTS’s) that are an extension of the usual labelled transition
systems so that a step of transition is in the form s a

−−→ ∆, meaning that state s can
perform action a and evolve into a distribution ∆ over some successor states. The
diagram in Figure 1 describes a pLTS; states are represented by nodes of the form
• and distributions by nodes of the form ◦.

Let s and t be two states in a pLTS. They are related by probabilistic simulation
R, written s R t, if for each transition s a

−−→ ∆ from s there exists a transition
t a
−−→ Θ from t such that Θ can somehow mimic the behaviour of ∆ according to
R. To formalise the mimicking of ∆ by Θ, we have to lift R to be a relation R†

between distributions over states so that we can require ∆ R† Θ.

BEATCS no 116

272

o o

1/2 1/2

o

o

s1

4

o

1/2

2 s

s

s5 s6

0

1/2

s 3 s

a a

Figure 1: A pLTS

Various methods of lifting relations have appeared in the literature, but they
can be reconciled. Essentially, there is only one lifting operation, which has been
rediscovered in different occasions and presented in different forms. Moreover,
we argue that the lifting operation is interesting in itself. This is justified by its
intrinsic connection with some fundamental concepts in mathematics, notably the
Kantorovich metric. For example, it turns out that our lifting of binary relations
from states to distributions nicely corresponds to the lifting of metrics from states
to distributions by using the Kantorovich metric. In addition, the lifting operation
is closely related to the maximum flow problem in optimisation theory.

In Chapter 3 we provide three characterisations of probabilistic bisimulation,
from the perspectives of modal logics, metrics, and decision algorithms.

• Our logical characterisation of probabilistic bisimulation consists of two
aspects: adequacy and expressivity. A logic L is adequate when two states
are bisimilar if and only if they satisfy exactly the same set of formulae in
L. The logic is expressive when each state s has a characteristic formula
ϕs in L such that state t is bisimilar to s if and only if t satisfies ϕs. We
introduce a probabilistic-choice modality to capture the behaviour of distri-
butions. Intuitively, distribution ∆ satisfies the formula

⊕
i∈I pi · ϕi if there

is a decomposition of ∆ into a convex combination of some distributions,
∆ =
∑

i∈I pi ·∆i, and each ∆i conforms to the property specified by ϕi. When
the new modality is added to the Hennessy-Milner logic we obtain an ad-
equate logic for probabilistic bisimilarity; when it is added to the modal
mu-calculus we obtain an expressive logic.

• By metric characterisation of probabilistic bisimulation, we mean to give

The Bulletin of the EATCS

273

a pseudometric such that two states are bisimilar if and only if their dis-
tance is 0 when measured by the pseudometric. More specifically, we show
that bisimulations correspond to pseudometrics that are postfixed points of
a monotone function, and in particular bisimilarity corresponds to a pseu-
dometric that is the greatest fixed point of the monotone function.

• As to the algorithmic characterisation, we first introduce a partition refine-
ment algorithm to check whether two states are bisimilar. Then we provide
an “on-the-fly" algorithm that checks whether two states are related by prob-
abilistic bisimilarity. The schema of the algorithm is to approximate proba-
bilistic bisimilarity by iteratively accumulating information about state pairs
(s, t) where s and t are not bisimilar. In each iteration we dynamically con-
struct a relation R as an approximant. Then we verify that every transition
from one state should be matched by a transition from the other state, and
that their resulting distributions are related by the lifted relation R†. The
latter involves solving the maximum flow problem of an appropriately con-
structed network, by taking advantage of the close relationship between our
lifting operation and the above mentioned maximum flow problem.

