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We present a model developed to study the increase of self-consumption of photovoltaic (PV) power by
smart charging of electric vehicles (EVs) and vehicle-to-grid (V2G) technology. Whereas previous studies
mostly use large EV fleets in their models, our focus is on a smaller scale. We apply the model to a micro-
grid in Lombok, a residential neighbourhood in the city of Utrecht, the Netherlands. The microgrid con-
sists of a 31 kWp PV installation, an office, internet servers, three households, and two EVs. Three control
algorithms are presented which manage the charging profile of multiple EVs either in real-time or using
linear optimisation with predictions for PV power and electricity demand. We perform one-year simula-
tions using data for PV power, EV use, and electricity demand. Simulations results are evaluated on PV
self-consumption and peak demand reduction. In addition, we make qualitative statements on battery
degradation resulting from the charging strategies based on several indicators. We also simulate changes
in microgrid composition, for example by including more EVs. In the simulations, self-consumption
increases from 49% to 62–87% and demand peaks decrease by 27–67%. These results clearly demonstrate
the benefits of smart charging EVs with PV power. Furthermore, our results give insight into the effect of
different charging strategies and microgrid compositions.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The transition to low carbon energy and transport systems
requires not only the large-scale adoption of clean technologies
and efficiency measures, but also new energy management strate-
gies to efficiently incorporate these innovations in the existing
infrastructure. Issues related to the grid integration of clean tech-
nologies can occur both at the energy supply side, with technolo-
gies such as photovoltaics (PV), and on the demand side, with
technologies such as electric vehicles (EV). Sophisticated energy
management can help solving these issues and optimise allocation
of resources, for instance by charging EVs with PV power instead of
electricity from coal or gas-fired power plants.

In the residential sector, there is an imbalance between PV
power supply and electricity demand. PV installations produce
most electricity during the day [1,2], while electricity demand of
households peaks in the morning and evening. Furthermore, typi-
cal EV charging patterns contribute to existing peaks in household
electricity demand1. A higher penetration level of PV and EVs will
increase power transport over the electricity grid, requiring grid
investments to prevent overloads [3,4]. Several countries in
Europe have started implementing policies to stimulate the
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self-consumption of locally generated energy [5]. Self-consumption
of PV power should increase to ensure grid stability and functioning.

In a smart grid the traditional electricity grid or microgrid (i.e. a
local, low-voltage distribution system) is combined with informa-
tion and communication technologies [6]. Load shifting is an
essential aspect of smart grids and can be used to increase
self-consumption of PV power [7] and off-peak charging of EVs
[8]. An important advantage of EVs in smart grids is that they
can be used both as a flexible demand source and as a storage
option, using vehicle-to-grid (V2G) technology [9–13].

In this paper we use a case study to model and simulate the
application of smart charging algorithms for EVs. Simulation stud-
ies on using EVs for integration of PV in the grid mostly use a high
level of aggregation of EVs in their models. For example, two stud-
ies have been found that consider the case of using parking lots to
integrate EV and PV. Tulpule et al. [14] have performed a study for
a parking lot at a workplace in Columbus, OH, USA and Los Angeles,
CA, USA and show the feasibility of such a system as compared to
home charging both in terms of costs and CO2 emissions. Birnie
[15] considered a parking lot in New Jersey, NJ, USA and used a
simple approach to determine that most driving needs could be
met by solar power in the summer, but not in the winter. Other
studies consider EV fleets at a city or region level. For instance,
Zhang et al. [16] show that by using smart charging one million
EVs combined with one million heat pumps can reduce excess
PV power by 3 TW h for the Kansai Area, Japan. Drude et al. [17]
study PV and V2G strategies in urban regions in Brazil. They con-
clude the EVs can be used for grid-stabilisation, but that adequate
energy policies are needed to avoid destabilisation due to too many
cars offering storage for V2G. Tuffner et al. [18] simulated a distri-
bution system (IEEE 123-node) for Phoenix, AZ, USA weather con-
ditions. They conclude that penetration rates of EV and PV have to
be high (>50%) to have a significant impact on the network but that
the synergy of these technologies has significant benefits for these
high penetration rates.

According to Guille and Gross [19], EV batteries are too small to
make a significant impact on the grid by themselves. However,
large-scale deployment of V2G faces many socio-technical barriers
[20]. Our study aims to show the benefits of using EVs and smart
grid technology in a microgrid, since such a small-scale project
can be realised in the near future. These innovative pilot projects
are pivotal in realising the transformation of socio-technical sys-
tems such as the energy system as they allow the small-scale
experimentation with alternatives to the current system [21–23].
Furthermore, studying this project allows us to combine specific
real-world empirical data on PV power supply, load demand and
EV use. This paper thus contributes to the existing literature by
exploring alternatives to large-scale deployment of using EVs for
integration of PV in the electricity grid.

