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Abstract 

The detection and measurement of gas concentrations using the characteristic optical absorption of 

the gas species is important for both understanding and monitoring a variety of phenomena from 

industrial processes to environmental change. This article reviews the field, covering several individual 

gas detection techniques including non-dispersive infrared (NDIR), spectrophotometry, tunable diode 

laser spectroscopy and photoacoustic spectroscopy. We present the basis for each technique, recent 

developments in methods and performance limitations. The technology available to support this field, 

in terms of key components such as light sources and gas cells, has advanced rapidly in recent years 

and we discuss these new developments. Finally, we present a performance comparison of different 

techniques, taking data reported over the preceding decade, and draw conclusions from this 

benchmarking. 

 

1 Introduction 

Gas detection has an impact across a wide range of applications. Early markets have included the 

process and petrochemical industries, where sensors are used to ensure safety (eg via detection of 

toxic or flammable gases), monitor feedstocks and measure key species in products and processes, 

some of which can be rapidly changing
[1]

. Use of high sensitivity gas detectors is widespread in 

atmospheric science, where they are used to measure and understand the profile and pathways of 

different gas species including greenhouse gases
[2]

. Various potential biomarker gases are also under 

study for use in breath diagnostics, including nitric oxide (NO), ethane, ammonia (NH3), and many 

more
[3]

. 

Quantitative detection of gases is traditionally dominated by laboratory analytical equipment such as 

gas chromatographs, with sampling that precludes real-time data
[3]

, or small ultra-low-cost devices 

such as pellistors, semiconductor gas sensors or electrochemical devices. Pellistors are robust 

devices that respond to combustion on a catalyst bead
[4]

; they perform well in detecting flammable 

gases close to the lower explosive limit, however suffer from zero drift at parts per million (ppm) levels. 

Semiconductor gas sensors can be highly sensitive at the low ppm level
[5]

, however these also suffer 

from drift and cross-respond to other gases and changing humidity levels. Electrochemical gas 
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sensors can be relatively specific to individual gases and sensitive at ppm or ppb levels
[6]

, however 

they have limited lifetimes and also suffer from some known cross-response issues, eg to humidity.  

In contrast, gas sensors based on optical absorption offer fast responses (time constants below 1s are 

possible), minimal drift and high gas specificity, with zero cross-response to other gases as long as 

their design is carefully considered. Measurements can be made in real time and in situ without 

disturbing the gas sample, which can be important in process control
[7]

. Because the transduction 

method makes a direct measurement of a molecule’s physical properties (its absorption at a specific 

wavelength), drift is reduced and, because the incident light intensity can be determined, 

measurements are self-referenced, making them inherently reliable. In this way, optical gas sensing 

fills an important gap between lower cost sensors with inferior performance and high end laboratory 

equipment.  

Table 1. Examples of applications for methane detection, illustrating the need for gas measurement 

over different concentration ranges. Not all applications currently employ optical techniques. 

Application Significant issues Required 

concentration range 

Example 

ref 

Process control: gas quality, ie 

measurement of natural gas 

composition for regulation, 

metering and custody transfer 

Accuracy to “fiscal standards” 

(0.1%) 

70-100 %vol [8] 

Safety: purging gas pipes to 

avoid explosions and ensure 

pilot lights remain burning. 

Accuracy eg to ±5 %vol at 

50 %vol 

1-100 %vol [9]  

Process control: monitoring 

combustion processes 

Accuracy in a wide range of 

temperature and pressures 

0.1-100 %vol [10] 

Safety: quantification of gas 

leaks with respect to the lower 

explosive limit (LEL) of 4.9 %vol 

Accurate at action points eg 

20 %LEL (1 %vol) for 

evacuation of buildings 

0.1 – 5 %vol [11] [12] 

Safety: location of gas leaks, 

often outdoors 

Reliable zero 

Limit of detection approaching 

1 ppm 

1-10,000 ppm [12] [13] 

Process / environment: 

quantification of residual 

methane in flares, for carbon 

trading 

Repeatability 100 ppb 

Background methane 1.8 ppm 

(higher when close to sources) 

100 ppb – 1,000 ppm 

(plus background 

level of 1.8ppm) 

[14] 

Environmental modelling: 

measurement of the methane 

background of 1.8 ppm 

Comparison with historic data. 

Accuracy of 0.1-5% of reading 

required. 

30 ppb – 3 ppm 

(plus background 

level of 1.8ppm) 

[15] 

Environmental modelling: 

methane flux measurement by 

eddy covariance technique 

Correlation with local 

atmospheric eddy currents at 

data rates >10Hz 

5 ppb – 25 ppm 

(plus background 

level of 1.8 ppm) 

[16] 
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Gas detection applications can cover a very wide range of gas concentrations. The concentration is 

typically expressed as a proportion in air (or some other matrix) by volume. Since most gases at 

standard temperature and pressure behave as ideal gases to a high degree, this is also equal (or 

almost equal) to the molar concentration in the matrix. To put gas concentrations into context, we can 

take the example of one gas species (methane) with a variety of applications, each demanding 

measurement over a different concentration range. Several examples are summarised in Table 1. 

Concentrations are expressed as %vol (% by volume), ppm (parts per million by volume;1 part in 10
6
), 

ppb (parts per billion by volume; 1 part in 10
9
) or ppt (parts per trillion by volume, 1 part in 10

12
).  

In this review, we discuss commonly used techniques in gas sensing based on measurement of 

optical absorption at specific wavelengths. These are non-dispersive gas sensing including non-

dispersive infra-red (NDIR), spectrophotometry, tunable diode laser spectroscopy (TDLS) and 

photoacoustic spectroscopy (PAS). Recent developments in the techniques themselves and in 

important key system components (such as sources) are considered. Finally, we have completed a 

survey of recent published results for the detection of a number of gas species and summarised these 

in Table 8 at the end of the article. The list of measurands covers ammonia, benzene, carbon dioxide, 

carbon monoxide, ethane, formaldehyde, hydrogen sulfide, methane, nitric oxide, nitrous oxide, 

nitrogen dioxide, sulfur dioxide and water vapour. From this survey we have been able to draw cross-

comparisons between different approaches. 

2 Basic principles 

The fundamentals of molecular absorption spectroscopy and associated instrumental techniques have 

been discussed widely elsewhere
[ 17 , 18 ]

. Many chemical species exhibit strong absorption in the 

UV/visible, near infrared or mid infrared regions of the electromagnetic spectrum. The absorption lines 

or bands are specific to each species and this forms the basis for their detection and measurement. 

Absorption spectra in the different spectral regions have different characteristics, as shown in Table 2.  

In the so-called fingerprint region of the infra-red, gas phase absorption spectra exhibit narrow lines as 

a result of molecular vibrations at discrete energy levels. These can be measured at high resolution, 

resolving the line, or at lower resolution, measuring the absorption band. Near IR spectra are typically 

overtones of fundamental vibrations in the mid IR and hence can be significantly weaker (eg around 

100 times weaker for methane). However, the availability of high quality sources and detectors, 

primarily derived from telecommunications applications, can counteract this disadvantage and signal : 

noise ratios can be relatively high. 

 

Table 2. Origin of absorption spectra in different regions of the electromagnetic spectrum. 

Spectral region Cause of absorption 

UV (200-400nm) Electronic transitions 

Near IR (700nm – 2.5μm) Molecular vibration & rotation, 1
st
 harmonic 

Mid IR (2.5μm – 14μm) Molecular vibration & rotation, fundamental 
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Optical gas detection using absorption spectroscopy is based on application of the Beer Lambert 

Law
[18]

; 

 
0 ( )expI I    (1) 

Where I is the light transmitted through the gas cell, Io is the light incident on the gas cell, α is the 

absorption coefficient of the sample (typically with units of cm
-1

) and ℓ is the cell’s optical pathlength 

(typically with units of cm). The absorption coefficient α is the product of the gas concentration (for 

example in atm – the partial pressure in atmospheres) and the specific absorptivity of the gas ε (for 

example in cm
-1

atm
-1

).  

