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ABSTRACT

We investigate a new algorithm for computing regularized solutions of the two-dimen­
sional magnetotelluric inverse problem. The algorithm employs a nonlinear conjugate
gradients (NLCG) scheme to minimize an objective function that penalizes data residu­
als and second spatial derivatives of resistivity. We compare this algorithm theoretically
and numerically to two previous algorithms for constructing such 'minimum-structure'
models: the Gauss-Newton method, which solves a sequence of linearized inverse prob­
lems and has been the standard approach to nonlinear inversion in geophysics, and an
algorithm due to Mackie and Madden, which solves a sequence of linearized inverse
problems incompletely using a (linear) conjugate gradients technique. Numerical ex­
periments involving synthetic and field data indicate that the two algorithms based on
conjugate gradients (NLCG and Mackie-Madden) are more efficient than the Gauss­
Newton algorithm in terms of both computer memory requirements and CPU time
needed to find accurate solutions to problems of realistic size. This owes largely to the
fact that the conjugate gradients-based algorithms avoid two computationally intensive
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tasks that are performed at each step of a Gauss-Newton iteration: calculation of the
full Jacobian matrix of the forward modeling operator, and complete solution of a linear
system on the model space. The numerical tests also show that the Mackie-Madden al­
gorithm reduces the objective function more quickly than our new NLCG algorithm in
the early stages of minimization, but NLCG is more effective in the later computations.
To help understand these results, we describe the Mackie-Madden and new NLCG algo­
rithms in detail and couch each as a special case of a more general conjugate gradients
scheme for nonlinear inversion.

INTRODUCTION

The standard approach to solving nonlinear inverse problems in geophysics has been
iterated, linearized inversion. That is, the forward function (for predicting error-free
data) is approximated with its first-order Taylor expansion about some reference mod­
el; a solution of the resulting linear inverse problem is computed; the solution is then
taken as a new reference model and the process is repeated. Such schemes are general­
ly some form of Newton's method (typically Gauss-Newton or Levenberg-Marquardt).
When run to convergence they minimize an objective function over the space of models
and, in this sense, produce an optimal solution of the nonlinear inverse problem. Most
inversion algorithms for magnetotelluric (MT) data have been iterated, linearized meth­
ods. For I-D earth models these include the algorithms of Wu (1968) and Jupp and
Vozoff (1975), which obtain nonlinear least-squares solutions, and those of Smith and
Booker (1988) and Constable et al. (1987), which find nonlinear least-squares solutions
subject to a smoothness constraint ('regularized' solutions). Jupp and Vozoff extended
their algorithm to the case of 2-D models (Jupp and Vozoff, 1977), while algorithms
for finding regularized solutions of the 2-D MT problem have been presented by Jiracek
et al. (1987), Madden and Mackie (1989), Rodi (1989), deGroot-Hedlin and Constable
(1990), and Smith and Booker (1991). Mackie and Madden (1993) implemented an
iterated, linearized inversion algorithm for 3-D MT data, as did Newman (1995) and
Newman and Alumbaugh (1997) for the related problem of crosswell electromagnetic da­
ta. However, the usefulness of such algorithms in 3-D electromagnetic inverse problems
has been hampered by severe computational difficulties, which we now discuss.

Compared to global optimization methods like grid search, Monte-Carlo search and
genetic algorithms, inversion methods that make use of the Jacobian (first-order deriva­
tive) of the forward function, like the methods cited above, generally require the testing
of many fewer models to obtain an optimal solution of an inverse problem. This fact is of
critical importance in 2-D and 3-D electromagnetic inverse problems where the forward
function entails the numerical solution of Maxwell's equations, and is the reason that
iterated, linearized methods have occupied center stage in electromagnetic inversion de­
spite their greater susceptibility to finding locally rather than globally optimal solutions.
On the other hand, generation of the Jacobian in these same problems multiplies the
computational burden many times over that of evaluating the forward function alone,
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even when efficient reciprocity techniques (Madden, 1972; Rodi, 1976; McGillivray and
Oldenburg, 1990) are exploited. Moreover, iterated, linearized inversion methods, done
to prescription, have the additional computational chore of solving a linear system on
the model space at each iteration step. These two tasks-generating the Jacobian and
linear inversion-dominate the computations in 2-D and 3-D MT inversion, where the
number of data and model parameters are typically in the hundreds or thousands. The
computation of optimal solutions to the 2-D MT inverse problem can require several
hours of CPU time on a modern workstation, while computing optimal solutions of the
3-D problem is impractical on the computers widely available today.

This computational challenge has motivated various algorithmic shortcuts in 2-D
and 3-D MT inversion. One approach has been to approximate the Jacobian based
on electromagnetic fields computed for homogeneous or I-D earth models, which has
been used in 2-D MT inversion by Smith and Booker (1991) in their 'rapid relaxation
inverse' (RRI) , and by Farquharson and Oldenburg (1996) for more general 2-D and
3-D electromagnetic problems. Other workers have sought approximate solutions of the
linearized inverse problem. In this category is the method of Mackie and Madden (1993),
which solves each step of a Gauss-Newton iteration incompletely using a truncated
conjugate gradients technique. In addition to bypassing the complete solution of a large
linear system, the algorithm avoids computation of the full Jacobian matrix in favor of
computing only its action on specific vectors. Although not as fast as RRI, the Mackie­
Madden algorithm does not employ approximations to the Jacobian and requires much
less computer time and memory than traditional iterated, linearized inversion methods
(as we will demonstrate in this paper). Also in this category is the 'subspace method',
applied by Oldenburg et al. (1993) to d.c. resistivity inversion, and by others to various
other geophysical inverse problems. This method reduces the computational burden by
solving each linearized inverse problem on a small set of judiciously calculated 'search
directions' in the model space.

In their use of incomplete solutions of the linearized inverse problem, the subspace
and Mackie-Madden inversion methods depart from the strict schema of iterated, lin­
earized inversion, with an accompanying reduction in the computer resources needed to
solve 2-D and 3-D electromagnetic inverse problems. In this paper, we investigate an
approach to electromagnetic inversion that is a further departure from the geophysical
tradition: nonlinear conjugate gradients (NLCG), or conjugate gradients applied di­
rectly to the minimization of the objective function prescribed for the nonlinear inverse
problem. The use of conjugate gradients for function minimization is a well-established
optimization technique (Fletcher and Reeves, 1959; Polak, 1971) and was suggested
for nonlinear geophysical inverse problems by Tarantola (1987). It has been applied to
varied geophysical problems, including crosswell traveltime tomography (Matarese and
Rodi, 1991; Matarese, 1993), crosswell waveform tomography (Thompson, 1993; Reiter
and Rodi, 1996), and d.c. resistivity (Ellis and Oldenburg, 1994; Shi et al., 1996).

