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SUMMARY

The maintenance of stem cells in defined
locations is crucial for all multicellular
organisms. Although intrinsic factors and
signals for stem cell fate have been identi-
fied in several species, it has remained
unclear how these connect to the ability to
reenter the cell cycle that is one of the de-
fining properties of stem cells. We show
that local reduction of expression of the
RETINOBLASTOMA-RELATED (RBR) gene
in Arabidopsis roots increases the amount
of stem cells without affecting cell cycle du-
ration in mitotically active cells. Conversely,
induced RBR overexpression dissipates
stem cells prior to arresting other mitotic
cells. Overexpression of D cyclins, KIP-
related proteins, and E2F factors also af-
fects root stem cell pool size, and genetic
interactions suggest that these factors
function in a canonical RBR pathway to
regulate somatic stem cells. Expression
analysis and genetic interactions position
RBR-mediated regulation of the stem cell
state downstream of the patterning gene
SCARECROW.

INTRODUCTION

Stem cells of multicellular organisms maintain themselves

and generate daughters that may initiate developmental

programs as simple as the replacement of a single cell type

or as complex as the formation of an entire organism. Plants

form organs throughout their entire life span, which can ex-
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tend over 1000 years. For that purpose, they maintain plurip-

otent somatic stem cells within the meristems, local pools

of mitotically active cells (Weigel and Jurgens, 2002). In the

Arabidopsis root meristem (RM), stem cells for all root cell

types surround a small group of organizing cells, the quies-

cent center (QC; Scheres et al., 1994) and together they

form a stem cell niche. Laser ablation studies have demon-

strated that the QC maintains the stem cell status of imme-

diately surrounding cells (van den Berg et al., 1997). The

QC is specified by combinatorial action of two gene sets.

PLETHORA1 (PLT1) and PLETHORA2 (PLT2) encode AP2-

type putative transcription factors whose transcripts are re-

stricted to the QC and stem cells in response to distribution

of the phytohormone auxin (Aida et al., 2004; Blilou et al.,

2005). SCARECROW (SCR) and SHORTROOT (SHR) en-

code members of the GRAS family of transcription factors

required for aspects of radial patterning but also for QC

identity (Di Laurenzio et al., 1996; Helariutta et al., 2000;

Wysocka-Diller et al., 2000; Sabatini et al., 2003). Loss of

PLT1 and PLT2 or loss of either SHR or SCR results in defec-

tive QC specification, differentiation of stem cells, and meri-

stem termination.

While the patterning mechanisms that position plant stem

cells are beginning to be understood, it is unknown how

these maintain stem cell division and prevent differentiation.

In mammalian cells, the decision to enter a new cell cycle is

made during the G1 restriction point. One of the key regula-

tors of this restriction point is the retinoblastoma protein (RB;

reviewed in Weinberg [1995]) which exerts its antiproliferative

activity, at least in part, by inhibiting cell cycle promoting E2F

transcription factors. Upon release from RB-mediated inhibi-

tion, E2Fs activate their target genes and allow cell cycle pro-

gression. In addition to its role in cell cycle progression, RB

activity has been linked to maintenance of the differentiated

state (Lipinski and Jacks, 1999). Recently, it has been shown

that conditional inactivation of RB and/or its close homologs

in mice stimulate cell cycle reentry and increase epidermal

and neural precursor cell number, which makes the RB

pathway an attractive candidate for the regulation of stem

cell characteristics (Ruiz et al., 2004; Sage et al., 2003;
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Vanderluit et al., 2004). Many mammalian systems, how-

ever, lack definitive stem cell markers, and it is difficult to pin-

point effects to true stem cells.

Plants contain homologs of RB, E2F, CDKs, cyclin D, and

KIP-related proteins (KRPs), which suggests that a canonical

G1-S regulatory pathway could be active (Inze, 2005). In vitro

analyses support this notion, as plant RBR interacts with

CYCD proteins (Huntley et al., 1998) and can be phos-

phorylated by a CDK2a/CYCD3 complex (Nakagami et al.,

1999). Arabidopsis contains a single RB homolog, RETINO-

BLASTOMA-RELATED (RBR), that is required already in the

haploid phase of the life cycle prior to fertilization (Ebel et al.,

2004).

Here, we address postembryonic functions of the RBR

gene using conditional loss-of-function and gain-of-function

approaches. We show that RBR is transcribed in all mitoti-

cally active cells but that the stem cell population in the

Arabidopsis root is particularly sensitive to RBR manipula-

tion. RBR regulates the size of the stem cell population

downstream of the SCR patterning gene and in a canonical

CYCD/RB/E2F pathway. This connects stem cell niche pat-

terning and stem cell maintenance in plants and indicates

overlap between plant and animal stem cell maintenance

mechanisms.

RESULTS

Arabidopsis RETINOBLASTOMA-RELATED Transcript

Is Cell Cycle Regulated and Can Be Locally Reduced

by Region-Specific RNAi

We investigated the transcriptional regulation of RBR after

fertilization to gain insight into its potential roles at later phases

of the life cycle. In situ hybridization with a RBR-specific

probe reveals a salt-and-pepper distribution in all embryos

up to the heart stage (n = 27), which suggests cell cycle reg-

ulation (Figures 1A and 1B). At early torpedo stage, RBR

transcripts are retained predominantly in actively dividing

root and shoot meristem anlagen (Figure 1C, arrowheads).

In the postembryonic root meristem, RBR mRNA is elevated

in a patchy pattern mostly within pairs of small cells (92% of

intensely staining cells; n = 75), indicating that RBR tran-

scription is highest after cells have completed a cell division

cycle (Figure 1F). In the shoot, RBR transcription is restricted

to the shoot apical meristem (SAM) and young leaf primordia

(Figure 1I). Together, our data suggest a role for plant RBR

in actively dividing cells.