Notes 
[18]

 

 In analytical chemistry and for liquid phase samples, the Beer Lambert Law is typically described 

using base 10 rather than e, with the result that quoted values of α are 2.3 times smaller, despite 

having the same apparent units. In this review, in line with most gas sensing, we use base e 

throughout.  

 The Beer-Lambert Law applies for monochromatic radiation; when using light sources that are 

broader than absorption lines, the width of the source must be accounted for. 

 The law also assumes that there are no chemical changes in the sample – at high concentrations, 

dimer formation can alter spectra, but this is a minor effect for most gases at standard temperature 

and pressure. 

For low αℓ, equation (1) is conveniently linear with α, as follows: 

 

0

I

I



  (2) 

where ΔI = I0-I and ΔI / I0 is the absorbance, which is unitless but often described in “absorbance 

units” (AU).  

Limits of detection can be quantified as the noise equivalent absorbance (NEA, in AU) or the minimum 

detectable absorption coefficient (αmin, in cm
-1

), allowing instrumental techniques to be compared 

without reference to the specific target gas. For estimates of noise and uncertainty throughout this 

article, we use the convention that ΔI is the root mean squared (RMS) value of intensity variations 

(1σ). For example, an NEA of 10
-6

 implies that for RMS changes in received light intensity at the level 

of 1 part in 10
6
, the signal : noise ratio (SNR) is unity. For many instruments, white noise dominates 

and therefore the SNR also depends on the measurement bandwidth Δf, as SNR  Δf 
-1/2

. When 

operating in this domain it is therefore important for practitioners to also record the value of the 

measurement integration time t used to obtain a certain noise limit, and / or to quote limits in units of 

Hz
-1/2

 or cm
-1

 Hz
-1/2

, normalising to a 1 Hz measurement bandwidth. As the precise conversion 

between Δf and t is often system – specific
[18]

, we have simply quoted authors’ own estimates for 

either, or both, in this article. 

Measurement of the level of absorbed light in the sample is actually proportional to the number density 

N of target molecules in the sample. To convert to more typical units of ppm by volume or %volume at 

different temperatures T and pressures P, adjustments must be made using the ideal gas equation 

PV=NkBT, where V is the volume of a closed cell, kB is the Boltzmann constant and N is the number of 

molecules in the cell. 
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An absorption spectrum is a plot of α or ε as a function of wavelength (eg in µm) or its reciprocal, 

wavenumber (in cm
-1

). Public-domain quantified spectra are available from the US National Institute of 

Standards and Technology (NIST)
[19]

, Pacific Northwest National Laboratory (PNNL)
[19]

, and may be 

calculated using information in the Hitran database
[20]

. Typical absorption spectra are shown in Figure 

1, for a series of gases in the mid IR, and in Figure 2, for a single gas (methane) plotted at higher 

resolution. 

 

Figure 1. Absorption spectra for 5 gases in the mid IR region of the spectrum (all at 100% vol), taken 

from the PNNL database
[19]

. 

 

 

Figure 2. Expanded view of methane spectrum in the mid IR, from 3 – 3.6µm, also taken from the 

PNNL database
[19]

. 

 

At atmospheric pressure, a single gas line has a pressure broadened Lorentzian profile
[18]

, such that 

 

  



   


 

22
0

molC S  (3) 

Where Cmol is the gas concentration in units of molecules cm
-3

, S is the line intensity 

(cm
-1

/molecule cm
-2

), γ is the line halfwidth at half maximum (HWHM, cm
-1

), ν is the wavenumber 

(cm
-1

) and ν0 is the position of the line centre. Figure 3 shows an example absorption line profile for 

methane at 1.651 μm at atmospheric pressure. Variations in the linewidth at different pressures must 

be accounted for, especially in high resolution measurement schemes. The linewidth can also be 
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influenced by the background matrix for the gas. Typically, so-called “self-broadening” parameters (the 

linewidth for the gas surrounded by itself) and “air-broadening” parameters (the linewidth for small 

quantities of the gas in air) are well-known for commonly detected gases. For example, the Hitran 

database provides known halfwidths for air-broadened and self-broadened lines (γair and γself, 

respectively). At atmospheric pressure, the halfwidths are functions of both pressure and temperature. 

The value of γ for a gas at pressure P (atm), temperature T (K) and at a partial pressure Ppartial (atm) is 

given by 
[21]

 

  air partial self partialP P P      (4) 

For significantly different matrices, linewidth measurement may be required, especially for gases that 

can have strong interactions with their neighbours, for example via H-bonding in water vapour. But in 

any case (any matrix or pressure), the integrated area under the curve is proportional to the number 

density of molecules present. 

 

 

Figure 3. Absorption spectrum for 100% methane at atmospheric pressure at 1.651 μm, calculated 

from Hitran
[20]

. The feature actually consists of four main underlying absorption lines that cannot be 

resolved at atmospheric pressure. 

A discussion of different technology platforms using these principles now follows, categorised as non-

dispersive infrared (NDIR) gas sensing (characterised by its broadband measurements), correlation 

spectroscopy, gas sensing using compact spectrophotometers and tunable diode laser spectroscopy 

(TDLS), which encompasses several different techniques. Finally, cavity-enhanced techniques and 

photoacoustic spectroscopy (PAS) are considered separately, both of which can be deployed in 

combination with other spectroscopic techniques. In each case we consider principles of operation, 

critical enabling technology and significant limitations. 

 

3 Optical gas cells 

Gas cell configurations may be altered to suit a wide variety of applications, as follows. 

 Use of long path cells, to increase the magnitude of the signal according to equation (2). 

 Use of optical fibre to deliver light to a sample cell in a remote location 

 Use of hollow core optical fibre to form a long, thin gas cell. 
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Coupling light into many of these cells is facilitated by the use of lasers, as a significantly greater 

proportion of the light may be collimated in a narrow beam and / or launched into optical fibre than 

would be the case for broadband sources. Each configuration is now discussed in turn. Cell 

configurations that are specific to a particular spectroscopic technique are introduced in later sections, 

and cavity-enhanced techniques have their own section at the end of this review.  

Gas cells are not simply passive elements of a system; their design can be a significant contributor to 

instrument uncertainty. When used at high spectral resolution, for example with spectrophotometers or 

tunable diode lasers, gas cells can form low finesse Fabry-Perot etalons that give rise to unwanted 

optical interference fringes, especially when using high coherence, laser sources
[22]

. These fringes can 

be the limiting source of uncertainty as they are liable to drift with temperature changes and can be 

indistinguishable from the spectral signature of the gas absorption lines. Because gas lines can be 

inherently narrow, interference fringes can also be a significant performance-limiting factor in 

broadband absorption measurements
[23]

. 

3.1 Long path gas cells 

Gas cells with the highest sensitivity often employ multipass cells with pathlengths from tens of metres 

(multipass cells such as those devised by Herriott
[24]

, White
[25]

 and Chernin
[26]

) to km (using so-called 

cavity-enhanced and ringdown techniques). The latter are covered separately in section 7 because of 

the volume of recent research in both fields, and because it is helpful first to introduce the techniques 

of NDIR, spectrophotometry and TDLS.  

 

 

Figure 4. Early Herriott cell, using smoke to visualise the reflected beams between concave mirrors. 

Taken from [27]. 