Our investigation compares the numerical performance of three algorithms for 2-D
magnetotelluric inversion: a Gauss-Newton algorithm, the Mackie-Madden algorithm,
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and a new NLCG algorithm. In tests involving synthetic and real data, the algorithms
are applied to the minimization of a common objective function so that algorithm ef­
ficiency and accuracy can be compared directly. Rather than implement a published
NLCG algorithm (e.g. Press et aI., 1992) we designed our NLCG algorithm to avoid
excessive evaluations of the forward problem and to fully exploit the computational
techniques for Jacobian operations used in the Mackie-Madden algorithm. Converse­
ly, we modified the original Mackie-Madden algorithm to include a preconditioner that
we developed for NLCG. Given this, we can state two objectives of our study: to
demonstrate quantitatively the computational advantages of the two algorithms that
use conjugate gradients (Mackie-Madden and NLCG) over a traditional iterated, lin­
earized inversion scheme (Gauss-Newton); and to determine whether the NLCG frame­
work offers improvements over the Mackie-Madden approach as a conjugate-gradients
technique. Toward the latter end and as a prelude to future research on the conjugate­
gradients approach to nonlinear inversion, we describe the Mackie-Madden and our new
NLCG algorithms in common terms and in detail in an attempt to isolate the precise
differences between them.

PROBLEM FORMULATION

Forward Model for 2-D Magnetotellurics

As is customary in 2-D magnetotellurics, we model the solid earth as a conductive half­
space, z 2': 0, underlying a perfectly resistive atmosphere. The electromagnetic source
is modeled as a plane current sheet at some height z = -h. Given that the physical
parameters of the earth are independent of one Cartesian coordinate (x), Maxwell's
equations decouple into transverse electric (TE) and transverse magnetic (TM) polar­
izations. For the purpose of calculating MT data at low frequency, it suffices to solve
(see, for example, Swift, 1971)

[PEx &Ex .
8y2 + 8z2 + 2W/-,0'Ex = 0

8Exl .-- = 2W/-,
8z z=-h

for the TE polarization, and

(3)

(4)

for the TM polarization, where Ex (Hx) is the x component of the electric (magnetic
induction) field, W is angular frequency, /-' is the magnetic permeability (assumed to be
that of free space), 0' is the electrical conductivity, and p is the inverse of conductivity,
or resistivity.
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MT data are electric-to-magnetic-field ratios in the frequency domain, which can
be expressed as complex apparent resistivities. For the TE polarization, the complex
apparent resistivity is defined by

i ((Ex ))2
Papp = WfJ (Hy) (5)

(6)

(Ex) denotes the value of Ex at an observation site, which is usually taken to be Ex at a
point but, more generally, can be a spatial average of the Ex field. (Hy ) is an analogous
functional of the H y field. We note that Maxwell's equations imply

H = _1_oEx •
y iWfJ oz

For the TM polarization we have

i ((Ey ))2
Papp = WfJ (Hx)

and

We point out that the traditional real apparent resistivity is the modulus of Papp-

(7)

(8)

Numerical Modeling

To solve equations (1)-(8) approximately for a broad class of resistivity functions, the
inversion algorithms in this paper employ the numerical forward modeling algorithm
described by Mackie et al. (1988). In this algorithm, the halfspace z 2: 0 is segment­
ed into 2-D rectangular blocks of varying dimensions, each having a constant resis­
tivity. Spatially heterogeneous resistivity models ensue from varying the resistivities
amongst the blocks. The blocks abutting and outside a finite region are semi-infinite.
Maxwell's equations are approximated by finite-difference equations derived using the
transmission-network analog of Madden (1972).

For each polarization and frequency, the finite-difference equations can be expressed
as a complex system of linear equations,

Kv=s. (9)

In the case of the TE polarization, this linear system represents equations (1) and (2)
with the vector v comprising samples of the Ex field on a grid. The complex symmetric
matrix K and right-hand-side vector s are functions of frequency and the dimensions
and resistivities of the model blocks. For a given observation site, the quantity (Ex)
in equation (5) is calculated as a linear combination of the elements of v, representing
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some sort of linear interpolation and/or averaging of the Ex field. Likewise, (Hy ) is
calculated as a (different) linear function of v, in this case representing also numerical
differentiation in accordance with (6). Thus, the complex apparent resistivity for one
site is given by the formula

Papp = ~p (~:~r
where a and b are given vectors. An analogous discussion applies to the TM polarization,
with v being a discretization of the H x field and with different choices of K, s, a and b.

Inversion Method

We can write the inverse problem as

d= F(m) +e

where d is a data vector, m is a model vector, e is an error vector, and F is a forward
modeling function. We take d = d1 d2 ••. dN] T with each di being either the log
amplitude or phase of Papp for a particular polarization (TE or TM), observation site,
and frequency (w). We take m = m 1 m 2 ••• mM]T to be a vector of parameters that
define the resistivity function. Being consistent with the numerical forward modeling
scheme, we let M be the number of model blocks and each m j be the logarithm of
resistivity (logp) for a unique block. Given these definitions of d and m, the function
F is defined implicitly by equations (9) and (10).

We solve the inverse problem in the sense of Tikhonov and Arsenin (1977), taking
a 'regularized solution' to be a model minimizing an objective function, W, defined by

w(m) = (d - F(m)) TV-1(d - F(m)) + Am T LTLm (11)

for a given A, V and L. The 'regularization parameter" A, is a positive number. The
positive-definite matrix V plays the role of the variance of the error vector e. The second
term of Wdefines a 'stabilizing functional' on the model space. In this study we choose

.matrix L to be a simple, second-difference operator such that, when the grid of model
blocks is uniform, Lm approximates the Laplacian of log p.

The remainder of this paper deals with numerical algorithms for minimizing w.

MINIMIZATION ALGORITHMS

We consider three numerical algorithms for minimizing the objective function W with
respect to m: the Gauss-Newton method, the method of Mackie and Madden (1993),
and nonlinear conjugate gradients. For the remainder of this paper, we will label
our particular implementation of these algorithms as GN, MM and NLCG, respec­
tively. Each algorithm generates a sequence of models mo, ml, ... , with the hope that
w(m£) --+ miUm w(m) as £ --+ 00.
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To describe the three algorithms in detail, we introduce the following notations. The
gradient and Hessian of the objective function are the M-dimensional vector 9 and Mx M
symmetric matrix H defined by

gi(m) = aj\I!(m)

Hjk(m) = ajak\I!(m), j, k = 1, ... ,M

where aj signifies partial differentiation with respect to the jth argument of a function
(reading \I!(m) as \I!(ml, m2 , ••• , mM)). Let A denote the Jacobian matrix of the forward
function F:

Aij(m) =ajFi(m), j = 1, ... ,M.

Given (11), we have

g(m) = - 2A(m) TV- l (d - F(m)) + 2:AL TLm
N

H(m) = 2A(m) TV- l A(m) + 2>.£ T L - 2L qiBi(m)
i=l

(12)

(13)

(14)

where Bi is the Hessian of Fi and q = V-ltd - F(m)).
We also define an approximate objective function and its gradient and Hessian based

on linearization of F. For linearization about a model mref, define

F(m; mref) = F(mref) + A(mref)(m - mTef)

W(m;mref) = (d - F(m; mTef)) TV-l(d - F(m;mTef))

+:AmTLTLm.

It is easy to show that the gradient and Hessian of Ware given by the expressions

g(m; mref) = - 2A(mTef) TV- l (d - F(m; mTef))

+2:ALTLm

H(mref) = 2A(mref) TV- l A(mref) + 2:AL T L.