Our case study is LomboXnet2, a company providing internet
connection to about 2500 people in Lombok, a neighbourhood in
Utrecht, the Netherlands. LomboXnet has the ambition to run its
activities on locally produced solar power and provides PV power
to three houses in the neighbourhood. The company has two battery
EVs, which are used for car sharing. Car sharing is becoming increas-
ingly popular worldwide [24] and also in the Netherlands3 and it has
a great potential to reduce the environmental impact of personal
transportation [25–27]. When used for car sharing, the EVs are reg-
ularly stationed at the charging station, making them suitable for
grid balancing. This in contrast to other types of EV use such as com-
muting. The combination of PV, EV, smart grid and car sharing makes
2 Company website available from: <http://www.lombox.nl>. In Dutch.
3 KVPP [Internet]. Snelle opkomst onderling autodelen [update 2013 June 20th

cited 2014 September 5th] Available from: <http://kpvvdashboard-4.blogspot.nl
2013/06/snelle-opkomst-onderling-autodelen.html>. In Dutch.
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Fig. 1. Microgrid at LomboXnet, arrows indicate power flows.
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LomboXnet an excellent case for studying the integration of clean
technologies.

Our research objective is to determine the potential for increas-
ing the self-consumption of PV power with smart charging of EVs
for LomboXnet. We simulate three different charging algorithms.
The first algorithm uses real-time information, the second uses
real-time information and V2G, and the third is an optimisation
algorithm using predictions for PV power supply and load demand
and V2G.

The remainder of this paper is organised as follows. In Section 2
we introduce our model. Section 3 presents our control algorithms
and Section 4 the indicators used. Section 5 contains simulation
results. In Section 6 we discuss our method and results and in
Section 7 we draw our final conclusions.
2. Model description

In this section we present the structure and components of our
model. Fig. 1 presents an overview of the microgrid of LomboXnet.
The five main components of the microgrid are the PV installations,
the energy management system, the uncontrollable load, the con-
trollable load, and the connection to the main grid. The uncontrol-
lable load consists of the office building, the internet servers and
three households, each with a distinctive type of load curve. The
demand from the office building peaks during the day, the internet
servers have a constant demand and household demand peaks dur-
ing the morning and evening. The PV power is used to cover both
the uncontrollable and the controllable load. In case of PV power
shortage, electricity is drawn from the main grid. In case of excess
PV power, electricity is fed back into the main grid.
2.1. PV

The PV installations provide electricity to the microgrid. In total,
31 kWp is installed with a solar energy yield of about 25 MW h per
year and a performance ratio (PR) of 74% as measured for the year
2013. The PR is a measure for the overall losses of a PV system and
is defined as the ratio of final energy yield of the PV system in
kW h/kWp to a reference yield, which takes only solar irradiation
into account [2]. In the Netherlands, the average PR is 78% [28].
The below average performance of the LomboXnet PV system is
explained by the partial shading of several solar panels during
the day. The PV power output is directly measured at the solar
inverter and available with a resolution of an hour.

http://www.lombox.nl
http://kpvvdashboard-4.blogspot.nl/2013/06/snelle-opkomst-onderling-autodelen.html
http://kpvvdashboard-4.blogspot.nl/2013/06/snelle-opkomst-onderling-autodelen.html
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2.2. Uncontrollable load

The uncontrollable load is the part of the total load that cannot
be controlled by the energy management system and must be met
at all times. It consists of the electricity demand for the office, the
LomboXnet servers and the three connected households. Electricity
is provided from the PV installations (first priority), the EV batter-
ies (second priority, when V2G is available) and the main grid.

The load demand of the office and internet servers is measured
at LomboXnet with an hourly resolution. The yearly demand in
2012 was 27 MW h. The majority of this demand (19 MW h) is
from the internet servers, which constantly use around 2.2 kW.
Because there are no measurements available for the households,
we use an estimate for the demand. The demand profiles are esti-
mated using a data-set containing 400 unique household profiles
as provided by Claessen [29]. The data-set is based on measure-
ments from Liander, the largest utility company in the
Netherlands. We select households with a yearly average electric-
ity demand within 30% of 3680 kW h, representative for the houses
in the microgrid, resulting in a total of 153 households. This aver-
age is higher than the Dutch yearly average of 3480 kW h [30].
Fig. 2 presents an Example 24-h load profile. In the figure the peaks
at different times caused by the different loads are clearly visible.
2.3. Electric vehicles

Two battery EVs are currently available: a Tesla Model S and a
Nissan Leaf. The technical specifications are presented in Table 1.
Furthermore, a minimum energy level of 20% of the battery capac-
ity is assumed, as well as a power conversion efficiency of 90%.

The EVs are used for car sharing. Experience at LomboXnet has
shown that each car is used for three trips per week on average.
These trips have a duration of 3–6 h, a minimum distance of
20 km, and a maximum distance of the full EV range. These num-
bers are used to simulate driving patterns via a pseudorandom
Fig. 2. Load profile example.

Table 1
Technical specifications of EVs. Data source: U.S. Environmental Protection Agency
[update 2014 July 25th, cited 2014 July 28th] available from: http://
www.fueleconomy.gov.