Since RBR knockouts are gametophytic lethal (Ebel et al.,

2004), we used the root meristem-specific RCH1 promoter,

active from early heart stage onward in the root primor-

dium and in the postembryonic root meristem (Casamitjana-

Martinez et al., 2003), to drive an RBR RNAi construct in the

root cell-division zone. Two independent RCH1::RBR RNAi

(‘‘rRBr’’) lines showed silencing as determined by quantita-

tive PCR (data not shown). To determine whether silencing

was region specific, we performed in situ hybridization on

rRBr embryos and seedlings. In early embryonic develop-

ment, when the RCH1 promoter is not active, RBR transcript

distribution in rRBr is similar to wild-type (wt; Figure 1D). At
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torpedo stage, RBR expression vanishes in root primordia

of rRBr lines (Figure 1E). After germination, RBR transcript

is low in rRBr root meristems (Figure 1H), but wild-type levels

can be observed in rRBr shoot apices (Figure 1J). We con-

cluded that a root-specific RNAi system can significantly re-

duce RBR mRNA levels in embryos and postembryonic

roots. Antibodies against RBR protein detected a 110 kDa

protein in wt roots that was strongly reduced in roots from

rRBr lines (Figure 1K), indicating that region-specific RNAi

significantly affects RBR protein levels.

Reduction of RBR Leads to Supernumerary Stem Cells

In Arabidopsis roots, the columella root cap consists of a

single layer of stem cells immediately distal to the QC and

several tiers of differentiated cells that elongate and contain

starch granules (Figure 2A). In 4 days postgermination (dpg)

rRBr seedlings, additional undifferentiated cells appear in the

columella stem cell area (Figure 2B). These cells encompass

more tiers and occupy a larger area than wt stem cells (Fig-

ures 2C and 2P). This indicates that columella cells differen-

tiate at a more distal position in rRBr plants. The differenti-

ated columella cells in rRBr plants contain starch granules

but reach smaller sizes (Figures 2B and 2F). The total area

occupied by columella root cap cells steadily increases

(Figure 2P).

To verify whether the QC is still functional in rRBr roots and

whether the excessive undifferentiated columella cells are

stem cells, we ablated the QC, which leads to columella stem

cell differentiation in wt roots (Figure 2D; van den Berg et al.,

1997). Ablation of QC cells in rRBr roots induces rapid differ-

entiation of all undifferentiated columella layers (Figure 2E).

We concluded that the QC is functional in rRBr lines and

that additional stem cell layers accumulate in the columella

root cap.

Lateral root cap (LRC) stem cells, which also act as epider-

mal stem cells, perform a characteristic periclinal cell division

that creates new layers (Figure 2G, white arrowheads). In

rRBr plants, 1–2 additional layers of LRC tissue are present

(Figure 2H), suggesting additional stem cell activity. Pro-

moter fusions of the GL2 and WER genes mark the epider-

mis, but they are less active in LRC/epidermal stem cells of

the wt (Lee and Schiefelbein, 1999; Masucci et al., 1996).

Excessive cells with lower activity of these promoters are

present in rRBr plants (Figures 2I–2L), consistent with an in-

creased domain of LRC/epidermal stem cell activity. Cell size

of LRC cells becomes progressively reduced (Figures 2H,

2J, and 2L), but LRC identity marker N9099 remains ex-

pressed in fully mature cells (Figures 2M and 2N). Our data

suggest that, in both columella and LRC/epidermis, exces-

sive stem cells accumulate which eventually differentiate;

mature root cap cells gradually reach smaller final sizes.

While the number of ground tissue stem cells and their

cortex and endodermis daughter cell files in circumference is

8 in the wild-type (Dolan et al., 1993), rRBr plants contained

between 10 and 14 ground tissue stem cells and derived

cell files (Figure 2O; n = 13). A stem cell-specific probe for

ground tissue stem cells expanded in a significant proportion

of rRBr plants (Figures 3P and 3R; see below), indicating that
c.



Figure 1. RBR Transcript Accumulation Is Downregulated in RCH1::RBR RNAi Lines
DIC images from whole-mount in situ hybridization signals (purple) in embryos and roots using an RBR specific probe.

(A–C) RBR transcripts in embryo development. Globular stage (A), heart stage (B), and torpedo stage (C).

(D and E) RBR mRNA in rRBr embryos. Expression is observed at late heart stage before the promoter driving RBR RNAi is active (D) but disappears at later

stages (E).

(F–H) RBR transcripts in the root meristem. wt, insets shows pairs of cells with elevated signal (F); wt sense control (G); reduction of RBR transcript in rRBr

root meristems (H).

(I and J) RBR transcripts in shoot apical meristem of wt (I) and rRBr (J) plants.

(K) RBR protein in wt, rRBr, and scr-4 plants.

Bar, 50 mm in (A) and 25 mm in other panels.
ground tissue stem cell attributes expand in response to RBR

reduction. Finally, provascular cell number was significantly

increased at the stem cell level from 23–25 in wt to 32–37

in rRBr plants (Figure 2O; n = 9). Although consistent with

increased stem cell activity, vascular stem cell-specific

markers will be needed to substantiate this result.

In the proximal meristem, cells undergo several division

rounds before they rapidly elongate and differentiate. rRBr

root length, meristem size, meristem cell number, and size

of differentiated epidermal and cortical cells are not signifi-

cantly different from wt (Figures 2Q–2T), which indicates

that the size of the proximal mitotic cell pool and postmitotic

cell expansion are not affected in rRBr plants.