The most commonly used multipass cell is of the Herriott type, either in its standard configuration (as 

shown in Figure 4) or as an astigmatic variant
[28]

. Advantages of the latter are that the beam spot 

pattern at the mirrors is distributed over the entire mirror surface, giving better separation between 

individual spots, and that longer pathlengths can be achieved for a given cell volume. Although Herriott 

cells require time-consuming alignment, systems have been made that are field robust and even 

sufficiently lightweight for deployment with a weather balloon
[29]

 (see Figure 5). A commercial, portable 

instrument has also recently been introduced using a Herriott cell to give a limit of detection of 1 ppm 

methane
[30]

. When using a Herriott cell, one might expect the improvement in SNR to scale with the 
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pathlength enhancement. However, additional fringes arise as a result of interference between 

successive passes across the cell, and this can result for example in an order of magnitude 

deterioration in the SNR
[31]

.  

Various alternative approaches have been demonstrated in recent years; a number are compared in 

Table 3. The superior pathlength : volume ratio of the astigmatic Herriott cell, together with the stability 

derived from its parent the standard Herriott cell, make it stand out and probably account for its 

popularity. The Chernin cell is claimed to have a number of advantages including the acceptance of 

high NA beams, however has been little used outside of research labs. The best pathlength : volume 

ratio exists for hollow core optical fibres, hence the considerable recent effort to develop practical 

systems using this technology (see 3.3 for further details). Other systems worthy of note include the 

circular multireflection cell of Ofner et al 
[32]

 with a diameter of 6cm, giving 17.5 beam passes and an 

equivalent pathlength of up to 1.05 m
[32]

. This was coupled to an FTIR spectrometer and used to 

measure CO2 at 4.2μm.  

 

Figure 5. Herriott cell included in a weather balloon payload, used at an altitude of 32 ,000 m to 

measure methane and water vapour with pathlengths of 74 m and 36 m respectively. Taken from [29]. 

Finally, although the integrating sphere cannot offer the optical pathlength of the best of its rival 

multipass cells, it nevertheless has a significant advantage in its tolerance to misalignment. Integrating 

spheres are formed by taking a material with high diffuse reflectivity (typically barium sulfate, 

poly[tetrafluoroethylene] PTFE, or a gold coated roughened surface, depending on the spectral region 

of operation) and wrapping it around on itself to form a spherical cavity
[41]

 (see Figure 6). Hodgkinson 

et al have analysed the distribution of optical pathlengths in these devices and shown that the resulting 

apparent deviation from Beer’s law (equation (1)) is predictable
[33]

. Hawe et al have detected NO2 and 

SO2 in the 200-600 nm region using a 5 cm internal diameter integrating sphere coupled to a 

broadband source and a UV-visible spectrophotometer using multimode fibre
[34]

. The mean internal 

pathlength of the sphere depends on its reflectivity; for SO2 at 280 nm this was 41 cm and for NO2 at 

370 nm it was 55 cm. Detection limits for NO2 and SO2 were 4 ppm and 11 ppm respectively. 

Interestingly, the mean pathlengths are somewhat lower than for the specularly reflective cell of Ofner 

et al above, which had a similar internal diameter. This was presumably caused by the relatively low 

reflectivity of the integrating sphere in the UV region. 
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 (a) (b) 

Figure 6. (a) Simplified model of an integrating sphere, showing a collimated beam making a first pass 

across the cell to the first strike spot and two examples of subsequent random passes across the cell. 

Adapted from [35]. (b) Commercially available integrating sphere (Thorlabs IS200-4) in use as a gas cell. 

 

Table 3. Comparison of different approaches to multipass cells used in TDLS (one example given of 

each type). Figures in italics are the authors’ estimates based on information provided in references. 

Approach Advantage Pathlength 

/ m 

Number 

of passes 

Volume 

/ litres 

Pathlength / 

volume 

/ 10
3 
m

-2
 

Ref 

Herriott cell Optomechanically stable; 

simple pathlength changes 

30 74 1 30 [36] 

Astigmatic Herriott 

cell 

Very long optical paths 36 182 0.3 120 [28] 

White cell Accepts high NA beams 7.5 12 10 0.75 [25] 

White cell with 

recirculations 

Accepts high NA beams; 

gives longer pathlengths 

5984 272 Not 

stated 

- [37] 

Chernin cell High NA beams; compact; 

pathlength changes possible 

~1500 ~500 160 9 [38] 

Combination cell 

with 3 mirrors  

Uses standard mirrors; 

stable; simple set-up 

140 130 5.4 26 [39] 

Twisted cylindrical 

mirrors 

Pathlength alteration via 

twist angle 

58 49 5.4 11 [40] 

Circular multi-

reflection cell 

Pathlength alteration from 

outside the cell; very simple 

cylindrical optic 

1.04 17.5 0.085 12 [32] 

Integrating sphere Simple alignment; 

misalignment tolerant 

4.4 65 0.5 9 [41] 

Hollow core fibre 

(see section 3.3) 

Very small sample volume 27 1 3x10
-6

 8x10
6
 [42] 

incident 
beam 

first 
strike 
spot 

recessed 
photodetector 

entrance 
aperture 

high 
reflectivity 
sidewalls 
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3.2 Gas cells linked via optical fibre 

Optical fibre can take many forms. Common to most is that light is guided in a core region, typically 

with the core having a higher refractive index than the surrounding cladding, setting up the right 

conditions for total internal reflection for light incident over a given range of angles. Fibres may be 

multimode, with each of the modes having a different effective pathlength, or singlemode. 

Conventional multimode telecommunications fibre employs a core diameter of 50 or 60 μm within a 

125 μm cladding, whereas the core diameter for singlemode fibre may be of the order of 5-10 μm, 

depending on the wavelength. When coherent light or very high resolution spectroscopy is employed, 

interference between the modes in multimode fibre can cause undesirable effects on the signal 

(usually termed “mode noise”), therefore singlemode fibre may be preferred. 

Silica based fibres are widely used for optical telecommunications, with high transmission in the 1.530-

1.565 μm (“C band”), 1.260-1.360 μm (“O band”) and 800-900 nm windows. The availability of erbium 

(Er) doped fibre amplifiers (EDFAs) has prompted rapid development in the C band, and many 

components are available that cover this region, with some extending into neighbouring S and L bands 

(1.460-1.530 μm and 1.565-1.625 μm respectively). Without amplification, communication over up to 

many km of fibre is possible at data rates up to tens of Gbit/s. Fortunately, gas detection applications 

typically demand shorter lengths of fibre and can often accommodate greater optical losses and lower 

data rates, such that standard telecommunications grade optical fibre may be used over a wider range 

of wavelengths to cover many gas absorption lines outside the narrow telecommunications bands. 

Conventional telecommunications fibres are fabricated by a drawing technique from low loss silica 

incorporating different dopants. The drawing technique provides an excellent surface finish, in 

particular at the junction between core and cladding, such that scattering losses at this interface are 

very low, and centering of the core is achieved to a high precision. A number of specialist fibres has 

also been developed to provide a wider range of transmission wavelengths, most notably in the mid 

IR. For example, chalcogenides have been used to link gas cells at 4.2μm for CO2 sensing in areas 

with difficult access such as vehicle exhausts
[43]

. 

Often, optical fibre is simply used as a conduit to a more conventional, remote gas cell, for a number 

of reasons 
[44]

. The first is that multiplexing of multiple gas cells allows the relatively high cost of certain 

light sources (such as tunable diode lasers) to be shared, bringing the cost per sensor head to a level 

where it can compete with traditional installed sensors. The second is that gas detection is often 

required in potentially explosive areas where intrinsic safety (compliance with the Explosive 

Atmospheres or ATEX directive in the EU
[45]

) may be required. It is often simpler to ensure the intrinsic 

safety of a fibre optically linked sensor than that of a conventional, electrically addressed system, for 

example for continuous wave (CW) sources by ensuring that either the light power remains below 

35 mW or the light intensity remains below 5 mW mm
-2

 
[46]

.  