Tesla Model S Nissan Leaf

Battery capacity (kW h) 85 24
Energy consumption (kW h/km) 0.233 0.211
Range (km) 340 150
Charging power (kW) 22 6.6
number generator that decides (a) if a trip is made that day, with
a 3/7 chance of a trip taking place, (b) trip duration, between the
minimum and maximum value, and (c) trip distance, between
the minimum and maximum value. For our purposes, a trip means
that the EVs are not available at the charging stations and that a
certain amount of energy is consumed for driving. The electric
vehicles need around 10 MW h per year in total to make the trips.
2.4. Changes in microgrid composition

LomboXnet considers several extensions of the microgrid,
which we also simulate. Possible extensions in the foreseeable
future include extra solar panels (3 kWp), two extra households,
and three extra EVs. The extra EVs are all Nissan Leafs and include
one EV used similar to the other Nissan Leaf and two private EVs,
used for commuting. The latter EVs make a trip every workday
between 8:00 and 19:00 with a duration of 6–10 h and a distance
of 60–90 km.

Furthermore, we run simulations for certain changes in micro-
grid composition. We vary EV model, average electricity demand
of the households, and the number of trips the EVs make per week.
3. Control algorithms

In this section we present our three simulated control algo-
rithms. Two are based on real-time (RT), with and without the
V2G option, and one is based on linear programming (LP). All algo-
rithms are based on a centralised approach: the energy manage-
ment system decides the EV charging patterns, not the individual
EVs. We use these three charging schemes to evaluate system per-
formance with RT versus planning strategies and to see the effect
of using V2G. The algorithms decide the charging patterns of the
EVs, using them as a flexible demand source and in the case of
V2G as an electricity storage device. The goal of using such a sys-
tem for LomboXnet is to increase the consumption of PV power
within the microgrid. Our algorithms do not incorporate other fac-
tors that might be of interest in addition to PV self-consumption,
such as electricity price and power quality. However, the algo-
rithms are easy to program and suitable for our purpose: demon-
strating the potential role of EVs in this microgrid.

With our first RT algorithm, RT Control, the EVs only use PV
power to charge the batteries, unless there is more demand than
PV power to make a trip. In this algorithm V2G is not available.
There are technological as well as social barriers to V2G technology
[20], so it is interesting to explore strategies without V2G. Our sec-
ond RT algorithm, RT Control + V2G, has the V2G option is avail-
able. The EV charges with PV power as much as possible and
discharges energy when not enough PV power is available for the
uncontrollable load.

While RT Control + V2G is expected to increase the PV
self-consumption it is not necessarily the optimal strategy for EV
charging. The algorithm only uses real-time information and is
therefore not able to optimise the charging pattern for a longer
time period. This is why we also introduce an optimisation algo-
rithm. Constrained optimisation is a technique used often in
research on applications of smart grids, recent examples include
[31–34]. We use linear programming, because increasing PV
self-consumption can be formulated as a linear optimisation prob-
lem. Furthermore, we have previously shown that LP can reduce
peaks significantly more than RT algorithms [35]. For LP, PV power
supply and load demand must be known in advance, so predictions
are necessary. Therefore, we evaluate our algorithm in two ways,
with and without taking uncertainties in predictions into account.

http://www.fueleconomy.gov
http://www.fueleconomy.gov
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3.1. No Control (reference charging scheme)

Without a smart grid program, the EVs, if connected, will always
charge at maximum capacity until they are full. This reference charg-
ing scheme is called No Control and is represented by Eq. (1).

PiðtÞ ¼
Pmax

i if Eiðt � 1Þ < Ci and t 2 tl
i

0 else

(
ð1Þ

With i the EV index, PiðtÞ the EV charging power at time step t; Pmax
i

the maximum charging power, EiðtÞ the energy contained in the
battery at time step t; Ci the battery capacity, and tl

i the time steps
for which the EV is at the loading station.

In this reference charging scheme, the charging patterns of the
EVs cannot be controlled. We model the EV charging patterns as con-
trollable and compare these results to the reference simulations.
3.2. Real-time control algorithms

In Fig. 3 we show the flow of information for the RT algorithms.
The EV charging patterns are decided based on PV power, uncon-
trollable load, planned EV trips and the state of charge (SOC) of
the EV batteries. The SOC is determined based on how much
energy the EV charges, discharges, and uses for a trip.

The RT algorithms use the difference between PV power supply
and load demand for every time step t. Taking into account the
energy content of the EV the charging pattern is then decided. If
there is more PV power than electricity demand, the EV starts
charging using the excess PV power until the battery is full or until
there is no more excess PV power. The EV extracts energy from the
grid only when there is a shortage of PV power to make a trip. If
there is insufficient PV power to cover load demand, energy can
be extracted from the EV. Thus, the algorithms distinguish three
power flows as represented in Eq. (2)

PiðtÞ ¼ PPV
i ðtÞ þ Pgrid

i ðtÞ � Pout
i ðtÞ ð2Þ

With PPV
i ðtÞ the charging power from PV, Pgrid

i ðtÞ the power drawn
from the grid, Pout

i ðtÞ the discharged power. These three components
cannot exceed the maximum charging power, see Eq. (3).

jPiðtÞj 6 Pmax
i ð3Þ

With Pmax
i the maximum charging power. Note that it is assumed

that the maximum discharging power equals the maximum charg-
ing power.

Taking into account the energy needed for trips and maximum
charging power, the required amount of energy in an EV for each
time step, Ereq

i ðtÞ is defined in Eq. (4).