W is quadratic in m (its first argument), 9 is linear in m, and H is independent of m.
In fact,

W(m: mref) = \I!(mref) + g(mref)T(m - mref)
1 T-

+ 2(m - mref) H(mref)(m - mref)

g(m;mref) = g(mTef) + H(mref)(m - mTef)·

(15)

(16)

Clearly, F(mref;mTef) = F(mref), W(mTef;mTef) = \I!(mTef) and g(mTef;mTef) =
g(mTef), but H(mTef) is only an approximation to H(mTef) obtained by dropping the
last term in (13).
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Gauss-Newton Algorithm (GN)

One can describe the Gauss-Newton iteration as recursive minimization of \Ii, i.e. the
model sequence satisfies

ma = given

iii(m£+l;me) = miniii(m;me), £=0,1,2, ....
m

(17)

A consequence of (17) is that the gradient vector, g(m£+l; me), is zero. In light of (16),
me+! satisfies the linear vector equation

where we make the abbreviations

ge;: g(me)

iie ;: ii(me).

Presuming iie to be nonsingular, this· necessary condition is also sufficient and we can
write the Gauss-Newton iteration as

Levenberg (1944) and Marquardt (1963) proposed a modification of the Gauss­
Newton method in which the model increment at each step is damped. The rationale
for damping is to prevent unproductive movements through the solution space caused
by the nonquadratic behavior of \Ii or poor conditioning of ii. In algorithm ON, we
employ a simple version of Levenberg-Marquardt damping and replace equation (18)
with

(19)

Here, I is the identity matrix and €e is a positive damping parameter allowed to vary
with iteration step. Since the objective function we are minimizing includes its own
damping in the form of the stabilizing (last) term in (11), and since this term is a
quadratic function of the m, a large amount of Levenberg-Marquardt damping is not
needed in our problem. Algorithm ON chooses €e to be quite small after the first few
iteration steps, and is therefore not a significant departure from the Gauss-Newton
method.

Our implementation of the Gauss-Newton algorithm solves equation (19) using a
linear, symmetric system solver from the LINPACK software library (Dongarra et al.,
1979). First, the damped Hessian matrix, iie+ €eI, is factored using Gaussian elimi­
nation with symmetric pivoting. The factored system is then solved with -ge as the
right-hand side vector. The Jacobian matrix, A(me), is needed to compute ge and iie
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in accordance with equations (12) and (14). GN generates the Jacobian using the reci­
procity method of Rodi (1976), which translates the task to that of solving a set of
"pseudo-forward" problems having the same structure as equation (9) (see appendix).
The memory requirements of GN are dominated by storage of the Jacobian (NM real
numbers) and the Hessian (M2 real numbers). We note that the memory is needed for
forward modeling and evaluating W scales linearly with N and M.

Convergence of the Gauss-Newton method, or its Levenberg-Marquardt modifica­
tion, implies that the sequence ge converges to zero and thus that the solution is a
stationary point of W. Whether the stationary point corresponds to a minimum or
otherwise depends on how strongly non-quadratic W is. When the method does find a
minimum of W, there is no assurance that it is a global minimum.

Mackie-Madden Algorithm (MM)

The second minimization algorithm we study is the algorithm first introduced by Mad­
den and Mackie (1989), and fully implemented and more completely described by Mackie
and Madden (1993). As adapted to 3-D d.c. resistivity inversion, the algorithm is also
described by Zhang et al. (1995).

Mackie and Madden (1993) presented their algorithm as iterated, linearized inver­
sion. The solution of the linear inverse problem at each iteration step was formulated in
terms of a maximum-likelihood criterion. It is informative and well serves our purpose
to recast the Mackie-Madden algorithm as a modification of the Gauss-Newton method
which, like Gauss-Newton, performs a minimization of the non-quadratic objective func­
tion W.

That is, algorithm MM is a Gauss-Newton iteration in which the linear system, (18),
is solved incompletely by a conjugate gradients (CG) technique. The incompleteness
results from halting the conjugate gradients iteration prematurely after a prescribed
number of steps, K. Thus, for each e, the updated model, ml+l, is generated as a
sequence

me,o = me

me,k+l = me,k + ae,kPe,k> k = 0,1, ... , K - 1

ml+l = me,K'

For each k, the vector Pe k is a 'search direction' in model space and the scalar ae k is a, ,
'step size'. Let us make the additional abbreviation

In accordance with the CG algorithm (Hestenes and Stiefel, 1952), the step size is given
by the formula

al,k =
- Tge,k Pl,k

Pe k T Hepe k', ,
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which, we point out, solves the univariate minimization problem,

¥(ml k + al kPl k; ml) = min ¥(ml k + aPl k; ml)'
I " Q; , ,

The search directions are iterated as

Pl,O = - Cl91

Pl,k = - Cl91,k + (31,kPl,k-l, k = 1,2, ... , K - 1 (21)

where the M x M positive-definite matrix Cl is known as a 'preconditioner', and where
scalars (31,k are calculated as

(3
_ 91,k T Cl91,k

lk - - TC-, 91,k-l 191,k-l

The first term of (21) is a 'steepest descent' direction in the sense that P = -Cl91,k max­

imizes PT 91,ko the directional derivative of ¥(m; mil at m = ml,k, under the constraint
P T Cl-1p = 1. The second term modifies the search direction so that it is 'conjugate' to
previous search directions, meaning

Pl,k T HlPl,k' = 0, k' < k. (22)

The final ingredient of the conjugate gradients algorithm is iteration of the gradient
vectors:

91,0 = 91

91,k+l = 91,k + al,kHlPl,ko k = 0,1, ... , K - 2,

which follows from (16).
The main computations entailed in algorithm MM are involved in the evaluation

of the forward function, F(ml), for each e (needed to compute 1Ji(ml) and 91), and
operation with the Jacobian matrix and its transpose for each k and e. Regarding the
latter, let

Ai"" A(ml)

and define

!l,k = AlPl,k, k = 0,1, ... , K - 1.

Then the denominator of (20) can be written

Pl,k T HlPl,k = 2ft,k TV-1!l,k + 2>'Pl,k T L T Lpl,k

14-10
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and the iteration for gradient vectors becomes

ge,0 = - 2Ae T (d - F(me)) + 2AL T Lme

ge,kH = ge,k + 2ae,kAe TV- 1fe,k
+ 2ae,kAL T Lpe,k> k = 0, I, ... , K - 2.

(24)

(25)

From equations (23)-(25) we see that Ae and AeT each operate on K vectors, or one
each per CG step. Mackie and Madden (1993) showed that operations with the Jacobian
and its transpose can be accomplished without computing the Jacobian itself. Instead,
the vector resulting from either of these operations can be found as the solution of a
single pseudo-forward problem requiring the same amount of computation as the actual
forward problem, F. (We define one forward problem to include all frequencies and
polarizations involved in the data vector.) The algorithms for operating with Ae and
AeT are detailed in the appendix. The main memory used by MM comprises several
vectors of length N (e.g. fe,k) and M (e.g. pe,k> ge,k and Ge9i.,k)' Our preconditioner
(Ge) requires no storage (see the section "Preconditioning" below). Thus, the memory
needed by MM scales linearly with the number of data and model parameters, compared
to the quadratic scaling for GN.