Interaction between the light guided by the fibre and the measurand can be achieved by a variety of 

means, as reviewed by Waechter et al 
[47]

 and illustrated in Figure 7. For those involving evanescent 

fields, the proportion of light interacting with the surrounding measurand is a function of the latter’s 

refractive index, therefore these techniques have more commonly been used with higher index liquid 

samples. However, there are a number of examples of their use for gas detection. 

A variety of multiplexing schemes has been developed to link a large number of sensor heads, each of 

which samples the gas concentration at a different point. Stewart et al developed a switched system in 
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which each of the 64 sensor heads shared a single laser source but had a dedicated delivery and 

return fibre with detector
[48]

. Ho et al have used a single pulsed laser source and detector, with cells 

arranged in parallel and optical fibre delay lines in-between at each stage. Individual gas cells were 

then identified by time gating the source pulses
[49]

. Attempts to multiplex more than one sensor head 

per fibre have included deliberate use of etalons created by gas cells of unequal length in a ladder 

topology
[50]

, and frequency shift interferometry
[51]

, a technique formerly used to interrogate optical fibre 

Bragg gratings. The latter method had the advantage of being capable of dealing with multiple gas 

absorption lines (including the possibility of spectral overlap) as well as multiple sensor locations (up to 

17). Nevertheless, the additional complexities of optical fibre systems compared with free space 

systems often mean that limits of detection are compromised by residual interference fringes from 

etalons formed by gas cells, connectors and joints in the fibre
[52]

. 

 

 

Figure 7. Techniques providing interaction between light guided within an optical fibre and an external 

measurand: (a) light coupled out of the fibre and back in; evanescent fields in (b) a tapered region, (c) 

an etched region, (d) a side-polished region or (e) using long period gratings to couple light in and out 

of cladding modes; (f) diffusion of some gases (eg H2) into the fibre core. Modified from [47].  
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3.3 Use of microstructured optical fibre 

Photonic crystal fibre (PCF) was originally developed for photonic and telecommunications 

applications
[53]

. A periodic refractive index within the fibre (typically generated by an array of holes that 

pass along the length) forms a photonic crystal, the periodicity of the refractive index in the photonic 

crystal being analogous to the periodicity of electronic energy levels in more conventional ionic 

crystals. A photonic quantum well is formed that confines the light modes more effectively than in 

conventional fibre, such that, in principle, photonic crystal fibres of the right lattice spacing and hole 

size can maintain singlemode operation over almost their entire transmission range
[53]

. A further 

advantage is a lower effective index, reducing Fresnel reflections at the fibre ends. 

It was quickly realised that the holes in these fibres can act as convenient repositories for gases, and 

that a high degree of overlap between the physical location of the holes and the guided modes results 

in strong interaction between the two, and thus the potential for use in gas sensing. The greatest 

levels of overlap (up to 98%) are found with hollow core fibres
[54]

, for which the range of operation is 

more restricted. A photonic bandgap, and therefore waveguiding, only occurs in particular wavelength 

bands. Solid core fibres can also be used where the core is small and the guided mode extends into 

the surrounding voids, ideally with very thin supporting structures
[55]

 in so-called suspended core 

fibres, in which the level of mode / air overlap is small for gas phase sensing. Lehmann et al have 

compared both types and concluded that hollow core fibres are better suited to trace gas detection, 

whereas suspended core fibres, having lower losses, might be suited to higher gas concentrations, 

longer length operation, or even distributed sensing of gases
[ 56 ]

. Figure 8 shows examples of 

microstructured optical fibres used in chemical sensing. Most examples are formed from air / silica, 

however microstructured fibres for mid IR transmission have been fabricated from both 

chalcogenides
[57,58]

 and silver halides
[59]

. Singlemode microstructured fibre has been demonstrated by 

Shephard et al for 3.1-3.3μm operation using a 40μm core diameter photonic bandgap fibre (PBGF) 

fabricated from silica
[60]

. 
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 (a) (b) 

   

 (c) (d) 

Figure 8. Microstructured fibres suitable for chemical sensing. (a) Air-silica hollow core PBGF and (b) 

suspended core holey fibre, both from [61]. (c) Modified suspended core fibre with slot, used for 

distributed fluorescence sensing, from [55]. (d) Chalcogenide hollow core PCF, from [62]. 

3.3.1 Hollow core waveguides 

Interest has been strong in the use of hollow core waveguides as a long pathlength, low volume gas 

cell. Sub-nanolitre sample volumes have even been demonstrated for gas sensing
[63]

. Light is confined 

in a narrow capillary structure by a series of internal reflections at high reflectivity walls. Following the 

same conventions as the majority of the literature, we term these structures hollow core waveguides 

(HCWG), in contrast to hollow core photonic bandgap fibres (HC-PBGF) described above. Losses can 

be consequently high, but can generally be accommodated over distances of several metres without 

significantly affecting sensor performance. The attenuation in hollow core waveguides varies with inner 

core radius a and bend radius r as 1/a
3
 and 1/r 

[67]
; typical figures are shown in Figure 9.  

20 μm 

100μm 
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(a) 

 
(b) 

Figure 9. Measured losses for commercially available hollow core waveguides: type HWC (used for 

CO2 laser beam delivery) and type HWE (used for Er:YAG laser beam delivery). (a) Spectral loss for 

straight waveguide, (b) bend losses for a 40cm radius, 360° bend. Reproduced with permission of 

Polymicro Technologies, a subsidiary of Molex Inc. 

3.3.2 Performance limitations 

Kim et al have used a hollow core waveguide with an internal IR reflective coating consisting of Ag 

with a protective AgI layer
[64]

. A 1 m length of fibre with internal diameter 750 μm was coupled to a 

conventional laboratory FTIR spectrometer and used to measure absorption in the wavenumber range 

3000-600 cm
-1

 (3.3-17 μm). Limits of detection were 16 ppb for CO2 at 4.2 μm and 520 ppb for CH4 at 

7.7 μm. The feasibility of using the same design of waveguide for spectral measurements in the UV 

(180-205 nm) has also been reported
[65]

.  
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Charlton et al have coupled the output from a 10.3 μm quantum cascade laser (QCL, see section 6.3) 

into a 700 μm core diameter capillary of this type, for the purpose of detecting ethyl chloride
[66]

. They 

used a cell length of 4 m and HgCdTe detector to achieve a detection limit of 0.5ppm, but the noise 

equivalent absorbance (NEA) was not stated. Using the system shown in Figure 10, Fetzer et al 

reported an NEA of 1.2 x 10
-5

 with a hollow core waveguide length of 3 m, operating in the near IR at 

1.5 μm
[67]

. However, drift over a period of 4 hours (involving a 10°C change in room temperature) 

increased the NEA to 6x10
-5

. 

 

Figure 10. Construction of a low volume, fast (6 s) response gas cell using a coiled hollow core 

waveguide. (a) Schematic diagram, (b) photograph of inlet manifold, (c) close-up of inlet manifold 

showing closely spaced, 50 μm diameter drilled holes. Taken from [67].  

There has been a limited number of studies on the fundamental performance limitations of gas 

sensing using microstructured fibres. Gensty et al reported that the relative intensity noise (RIN) of a 

quantum cascade laser, measured at 50 MHz, was consistently lowered (by a factor of around 4 dB) 

by being transmitted through a hollow core fibre; they attributed this to a filtering effect of the 

waveguide
[68]

. 