Probabilistic testing semantics
It is natural to view the semantics of processes as being determined by their ability
to pass tests; two processes are deemed to be semantically equivalent unless there
is a test that can distinguish them. The actual tests used typically represent the
ways in which users, or indeed other processes, can interact with the processes
under examination. To formulate this idea, in Chapter 4 we set up a general testing
scenario. It assumes

• a set of processes Proc

• a set of tests T , which can be applied to processes

• a set of outcomes O, the possible results from applying a test to a process

• a function A : T × Proc → P(O), representing the possible results of
applying a specific test to a specific process.

Here P(O) denotes the collection of non-empty subsets of O; so the result of ap-
plying a test T to a process P,A(T, P), is in general a non-empty set of outcomes,
representing the fact that the behaviour of processes, and indeed tests, may be
nondeterministic.

Moreover, some outcomes are considered better then others; for example, the
application of a test may simply succeed, or it may fail, with success being better

BEATCS no 116

274

than failure. So we can assume that O is endowed with a partial order, in which
o1 ≤ o2 means that o2 is a better outcome than o1.

When comparing the results of applying tests to processes we need to compare
subsets of O. There are two standard approaches to make this comparison, based
on viewing these sets as elements of either the Hoare or Smyth powerdomain of
O1. Consequently, we have two different semantic preorders for processes:

(i) For P,Q ∈ Proc let PvmayQ if for any test T and every outcome o1 ∈ A(T, P)
there exists some o2 ∈ A(T,Q) such that o1 ≤ o2.

(ii) Similarly, let P vmust Q if for any test T and every o2 ∈ A(T,Q) there exists
some o1 ∈ A(T, P) such that o1 ≤ o2.

Let us have a look at two typical instances of the setO and its associated partial
order ≤.

1. For probabilistic processes we consider an application of a test to a process
to succeed with a given probability. Thus we take as the set of outcomes the
unit interval [0, 1], with the standard ordering: if 0 ≤ p < q ≤ 1 then suc-
ceeding with probability q is considered better than succeeding with proba-
bility p. We refer to this approach as scalar testing.

2. Another approach of testing, as originally proposed by Segala, employs a
countable set of special actions Ω = {ω1, ω2, ...} to report success. When
applied to probabilistic processes, this approach uses the function space
[0, 1]Ω as the set of outcomes and the standard partial order for real func-
tions: for any o1, o2 ∈ O, we have o1 ≤ o2 if and only if o1(ω) ≤ o2(ω)
for every ω ∈ Ω. When Ω is fixed, an outcome o ∈ O can be considered
as a vector 〈o(ω1), o(ω2), ...〉, with o(ωi) representing the probability of suc-
cess observed by action ωi. Therefore, this approach is called vector-based
testing.

Surprisingly, it turns out that for finitary systems, i.e. finite-state and finitely
branching systems, scalar testing is equally powerful as vector-based testing. This
is the main result shown in Chapter 4. Other variants of testing approaches, such
as reward testing and extremal reward testing are also discussed. They all coincide
with vector-based testing as far as finitary systems are concerned.

1A third approach is to use the Plotkin powerdomain, which can be obtained by combining the
Hoare and Smyth powerdomains.

The Bulletin of the EATCS

275

Testing finite probabilistic processes
Chapter 5 investigates the connection between testing and simulation semantics.
The simulation semantics is based on a notion of failure simulation and a notion of
forward simulation; a distinguishing feature of them is to allow for the comparison
of states with distributions. We say a relation R ⊆ S ×D(S) is a failure simulation
if s R Θ implies

(i) for any action α, if s α
−−→ ∆ then there exists some Θ′ such that Θ

α
==⇒ Θ′

and ∆ R† Θ′

(ii) for any set of actions A, if s fails to perform any action in A, then so does
some Θ′ with Θ

τ
==⇒ Θ′.

Here we write α
==⇒ for a weak transition that abstracts away the internal action τ.