We apply algorithm MM using relatively few CG steps per Gauss-Newton step.
The main purpose in doing so is to keep the computational effort needed for Jacobian
operations under that which would be needed to generate the full Jacobian matrix. The
Jacobian operations performed in K CG steps of MM require computations equivalent
to solving 2K forward problems, as indicated above. The computational effort needed to
generate the full Jacobian matrix is harder to characterize in general but, in the usual
situation where the station set is common for all frequencies and polarizations, amounts
to one forward problem per station. Therefore, MM will do less computation (related to
the Jacobian) per Gauss-Newton step than GN when K is less than half the number of
stations. Additonally, algorithm MM avoids the factorization of ii. Truncating the CG
iteration also effects a kind of damping of the Gauss-Newton updates, achieving similar
goals as Levenberg-Marquardt damping. It is for this reason that algorithm MM solves
the undamped system, (18), rather than (19).

Nonlinear Conjugate Gradients (NLCG)

In algorithm MM the method of conjugate gradients was applied inside a Gauss-Newton­
style iteration to incompletely solve a linear system or, equivalently, to incompletely
minimize a quadratic approximation to the objective function. Nonlinear conjugate
gradients (see, for example, Luenberger, 1984) directly solves minimization problem­
s that are not quadratic, abandoning the framework of iterated, linearized inversion.
Algorithm NLCG employs the Polak-Rlbiere variant of nonlinear conjugate gradients
(Polak, 1971) to minimize the objective function i]i of equation (11).

The model sequence for nonlinear CG is determined by a sequence of univariate
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minimizations, or 'line searches', along computed search directions:

mO = given

\Ii(me + aepe) = min \Ii (me + ape)
"

ml+l = me + aePe, e= 0, 1, 2, ....

The search directions are iterated similarly to linear CG:

(26)

(27)

Po = - GOgO

Pe = - Gege+ (3ePe-l, e= 1,2, ...

where, in the Polak-Ribiere technique,

(3e = ge TGe(ge - ge-d.
ge-l TGe_lge_l

The quantity -Gege is again a steepest descent direction in the sense of maximizing the
directional derivative of \Ii evaluated at me. Unlike linear CG, the search directions are
not necessarily conjugate with respect to some fixed matrix, as in (22), but they do
satisfy the weaker condition

(28)

The minimization problem, (26), is not quadratic and requires some iterative tech­
nique to solve. Since it involves only a single unknown, it is tempting to attack the
problem as one of global optimization, Le. finding a global minimum of \Ii with respect
to a. Doing so would gain one advantage over the Gauss-Newton method, which makes
no attempt to distinguish local from global minima. However, global optimization leads
potentially to many forward problem calculations per NLCG step. Given the computa­
tional intensity of the MT forward problem, algorithm NLCG does not attempt global
line minimization but approaches (26) with computational parsimony as a primary con­
sideration.

Our line search algorithm is a univariate version of the Gauss-Newton method, with
certain modifications. To describe it efficiently we denote ~he univariate function to be
minimized as <l!e and its Gauss-Newton approximation as <l!e:

<l!e(a) = \Ii (me + ape)

iDe (a; mre!) = W(me + ape; mre!).

Our line search generates a sequence of models

me,k = me + ae,kPe, k = 0, 1, 2, ... ,

where

ae,D = °
iDe(ae k+l; mek) = miniD(a; mlk), k = 0, 1,2, ....

l , Q '

14-12
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Since ;ji (m; me,k) is quadratic in m, ;i;e(a; me,k) is quadratic in a and it is easy to show
that the minimization in (29) is solved by

(30)

Here, we define

ge,k == 9(me,k)

He,k == H(me,k).

Our modifications of this Gauss-Newton scheme are:

1. We keep track of the best (smallest \Ii) model encountered in the line search. Let
us denote this as me,best == me + ae,bestPe·

2. If <lie increases during the iteration (<lie(ae,k+l) > <lie(ae,k)) , we reject ae,k+l and
reset it to

1
ae,k+l := 2"(ae,k+l + ae,best). (31)

3. On the second or later steps of a line search, if the current and best models bracket
a minimum, in the sense that (prime denotes derivative)

<lii(ae,best)<lii(ae,k) < 0

then, instead of (30), ae,k+l is calculated so as to yield the local minimum of a
cubic approximation to <lie(a). The cubic approximation matches <lie and <lii at
a = aek and a = aebest., ,

The line search is deemed to converge when the estimated value of the objective
function for ae,k+l, predicted by the quadratic or cubic approximation as appropriate,
agrees with <lie(ae,k+d within some tolerance. In the usual case of a Gauss-Newton
update, the convergence condition is

l<lie(ae,k+l) - ;i;e(ae,k+l;me,k) I :s r<lie(ae,k+d

where r «: 1 is a pre-set tolerance. The line search is deemed to fail if it does not
converge within a prescribed maximum number of steps, or if <lie(ae,k+l) > 1.5<lie(ae,best)
occurs. In any case, the final result of the eth line search is taken as the best model
found:

m.e+l = m£,best·

If the line search converges, the new search direction, PHI, is computed with (27). If
it fails, PHI is taken as a steepest descent direction (first term of (27)), breaking the
conjugacy with previous search directions.
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The main computations of algorithm NLCG are similar to those of MM. To evaluate
ge,k and peTHe,kpe in (30) entails the computation of vectors Ae,k TV-I(d-F(me,k)) and
Ae,kpe. Computing ae,k+! by cubic interpolation, however, does not require the second
derivative of i!>e, in which case Ae,kpe is not done. The same pseudo-forward algorithms
as in MM are used in NLCG to perform Jacobian operations (see appendix). NLCG,
unlike MM, evaluates the forward function for each model update. Therefore, each
line search step in NLCG solves the equivalent of two or three forward problems. The
memory requirements of NLCG are also similar to MM, scaling linearly with Nand M.

We close our description of NLCG by pointing out a potential pitfall and related
computational benefit of the line search stopping condition. Our condition compares
'II at the newest model, me,k+ I, to the quadratic or cubic approximation extnnolated
from the previous model, me,k' The pitfall is that agreement between these Goes not
guarantee that 'II is near a minimum with respect to a, so the line search might stop
prematurely. The benefit ensues when F is approximately linear between me,k and the
minimizing model. In this case, the stopping condition will be met and me,k+! will be
an accurate result of the line search, even though 'II and its gradient may have changed
greatly from their values at me,k' The search stops without additional, unnecessary
computations such as an additional update (me,k+2) or second derivative information at
the new model (requiring Ae,k+IPe). Consequently, when the nonlinear CG iteration has
progressed to the point where F behaves linearly in all directions, each line minimization
will require only one step (me+! = me,I), and the remaining computations will be
essentially the same as the linear CG computations in MM, with the exception that the
forward function F is evaluated each time the model is updated.