Parry et al have reported spectral artefacts when using a 10 μm core PBGF operated at a wavelength 

of 1.650 μm for methane detection
[69]

. They attributed this to two causes, (i) interference caused by 

backreflections from two ends of the fibre, and (ii) interference between core and cladding modes 

propagating in the fibre. The latter effect dominated, but could be minimised by placing detectors or 

coupling optics as close as possible to the end of the PBGF, minimising the launch and collection of 

cladding modes. Interferences fringes were reduced by thermally cycling the fibre using resistive 

heating elements and averaging signals over 35 minutes, or by subtraction of a zero reference within a 

short period of time. The resulting limit of detection was reported to be 500 ppm acetylene at 1.519 μm 

for operation at 70 torr. 
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Finally, Chen et al have investigated the mode noise limitation of using hollow core waveguides whose 

diameter is a large multiple of the operating wavelength (750 μm diameter operated at 1.68 μm)
[70]

. In 

this system the level of mode noise amounted to ΔI/I ~ 10
-4

. This was reduced for (i) straight fibres 

rather than bent fibres, (ii) locating the detector as close as possible to the end of the fibre, so as to 

collect a larger number of modes, and finally by vibrating the fibre at a frequency much greater than 

the measurement bandwidth, so as to average over a larger number of modes. Using the latter 

technique with a bent fibre, the authors were able to demonstrate an NEA of ΔI/I ~ 10
-5

.  

3.3.3 Practical matters 

Photonic crystal fibres and other PBGFs can be cleaved using standard equipment and spliced to 

each other and to conventional fibre
[53]

. Endface distortion is possible if the air filling fraction is high 

(>50%)
[53]

, as demonstrated in the work of Benabid et al who cleaved and spliced a PBGF to create a 

stable gas cell
[71]

. By recleaving the joint after splicing, they were able to show the potential for surface 

tension to create a concave cavity in this case, shown in Figure 11. 

   

 (a) (b) 

Figure 11. SEM images of a joint between PBGF and standard singlemode fibre that was spliced and 

then recleaved for examination: (a) at the joint, showing a concave cavity formed by surface tension 

during splicing, (b) a few mm back from the joint, showing that the integrity of the structure was 

maintained at that point. Taken from [71]. 

One of the main engineering difficulties of using gas cells with such a high aspect ratio is the long time 

taken to fill them with the target gas
[ 72 ]

. Techniques to improve the sample filling time include 

increasing the pressure difference across the fibre to drive the gas through, increasing the cell 

diameter (at the expense of using a larger volume cell) or introducing holes to allow gas flow or 

diffusion along the waveguide’s length, reducing the effective value of . A number of these is 

compared in Table 4. 

Ma et al have used a porous capillary waveguide as a means of reducing the sample retention time 

(and therefore the instrument response) while retaining its high aspect ratio (length 17 cm, diameter 

170 μm)
[73]

. The pore size, of between several to tens of nm, was sufficiently large to allow gas 

diffusion while being sufficiently small to cause little perturbation to the transmitted light, with 

transmission losses estimated to be 0.5 dB over 16 cm (equivalent to 3.1 dB/m) in the 1.550 μm 

region. A 1/e response time for gas diffusion of <5 s was measured, compared with response times of 

the order of minutes for similar dimensions of air clad or hollow core waveguides. 
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A number of authors have drilled holes into the sides of their fibres to facilitate either diffusion – limited 

or pumped gas sampling (see Table 4). Holes can be drilled to a high tolerance using femtosecond 

lasers and have the advantage of being convenient to use once in place. However, the estimated loss 

for a drilled hole (0.35 dB for a 1.5 μm diameter hole
[74]

) is greater than that for similarly sized gaps 

between butt coupled sections (0.044 dB
[75]

). Figure 12 shows an SEM image of a drilled hole.  

 

 

Figure 12. SEM image of a femtosecond laser-drilled hole through the side of a PBGF.  

Taken from [74].  

Hensley has reported in detail the method used to micromachine a series of holes in a PBGF
[74]

. A 

femtosecond laser (90 fs pulses of 1 mJ, 1 kHz repetition) was used to drill holes of approx 1 μm 

diameter into the fibre. To avoid optical aberrations in the drilling beam and maintain beam quality both 

inside and outside the fibre, refractive index matching fluid was used as shown in Figure 13. Slowly 

pumping the fluid through the fibre during the drilling process also had the benefit of removing debris. 

The fluid was subsequently removed by flushing the fibre with methanol and nitrogen.  

 

Figure 13. Femtosecond hole-drilling process using refractive index matching fluid and a high 

numerical aperture (NA) lens. Taken from [74].  
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Table 4. Different approaches to improving sampling response times for hollow core fibres. Figures in 

italics have been estimated by the authors on the basis of reported details. 

Technique Applied 

pressure 

/ Pa 

Inner 

diameter 

/ μm 

Total 

length 

/ m 

A: Sample 

volume / 

mm
3
 

B: Sample 

filling time  

 

Effective flow 

rate (A/B)  

/ cm
3
 min

-1
 

Ref 

Increased bore 0 1000 0.2 160 0.05 -0.1 s 190-100 [76] 

Holes formed between 4 

butt coupled sections 

0 16 0.48 0.01 250 s 

(time to 95% 

response) 

2.4x10
-6

 [77] 

10 μm diameter hole 

every 10 cm 

0 10.5 0.07 0.006 3 s 1.2x10
-4

 [78] 

Porous material (pore 

size tens of nm)  

0 170 0.17 4 <5 s 0.05 [73] 

Pressure driven across 

whole length 

10
5
 12.5 0.3 

0.7 

2.7 

0.04 

0.09 

3 

6 s 

28 s 

3 hrs 

4x10
-4

 

2x10
-4

 

1.5x10
-5

 

[42] 

50 μm gap between butt 

coupled fibre ends, 

vacuum applied 

10
5
 10 2 0.16 4 s 2.4x10

-3
 [54] 

Series of 50 μm 

diameter holes drilled 

approx every 15 cm (see 

Figure 10); pumped flow 

Not 

stated 

(small 

pump) 

1000 3 2.4 6 s 0.024 [67] 

4 Non-dispersive sensors  

Broadband, non-dispersive gas sensing is one of the simplest techniques to construct, and its great 

commercial significance is perhaps a result of this. Similar broadband measurements can be made in 

the mid infrared (in traditional non-dispersive infrared or NDIR), near infrared and UV / visible regions 

of the spectrum. Sensors can be built that are very compact, with NDIR sensors in recent times being 

built into a standard form factor consisting of a 16mm long, 20mm diameter cylinder. These sensors 

are low cost, having few components (a simple microbulb light source, gold coated reflective light path 

and integrated detector containing two or more filtered detection channels). For some gases, notably 

carbon dioxide, alternative (non-optical) technologies are unsuitable and therefore CO2 detection in 

low-cost, mass market applications often incorporates an NDIR sensor. These applications include 

heating, ventilation and air conditioning (HVAC) control, industrial safety especially in the brewing 

industry (CO2 is an asphyxiant), and capnography (the measurement of time-resolved carbon dioxide 

concentration in exhaled breath) for patient monitoring for example during anaesthesia.  
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4.1 Principle of operation 

Typically, emission from a broadband source (such as a microbulb
[79]

) is passed through two filters, 

one covering the whole absorption band of the target gas (in the active channel), and the other 

covering a neighbouring non-absorbed region (the reference channel). Both filters must be carefully 

chosen to ensure that, ideally, no other gas species present are likely to be absorbed within their 

transmission windows. In modern NDIR designs, it is common for both detector channels, including 

filters, to be integrated into a single package, for example in a TO9 can
[80]

. Further miniaturisation may 

also result from work to integrated detectors and filters on a single base substrate
[81]

. Typical filter 

characteristics for CO2 measurement are shown in Figure 14, alongside the gas absorption spectrum.  

NDIR gas sensing relies on the strength of optical absorption in the mid IR, which can be of the order 

of 100 times greater than that in the near IR. Thus, even with short pathlengths (3-10 cm), using 

relatively unsophisticated sources (microbulbs) and uncooled detectors (pyroelectric or thermopile), 

respectable limits of detection may be achieved (eg 10-50 ppm for CO2 
[82]

), and detection limits as low 

as 1 ppm can be obtained using more sophisticated benchtop equipment
[83]

. 