RBR Reduction Affects Stem Cell Fate Downstream

of the SCR Patterning Cue

SCR, SHR, and the PLT genes are required for QC and stem

cell patterning, and the expression of SCR and SHR protein

fusions and PLT1 promoter activity is not significantly altered

in rRBr plants even at late developmental stages (Figures

3A–3C and 3F–3H). Also the quiescent center-specific

markers QC25, QC46, and QC184, which depend on SHR,

SCR, and PLT input, are initially correctly expressed, but

switch off at later stages (Figures 3D, 3E, 3I, and 3J and

data not shown). Together with our laser ablation studies
Cell 1
which suggest that the QC in rRBr plants remains functional,

these observations indicate that RBR does not influence

stem cell fate through changes in cell patterning.

scr, shr, and plt1,plt2 double mutants cannot maintain

their meristems due to defects in QC specification and loss

of stem cells. To find out if reduction of RBR activity main-

tains stem cells downstream of SCR, SHR, or PLT genes,

rRBr was combined with strong mutant alleles for these

genes. scr-4,rRBr plants retain undifferentiated columella

and LRC cells (Figures 3L and 3N). QC ablation in this back-

ground causes rapid differentiation of these cells (Figure 3O),

indicating that QC function is restored in scr-4,rRBr roots

and that columella stem cells are present. At 14 dpg, when

the meristem of scr-4 mutants is completely consumed,

scr-4,rRBr roots retain a large meristem. Additional cells files

are created by excessive periclinal cell divisions in vascula-

ture and ground tissue of scr-4,rRBr roots suggesting that,

in the scr-4 background, RBR reduction leads to excessive

activity of all root stem cells (Figure 3N).

Large numbers of undifferentiated cells in scr-4,rRBr indi-

cate that the transition to cell differentiation is compromised,

a feature not seen in scr-4 or outside the root cap area of

rRBr plants. As these cells hardly expand, they barely con-

tribute to root growth which is consequently not restored in

scr-4,rRBr plants (Figure 2Q).
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Figure 2. Reduction of RBR Leads to Supernumerary Stem Cells

(A–F) wt (A and D) and rRBr (B, C and E, F) root tip 4 (A–E) and 13 (F) days postgermination. No ablation (A, B, C, and F) and one day after QC ablation (D and

E). Black arrowhead, starch granules in differentiated columella cells; arrow, columella stem cells; asterisk, QC; open arrowhead, ablated QC remnants.

(G and H) LRC in wt (G) and rRBr (H); white arrowheads, T divisions marking lateral root cap layers; black arrowheads, additional T divisions; yellow arrow-

heads, differentiated columella cells.

(I and J) pGL2::GUS in wt (I) and rRBr (J) roots.

(K and L) pWER::GFP in wt (K) and rRBr roots (L).

(M and N) N9099 marker in wt (M) and rRBr (N) roots.

(O) Stem cell and meristem file numbers in wt and rRBr. Sections taken in stem cell area (sc) and higher up in the meristem (m).

(P–T) Morphometric analysis comparing length in proximodistal direction of stem cell area (sc) and differentiated cap area in wt (blue) and rRBr (red) (P); total

root length at 3 (blue), 5 (red), and 7(yellow) dpg (Q); meristem length from QC to elongation zone (R); number of cells in the cortical layer of the meristem zone

(S); and size of differentiated epidermal hair and cortical cells (T). Error bars represent standard deviation.

DIC images after GUS stain (blue) or starch granule staining (purple) (A, B, D, E–J, and O); CLSM images with GFP signal (green) and propidium iodide

counterstaining (red) (K–N); overlay of DIC and CLSM images from same root (C). Bar, 10 mm in (G) and 25 mm in other panels. Black arrowheads in

(O), endodermal cell layer.
To further investigate whether RBR reduction can rescue

stem cell activity downstream of SCR, we utilized a probe

derived from the At5g44160 gene that is specific for ground

tissue stem cells in early-stage roots (Figure 3P). At5g44160

mRNA accumulation in stem cells strongly depends on SCR

activity (Figure 3U and Table 1), and its expression domain in

the ground tissue is expanded in rRBr roots (Figures 3Q, 3R,
1340 Cell 123, 1337–1349, December 29, 2005 ª2005 Elsevier In
and 3V), consistent with an expansion of the stem cell pop-

ulation after RBR reduction. Importantly, scr-4,rRBr plants

significantly restore the expression of At5g44160 in the

ground tissue layer (Figure 3W and Table 1), supporting

rRBr action downstream of SCR.

To investigate how RBR might be regulated by SCR, we

determined transcript and protein levels in scr-4 mutants.
c.



Figure 3. RBR Does Not Primarily Control Stem Cell Patterning Genes and Expression of QC-Specific Markers

(A–J) Patterning markers in wt and rRBr. wt (A–E) and rRBr roots (F–J) with SCR:GFP (A and F), SHR:GFP (B and G), pPLT-GUS (C and H) QC25 (D and I),

and QC46 (E and J). Four days postgermination (A and F) and six days postgermination (B–E and G–J) roots.

(K–O) Genetic interactions between RBR and SCR. scr-4 (K and M), rRBr,scr-4 (L and N) rRBr,scr4 one day after QC ablation (O). Six days postgermination,

(K) and (L); 7 dpg, (O); 14 dpg, (M) and (N).

(P–R and U–W) At5g44160 mRNA as ground tissue stem cell marker in 3 dpg roots. wt (P), rRBr ‘‘normal’’ class (Q), rRBr ‘‘extended’’ class (R), rRBr ‘‘ec-

topic’’ class (V), residual expression observed in �10% scr-4 roots (U), and rescue of expression in scr-4,rRBr (W).