Preconditioning

We recall that algorithms MM and NLCG each provide for the use of a preconditioner,
Ce, in their respective implementations of conjugate gradients. The preconditioner can
have a big impact on efficiency in conjugate gradients. Two competing considerations in
its choice are the computational cost of applying the preconditioner, and its effectiveness
in "steering" the gradient vector into a productive search direction.

This study compares two versions of each of algorithms MM and NLCG: one without
preconditioning (Oe = 1) and one using

Oe= (l'eI+ALTLfl,

where l'e is a specified scalar. In the latter case, we apply the preconditioner to a vector
9 by solving the linear system for h,

We solve this system using a (linear) conjugate gradients technique.
The rationale for (32) is to have an operator that can be applied efficiently and

that in some sense acts like the inverse of He, the approximate Hessian matrix. The
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efficiency of applying Ge stems from the simplicity and sparseness of the above linear
system for h. The amount of computation needed to solve the system is less than one
forward function evaluation and, thus, adds little overhead to either algorithm MM or
NLGG. The approximation to the inverse Hessian arises from the second term of Gel,
but we also attempt to choose "Ie so that the first term is of comparable size to the
matrix Ae TV- l Ae. In our later examples, we took "Ie to be a constant (independent of
e) based on the Jacobian matrix of a homogeneous medium.

Theoretical Comparison of MM and NLCG

In the three main applications of NLGG presented below ("Numerical Experiments"),
updating of the step-size, ae, by cubic interpolation occurred nine times, updating by bi­
section (formula (31)) occurred zero times, and Gauss-Newton updating (formula (30))
occurred 211 times (for a total of 220 line search steps among the three examples). More­
over, none of the line searches failed to converge within the tolerance given. The line
search algorithm in NLGG is thus primarily a univariate Gauss-Newton algorithm, and
it is informative to compare a simplified NLGG, in which the line search enhancements
(cubic interpolation and bisection) are ignored, to MM.

Algorithms MM and NLGG both generate a doubly indexed sequence of models,
me,k' In MM, the slower index (e) indexes a Gauss-Newton iteration, while the faster
index (k) a conjugate gradients loop. In our simplified NLGG, the opposite is the
case, with e a conjugate gradients counter and k a Gauss-Newton counter. However,
the algorithms perform similar calculations at each step of their respective inner loops.
The difference between the algorithms can be identified with the frequency with which
the following events occur: calculating the forward function (F); changing the search
direction (P) used in conjugate gradients; and resetting the search direction to be a
steepest descent direction.

To demonstrate this, we sketch a simple algorithm having a single loop that subsumes
MM and NLGG with the restricted line search. The input is a starting model, ma:

Algorithm GGI (ma)
m:= rna;
for e= 1,2, ...

if new-Ief then
mre/:= m;
e := d - F(mref);

else
e := e - af;

end
g:= -2A(mref)TV- I e + 2>'L TLm;
\Ii := eTV-Ie + >.m TL TLm;
if new_dir then

h := G(mref)g;
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if steep then
f3 .- O·.- ,

else
f3 = h T(g - glast)/'rlast;

end
p:= -h+f3p;

glast := g;
ilast := hTg;

end
j := A(mref)P;
a:= _pTg/(JTV-Ij + >.pTLTLp);

m:= m+ap;
next e

The reader can verify that this algorithm corresponds to our mathematical descriptions
of MM and NLCO. To help, we point out that the formula for a above corresponds to
that for ag,k in (20) (used in MM) but with that for ag,k+l - ag,k in (30) (used in the
NLCO line search). Further, cor replaces the iteration of gradient vectors in (25) with
iteration of an error vector, e.

Algorithm cor has three flags: new-.ref, new_dir and steep. The flag new-.ref is set
to 1 (true) if the current model is to be used as a reference model for linearization. The
flag new_dir is 1 if the search direction is to be changed. Flag steep is 1 if the newly
computed search direction is to be reset to a steepest-descent direction, thus breaking
the conjugacy condition (equation (28)). All three flags are initialized to 1. We can
characterize algorithms MM and NLCO by how these flags are changed thereafter:

Event
new-.ref = 1
new_dir = 1

steep = 1

MM
Every Kth update
Every update

Every Kth update

NLCO
Every update
When line search
converges or fails
When line search fails

Algorithm cor above does not show tests for line search convergence or failure, but
these could be the same as in NLCO.

The main computations in cor are taken up in the evaluation of the three quan­
tities F(mref), A(mref)P and A(mref) TV-Ie. Each of these quantities requires the
same computational effort (see appendix). The latter two quantities (operations with
A and A T) are done on each pass through the loop unconditionally, while the forward
function is done only when new-.ref is 1. Therefore, each model update in cor requires
computations equal to 2 or 3 forward function evaluations, depending on how new-.ref
is determined.
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NUMERlCAL EXPERIMENTS

This section presents results of testing the three MT inversion algorithms described
above on synthetic and field data. In each test, algorithms ON, MM and NLCO were
applied to the minimization of a common objective function W (equation (11)) with a
given data vector d, variance matrix V, regularization parameter A, and regularization
operator L. The data vector and error variance matrix are described below with each
example. The regularization operator for each example was the second-order finite­
difference operator described earlier. To choose the regularization parameter, we ran
preliminary inversions with a few values of A, and then subjectively chose one that gave
reasonable data residuals and model smoothness. We point out that none of the three
inversion algorithms being tested determines A as an output. Various other parameters
specific to the inversion algorithms were selected as follows:

• In ON, the Levenberg-Marquardt damping parameter was set to 0.001 times the
current value of the objective function: fe = O.OOlw(me).

• In NLCO, the tolerance for deciding convergence of the line minimization (1") was
set to 3 x 10-3 .

• In MM and NLCO, the preconditioner was either that defined by equation (32)
or, in one experiment, the identity (no preconditioning).

• In MM, the number of conjugate gradient steps per Gauss-Newton step (K) was
set to 3.

All results were computed on a 400-MHz Pentium II PC running the Linux operating
system. The CPU times stated below are intended to reflect only the relative perfor­
mance amongst the algorithms. We emphasize that the intent of these tests was to
compare the speed and accuracy of ON, MM and NLCO as minimization algorithms,
not the quality of the inversion models in a geophysical sense.

Examples With Synthetic Data

We generated synthetic data by applying a 2-D MT forward modeling algorithm to
specified models of the earth's resistivity and perturbing the results with random noise.
The forward modeling algorithm we used for this purpose was intentionally different
from that used in our inversion algorithms. Synthetic data were calculated using the
finite-element algorithm of Wannamaker et al. (1986), whereas our inversion algorithms
employ the transmission-network algorithm of Mackie et al. (1988). Each synthetic data
set comprises complex apparent resistivities at multiple station locations, frequencies
and polarizations. Noise was included by adding an error to the complex logarithm of
each apparent resistivity: log Papp + er + iei, where er and ei are uncorrelated samples
from a Gaussian distribution having zero mean and 0.05 standard deviation (5% noise).
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The noise was uncorrelated between frequencies, stations and polarizations. For com­
parison, the accuracy of our forward modeling algorithm is approximately 1-3% for the
range of parameters (grid dimensions, frequencies and resistivities) involved in the test
problems below (Madden and Mackie, 1989).