 

Figure 14. Illustration of NDIR measurement principle. The absorption spectrum of CO2 (100% vol, 

1 atm, calculated from Hitran
[20]

) is superimposed on the transmission spectra of active and reference 

channel filters (approximated from ref [80]) 

Transmission through the active channel comprises the integrated gas absorption: 

      0 dS AI I E T exp         (5) 

Where Es is the emission envelope of the source and TA is the transmission of the active channel filter. 

For low αℓ, equation (5) is again linear with α, and therefore with gas concentration.  

The reference channel is used to compensate for changes in the emission of the source, which are 

assumed to affect the reference and active channel wavelengths in equal proportion. In the case of 

incandescent sources, these changes tend to result from either (i) temperature fluctuations of the 

filament, or (ii) gradual blackening of the inside of the glass envelope caused by filament evaporation; 

in either case the assumption is valid to first order. 
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In the region of linear operation, we can adapt equation (2) to give; 

 
0

1 A

A

I

I
    (6) 

Where the subscript A denotes the active channel, and α’ is a pseudo absorption coefficient that 

follows from equation (5). Assuming that, in the absence of gas, the light transmitted through the 

reference channel is proportional to that transmitted through the active channel, we have; 

 0

0

1 R A

A R

I I

I I
    (7) 

Where the subscript R denotes the reference channel. The value of I0R/I0A may be determined by 

flushing the sample cell with clean air. Figure 15 shows a schematic diagram of a simple NDIR gas 

sensor. 

 

Figure 15. Schematic diagram of a typical non-dispersive gas sensor with optical pathlength in the 

range 3-20 cm. The source and detector are usually placed inside the cell to avoid baseline drifts 

caused by variations in the background concentration, which are particularly important in the case of 

CO2 measurements. 

Because broadband light sources are often highly divergent, detection limits over long pathlengths can 

be dependent on the source power emitted within a defined spectral window, and the detector noise. 

For the latter, a normalised figure of merit may be used, the specific detectivity or D*, equal to the 

signal to noise ratio (SNR) when used in uniform irradiance, normalised for detector area Ad and 

measurement bandwidth Δf. 

 dA
D

NEP

f
*


  (8) 

Where NEP is the noise equivalent power. The units of D* are typically expressed as cm.Hz
1/2

.W
-1

.  

The performance of NDIR systems can be estimated in terms of the minimum detectable change in 

optical power, ΔI/I. For NDIR the figure corresponds to a noise equivalent absorbance where the 

“absorbance” concerned is an integrated effective absorbance over the measurement band. 

Aleksandrov et al have claimed an NEA better than 10
-3

 (100 ms response time)
[84]

. In this case, a 

minimum detectable CO2 concentration of 25 ppm was estimated, using a 4 cm pathlength. 

Among many commercial implementations of this technology, the Li-Cor open path CO2 / H2O 

analyser is notable for its good performance over long periods of unmanned operation
[ 85 ]

. The 

instrument achieves a reported limit of detection of 0.11 ppm CO2 with an optical pathlength of 

12.5 cm, operating in the 4.2 μm measurement band. Its equivalent NEA was not reported, however 

comparison with the work of Aleksandrov et al above, in the same wavelength band, yields an 

estimate in the region of 10
-5

. For applications in eddy flux covariance measurement of greenhouse 

gas inlet gas outlet 

filters broadband 
source 

dual element 
detector 
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gas fluxes, accuracy is also a prime concern, and this has been reduced to 1% of the reading by 

careful consideration of a range of instrument factors. 

4.2 Light sources for NDIR 

Here we consider broadband sources used in non-dispersive measurements; lasers are considered 

later in section 6.3. The microbulbs used in conventional NDIR sensors have two main advantages; 

their spectral emission is relatively high (eg 2 mW per steradian in a FWHM bandwidth of 0.17 μm at 

4.2 μm
[86]

) and the cost is low ($1-2 
[86]

).  

However, as microbulbs are typically operated up to 3000 K, their emission can contain a significant 

proportion of visible and short wave IR radiation which is not used in the measurement
[87]

. Puton et al 

have claimed that this additional radiation may cause spurious detection signals
[88]

, presumably if a 

small proportion of it passes unblocked through the filters and onto the detector. Microbulbs also have 

limited electronic modulation frequencies, up to 10 Hz being typical. Thermal detectors also tend to be 

optimised for use at low frequencies, with the result that 1-2 Hz operation is common, at which 

frequency 1/f noise can be problematic. For certain applications, such as capnography, faster 

response times also dictate the use of frequencies of 30 Hz or more
[89]

. A final disadvantage of the 

standard microbulb is that its glass envelope has negligible transmission at wavelengths longer than 

5μm
[79]

, and therefore for certain gases that absorb at longer wavelengths, alternative packaging is 

required. Emerging sources are often packaged in TO cans, enabling the use of flat windows that are 

available in a wide range of IR- transmitting materials. 

Much recent research has therefore concentrated on development of sources that are both more 

spectrally efficient and capable of more rapid modulation frequencies. For improved modulation 

frequencies to have the greatest impact, thermal detectors also need to be optimised for higher 

frequency operation, otherwise semiconductor detectors (eg PbSe), which have bandwidths of kHz or 

more, must be used. The latter have improved D* values but are more costly and often require cooling. 

The new sources can be categorised as follows; 

 thin incandescent membranes, based on MEMs technology, some of which have engineered 

high emissivity surfaces, 

 membranes with structured surfaces designed to improve their spectral efficiency at a given 

wavelength, 

 light emitting diodes (LEDs). 

 

Figure 16. Emission parameters for a 1.7×1.7 mm thermal emitter (Patinor 15-22). Taken from [90]. 
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IR emitting membranes are essentially thin, flat equivalents of the coiled filaments used in 

conventional microbulbs. Their emission spectrum closely follows the Planck emission curve for a grey 

body (a blackbody whose emissivity is less than unity). Low temperature operation (600-1400°C) gives 

improved spectral efficiency for the mid IR region and longer device lifetimes. MEMS manufacturing 

methods can be employed to develop thin films, either suspended in air or deposited as layers on a 

ceramic substrate, which can be modulated quickly because of their low thermal mass. Figure 16 

shows typical emission parameters. 

Modulation frequencies (3 dB points) of over 10 Hz have been achieved by several groups
[91,92,93,94]

. A 

maximum modulation frequency of 30kHz has even been proposed for a design with very small 

dimensions and therefore reduced thermal mass (30 μm × 10 μm × 0.8 μm) 
[ 95 ]

, however the 

compromise is a reduction in the total emitted power (in this case to 430 nW), which for a blackbody is 

directly proportional to the emitting area. One way of circumventing this compromise is to build an 

array of multiple emitters that are modulated synchronously. Cozzani et al have demonstrated 60 mW 

output in the range 9-12 μm with a 4×4 array of 1.5 × 1.5 mm emitters
[96]

, however their modulation 

frequency was not reported. An example of a single emitter is shown in Figure 17. 

   
 (a) (b) 

Figure 17.Example IR emitter fabricated from SiO2–on–Si (silica on insulator, SOI) MEMS technology. 

(a) Mask layout, (b) visible emission recorded at 1000°C, taken from [97]. 

 

Different coatings have been applied to confer improved properties, namely platinum black for 

increased emissivity compared to a plain metal surface
[98]

, SnO2:Sb for improved long-term stability at 

high operating temperatures (giving an estimated lifetime of 10 years at 950°C 
[97]

) and Si3N4 for longer 

wave (9-12 μm), lower temperature (600°C) operation
[96]

.  