CLSM images with GFP signal (green) and/or propidium iodide counterstaining (red) (A, B, F, G, S, and X); DIC images after GUS stain (blue), starch granule

staining (purple) (C–E, H–J, K–O, T, and Y); DIC images with in situ hybridization signal (P–R and U–W). Arrow, columella stem cells; asterisk, QC; open

arrowhead, ablated QC remnants; arrowhead in (X), cluster of small cells.
RBR transcript (data not shown) as well as protein (Fig-

ure 1K) was lower in scr-4 mutants opposite to changes ex-

pected from SCR-mediated downregulation of RBR levels.

Collectively, our data indicate that SCR acts upstream of
Cell
RBR function and regulates both RBR activity and amount,

but in opposite directions.

In the rRBr background, shr-1 mutants contain a cluster of

small undifferentiated cells in the stem cell area not present in
123, 1337–1349, December 29, 2005 ª2005 Elsevier Inc. 1341



shr-1 alone (Figures 3S and 3X), but these completely differ-

entiate after 5 dpg (n = 15), indicating only transient rescue of

stem cell activity by RBR reduction in shr-1.

plt1,plt2,rRBr roots do not show any additional stem

cell activity compared to plt1,plt2 mutants at early stages

when these still possess stem cells (Figures 3T and 3Y). Fur-

thermore, plt1,plt2,rRBr roots differentiate at the same rate

as plt1,plt2 double mutant (n = 21). This full epistasis indi-

cates that PLT gene function cannot be bypassed by RBR

reduction.

RBR Reduction Maintains Stem Cell Properties

in Daughter Cells

Additional cells in the columella stem cell area might arise as

a consequence of an enhanced cell cycle in the single cell

layer that performs these divisions in wt or by stem cell-like

divisions in more layers. In the first scenario, the additional

layers arise due to an inability of the differentiation process

to keep up with the proliferation of daughter cells, whereas

in the latter case the displaced daughters behave exactly

like the stem cell layer. To distinguish between these possi-

bilities, we used a novel in vivo time lapse recording proce-

dure (B. Garcia et al., 2004, LNCS, abstract). We combined a

plasmalemma marker LTI6b:GFP with the chromatin marker

H2B:YFP to observe cell divisions in wt and rRBr roots. Un-

like in wt, cell divisions can be observed in two layers of col-

umella in rRBr roots (Figures 4A and 4B, arrows). The fre-

quency of cell divisions in the rRBr stem cell region on a

per-cell basis was not higher (Figure 4C). These data indicate

that reduction of RBR maintains stem cell fate in columella

daughters, rendering them competent to divide again.

In the meristem region proximal to the QC and stem cells,

the number of divisions observed in time lapses is compara-

ble between wt and rRBr plants (Figure 4C), supporting the

notion that stem cells are more sensitive than the proximal

meristem to changed levels in RBR. To analyze cell cycle

progression in proximal meristem cells independently, we vi-

sualized cells in the G2-M phase using D Box CYCB1;1:GUS

(Colon-Carmona et al., 1999). The total number of GUS-

staining cells in wt and rRBr roots was similar (Figures 4D

and 4E and data not shown), consistent with a similar overall

Table 1. Ground Tissue Stem Cell Marker Gene
Expression

SC NSC � n

wt 111 0 32 143

scr-4 4a 5a 83 92

rRBr 59 21 78 158

scr-4, rRBr 2 16b 72 90

Quantification of At5g44160 in situ hybridization data. Numbers
of 3 dpg roots with staining focused in stem cells (SC), in non-
stem cells (NSC), without staining (�), and totals analyzed (n).
a Weak staining in all roots.
b Weak staining in 25% of roots.
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division rate. D Box CYCB1;1:GUS was observed in the QC

of �30% of rRBr but not wt plants, suggesting that QC cells

divide more frequently than in wt (Figure 4E, asterisk).

Acute Local Reduction of RBR Function Prolongs

Stem Cell State and Affects Growth of Differentiating

Root Cap Cells

The stem cell-specific defects and the reduction of cell ex-

pansion in rRBr plants could be due to variable levels of si-

lencing of the RBR gene by the RNAi approach. To investi-

gate whether a defined reduction in RBR gene copies

could separate these effects, we utilized the gametophytic

lethal rbr1-3 allele. First, we noticed that rbr1-3/RBR+ plants

display subtle columella cell expansion defects and, more

rarely, stem cell proliferation (see Figure S1 in the Supple-

mental Data available with this article online). Next, we

sought to complement the gametophytic defect of rbr1-3

by a single copy insertion of an 8.5 kb genomic RBR region

between lox recombination sites (pCB1-RBR; Ebel et al.,

2004; Heidstra et al., 2004). The genomic RBR fragment

partially complemented gametophytic RBR requirement,

which resulted in plants containing at least one wt RBR allele

and additional pCB1-RBR alleles (see Experimental Proce-

dures). Crosses to plants with heat-shock promoter-driven

Cre recombinase (HS-CRE) allows heat-shock-induced re-

moval of RBR copies between lox sites in clones marked

by GFP (Heidstra et al., 2004).

pCB1-RBR and HS-CRE parental lines reveal no pheno-

typic defects after heat shock (data not shown). Clones in

rbr1-3/RBR+ background where either one or two copies

of pCB1-RBR can be removed fall into three phenotypic

classes. Plants with clones at both sides of the root cap show

stem cell proliferation only (Figure 4F). Plants with clones that

encompass part of the QC and root cap cells show stem cell

proliferation and root cap bending (Figure 4G) or root cap

bending only (Figure 4H). In the latter case, root cap bend-

ing occurs toward the region containing cells with excisions

(n = 18). Interestingly, only clones associated with root cap

bending can be found in RBR+/RBR+ background after re-

moval of one copy of pCB1-RBR (data not shown). We con-

cluded that a decrease from three to two RBR copies leads

to a reduction in root cap cell growth (resulting in bending),

which is consistent with the observed gradual reduction of

columella cell size in RBR RNAi plants. Reduction from three

to one copies leads to stem cell proliferation and attenuation

of cell growth.