Similarly, we define forward simulation by dropping the clause (ii) above.
For finite processes, i.e. processes whose behaviour can be described by

pLTS’s with finite tree structures, testing semantics is not only sound but also
complete for simulation semantics. More specifically, may testing preorder coin-
cides with forward simulation preorder and must testing preorder coincides with
failure simulation preorder. Therefore, unlike the traditional (nonprobabilistic)
setting, here there is no gap between testing and simulation semantics. To prove
this result we make use of logical characterisations of testing preorders. For ex-
ample, each state s has a characteristic formula ϕs in the sense that another state
t can simulate s if and only if t satisfies ϕs. We can then turn this formula ϕs into
a characteristic test Ts so that if t is not related to s via the may testing preorder
then Ts is a witness test that distinguishes t from s. Similarly for the case of failure
simulation and must testing. We also give a complete axiom system for the testing
preorders in the finite fragment of a probabilistic process algebra.

Testing finitary probabilistic processes
In Chapter 6 we extend the results in the previous chapter from finite processes
to finitary processes. Testing preorders can still be characterised as simulation
preorders and admit modal characterisations. The soundness and completeness
proofs inherit the general schemata from Chapter 5. However, the technicalities
are much more subtle and more interesting. For example, the weak transition re-
lation τ

==⇒ needs to be carefully defined so as to abstract away infinitely many
internal transition steps, and we make a significant use of subdistributions. A
crucial topological property shown in this chapter is that from any given subdistri-
bution, the set of stable subdistributions reachable from it by weak transitions can
be finitely generated. Consider the pLTS in Figure 1 again. Both the point distri-
bution s5 and the distribution (1

2 s3 + 1
2 s6) are stable and reachable from s0. In fact,

BEATCS no 116

276

by taking linear combinations of them we obtain the set of all stable subdistribu-
tions reachable from s0. The proof is highly non-trivial and involves techniques
from Markov decision processes such as rewards and static policies. This result
enables us to approximate coinductively defined relations by stratified inductive
relations. As a consequence, if two processes behave differently we can tell them
apart by a finite test.

We also introduce a notion of real-reward testing that allows for negative re-
wards. It turns out that real-reward may preorder is the inverse of real-reward must
preorder, and vice versa. More interestingly, for finitary convergent processes,
real-reward must testing preorder coincides with nonnegative-reward testing pre-
order.

Weak probabilistic bisimulation
In Chapter 7 we introduce a notion of weak probabilistic bisimulation simply by
taking the symmetric form of the forward simulation preorder given in Chap-
ter 6. It provides a sound and complete proof methodology for an extensional be-
havioural equivalence, a probabilistic variant of the traditional reduction barbed
congruence well-known in concurrency theory.

More information
More information on this book can be found at

www.springer.com/978-3-662-45197-7

Acknowledgements Most of the work reported in this book was carried out dur-
ing the last few years with a number of colleagues including Rob van Glabbeek,
Matthew Hennessy, Carroll Morgan, Chenyi Zhang, and Wenjie Du. Thanks go
also to Barry Jay, Matthew Hennessy and Carroll Morgan for having read parts
of the first draft and offered useful feedback. The Springer staff have provided
wonderful cooperation in the process of editing and publishing the book. In par-
ticular, I am thankful to Jane Li. My research on probabilistic concurrency theory
has been sponsored by the National Natural Science Foundation of China under
grants 61173033 and 61261130589. Finally, I thank Luca Aceto for his comments
on this summary.

References
[1] L. Aceto, A. Ingólfsdóttir, K.G. Larsen and J. Srba. Reactive Systems: Modelling,

Specification and Verification. Cambridge University Press, 2007.

The Bulletin of the EATCS

277

[2] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[3] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoreti-
cal Computer Science, vol. 18. Cambridge University Press, 1990.

[4] Y. Deng. Semantics of Probabilistic Processes: An Operational Approach.
Springer, 2014.

[5] E.E. Doberkat. Stochastic Coalgebraic Logic. Springer, 2010.

[6] W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer, 2000.

[7] M. Hennessy. Algebraic Theory of Processes. The MIT Press, 1988.