Model 1. Our first tests employ a simple resistivity model consisting of a 10 ohm-m
rectangular body embedded in a 100 ohm-m background. The anomalous body has
dimensions of lOx 10 km and its top is 2 km below the earth's surface. The tests use
synthetic data for the TM and TE polarizations at seven sites and five frequencies,
yielding a total of 140 real-valued data. The frequencies range from 0.01 to 100 Hz
and are evenly spaced on a logarithmic scale. The model parameterization for inversion
divides the earth into a grid of blocks numbering 29 in the horizontal (y) direction and
27 in the vertical (z) direction, implying a total of 783 model parameters. The variance
matrix (V) was set to 0.0025 times the identity matrix, and the regularization parameter
(A) was chosen as 30. The starting model for each inversion was a uniform halfspace
with p = 30 ohm-m.

We applied five inversion algorithms to the synthetic data from Modell: GN, MM
with and without preconditioning, and NLCG with and without preconditioning. Figure
1 shows the performance of each algorithm in terms of the value of the objective function
(w) it achieves as a function of CPU time expended. CPU time used to compute the
objective function for the starting model is ignored, so the first symbol plotted for each
algorithm is at zero CPU time. Following this, a symbol is plotted for each iteration
step of an algorithm; a Gauss-Newton step for GN and MM, a conjugate gradients step
for NLCG. It is immediately evident from Figure 1 that, in both MM and NLCG, the
preconditioner enhances performance significantly, especially in the case of MM. With
preconditioning, MM and NLCG effectively converge to a final result in less than one
minute of CPU time, while without preconditioning, they are far from convergence after
a minute. We also infer from the spacing between symbols that preconditioning does
not add significantly to the amount of computation in either algorithm. Henceforth, we
will consider MM and NLCG only with preconditioning.

Next, we compare algorithms MM, NLCG and GN. We see from Figure 1 that
GN, like MM and NLCG, effectively converges in less than one minute of CPU time.
However, the rates of convergence differ amongst the algorithms. MM and NLCG reduce
the objective function in the early stages of minimization at a noticeably faster rate
than GN. This is quantified in Table 1, which gives the amount of CPU time expended
by each algorithm to achieve various values of the objective function, determined by
interpolating between iteration steps. Values of W are referenced to the smallest value
achieved by any of the algorithms (in this case GNj, which is denoted Wmin in the
table. It is clear that MM and NLCG achieve each level of the objective function,
down to 1.05 Wmin, much faster than GN, with MM being slightly faster than NLCG.
In the later stages of minimization (w < 1.05 Wmin) NLCG becomes the most efficient,
reaching within 1% of the minimum in about 20% less CPU time than GN and 40%
less than MM.
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Table 1: CPU Times vs. Objective Function: First Synthetic Data Set

WjWmin (Wmin = 443.82)
2.0 1.5 1.2 1.1 1.05 1.02 1.01

ON 23 28 33 36 41 45 46
MM 9 12 14 21 31 48 61
NLCO 11 13 18 23 27 32 36

Figure 2 displays one model from the model sequence generated by each of the three
algorithms, i.e. the model yielding the objective function value closest to 1.01Wm in.
The images are truncated spatially to display the best resolved parameters; deeper
blocks and those laterally away from the station array are not shown. The models
from the different algorithms are clearly very similar. Each model differs (block by
block over the portion shown) from the "best" model (that yielding W= Wmin) by less
than a factor of 1.3 in resistivity, or difference of 0.1 in 10glO p. Models later in each
inversion sequence are even closer to each other and to the best model. This confirms
numerically the premise of our formulation that it is the minimization criterion, and
not the minimization algorithm, that determines the solution of the inverse problem.

We note that the number of steps until convergence and the CPU time used per step
differ markedly amongst the algorithms (Figure 1). GN requires the fewest number of
steps and takes the longest for each step, while NLCO requires the most steps and is
fastest per step. In MM and NLCO, the time per iteration step reflects largely the
number of forward problems (and pseudo-forward problems) invoked. Given our input
parameters, algorithm MM solves 7 (i.e. 1 + 2K) forward problems per Gauss-Newton
step (6 devoted to operations with the Jacobian matrix). NLCO solves 3 forward
problems per line search step (2 for Jacobian operations). Since the stopping criterion
for the line search was rather liberal (7 = 0.003), all but the first three line minimizations
converged in one step. (The first three each required two steps.) GN solves 8 forward
problems per Gauss-Newton step (7 to compute the Jacobian matrix), which is only one
greater than MM. However, GN spends significant CPU time creating and factoring the
Hessian matrix, which explains why its CPU time per Gauss-Newton step is so much
larger than that of MM.

Also of interest in Figure 1 is the observation that MM had a larger initial reduction
in the objective function than ON. This difference must be due to the difference between
using Levenberg-Marquardt damping and truncated iteration for modifying the Gauss­
Newton model update. Since we did not attempt to optimize the choice of €£ in ON or
K in MM, we note this difference without drawing a general conclusion about the merits
of the two damping techniques.

Model 2. The next experiment with synthetic data uses a more complicated model
and larger data set. The model represents a block-faulted structure with a resistive
unit exposed at the surface of the up-thrown block. The down-thrown block has the

14-19



Rodi and Mackie

Table 2: CPU Times vs. Objective Function: Second Synthetic Data Set

1J! fiJ!min (1J!min = 1890.7)
2.0 1.5 1.2 1.1 1.05 1.02 1.01

GN 125 139 162 180 222 353 531
MM 47 67 114 201 404
NLCG 51 61 82 109 150 229 296

resistive unit being overlaid by a more conductive surface layer. The data set comprises
complex TM and TE apparent resistivities for twelve sites and ten frequencies between
0.0032 and 100 Hz, giving a total of 480 data. The inversion model has 660 parameters
corresponding to a 33 x 20 grid of blocks. The initial model for each algorithm was
a homogeneous halfspace of 10 ohm-m. The variance matrix was the same as in the
previous example, and the regularization parameter was set to 20.

The performance of the three inversion algorithms is presented in Figure 3 and
Table 2. The algorithms differ in a similar manner as in the previous example. In
the beginning, the conjugate gradients-based algorithms (MM and NLCG) reduce the
objective function much faster than the Gauss-Newton algorithm, with MM noticeably
faster than NLCG. In the later stages of minimization, MM exhibits a slow convergence
rate and is overtaken first by NLCG and then by GN in reducing the objective function.
MM was halted after about 1000 seconds, at which point 1J! was 2.6% larger than 1J!min
(which again was achieved by GN); hence, the dashes in the last two columns of Table 2.
We note that only six of the iterative line searches performed by NLCG took more than
a single step, five taking two steps and one taking three.

Inversion models resulting from the second data set are shown in Figure 4. In the
case of GN and MM the models are for 1J! "" 1.011J!min while for MM it is the last model
generated (1J! = 1.0261J!min). As in the previous example, there is great similarity among
the models, although small differences can be seen in the conductive overburden (x < 0,
z "" 5 km). In the distance and depth range shown, the maximum departure of the GN
and NLCG models from the best model computed is a factor of 2 in resistivity, whereas
for MM it is a factor of 5. For both GN and NLCG, the departure drops to about 1.5
when 1J! reaches 1.005 1J!min.