We next investigated the effects of RBR copy number re-

duction in the proximal meristem. Plants with reduced RBR

copy number in significant portions of the meristem do not

decrease root growth rate and meristem size up to 7 days

after heat shock (data not shown). Clones generated in mer-

istematic derivatives of stem cells after short heat shock cor-

roborate that all cells outside of the root cap display wt

growth characteristics upon RBR reduction (Figure 4I). Our

data substantiate the specific effects on stem cell mainte-

nance observed in the RNAi lines. Moreover, they indicate

that columella cell growth is most sensitive to acute RBR re-

duction because it requires reduction of only one RBR gene
c.



Figure 4. RBR Reduction Promotes Stem Cell Maintenance and Inhibits Cell Growth
(A–C) Time-lapse recording of metaphases in stem columella stem cell-like layers of rRBr plants. Division in layer immediately distal to the QC (A); division in

a more distal layer (tier 2) (B); quantification of frequency of divisions in columella stem cell layer (1), columella layers 1 and 2 (1;2) and epidermal cells of prox-

imal meristem (ep) (C). Error bars represent standard errors. Green, 35S::LPTI2:GFP marks plasma-membrane; red, 35S::H2B:YFP colocalizes with DNA.

(D and E) D Box CYCB1:1 GUS in wt (D) and rRBr (E) roots.

(F–I) Heat-shock-induced RBR reduction-of-function clones in pCB1/pCB1,rbr3-1/+ plants. rbr� cells marked by GFP (green) and counterstained with pro-

pidium iodide (red); red-green overlap appears as yellow. Stem cell proliferation including GFP-negative stem cells (arrow) (F); stem cell proliferation and bend-

ing (G); bending only (H); proximal excisions without phenotype (I). Asterisk, QC.
copy. Proximal meristem cells only show expansion defects

after simultaneous RBR reduction and mutation of the SCR

gene. Our data suggest that RBR affects cell growth, as

has been observed for Drosophila G1-S transition regulators

(Johnston et al., 1999).

In one plant, we found supernumerary stem cells that had

not undergone RBR excision themselves, but abutting cells

that had undergone RBR excision (Figure 4F, inset). This ob-

servation suggests that RBR reduction may influence stem

cell fate nonautonomously.

Inducible Overexpression of RBR Leads to Rapid

Loss of Stem Cell Identity

To analyze whether downregulation of RBR is essential for

stem cell maintenance, we overexpressed RBR cDNA fused

to the GR domain for inducible activation. As negative con-

trol, we used RBR cDNA with an essential amino acid sub-

stitution (RBRc788p; Huntley et al., 1998; Kaye et al., 1990).

When seedlings were transferred on 0.1mM dexamethasone

(dex), columella stem cell identity in 35S::RBR:GR was lost
Cell
within 1 day as differentiated cells adjoined the QC (Figures

5A and 5B) and ground tissue stem cell identity was compro-

mised as judged by the loss of At5g44160 RNA (Figures 5I

and 5J). Both stem cell effects occurred prior to any other

phenotypic changes. SCR, SHR, PLT promoter activity and

the QC25 marker were not affected in 35S::RBR:GR on

0.1mM dex, confirming that patterning is not primarily af-

fected upon manipulation of RBR activity (data not shown).

The expression of D Box CYCB1;1:GUS in the proximal

meristem was not altered after 1 day on 0.1 mM dex, confirm-

ing that stem cells respond more sensitively than the proxi-

mal meristem to changing levels in RBR expression (Figures

5E and 5F). Upon prolonged exposure to 0.1 mM dex and on

1mM dex, however, root growth is reduced, meristem size

severely decreases, and expression of D Box CYCB1;1:GUS

disappears (Figures 5C, 5D, 5G, and 5H).

The sensitive response of stem cells to RBR overexpres-

sion and the contrasting consequences compared to RBR

reduction further support that modulation of RBR activity is

critical for stem cell maintenance.
123, 1337–1349, December 29, 2005 ª2005 Elsevier Inc. 1343



Figure 5. Induced RBR Overexpression Interferes with Stem Cell Maintenance

(A–D) 35S::RBRc788a:GR (A and C) and 35S::RBR:GR (B and D) at 0.1 mM (A and B) and 1 mM (C and D) dexamethasone.

(E–H) D Box CycB1:1 GUS in 35S:: RBRc788a:GR (E and G) and 35S::RBR:GR (F and H) at 0.1 mM (E and F) and 1 mM (G and H) dexamethasone.

(I and J) At5g44160 mRNA in 35S::RBRc788a:GR (I) and 35S::RBR:GR (J) at 0.1 mM dexamethasone.

DIC images after GUS stain (blue), starch granule staining (dark purple), or after in situ hybridization (light purple). Arrow, columella stem cells; asterisk, QC

position; vertical bar, meristem size. Bar, 25 mm.
KRP2, CYCD3, and E2Fa Affect Stem Cell Fate

in Accordance with Their Postulated Roles

in the Plant RBR Pathway

According to current models of cell cycle regulation in mam-

mals and plants, cyclin D (CYCD) members act upstream of

RB and inhibit its activity. The root growth rate of 35S::

CYCD3;1 overexpression lines are not changed compared

to wt (Figure 2Q) but, like in rRBr roots, additional small cells

are generated in the root cap stem cell area (Figure 6A). The

columella accumulates undifferentiated cells (Figure 6A), and

an additional LRC layer is generated in 35S::CYCD3;1 roots.