Ereq
i ðtÞ ¼

Etrip
i � Pmax

i � ttrip
i � t

� �
þ Emin

i if t 2 ttrip
i � Etrip

i
Pmax

i
; ttrip

i

� �
Emin

i else

8><
>:

ð4Þ
PV
Uncontrollable

load
Planned
EV trips

EVs SOC

EVs
charging

EV trips

Fig. 3. Flow of information for RT Control algorithms.
With ttrip
i the time of the next trip, Etrip

i the energy required for the

next trip and Emin
i the minimum energy in the battery. The ‘if’ part

of Eq. (4) describes that when a trip is planned, the energy level
at the start time of the trips must be the energy needed for the trip
plus the minimum energy level. The energy level of the time steps
before the start time of the trip also have to be at a certain level,
taking into account the energy required for the trip, the maximum
charging power and the time left to complete charging. At all other
time steps the required energy in the EV is the minimum energy
level of the EV, as the described by the ‘else’ part of Eq. (4).

When using multiple EVs, a priority function f i is needed. First,
an urgency value Ui is assigned to each vehicle. Ui is based on how
much time it takes to charge the vehicle to a sufficient energy level
for the next trip and the time left to achieve this, see Eq. (5). f i is
then calculated as Ui proportional to the sum of Ui for all vehicles,
see Eq. (6).

UiðtÞ ¼
ttrip

i � t

ttrip
i � t � Etrip

i � Eiðt � 1Þ
� �

=Pmax
i

0
@

1
A

u

ð5Þ

f iðtÞ ¼
UiðtÞP

iUiðtÞ
ð6Þ

Eq. (5) contains a power factor u; in the simulations u ¼ 2 was used
so that the effect is increased for EVs that have a high urgency for
charging compared to u ¼ 1. However, it was found that the value
for u has little effect on the outcome when evaluating system per-
formance for u ¼ 1;2 or 3, so final results should apply for all these
values for u.

3.2.1. RT Control
With RT Control we model the real-time smart charging of the

EVs. The EVs start charging when excess PV power is available,
unless there is insufficient PV power to charge enough for a trip.
The loading patterns are defined by Eqs. (7) and (8).

PPV
i ðtÞ ¼

gif iðtÞðPPV ðtÞ�PloadðtÞÞ if PloadðtÞ< PPV ðtÞ
and Eiðt�1Þ< Ci

and t 2 tl
i

0 else

8>>><
>>>:

ð7Þ

Pgrid
i ðtÞ¼

Ereq
i ðtÞ�Eiðt�1Þ�PPV

i ðtÞ if Eiðt�1ÞþPPV
i ðtÞ<Ereq

i

and t2 tl
i

0 else

8><
>:

ð8Þ

With PPV the PV power, Pload load demand and gi the charging effi-
ciency. If there is more PV power than electricity demand, the EV
starts to charge until it is full or until there is no more excess PV
power, see Eq. (7). Eq. (8) defines that the EV only extracts energy
from the grid when there is shortage of PV power to make a trip.

3.2.2. RT Control + V2G
With RT Control + V2G energy can be extracted from the EV to

cover load demand. Eq. (9) is added to the equations of RT Control.

Pout
i>1ðtÞ ¼

g�1
i

1�f iðtÞ
N�1 ðPloadðtÞ�PPV ðtÞÞ if PloadðtÞ> PPV ðtÞ

and Eiðt�1Þ> Ereq
i ðtÞ

and t 2 tl
i

0 else

8>>>><
>>>>:

ð9Þ

With N the number of EVs. Note that in the case of only one EV no

priority function is needed and the factor 1�f iðtÞ
N�1 is set to 1.
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3.3. Linear programming

Increasing self-consumption of PV power by controlling the
charging pattern of an EV can be described as a linear optimisation
problem and solved by using linear programming. Our objective is
to maximise the use of PV, both for charging the EV and using
energy from the EV to cover load demand, and to minimise energy
drawn from the grid. This is done under constraints related to fac-
tors such as PV power, uncontrollable load and trips to be made. All
constraints must be known in advance, therefore we have to use
predictions for PV power and the uncontrollable load. We assume
the linear program is run at midnight (t ¼ 0 is midnight). Fig. 4 pre-
sents the information flows for the LP control algorithm. Note that
in contrast to the RT algorithms there is no dynamic updating.

For the formulation of the problem, we use PPV
i ðtÞ; Pgrid

i ðtÞ and
Pout

i ðtÞ for all time steps t as variables. We formulate our objective
function as follows:X

i

X
t

k PPV
i ðtÞ þ Pout

i ðtÞ
� �

� Pgrid
i ðtÞ ð10Þ

With k a factor to determine the importance of using PV power over
drawing energy from the grid. We have based our value of k on trial
and error. k must not be too low (� 1), because then little solar
energy is used, and not too high (� 103), because then little energy
is extracted from the EV battery. For our simulations, we have set
k ¼ 100. Our final results are not sensitive to the exact value of k
in this order of magnitude. The objective function is maximised,
subject to the following constraints:

jPiðtÞj6 P;max
i ð11ÞXt

t0¼1

gi PPV
i ðt0ÞþPgrid

i ðt
0Þ

� �
�g�1

i Pout
i

� �
6 CiþEtrip

i ðtÞ�Eið0Þ; 8t; i ð12Þ

Xt

t0¼1

gi PPV
i ðt0ÞþPgrid

i ðt
0Þ

� �
�g�1

i P;out
i

� �
P Etrip

i ðtÞ�Eið0Þ; 8t; i ð13Þ
X

i

PPV
i ðtÞ6max PPV ðtÞ�PloadðtÞ;0½ �; 8t ð14Þ

X
i

Pout
i ðtÞ6max PloadðtÞ�PPV ðtÞ;0½ �; 8t ð15Þ

With dummy variable t0. Note that in this case, Pmax
i ðtÞ is repre-

sented as a function of t, contrary to earlier in this paper. This is
done to include that Pmax

i is in fact zero when an EV is not at the
loading station.