[8] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[9] M. Kwiatkowska, G. Norman, D. Parker and J.J.M.M. Rutten. Mathematical Tech-
niques for Analyzing Concurrent and Probabilistic Systems. Crm Monograph Se-
ries. American Mathematical Society, 2004.

[10] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[11] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

[12] P. Panangaden. Labelled Markov Processes. Imperial College Press, London, 2009.

[13] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

[14] A.W. Roscoe. Understanding Concurrent Systems. Springer, 2010.

[15] D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University
Press, 2011.

[16] D. Sangiorgi and J. Rutten (editors). Advanced Topics in Bisimulation and Coin-
duction. Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2011.

[17] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

The Bulletin of the EATCS

279

E u r o p e a n

A s s o c i a t i o n f o r

T h e o r e t i c a l

C omp u t e r

S c i e n c e

E A T C S

BEATCS no 116

280

EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.
Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
and a Treasurer. Policy guidelines are determined by the Council and the General Assembly of
EATCS. This assembly is scheduled to take place during the annual International Colloquium on
Automata, Languages and Programming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;
- Publication of the “Bulletin of the EATCS;”
- Award of research and academic career prizes, including the EATCS Award, the Gödel Prize
(with SIGACT), the Presburger Award, the Nerode Award (joint with IPEC) and best papers
awards at several top conferences;
- Active involvement in publications generally within theoretical computer science.
Other activities of EATCS include the sponsorship or the cooperation in the organization of vari-
ous more specialized meetings in theoretical computer science. Among such meetings are: CIAC
(Conference of Algorithms and Complexity), CiE (Conference of Computer Science Models of
Computation in Context), DISC (International Symposium on Distributed Computing), DLT (In-
ternational Conference on Developments in Language Theory), ESA (European Symposium on
Algorithms), ETAPS (The European Joint Conferences on Theory and Practice of Software), LICS
(Logic in Computer Science), MFCS (Mathematical Foundations of Computer Science), WADS
(Algorithms and Data Structures Symposium), WoLLIC (Workshop on Logic, Language, Infor-
mation and Computation), WORDS (International Conference on Words).

Benefits offered by EATCS include:
- Subscription to the “Bulletin of the EATCS;”
- Access to the Springer Reading Room;
- Reduced registration fees at various conferences;
- Reciprocity agreements with other organizations;
- 25% discount when purchasing ICALP proceedings;
- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”
- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”
- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

The Bulletin of the EATCS

281

(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and
now customarily taking place during the second or third week of July. Typical topics discussed
during recent ICALP conferences are: computability, automata theory, formal language theory,
analysis of algorithms, computational complexity, mathematical aspects of programming language
definition, logic and semantics of programming languages, foundations of logic programming,
theorem proving, software specification, computational geometry, data types and data structures,
theory of data bases and knowledge based systems, data security, cryptography, VLSI structures,
parallel and distributed computing, models of concurrency and robotics.

Sites of ICALP meetings:

- Paris, France 1972
- Saarbrücken, Germany 1974
- Edinburgh, UK 1976
- Turku, Finland 1977
- Udine, Italy 1978
- Graz, Austria 1979
- Noordwijkerhout, The Netherlands 1980
- Haifa, Israel 1981
- Aarhus, Denmark 1982
- Barcelona, Spain 1983
- Antwerp, Belgium 1984
- Nafplion, Greece 1985
- Rennes, France 1986
- Karlsruhe, Germany 1987
- Tampere, Finland 1988
- Stresa, Italy 1989
- Warwick, UK 1990
- Madrid, Spain 1991
- Wien, Austria 1992
- Lund, Sweden 1993
- Jerusalem, Israel 1994