Ablation of the cells at the QC position in 35S::CYCD3;1

roots leads to rapid differentiation of excessive undifferen-

tiated columella cells, indicating that they are stem cells

(Figure 6B).

In current cell cycle models, activity of RBR can be main-

tained when CDK/CYCD complexes are inhibited. KRPs

are predicted to inhibit CDK/CYCD action in plants (De

Veylder et al., 2001). We analyzed roots of a 35S::KRP2 over-

expression line, and consistent with KIP action in an RBR

stem cell pathway, stem cells are rapidly consumed. At 5

dpg, the columella stem cell region contains differentiated

cells (Figure 6C) and the LRC contains one layer less than

wt (Figure 6D). Furthermore, the cortex/endodermis stem

cells are consumed and cells that are located at their position

are frequently elongated (Figure 6D, arrowhead). Only after

the effects on stem cell consumption appear, root meristem

size and root growth rate decrease (Figure 2Q). Thus, overex-

pression of KRP2 mimics the effect of RBR overexpression

on stem cell status.
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RB binds and inhibits transcription factors of the E2F class

(Weinberg, 1995). An excess of E2F might therefore also

lead to supernumerary stem cells. Indeed, roots that express

35S::E2Fa and its cofactor 35S::DPa accumulate additional

undifferentiated cells in the columella and LRC stem cell

zone (Figure 6E). Ablation of the QC indicates that these

extra cells are stem cells (Figure 6F).

To further investigate whether KRP2, CYCD, RBR, and

E2F act in vivo in a common pathway, we investigated

epistatic relationships. Combinations of stem cell-restricting

35S::KRP2 with stem cell-promoting 35S::CYCD3, rRBr,

and 35S::E2Fa/DPa lines resulted in all cases in stem cell

excess, consistent with CYCD, RBR, and E2F factors acting

downstream of KRP activity in stem cell maintenance (Fig-

ures 6G–6L).

While our gain-of-function data cannot identify individual

members of the KRP, CYCD, and E2F families that are influ-

encing stem cell maintenance, they strongly suggest that

RBR controls stem cell pool size in response to D-type cyclins

and through the modulation of E2F action.

DISCUSSION

Retinoblastoma-Related Proteins as Common Stem

Cell Regulators in Animals and Plants

Factors required for ‘‘stemness’’ in animal systems include

signaling pathways that are utilized for other developmental

decisions (Reya et al., 2003; Sancho et al., 2003; Hitoshi

et al., 2002; Alonso and Fuchs, 2003; Lin, 2002; Song and

Xie, 2003), intrinsic transcription factors to maintain stem cell
.



Figure 6. Genes in the Canonical RBR Pathway Affect the Root Stem Cell Pool

(A and B) 35S::CYCD3 with excessive stem cells before (A) and after (B) laser ablation.

(C and D) 35S::KRP2 roots with stem cell loss (C) compared to wt control on the left (D).

(E and F) 35S::E2Fa,35S::DPa roots with excessive stem cells before (E) and after (F) laser ablation.

(G and H) Combined 35S::CYCD3 and 35S::KRP2 overexpression results in restoration of stem cells.

(I and J) Combined 35S::E2Fa, 35S::DPa, and 35S::KRP2 overexpression results in excessive stem cells.

(K and L) Combined rRBr and 35S::KRP2 overexpression results in excessive stem cells.

Arrow, columella stem cells; asterisk, QC; open arrowhead, ablated QC remnants; closed arrowhead in (D), elongated cells at stem cell position. DIC images

(A–D, F–G, I, and K); CLSM images (E, H, J, and L).

(M) A model for interactions between the stem cell-maintaining RBR pathway and patterning genes involved in stem cell specification. Schematic root shows

expression domain of SHR and SCR in red and of PLT in purple. SCR action in stem cell maintenance is cell autonomous for the QC (yellow).
fate (Chambers et al., 2003; Mitsui et al., 2003), and transla-

tional repressors that may prevent differentiation (Tsuda

et al., 2003; Hayashi et al., 2004; Wang and Lin, 2004;

Chen and McKearin, 2005; Szakmary et al., 2005). Previ-

ously identified factors for stem cell maintenance in Arabi-

dopsis influence stem cell fate through their upstream roles

in cell specification. For example, the WUS gene in the shoot

and the SCR gene in the root act within organizers for stem

cells (Mayer et al., 1998; Schoof et al., 2000; Sabatini et al.,

2003). The PLT genes also mediate root stem cell specifica-

tion but are expressed in organizing as well as in stem cells

(Aida et al., 2004). While niche organization is similar in both

kingdoms, the putative transcription factors that specify the

plant stem cell niche are plant specific, illustrating that stem

cell specification evolved independently.

In contrast to the apparent divergence of stem cell fate

regulators in plants and animals, our discovery that the

Arabidopsis retinoblastoma-related protein (RBR) specifi-

cally regulates stem cell fate in the root is suggestive for com-

mon mechanisms of stem cell maintenance. How general is

plant stem cell control by RB-related proteins? Local overex-

pression of RBR in Arabidopsis and tobacco suggests that

RBR influences cell differentiation and the pool size of divid-

ing cells also in the shoot apical meristem (J. Wyrzykowska,
Cell 1
M. Schorderet, S. Pien, W.G., and A. Fleming., unpublished

data; L.M., H. Feiler, J. Fütterer, A. Fleming, and W.G., un-

published data). Although it is not yet fully clarified whether

RBR action specifically affects the shoot stem cell pool, the

data suggest similar activities of RBR in roots and shoots

of diverse plants.