Example With Field Data

Lastly, we demonstrate the various inversion algorithms on real MT data collected by
P. Wannamaker in the Basin and Range (Wannamaker et al., 1997). The data set
comprises TM complex apparent resistivities at 58 sites and 17 frequencies per site,
for a total of 1972 real-valued data. The inversion model was parameterized with a
118 x 25 grid of blocks, yielding 2950 model parameters. Each algorithm was applied
with a homogeneous initial model with resistivity 100 ohm-m. The diagonal terms of
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1751
827

1232
712

1.5

6216
111
224

2.0

5143
65

158

CPU Times vs. Objective Function: Basin and Range Data Set

iIi jiIimin (iIimin = 9408.9)
1.2 1.1 1.05 1.02 1.01

8245 11343 21608
288 501 731
342 425 536

ON
MM
NLCO

Table 3:

the variance matrix (V) were set equal to the squares of the reported standard errors
and the off-diagonal terms were set to zero. The regularization parameter was chosen
as 8. The results are presented in Figures 5-7 and Table 3.

Looking at Figure 5, it is clear that NLCO and MM perform vastly better than
ON on this real data set. NLCO achieved the smallest iIi among the algorithms in
roughly the same amount of time needed for one step of ON. ON took over three CPU
hours to reach within 10% of this value (Table 3), and had not reached within 2% of
iIimin when it was halted after about seven hours. These results demonstrate the poor
scalability of algorithm ON with problem siz\l. In this problem ON solves 59 forward
problems per Gauss-Newton step (compared to 7 for MM) and must factor a 2950 x 2950
matrix (the damped Hessian). The computer memory requirements are also extensive
as the Jacobian matrix contains 5.8 million (real) elements and the Hessian 8.7 million
elements. MM and NLCG, on the other hand, require only several vectors of length
2950.

Figure 6 replots the MM and NLCG results on an expanded time scale so that the
performance of these conjugate gradients-based algorithms can be compared. We see
the same pattern as in the synthetic data examples, only this time MM performs even
more favorably than NLCO in the early stages of minimization. NLCO shows faster
convergence at the later stages, overtaking MM when iIi is between 1.2 and 1.1 of the
minimum (Table 3). All but seven of the line searches in NLCG converged in a single
step, and only the first took as many as three steps.

The MM and NLCO inversion models in Figure 7 yield iIi = 1.01 iIimin while the
ON model yields W = 1.044 iIimin . We notice some significant differences between the
ON model and the others in the deepest layer shown, considering that the color scale
covers almost a factor of 10,000 in resistivity. Otherwise the models are very similar.
The maximum discrepancy from the model yielding iIi = iIimin is about a factor of 4 for
the ON model and a factor of 2 for the others.

DISCUSSION AND CONCLUSIONS

We have compared three minimization algorithms for computing regularized solutions of
the 2-D magnetotelluric inverse problem, both theoretically and with numerical experi­
ments involving synthetic and real data. We conclude that the conjugate gradients-based
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algorithms, MM and NLCG, are superior to a conventional Gauss-Newton algorithm
(GN) with regard to the computational resources needed to compute accurate solutions
to problems of realistic size. The explanation is that the Gauss-Newton method entails
the generation of a fun Jacobian matrix and the complete solution of a linearized inverse
problem at each step of an iteration. MM and NLCG replace these computations with
ones that scale much more favorably with problem size in both CPU and memory us­
age. Moreover, we enhanced performance by employing a good preconditioner in both
CG-based algorithms and a very simple line minimization scheme in NLCG.

Between the Mackie-Madden algorithm and nonlinear conjugate gradients, our nu­
merical tests do not indicate that either algorithm is clearly superior to the other. In
an three tests, and especially the largest one with real data, MM reduced the objective
function at a faster rate (vs. CPU time) than NLCG in the early stages of minimization,
whereas NLCG performed more efficiently in the later computations. The early model,
updates account for most of the reduction of the objective function, suggesting MM is
preferable, but in our examples we found that some model parameters, wen sensed by
the data, change significantly in the last stages of minimization, a fact favoring NLCG.
In the real data experiment, these changes amounted to as much as a factor of 30 in
resistivity from the point where NLCG overtook MM in the CPU time race (the objec­
tive function was about 1.14 times the minimum at this crossover point.) In the larger
synthetic data test, MM took longer than both NLCG and GN to reach within a factor
of 10 of the solution model.

We attribute the slower convergence rate of MM to the fact that it interrupts the
conjugacy relation among search directions periodically, which is unnecessary near con­
vergence when the forward function is presumably well-approximated as linear. On
the other hand, NLCG is probably wasteful in the same situation by computing the
nonlinear forward function after every model update. The net effect, however, is faster
convergence for NLCG. It is less obvious why MM is better than NLCG in the early
computations. One possibility is that the second and third steps of the line search in
NLCG, when they occurred, did not reduce the objective function sufficiently to war­
rant doubling or tripling the CPU time of the search. Perhaps more would have been
gained by changing search direction in every model update, as in MM. One motivation
for doing accurate line minimizations in the NLCG method is to enable the conjuga­
cy of search directions, but conjugacy amongst the earliest search directions is not as
important as for the later ones. For this same reason, interrupting conjugacy probably
does not hinder MM significantly in the early stages. Lastly, it might be possible for
NLCG to skip some nonlinear forward calculations even for the earlier model updates.

We recommend two topics for continued research on these CG-based algorithms
for electromagnetic inversion. For both MM or NLCG, we showed that performance is
enhanced significantly when a preconditioner is used. In developing these algorithms for
this study, we did not put great effort into finding an optimal preconditioner. Our first
recommendation is additional work on the development of an effective preconditioner
for conjugate gradients-based inversion. Second, since we have seen advantages to both
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MM and NLCG, we recommend research on hybrid algorithms that combine elements
of each. In our theoretical comparison of the algorithms, we pointed out their similarity
in structure and sketched a more general algorithm (CGI) that is a template for both.
In light of the discussion above, avenues for an improved CGI are more sophisticated
tests for when to compute the forward function, when to change search directions, and
when to revert to a steepest-descent search direction.

We close by remarking that the algorithms of the type presented and tested here,
while not optimal, are a clear and needed improvement over the iterated, linearized
inversion algorithms in standard use. With some refinement at least, they will allow MT
practitioners to use larger model grids and data sets (more frequencies and stations) in
their studies, which in the past have often been reduced to accommodate the limitations
of the computer. Further, it is quite obvious to us that the standard methods, like Gauss­
Newton, are not practical for realistic 3-D electromagnetic problems and, even allowing
for improvements in computing hardware, will not be for some time. Our results with
2-D MT suggest that conjugate gradients algorithms would be a much more feasible
approach to 3-D electromagnetic inversion.
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APPENDIX

JACOBIAN COMPUTATIONS

The Gauss-Newton method (algorithm GN) requires the computation of each element of
the Jacobian matrix, A. The Mackie-Madden algorithm (MM) and nonlinear conjugate
gradients (NLGG), in contrast, employ A only in the computation of quantities Ap
and A T q for specific vectors p and q (see, for example, equations (23) and (25)). This
appendix describes algorithms for the computation of A, Ap and A Tq.