Microstructured coatings, with features on a scale similar to the target wavelength, have been used to 

improve spectral efficiency, though these have not yielded spectral emission above the level dictated 

by the Planck emission curve for unit emissivity. It has been shown that photonic crystal structures 

consisting of simple layer stacks or three dimensional structures
[99,100]

 can give a spectrally selective 

output, with low emission in the region of photonic bandgaps. Chan et al have proposed simple 

structures which yield distinct peaks at particular wavelengths 
[ 101 ]

, in principle giving improved 

efficiency for detection of certain gases. A similar approach has also been experimentally 

demonstrated by Puscasu et al
[102]

 (as shown in Figure 18). Their devices have been used as both 

emitter and detector (in the manner of a bolometer) for gas detection
[103]

, giving a detection limit for 

CO2 of 1600 ppm within a 24 mm pathlength. 
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Figure 18. (a) Measured emission spectrum for a photonic crystal structure consisting of an array of 

holes with lattice spacing approximately 4.2 μm (shown in inset), compared with emission from a 

blackbody of equivalent temperature and area. Taken from [104]. 

We can discuss the consequences of these developments for gas detection. Comparison of spectral 

emission in Figure 18 with the filter profiles in Figure 14 reveals a number of points. Firstly, device 

emission in the active channel has a sharper peak than the filtered emission from a microbulb, such 

that the emission is not quite flat across the gas absorption band. Therefore measurements may be 

somewhat sensitive to changes in lattice spacing caused by manufacturing tolerance or ambient 

temperature changes, or to changes in the envelope of the absorption band of the target gas, which 

may also be caused by temperature changes. This may be mitigated in time by improved modelling 

and fabrication techniques aimed at optimising devices for gas detection. Secondly, this technology 

yields improvements in spectral power efficiency rather than in absolute power levels, therefore its 

impact will be greatest in portable applications where power use is of greatest concern. Finally, as we 

find for tunable diode lasers (see section 6) the ultimate availability of commercial devices will likely 

depend to a great extent on the size of the market for target gases at particular wavelengths; the more 

specific the emission wavelength, the more specific the market sectors. 

Indeed, this situation is the case for recently developed mid IR LEDs, which are designed to emit at 

wavelengths targeting particular gases. They offer superior spectral efficiency than thermal sources, 

with emission better matched to the gas absorption band
[ 105 ]

. Emission can be temperature-

dependent, as Figure 19 shows. These devices are capable of much higher modulation rates than 

thermal sources, but have only been available at relatively low spectral power levels in comparison
[83]

. 

Both attributes lend these devices to be used with semiconductor, rather than thermal, detectors, 

which have better detectivity and bandwidths of kHz or more. In fact, the same LED materials also 

allow use as uncooled semiconductor sensors with matched spectral characteristics; if used with an 

LED of the same construction, the two are referred to as an optopair. Aleksandrov et al have analysed 

SNRs for gas detection with various LED / detector combinations, with a limit of detection for methane 

at 3.3 μm or 170 ppm 
[105]

, and in later work similarly a limit for CO2 of 25 ppm
[84]

.  
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Figure 19. Typical temperature dependence of LED spectral emission, taken from [86]. The peak 

wavelength is strongly wavelength – dependent, and emitted power falls at higher temperatures. 

LEDs emit greater peak power levels when operated in a pulsed mode, however for gas detection the 

best SNRs are found with a 50/50 duty cycle square wave modulation
[103]

, thus the CW power is of 

greater interest when the best detection limits are required. However, for applications that require very 

low power, such as certain portable sensors, pulsed operation may be used to give higher efficiencies. 

For example, Danilova et al have observed peak emission of 7 mW with a 50% duty cycle and 300 mA 

current, rising to 190 mW with a 0.5% duty cycle and 1.4 A current, for 1.9 – 2.2 μm LEDs operated at 

300 K
[106]

. Here, a 50% duty cycle has 3.7x higher RMS emitted power, whereas a 0.5% duty cycle 

has 5.8x better power efficiency. 

Table 5. Sample of reported performance of room temperature mid IR semiconductor sources. 

Mechanism
a
 Active region Peak 

wavelength 

/ μm 

Power 

/ mW 

Drive 

current  

/ mA 

Duty 

ratio 

Area  

/ mm
2
 

Reference 

NL LED InAs - 1.1 200 50% 0.79 [107] 

NL LED InAs / InAsSb 4.3 0.03 200 CW 0.04 [108] 

NL LED InAs / InAsSb 4.8 0.01 100 50% 0.02 [109] 

NL LED 
GaSb / GaInAsSb 

/ AlGaAsSb 
1.95 2.5 400 CW 0.09 [110] 

OP PbSe 4-5 2 5000 CW 0.2 [111] 

QC LED 
InAs / GaInSb / 

AlSb 
3.8 0.22 15 CW 0.01 [112] 

NL LED InAlSb 5.3 0.27 100 CW 1 [113] 

NL LED InAlSb 4.27 0.3 250 50% 0.07 [114] 

EL LED InAs 3.3 0.17 200 50% 0.2 [115] 

a NL negative luminescence, OP optically pumped, QC quantum cascade (see section 6.3), EL 

 electroluminescence 
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In 2002, Smith et al completed a survey of LED characteristics for the period 1996-2001 
[86]

. Much of 

the cited work exploited a phenomenon known as negative luminescence (NL)
[ 116 ]

. Since then, 

alternative light emission mechanisms have been observed including electroluminescence (EL) and 

emission from quantum cascade LEDs (QC LED). Semiconductor devices based on optical pumping 

(OP) have also been described; although not strictly LEDs, we include them here. From a gas 

detection perspective the emission mechanism is a means to an end, enabling higher powers and 

greater wavelength coverage. Following on from the review of Smith et al 
[83]

, a sample of reported 

recent performance is compared in Table 5, but this is by no means exhaustive. 

Because of the relatively low level of light emitted from these sources, various attempts have been 

made to improve optical coupling efficiencies. Techniques applied to emitters have frequently also 

been applied to detectors in gas detection systems, and are summarised in Table 6. 

Table 6. Summary of techniques used to improve output coupling from mid IR LEDs. 

Technique 
Improvement factor Reference 

experimental predicted 

High NA immersion lens 5 16 [117] 

Inclined mesa sidewalls and surface roughening 2 - [118] 

Resonant cavities 2 22 [119] 

Surface grating structures plus rear mirror - 22 [120] 

2D photonic crystal surface structures Up to 6 - [121] 

 

UV LEDs are now commercially available
[122]

 with centre wavelengths from 240±5 nm and typical 

emission ≥ 0.3mW. Under research are LEDs with shorter wavelength emission; Figure 20 illustrates 

the latest results, including AlGaN based LEDs with centre wavelengths down to 222 nm
[123]

, and AlN 

based LEDs down to 211 nm
[124 ]

, almost providing sufficient coverage for the entire 200-400 nm 

region.  

The advantages are similar to those provided by mid IR LEDs, with light being easier to control, having 

a smaller emission area, enabling better use of the overall output. Although power levels are low, 

spectral power (power available in the emission bandwidth) is very high, and power efficiency is 

relatively high. Ultimately, lifetimes should be longer than for other lamp technologies such as 

deuterium or xenon flashlamps. Finally, source flicker noise, which can be the limiting noise in high 

quality spectrophotometry
[18]

, tends to be lower for LEDs than for incandescent or discharge 

sources
[125]

, and sources may be more easily modulated to give better noise rejection. An issue that 

remains is that the centre wavelength of LED emission is generally temperature-sensitive, such that 

temperature control or compensation may be required.  
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 (a) (b) 

Figure 20. Recent spectral emission results of UV LED research, covering centre wavelengths from 

211 nm to 282 nm: (a) AlGaN based LEDs, taken from [123], (b) an AlN based LED, taken from [124].  