Constraint (11) ensures that the maximum charging power is
not exceeded. Constraints (12) and (13) ensure that the energy in
the EV does not exceed the battery capacity and is sufficient for
trips. Constraints (14) and (15) ensure that not more solar energy
is charged than the excess of PV power or discharged than the
shortage of PV power. Furthermore, all variables are non-negative.

Executing the linear program requires all variables of the con-
straints to be known in advance. Therefore, we evaluate the
PV
prediction

Uncontrollable
load

prediction

Planned
EV trips

EVs SOC
at midnight

EVs
charging

Fig. 4. Flow of information for LP control algorithm.
algorithm in two ways, with perfect information, LP – Perfect
Information, and with simulated uncertainties in predictions, LP
– Uncertainties. Load demand predictions are based on the pattern
from the previous day. An exception is made for weekends, since
weekend load demand differs significantly from weekdays.
However, the data we use includes only a week per household.
Because of this limitation predictions for Saturdays will be based
on data for Sundays and predictions for Mondays will be based
on data for Tuesdays. This results in the following equations:

For Tuesdays, Wednesdays, Thursdays, Fridays and Sundays:

Pprediction
load ðtÞ ¼ Preal

loadðt � 24 hÞ ð16Þ

For Mondays and Saturdays:

Pprediction
load ðtÞ ¼ Preal

loadðt þ 24 hÞ ð17Þ

The input for PV is based on PV power predictions. It is assumed
that prediction deviates from the real value with standard deviation
r, as follows:

Pprediction
PV ðtÞ ¼ Preal

PV ðtÞ � r ð18Þ

While it is possible for PPV to be zero, there is a maximum PV yield
per time step. To take this into account for each month a profile of
maximum PV power Pmax

PV is created. This is done by fitting the func-
tion defined in Eq. (19) to the maximum yield found in the datasets
for each month.

Pmax
PV ðtÞ ¼ a � expð�b2ðt � tmaxÞ2Þ ð19Þ

After fitting values for a (maximum yield), b (spread) and tmax (time

step of maximum PV power) Pmax
PV for each month is defined. Preal

PV ðtÞ
can never exceed Pmax

PV ðtÞ, no matter how big r is. In our simulations
we assume r to be 10%. We have tested the results for changes in r
and found that as long as r is below a threshold value around 20%
changes in r do not significantly affect results. For LP –
Uncertainties the algorithm is executed with the predicted values,
while it is evaluated with the real values.

We use linear programming because we want to model an opti-
misation method for increasing self-consumption. However, some
practical issues for our simulations arise by including linear pro-
gramming. First of all, we do not include the effect that EVs will
charge significantly slower when the SOC of a battery approaches
SOC = 1. This mechanism cannot be included in the way the linear
programming algorithm is defined, because it would alter the con-
straints for each variation of the variables. For a fair comparison of
control algorithms it was therefore chosen not to include this effect
in any of the simulations. Furthermore, solving the linear program
takes significantly more time than running simulations for the RT
algorithms. For this research not enough time or computer power
was available to run simulate more than 24 h for linear program-
ming. This is an issue because for every simulation a random value
for the SOC at t ¼ 0 is set, significantly effecting results as opposed
to simulating longer time periods. To provide an estimation of this
effect we perform a sensitivity analysis for the value of SOC at
t ¼ 0.
4. Indicators

In this section we present our indicators. Section 4.1 presents
our system performance indicators. Furthermore, we use indica-
tors for battery degradation, since the feasibility of a V2G system
is dependent on the impact it has on EV battery lifetime. We dis-
cuss this in Section 4.2.
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4.1. System performance

We evaluate system performance on self-consumption (SC),
energy sent to the grid and relative peak reduction (RPR). Based
on the simulations the potential for increasing self-consumption
is calculated. Self-consumption is defined as the relative amount
of PV power used by the households and the EVs, see Eq. (20).

SCðTÞ ¼

PT
t¼T0 min PPV ðtÞ; PloadðtÞ þ

X
i

PiðtÞ
" #
PT

t¼T0PPV ðtÞ
� 100% ð20Þ

With T the period that is evaluated and T0 the start time of period T.
As an absolute indicator we give the amount of energy sent to

the grid, as defined in Eq. (21):

Ein
gridðTÞ ¼

XT

t¼T0

max PPV ðtÞ � PloadðtÞ �
X

i

PiðtÞ;0
" #

ð21Þ

Finally we use relative peak reduction for evaluation. RPR compares
the deviation of the average of the load demand for the main grid
Ptot

gridðtÞ, defined in Eq. (22), with a control algorithm, Ptot
grid;controlðtÞ,

to the No Control reference scenario, Ptot
grid;nocontrolðtÞ, and is defined

in Eq. (23).