There is mounting evidence for the relevance of RB in

mammalian stem cell maintenance. Stem cell RNA profiling

data reveal that CYCD (Ramalho-Santos et al., 2002) and

genes annotated to encode RB binding and -inhibiting pro-

teins (Ivanova et al., 2002) are elevated in mouse stem cells.

High sensitivity to reduction of RB-like proteins in presumed

stem cells has been observed in mice (Vanderluit et al., 2004;

Ruiz et al., 2004; Sage et al., 2003; Ferguson et al., 2002),

although definitive stem cell identification is difficult in these

systems.

Since the upstream factors that control stem cell position-

ing in plants and animals evolved independently, it appears

that RB regulation for stem cell maintenance has been

‘‘recruited’’ independently by distinct patterning gene cas-

settes. Alternatively, ancestral unicellular eukaryotes might

have maintained cells with different proliferation compe-

tence, consistent with the recent discovery of proliferation

capacity differences in unicellular organisms (Stewart et al.,
23, 1337–1349, December 29, 2005 ª2005 Elsevier Inc. 1345



2005). An RB homolog with a G1 commitment role has been

discovered in a single-celled alga (Umen and Goodenough,

2001). Thus, RB-mediated ‘‘proliferation capacity’’ control

could have predated the divergence of unicellular plant

and animal ancestors and become incorporated as ‘‘stem

cell maintenance’’ control in both kingdoms.

Connection of RB-Mediated Stem Cell

Regulation to Patterning Cues

Our study reveals that RBR reduction bypasses the require-

ment for the SCR patterning gene in stem cell maintenance.

SCR is only required in the organizing QC cells for stem cell

maintenance (Sabatini et al., 2003), indicating that its role is

to downregulate the RB pathway in the QC or in stem cells. It

is worth it to note that our QC ablation data reveal necessity

of QC signaling in all backgrounds with reduced RBR path-

way activity. This rules out that a SCR-controlled QC signal

downregulates the RBR pathway in stem cells, as this would

make RBR-reduced stem cells independent of the QC

signal. In line with this interpretation, the RBR reduction

clones suggest that stem cells may be affected non-cell-

autonomously. Together, our observations support a sce-

nario where RBR downregulation in the QC organizer is crit-

ical for stem cell control. Unambiguous evidence for the site

of action of the RBR pathway will however require QC- and

stem cell-specific elimination of RBR function.

Possible mechanisms by which SCR may maintain the

stem cell state include local downregulation of KRPs or up-

regulation of D cyclins. While our epistasis analysis sug-

gests that these factors can influence stem cell maintenance

through the RB pathway, it is at present not clear which of

the G1 regulatory components in these large protein families

might be controlled by SCR. Preliminary results suggest

complex changes in mRNA levels of several G1 but not

G2 regulators in scr mutants indicating feedback control

(J.M.P.-P. and B.S., unpublished data). In this context, it may

be relevant that growth effects occur upon acute removal

of a supernumerary copy of RBR, indicating homeostatic

control of RBR signaling potentially mediated by feedback

control on RNA and protein levels of G1 regulators.

Interestingly, the roles of SHR and PLT proteins in stem

cell maintenance cannot be bypassed by RBR reduction,

suggesting that they regulate other essential factors for

stem cell status. Such independent input is consistent with

the combinatorial fashion in which these proteins program

the stem cell status together with SCR (Aida et al., 2004).

These inputs may also impinge on the RB pathway (for ex-

ample by regulating the local availability of factors acting

downstream of RB such as E2Fs), as suggested by the epis-

tasis of plt1,2 double mutants over RBR reduction (Fig-

ure 6M). However, it cannot be excluded that they control

yet to be discovered stem cell regulatory mechanisms that

act in parallel.

RB-Mediated Stem Cell Maintenance: Regulation

of Division or Differentiation?

Both cell cycle entry and regulation of differentiation-mediat-

ing factors are well-known RB functions in animal systems.
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For example, human E2Fs can induce cell cycle progression

factors as well as cell differentiation factors (Muller et al.,

2001).

In one scenario, premature G2 entry due to RBR reduction

could speed up the cell cycle in stem cells resulting in differ-

entiation delay. We found no evidence for changes in overall

cell cycle length after RBR manipulation by our in vivo mea-

surements of mitotic frequency. This may be explained by

RBR functions separate from cell cycle control or by cell cy-

cle length compensatory mechanisms such as those de-

scribed in Drosophila, where shortening of one phase is ac-

companied by lengthening of another phase (Neufeld et al.,

1998; Reis and Edgar, 2004).

In a second more plausible scenario, RBR reduction re-

presses differentiation by potentiating a QC-related stem

cell-promoting factor either in QC or in stem cells. In this

model, RBR would directly influence cell differentiation.

There are ample precedents for roles of RB-related proteins

in cell differentiation (Liu et al., 2004), and RB can regulate

targets unrelated to cell cycle progression (Ross et al.,

2001). As QC-dependent stem cell proliferation in roots oc-

curs upon overexpression of E2F transcription factors, can-

didate stem cell promoting factors may form a subset of E2F-

regulated genes which can now be investigated in detail.