To begin, since each datum is the real or imaginary part of a compiex quantity, we
will convert our problem to one involving complex variables. Let dbe a complex vector
such that each element of d is the real or imaginary part of a unique element of J

d= ReEd

where

We will denote the dimensionality of d as N, where clearly N :,: N in general and N = 2N
just in case amplitude and phase data are included in d equally. We can now write the
forward function F as

F(m) = ReEF(m)

where F is a complex function. It follows that

A= ReEA

with the complex matrix A being the Jacobian of F:

Aij(m) = ojFi(m).

We also have

Ap= ReEAp
ATq= ReATETq.

Our task translates to finding A, Ap and ATqwhere q= ETq.
To specify F it is convenient to consider all frequencies and polarizations involved

in the data vector d simultaneously. Let v be a vector comprising the parameterized Ex
and/or H x fields for all frequencies, and let the linear equation

K(m)v(m) = s(m)
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denote the finite-difference form of Maxwell's equations for all relevant polarizations and
frequencies. K is a block-diagonal matrix (when v is ordered in the obvious manner)
and s comprises the right-hand-side vectors for all frequencies and polarizations. We
have shown the dependence of K and s, and hence v, on the model parameter vector
m. We can now write

Fi(m) = 10 J.- (ai(m)Tv(m))
2

g Wi/-' bi(m) Tv(m)
(A-2)

where the vectors ai and bi are chosen to extract from v the relevant field averages
for the particular polarization, frequency and observation site associated with the ith
complex datum.

Computation of A
We consider the computation of A using two methods described by Rodi (1976). Dif­
ferentiating (A-2),

where

and

(A-4)

where the vector Ci is defined by

The matrix Al accounts for the dependence of Papp on m through the vectors ai and bi.
The matrix A2 accounts for the dependence of v on m. We assume the vectors ai and bi
and their partial derivatives can be computed with closed-form expressions so that Al
can also be computed with such. We turn to the more difficult task of computing A2 •

From (A-I) we can infer

K8jv = 8js - (8jK)v, j = 1,2, ... ,M. (A-5)

Again, we assume that K, S and their partial derivatives are known analytically. The
first method described by Rodi (1976) is to solve these M "pseudo-forward problems"
for the vectors 8jv and substitute them into (A-4).
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The second method of Rodi (1976) exploits the reciprocity property of the forward
problem, i.e. the symmetry of K. Solving (A-5) and plugging into (A-4) we get

Let the vectors Ui satisfy

KUi = Cil i = 1, ... ,N.

Given the symmetry of K, we can then write (A-6) as

". ( )Ai = Ui T GjS - (GjK)v .

(A-6)

(A-7)

(A-8)

The second method is to solve equations (A-7) and then evaluate equation (A-8).
The matrices GjK are very sparse since K is sparse and each of its elements depend

on only a few of the mj. The vectors GjS, ai and bi are likewise sparse, or zero. Therefore,
in either method, construction of the right-hand-side vectors for the pseudo-forward
problems (equation (A-5) or (A-7)) and evaluation of the expression for Al( (equation
(A-4) or (A-8)) take relatively little computation. The major computational effort in
either method is in solving the appropriate set of pseudo-forward problems (equations
(A-5) or (A-7)). For this reason, the first method (equations (A-4) and (A-5)) is more
efficient when N > M (more data than model parameters) while the second (reciprocity)
method (equations (A-7) and (A-8)) is more efficient when M > N.

However, this last statement does not take into account the particular structure of
the matrix K and vectors ai and bi for 2-D magnetotellurics. K has a block diagonal
structure with each block corresponding to one polarization and frequency combination.
Furthermore, the non-zero elements of ai and bi, for any given i, are all associated
with a common partition of v (since one 2-D MT datum conventionally involves only
a single polarization and frequency). Therefore, only one block of each pseudo-forward
problem in (A-7) needs to be solved and, what is more, we may choose between the first
and second methods for computing Aij independently for each polarization/frequency
pair. The first (second) method is more efficient when the number of data for that
polarization/frequency pair is larger (smaller) than the number of model parameters.

Computation of Ap and ATq
From (A-3), we have

Ap=AI P+A2P
ATq= Al Tq+ A2 Tq.

Again, we assume the first term of each can be computed explicitly and turn our atten­
tion to the second terms.
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The algorithm of Mackie and Madden (1993) for Azp may be derived as follows.
From (A-4) we have

LAVpi = c; Tt
j

where the vector t is given by

From (A-5) it is clear that t satisfies

Kt = Lpi (BjB - (BjK)v),
j

(A-9)

(A-lO)

The algorithm for Azp is to solve the single forward problem, (A-lO), for t and then
evaluate (A-9).

The Mackie-Madden method for Az T qcan be derived similarly. From (A-8) we have

L?AV = r T
( BjB - (BjK)v),

i

where we define the vector r by

r= Lqiuio
i

From (A-7), r satisfies

Kr = L?C;.

(A-H)

(A-12)

The algorithm for ATqis to solve (A-12) and substitute into (A-H).
The major computation in each of these algorithms is the solution of one pseudo­

forward problem: for r in equation (A-12) or t in (A-lO).
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Figure 1: Objective function vs. CPU time resulting from the application of five inver­
sion algorithms to the first synthetic data set. The algorithms are the Gauss-Newton
algorithm (GN, filled circles), the Mackie-Madden algorithm (MM) with and without
preconditioning (up and down triangles), and nonlinear conjugate gradients (NLCG)
with and without preconditioning (pluses and crosses). (The label "npc" denotes "no
preconditioning." )
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Figure 2: Inversion models from the first synthetic data set, computed with algorithms
GN (top), MM with preconditioning (middle) and NLGG with preconditioning (bot­
tom). Resistivity scales (right) have units IOglO ohm-meters. Station locations are
marked with triangles. Each model yields W = 1.01 Wmin (see Table 1).
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Figure 3: Objective function vs. CPU time resulting from applying three inversion
algorithms (GN, MM and NLCG ) to the second synthetic data set. Conventions are
as in Figure 1.
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Figure 4: Inversion models from the second synthetic data set, computed with algorithm­
s GN (top), MM (middle) and NLCG (bottom). The resistivity models are displayed
with the same conventions as Figure 2 The GN and NLCG models yield \Ii = 1.01 \limin
and the MM model \Ii = 1.026 \Iimin.
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Figure 5: Objective function vs. CPU time resulting from applying three inversion
algorithms to real MT data from the Basin and Range (Wannamaker et aI., 1997).
Conventions are as in Figure 1.
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Figure 6: The results of Figure 5 for algorithms MM and NLCG shown on an expanded
. time scale.
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Figure 7: Inversion models from real MT data from the Basin and Range, computed with
algorithms GN (top), MM (middle) and NLCG (bottom). The models are displayed
with the same conventions as Figure 2, except that only the first and last of 58 stations
are marked. The MM and NLCG models yield 1M' = 1.011M'min and the GN model
1M' = 1.0441M'min.
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