Ptot
gridðtÞ ¼ PloadðtÞ � PPV ðtÞ þ

X
i

PiðtÞ ð22Þ

RPRðTÞ ¼ 1�
PT

t¼T0 Ptot
grid;controlðtÞ � Ptot

grid;control

��� ���PT
t¼T0 Ptot

grid;nocontrolðtÞ � Ptot
grid;nocontrol

��� ���
0
B@

1
CA � 100% ð23Þ
4.2. Battery degradation

Factors that impact battery lifetime are: number of cycles;
operation temperature; rates of charge and discharge; depth of dis-
charge (DOD), SOC and total energy withdrawn [36]. Battery life-
time is often expressed as cycle-lifetime. Manufacturers
commonly provide information on cycle-lifetime as a function of
DOD for a battery that is discharged from a SOC of 100%. This data
is not suitable for our purposes since the charging pattern of the
EVs in the simulations consists for a large part of multiple, smaller
cycles which do not start at a SOC of 100%. Several models have
been proposed to quantify the impact of V2G on battery lifetime
[36–38]. Furthermore, several EV battery degradation models are
available that take smaller battery cycles into account [39–42].
However, applying these models to our simulations will require
making many assumptions regarding factors such as operation
temperature and voltage, since the only output of our model is
the charging pattern of the EVs. It is outside the scope of this paper
to present a complete battery model. However, to give an indica-
tion of the impact of the control algorithms on battery lifetime
we use three indicators: energy throughput, rate of charge and dis-
charge and SOC. We exclude the battery degradation due to the
driving cycles of the EVs, since the output of our simulations only
contain information on the charging patterns when the EVs are at
the charging station.

We define energy throughput as the total amount of energy
charged and discharged in MW h per year. To evaluate the eco-
nomics of V2G, Kempton and Tomić [37] express battery lifetime
in energy throughput as a function of cycle lifetime, battery capac-
ity and DOD for which the cycle lifetime was determined. The
authors thus assume a linear relation between energy throughput
and battery degradation rate at constant DOD. In an experimental
study, Peterson et al. [43] found energy throughput is the strongest
indicator for EV battery degradation, regardless of DOD, and found
a linear relation between energy throughput and battery degrada-
tion rate. In a simulation study, Bishop et al. [36] found EV battery
degradation to be most dependent on energy throughput and
found a square root relation between energy throughput and bat-
tery degradation rate. The latter two studies thus agree that energy
throughput is the most important factor in measuring battery
degradation, but disagree on the particular relationship.

We present our results for SOC as yearly average. Cycling at
high SOC values is found to have a negative effect on EV battery
lifetime [40,41]. However, battery degradation can also result from
overdischarge, so too low SOC values must also be avoided. In our
simulations we use a minimum SOC of 20% to prevent overdis-
charge, similar as in [14], though some other studies use a mini-
mum SOC of 30% [16,34,44].

For rates of charge and discharge we present our results as
yearly average and as a frequency distribution. We take the yearly
average of the absolute value of the charging rates, assuming
charging and discharging have the same effect on battery lifetime.
Higher charging rates result in higher battery degradation [36,41–
43].
5. Results

This section presents our simulation results. For every case we
have run a one-year simulation with 15-min time steps. In
Section 5.1 we show examples of simulation to illustrate the differ-
ence between the algorithms. In Section 5.2 we show our main
results, Section 5.3 presents our results for the battery degradation
indicators, and in Section 5.4 we show our results of changes in
microgrid composition.
5.1. Example simulations

Fig. 5 presents examples of 24-h simulations. This figure illus-
trates the differences in EV charging strategies and how they affect
self-consumption. The difference should be minimised between
the net load and the PV power. The examples show a day in July,
which represents high PV yield and low household load, since
the effects of the control systems are more clear here then in a win-
ter situation. In the examples both EVs are away on a trip; in the
complete year-long simulations this will occur only 18% of the
time. The EV batteries are half full at t ¼ 0 in all examples, except
in the case of No Control, since the batteries have been fully
charged the day before.

In the case of No Control (Fig. 5a), the EVs only charge after a
trip: in the late afternoon (Tesla Model S) and evening (Nissan
Leaf). In the case of RT Control (Fig. 5b) the Tesla Model S starts
charging at 10:00 because it needs the energy for a trip, while
the Nissan Leaf starts charging at 11:00 because then there is
excess PV. Both EVs also charge when returned from the trip, since
there is a small amount of excess PV. In the case of RT
Control + V2G (Fig. 5c), both EVs start discharging in the night,
because there is no PV to cover load demand. This results in a large
peak in the morning for the Tesla Model S, since it does not have
sufficient energy available for the trip during the day. The trip with
the Nissan Leaf takes place later in the day, and because energy
was discharged in the night more energy can be stored during
the afternoon, resulting in a higher self-consumption of PV power
than with RT Control. In the evening the energy available in the EVs
is discharged to cover load demand. In the case of LP – Perfect
Information (Fig. 5d), both EVs charge much less energy in the
morning than in the previous case, because the system takes into
account the planned trips. The total amount of discharged power
is just enough to have the storage amount available to cover max-
imum self-consumption in the morning. In the evening the energy



Fig. 5. 24-h simulation runs. The top of the coloured area represents the net load, dashed lines indicate when the EV is away on a trip. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Load duration curves resulting from simulations.