EXPERIMENTAL PROCEDURES

Plant Materials and Genetic Analysis

Markers, mutants, and transgenic lines are as follows: N9099 lateral root

cap marker, the Nottingham Stock Center; QC25, QC46, and QC184

(Sabatini et al., 1999; Sabatini et al., 2003) ; shr-1 (Benfey et al., 1993);

scr-4 (Fukaki et al., 1998); SHR:GFP and SCR:GFP (Nakajima et al.,

2001); pWER::GFP (Lee and Schiefelbein, 1999); pGL2::GUS (Masucci

et al., 1996)(D Box CYCB1;1:GUS (Colon-Carmona et al., 1999); LTI6b:

GFP (Cutler et al., 2000); H2B:YFP (Boisnard-Lorig et al., 2001); plt1-4,

plt2-2 and PLT1::GUS (Aida et al., 2004); 35S::E2Fa, 35S::DPa and 35S::

KRP2 (De Veylder et al., 2001); 35S::CYCD3;1 plants (Dewitte et al.,

2003).

RBR RNAi

323 bp of the 50 end of the RBR cDNA clone AF245395 was cloned in for-

ward and reverse orientation, separated by a spacer. The resulting frag-

ment was combined with the RCH1 promoter (Casamitjana-Martinez

et al., 2003) in vector pCARi-323 and transformed into Col-0 plants.

Twenty-two independent transformants were analyzed and contained

identical phenotypes.

RBR Loss-of-Function Clones

A 8421 bp genomic RBR fragment, digested from BACF28J15 with ClaI

and NheI and encompassing 1.5 kb upstream of the ATG to 2 kb down-

stream of the coding region, was cloned in between lox sites of pCB1

(Heidstra et al., 2004). The resulting construct pCB1-RBR was trans-

formed into Col-0 plants and genotyped for a single insertion using a

GFP probe. Three independent Col-0 lines containing the heat-shock-

inducible Cre recombinase construct (Heidstra et al., 2004) were crossed

with heterozygous rbr1-3 plants (Ebel et al., 2004). Resulting F1 seedlings

were crossed to pCB1-RBR homozygotes; progeny were genotyped for

heterozygous T-DNA insertion, Norfluorazon-selected for pCB1, and

selfed. Resulting plants were genotyped for homozygous RBR T-DNA

insertion using a PCR fragment generated by primers CTGGAAAGCT

GATGATAATGGTATAGAAGG and TATGGTGCAAGTGCAGGTTAGTTA

ATTATG and by Southern blotting after NdeI digestion to discriminate be-

tween endogenous RBR and pCB1-donated RBR. Homozygotes for the
c.



rbr1-3 allele were not recovered, but transmission of the rbr1-3 allele

through one of the gametes was restored to 100% (Tables S1 and S2).

Furthermore, plants with two copies of endogenous RBR and two copies

of pCB1-RBR were not recovered, indicating that the presence of four

RBR alleles is lethal (Table S2). Genotyped F2 plants were selfed again;

clones were induced by 20 or 60 min heat shock and recorded by confo-

cal laser scanning microscopy. Only clones from RBR+/RBR+,pCB1/Ø

and rbr1-3/RBR+,pCB1/pCB1 plants were analyzed, as copy number re-

ductions could be derived in these backgrounds (Table S3). Clones gen-

erated in RBR+/RBR+ pCB1/Ø plants revealed root cap bending, due to

acute reduction from three to two RBR copies. Root cap bending and

stem cell defects or root cap bending alone was observed in clones

from the rbr1-3/RBR + pCB1/pCB1 background, indicating that reduc-

tion of the number of RBR copies from three to one was required for

stem cell defects.

Conditional RBR Overexpression

RBR cDNA and a point mutation variant RBRc788p obtained by PCR were

cloned into the polylinker of the PTA7002 vector (Aoyama and Chua,

1997) and transformed into Col-0 plants (L.M., H. Feiler, J. Fütterer, A.

Fleming, and W.G., unpublished data). Homozygous lines were selected.

Independent transformants with the wild-type RBR cDNA gave rise to

similar phenotypes on 0.1 and 1 mM dexamethasone.

Microscopy

Whole-mount visualization of roots, starch granule staining, and b-glucu-

ronidase stains were done as in Willemsen et al. (1998). Whole-mount in

situ hybridization was performed manually using a protocol described in

Friml et al. (2003) with a 793 nt RBR cDNA fragment created using primers

AGATGGCTTGACCTACTTTGAGGATTTAC and GAAACTCTCAATTAC

CTTGCTGAGATCAA and a 1397 nt At5g44160 fragment downstream

from the predicted start codon using primers ATGACAAGTGAAGTTCTTC

AAACAATCTCAAGTG and CCATCCATTGATAGACGATGGATGGCAC

AACG. Measurements of root length, meristem size, and number of mer-

istematic cells as in Sabatini et al. (2003). CLSM and QC laser ablations

were performed on a Leica SP2 inverted confocal laser scanning micro-

scope as in van den Berg et al. (1997). In vivo time lapse recording of

cell division in roots was performed using an automatic tracking method

(B. Garcia et al., 2004, LNCS, abstract).

Western Blotting

RBR was quantified by means of SDS-PAGE followed by Western blot-

ting. Root tips from wt and mutant were homogenized in buffer; proteins

were separated on a 12% polyacrylamide gel and transferred to nitro-

cellulose. Equal loading was confirmed by using Memcode Reversible

Protein Staining Kit (Pierce). 1:5000 diluted polyclonal antibody raised

against RBR, provided by Dr. L. Bako, was applied followed by a goat-

anti chicken IgY coupled to HRP (Santa Cruz Biotechnology). Decorated

proteins were visualized by Enhanced Chemo Luminescence (Amersham

Biosciences). The specificity of the RBR antibody was tested by immuno-

logical staining with the preimmune serum (data not shown).

Supplemental Data

Supplemental Data include three tables and one figure and can be found

with this article online at http://www.cell.com/cgi/content/full/123/7/

1337/DC1/.
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