- Szeged, Hungary 1995
- Paderborn, Germany 1996
- Bologne, Italy 1997
- Aalborg, Denmark 1998
- Prague, Czech Republic 1999
- Genève, Switzerland 2000
- Heraklion, Greece 2001
- Malaga, Spain 2002
- Eindhoven, The Netherlands 2003
- Turku, Finland 2004
- Lisabon, Portugal 2005
- Venezia, Italy 2006
- Wrocław, Poland 2007
- Reykjavik, Iceland 2008
- Rhodes, Greece 2009
- Bordeaux, France 2010
- Zürich, Switzerland 2011
- Warwick, UK 2012
- Riga, Latvia 2013
- Copenhagen, Denmark 2014
- Kyoto, Japan 2014

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium for rapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D. theses;
- Entertainments and pictures related to computer science.

Contributions to any of the above areas are solicited, in electronic form only according to for-
mats, deadlines and submissions procedures illustrated at http://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email at bulletin@eatcs.org.

BEATCS no 116

282

(3) OTHER PUBLICATIONS

EATCS has played a major role in establishing what today are some of the most prestigious pub-
lication within theoretical computer science.
These include the EATCS Texts and the EATCS Monographs published by Springer-Verlag and
launched during ICALP in 1984. The Springer series include monographs covering all areas of
theoretical computer science, and aimed at the research community and graduate students, as well
as texts intended mostly for the graduate level, where an undergraduate background in computer
science is typically assumed.
Updated information about the series can be obtained from the publisher.
The editors of the EATCS Monographs and Texts are now M. Henzinger (Wien), J. Hromkovic
(Zürich), M. Nielsen (Aarhus), G. Rozenberg (Leiden), A. Salomaa (Turku). Potential authors
should contact one of the editors.
EATCS members can purchase books from the series with 25% discount. Order should be sent to:

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

The journal Theoretical Computer Science, founded in 1975 on the initiative of EATCS, is pub-
lished by Elsevier Science Publishers. Its contents are mathematical and abstract in spirit, but it
derives its motivation from practical and everyday computation. Its aim is to understand the nature
of computation and, as a consequence of this understanding, provide more efficient methodologies.
The Editor-in-Chief of the journal currently are G. Ausiello (Rome) and D. Sannella (Edinburgh).

ADDITIONAL EATCS INFORMATION

For further information please visit http://www.eatcs.org, or contact the President of EATCS:
Prof. Dr. Luca Aceto,
School of Computer Science
Reykjavik University
Menntavegur 1 IS-101 Reykjavik, Iceland
Email: president@eatcs.org

EATCS MEMBERSHIP

DUES

The dues aree 30 for a period of one year (two years for students). A new membership starts upon
registration of the payment. Memberships can always be prolonged for one or more years.
In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS for e 25 per year. We also offer a five-euro discount on the EATCS membership
fee to those who register both to the EATCS and to one of its chapters. Additional e 25 fee is
required for ensuring the air mail delivery of the EATCS Bulletin outside Europe.

HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
site www.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, a subscription form can be downloaded from www.eatcs.org to

The Bulletin of the EATCS

283

be filled and sent together with the annual dues (or a multiple thereof, if membership for multiple
years is required) to the Treasurer of EATCS:

Prof. Dr. Dirk Janssens,
University of Antwerp, Dept. of Math. and Computer Science
Middelheimlaan 1, B-2020 Antwerpen, Belgium
Email: treasurer@eatcs.org, Tel: +32 3 2653904, Fax: +32 3 2653777

The dues can be paid (in order of preference) by VISA or EUROCARD/MASTERCARD credit
card, by cheques, or convertible currency cash. Transfers of larger amounts may be made via the
following bank account. Please, adde 5 per transfer to cover bank charges, and send the necessary
information (reason for the payment, name and address) to the treasurer.

BNP Paribas Fortis Bank, Driekoningenstraat 122, 2600 Berchem - Antwerpen, Belgium
Account number: 220–0596350–30–01130
IBAN code: BE 15 2200 5963 5030, SWIFT code: GEBABE BB 18A