Table 2
Simulation results for system performance indicators.

Algorithm SC (%) Energy to grid (MW h/yr) RPR (%)

No Control 49 12.4 –
RT Control 62 9.1 27
RT Control + V2G 79 4.8 43
LP – Perfect Information 91 2.0 75
LP – Uncertainties 87 3.4 67
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available in the EVs is discharged to cover load demand. Note that
the LP – Uncertainties (Fig. 5e) does not deviate much from LP –
Perfect Information, although the load curve is somewhat less flat
due to deviations from the predictions.

5.2. Simulation results

Fig. 6 presents the load duration curves resulting from the sim-
ulations. The load curves clearly illustrate the reduced energy
demand, energy sent to the grid and peak demand due to the con-
trol algorithms both at the demand and supply side. Peak demand
due to charging of EVs for No Control is easily recognizable and
indicated in the figure. Linear programming is better at reducing
peaks in energy demand than the other charging strategies.
Furthermore, the difference between the curve of LP – Perfect
Information and LP – Uncertainties is small and is be visible only
at the negative side (excess PV) of the graph.

Table 2 presents the indicator scores for each algorithm. Based
on our sensitivity analysis on the effect of using 24-h simulations
instead of month simulations, we lowered all indicator scores of
LP with 7%.

All proposed control systems contribute significantly to increas-
ing self-consumption, reducing the energy sent to the grid and
reducing peaks in electricity demand. The linear programming
algorithms score highest on all indicators, also when uncertainties
are taken into account. The advantage of V2G is also clear from the
results, since scores on all indicators are higher for the algorithms
that include V2G.
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5.3. Battery degradation

Table 3 and Fig. 7 show our results for battery degradation indi-
cators. The yearly energy throughput is the same for No Control
and RT Control, since in both cases energy is only discharged dur-
ing EV trips. For RT Control + V2G the energy throughput for the
Tesla Model S is increased by factor 2.3 and for the Nissan Leaf
by factor 4.0. Compared to using no V2G, using LP increases energy
throughput by factor 3.0 for the Tesla Model S and by factor 4.0 for
the Nissan Leaf. The V2G option thus dramatically increases the
use of the battery.

In the case of No Control, the EVs have an SOC below 100% only
when charging. Therefore, the average SOC is very high (99%). The
average SOC resulting from the control algorithms is much lower,
which will have a positive effect on battery lifetime.

In the case of No Control, the EVs always charge at maximum
capacity. The average charging power resulting from the control
algorithms is considerably lower, which will have a positive effect
on battery lifetime. Fig. 7 shows the frequency distributions of
charging power. The results show that discharging occurs only at
relatively low charging rates. Furthermore, charging at maximum
capacity occurs most often for RT Control, 11% of the total charging
time for the Tesla Model S and 28% of the total charging time for
the Nissan Leaf, and barely (<2%) for LP.

Summarising, using RT Control will result in minimum battery
degradation, since the charging rates and average SOC are much
lower than for No Control. V2G will have a significant impact on
battery lifetime due to larger energy throughput, which was iden-
tified in the literature as the strongest indicator for battery degra-
dation due to V2G. Of the two V2G options, LP is favourable, since it
has the lowest charging rates.
Table 3
Simulation results for battery degradation indicators.

Algorithm Energy
throughput
(MW h/yr)

SOCavg (%) Pavg (kW)

Model S Leaf Model S Leaf Model S Leaf

No Control 6.9 2.4 99 99 22 6.6
RT Control 6.9 2.4 65 67 5.7 2.8
RT Control + V2G 16 9.6 50 40 2.6 2.1
LP 21 9.6 51 55 2.3 1.1

Fig. 7. Frequency distributio
5.4. Changes in microgrid composition

LomboXnet is considering to expand the microgrid, see
Section 2.4. We have performed simulations for these expansions;
results are presented in Fig. 8. Our results show that upscaling will
lead to lower self-consumption and peak reduction if V2G is used.
In the absence of V2G, self-consumption and peak reduction is
slightly higher in the upscaled microgrid, although in absolute
terms energy sent to the grid increases.

Fig. 9 presents our results for variations in trips per week. These
results imply that system performance is higher when the EVs
make few trips: their function as electricity storage is more impor-
tant than their function as flexible demand source. Only without a
control system making more trips per week increases
self-consumption, although only slightly because most of the time
the EVs are charged when PV power production is low.

Fig. 10 presents our results for variation of EV type. The results
clearly show that for the microgrid a Tesla Model S, with greater
battery capacity and charging power, leads to better system perfor-
mance than a Nissan Leaf.
6. Discussion

In this study we show the increase in self-consumption due to
both V2G and optimisation using predictions. Our LP algorithm
mainly serves as a way to illustrate the benefits of an optimisation
algorithm over the RT algorithms for smart charging. Factors not
incorporated in the objective function could be of interest to users
of the technology, such as costs or power quality. Furthermore, the
algorithm can be improved by enabling dynamic updating, which
would allow it to respond to deviations from predictions during
the day.

For the LP control algorithm we have simulated uncertainties in
PV power and load demand predictions. However, uncertainties in
EV trip times and energy use may arise as well. In our case, these
uncertainties will arise for the return time of the EVs, since the
EVs will often not have sufficiently charged before the planned
starting time of the trip. If the EVs will return earlier then planned,
this will have no effect on the charging pattern. If the EVs return
later then planned, this will have an effect, because the EV is not
available at the charging station. This will not occur often at
LomboXnet, since trip times are agreed upon before the cars are
rented out. However, to give an indication of how large this effect
ns for charging power.



Fig. 9. Results for variations in EV trips.

0

Fig. 8. Results for upscaling of microgrid.
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can be, we have quantified the effect on self-consumption in the
extreme case that the EVs are always returned one hour later then
planned. We found that self-consumption is decreased with 2%,
indicating that uncertainties in trips will have a negligible effect
on system performance. However, it should be noted that when
such an optimisation algorithm is to be implemented in practice
it should incorporate updating every time an EV is returned to be
able to deal with these uncertainties.

Based on our indicator set, it is not possible to quantify the
impact of the different control algorithms on battery degradation.
To use a complete battery model, more information is needed on
operating conditions, such as temperature and voltage. Two stud-
ies [36,43] that quantified the impact of V2G on battery lifetime
stated that energy throughput is the strongest indicator of battery
degradation, but have found different relationships of energy
throughput and battery degradation. Furthermore, it is not clear
how battery degradation due to charging at the charging station
compares to battery degradation due to driving and calendric life-
time. However, we can make some qualitative statements on this
issue. In a more complete simulation model one of the several
available battery models can be used to quantify the impacts on
battery lifetime.



Fig. 10. Results for variations in EV type.
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In our simulation we have used a minimum SOC of 20% to pre-
vent overdischarge, similar as in [14]. However, several studies use
a minimum SOC of 30% [16,34,44]. We have performed additional
simulations with a minimum SOC of 30%. We found that using this
higher minimum SOC has a small but significant impact on
self-consumption, which is decreased with 1.5–2.0% for the control
algorithms.

Our model contains some weaknesses that affect the quality of
our results. Energy loss due to transport through the microgrid was
not taken into account in the model. In a similar research, Claessen
et al. [29] concluded that transport losses in a microgrid are signif-
icant. Furthermore, the decrease in maximum charging power of
the batteries when nearly full has not been included in the model.
The profile for the electricity demand of households is based on a
dataset of 400 households from 2007 and 2008. Both measure-
ments were taken at different locations at different times, so it is
not known how closely they resemble a typical load demand pat-
tern in Lombok. Moreover, the dataset contains information on
aggregated load demand for one week in February; scaling the
dataset for a year might not necessarily reflect how electricity
demand changes throughout a year. Results can be improved by
using a data-set measured in Lombok for a longer time period,
preferably for a whole year. Finally, we were limited to using
24-h simulations for LP. If longer simulation times for LP can be
used, this will give more accurate results.

7. Conclusion

In this paper we present a model developed to study the
increase in self-consumption of PV power by smart charging EVs
using smart grid technology. We apply this model to a case study:
the microgrid of LomboXnet. We propose three EV charging control
algorithms and have simulated their effect on self-consumption
and peak reduction. The simulation results demonstrate that EVs
can contribute significantly to well-balanced demand and supply.
Self-consumption is increased from 49% to between 62% and 87%,
energy sent to the grid reduced from 12.4 MW h (26% of total
energy demand) to between 9.1 (19%) and 3.4 (7%) MW h and
scores for relative peak reduction range from 0.27 to 0.67. Our LP
algorithm not only scores better for self-consumption than RT
Control + V2G, but it also halves the largest peak in demand com-
pared to the real-time algorithms, even when taking uncertainties
in predictions into account.

The RT control algorithm has the lowest impact on battery life-
time, since not more energy is charged than needed for the EV trips
and the charging rate and average SOC is lower than in the refer-
ence scenario of No Control. Using V2G dramatically increases bat-
tery use and will have a significant impact on battery lifetime. The
benefits of V2G will have to be weighed against this issue. Of the
two V2G algorithms, LP will have the smallest impact on battery
lifetime, since it has the lowest charging rates. In further research
at LomboXnet we plan to empirically quantify the impact of V2G
on battery lifetime.

We have shown the effect of changes in microgrid composition.
Upscaling the microgrid will lower the scores for our indicators.
Furthermore, the results for variations in trips per week show that
our smart grid works best for situations where the EVs are regu-
larly situated at the charging station. However, even when EVs
make six trips per week, self-consumption will improve when
using smart charging and V2G. Finally, our results indicate that
using a Tesla Model S (or similar) is preferable to using a Nissan
Leaf (or similar), due to the larger battery capacity and charging
power of the first.

Despite several model limitations, our results clearly demon-
strate the benefits of using smart charging and V2G in a microgrid
and show how different sustainable energy and transport tech-
nologies can be combined in a manner that will reduce any nega-
tive impact on the existing energy infrastructure.
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