4.3 Non-dispersive gas cell development 

Over the last decade, the commercial market has become populated with small footprint gas sensors 

based on the NDIR principle
[126,127]

. The dimensions of these sensors (a cylinder 20 mm diameter x 16 

mm high) follow a gas industry standard format. Thus, equipment manufacturers need not alter the 

dimensions of their products when switching to NDIR sensors, and in some cases even the first stage 

electronics design is also similar. However, the small footprint is limiting and other configurations are 

also of interest, especially where they provide an increased pathlength. 

Research in this area has concentrated on the following requirements: (i) the need for compact cells, 

(ii) the need to maximise the proportion of light coupled through the cell to the detector, in order to 

overcome the detector noise limit, and (iii) in applications requiring very low limits of detection, the 

need for very long pathlength cells. 

A key to the miniaturisation of this technology has been the integration of multiple detectors and filters 

into a small single package, typically a 9mm diameter TO can. Fonollosa et al have extended this to 

include an high NA Fresnel lens formed in silicon (transmissive in the mid IR) to make a light-efficient 

and ultra-compact dual band detector, as shown in Figure 21 
[128]

. The authors also proposed use of 

an antireflection coating, to lessen the effects of silicon’s relatively high refractive index. The detector 

module has been integrated into a system for measuring ethylene in agricultural storage, with a 

30 ppm detection limit
[129]

. 
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 (a) (b) 

Figure 21. Integrated filters, detectors and Fresnel lenses in a TO8 can. (a) Cross-section, (b) 

constructed device in a 9mm diameter TO8 can. Taken from Fonollosa et al, 2008
[128]

.  

Non-dispersive gas sensing has been brought a step closer to dispersive spectrophotometric analysis 

by the development of IR filter arrays. Fonseca et al have demonstrated a limited 3×3 array of 

thermopiles each with its own specific narrowband filter, all packaged in a 6 mm device as shown in 

Figure 22 
[130]

. It is claimed that the following gases may be discriminated: (i) ethanol, acetone and 

isopropanol, (ii) CO2 and methane. Linear filter arrays are also now available from commercial 

manufacturers
[131]

. 

    

 (a) (b) (c) 

Figure 22. Filtered thermopile array for multispecies NDIR, taken from [130]. (a) Interference filters, (b) 

thermopile array, (c) assembled device.  

At the other extreme of gas “cell” development, NDIR spectroscopy has formed the basis of remote, 

open path gas leak imaging in industrial applications using thermal imaging arrays operating in mid IR 

regions that overlap the absorption spectra of gases of interest. So-called passive gas imaging relies 

on the use of a background source of radiation, and a filtered detector provides gas selectivity. 

Reference detectors are typically not used; the presence of a gas leak is either inferred by eye from an 

image
[132]

, or by subtraction of the background scene in the absence of gas
[133]

. As long as there is a 

Fresnel lens array 

Optical filters 

Thermopile 
array 
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temperature difference between the background scene and the target gas, contrast will result in the 

image. Figure 23 shows a false colour image of a low pressure gas leak taken under ideal conditions 

(with a heated background) using background image subtraction. However, the main disadvantage of 

this technique is that it does not fail safe unless sufficient temperature contrast can be guaranteed; 

then, the lack of gas in an image does not guarantee the lack of a leak. 

   

 (a) (b) 

Figure 23. (a) False colour image of an outdoor methane leak of 5 litre min
-1

 with a temperature 

contrast ΔT of approximately 30K, modified from [133]. (b) Representation of measurement principle. 

4.4 Correlation spectroscopy 

Correlation spectroscopy can be considered a development of NDIR, in which the broadband filter is 

replaced by or augmented with a reference gas cell containing a known quantity of the target gas. With 

a sufficiently large absorption coefficient in the cell, only light with wavelengths that are not absorbed 

by the target gas can reach the detector. The reference detector output is compared with that from an 

equivalent channel containing no reference gas; by analogy with NDIR we will call this the active 

channel. By normalising the two intensities and subtracting them, it is therefore possible to calculate 

the level of light absorption at wavelengths corresponding only to those absorbed by the target gas. 

Figure 24 shows a simple example of relevant spectra at different stages in the system. 

Correlation spectroscopy can therefore provide selectivity to the target gas using relatively simple 

equipment, using the gas itself to provide a high resolution matched filter. Gas selectivity is 

exemplified by Lou et al who developed a system using a low cost multimode diode laser to detect 

CO2 and CO specifically in mixtures of the two, obtaining accuracies of 2% and 1% respectively
[134]

. 

 

TB < TG 

 

 

background 
at temp TB 

 

TB = TG 

gas at 
temp TG 

 

Camera TB > TG 

 

no 
contrast 

approx 
scale 
0.5m 



 Page 29 

 

Figure 24. Example of correlation spectroscopy using a UV LED as a source, illustrating spectra for 

source emission, target gas absorption, and received light at the two detectors. Taken from [135].  

The methods by which the reference beam (in the presence of gas in the reference cell) and the active 

beam are differentiated accounts for the main design differences between correlation systems. Ideally, 

the two beams will be well matched in all respects other than the absorption (or not) of the reference 

gas. However, in practice some separation of the beams becomes inevitable such that researchers 

need to correct for minor differences in reflectivity of cell windows or interference fringes generated by 

low finesse etalons in the system
[23]

. Such differences can be responsible for the limiting signal to 

noise ratio and drift effects in these systems. It was for this reason that Dakin et al developed a 

number of techniques with which to modulate the actual gas absorption within the reference cell itself, 

via pressure modulation or the Stark effect
[136]

, giving otherwise well matched reference and active 

beams, separated in time (at different phases of the modulation cycle) rather than space (see Figure 

25).  

A similar correlation principle can be employed using a Fabry-Perot interferometer (FPI) to provide an 

artificial gas reference with equally spaced transmission lines whose spectral position can be 

modulated. The technique can only be used to detect gases with evenly spaced absorption lines 

whose spacing corresponds to the free spectral range (FSR) of an FPI of practicable dimensions; 

fortunately this includes the IR spectra of many simple compounds whose spectra exhibit rotational 

fine structure. Vargas-Rodríguez and Rutt have built optimised systems on this basis for CH4, CO and 

CO2, each with a required FPI cavity length of between 0.5 and 3 mm
[137]

. A broadband thermal emitter 
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was used as the source and their system had an optical pathlength of 1.4 cm. Detector noise – limited 

minimum detectable concentrations were estimated to be 5 ppm, 170 ppm and 100ppm respectively 

for a 10 s response time. 

 

Figure 25. Modulation of the absorption within the gas reference cell allows a correlation system to 

have matched reference and active beams. After [136].  

If this degree of beam matching cannot be achieved, the next best option may be to match the active 

and reference beams while in the sample cell itself, this being most likely to degrade over time in an 

instrument (because of exposure to samples that can be dusty or aggressive). Dakin et al have 

developed systems based on so-called complementary source modulation
[138]

, with an estimated limit 

of detection of ΔI/I of 2x10
-6

. As Figure 26 shows, light from the two sources is modulated in 

antiphase, with the output from only one of the sources passing though the reference cell. Cheung et 

al extended this principle to use a common source, used in reference and active channels 

simultaneously, with a delay path in one causing a phase difference to appear when they were 

recombined
[ 139 ]

. They estimated a minimum detectable acetylene concentration of 6 ppm over a 

pathlength of 6 cm, corresponding to a minimum detectable change in light level ΔI/I of 5x10
-7

, 

however this was not explicitly demonstrated. Corman et al have also developed a micro miniature 

correlation system in which the beam separation was less than 2 mm and the total path traversed by 

the light was of the order of 10-20 mm
[140]

. This is likely to reduce the scale of thermal mismatch as 

well as providing a compact and low power system, however the limiting performance of the device 

was not explored. Finally, Austin et al have developed a correlation system around a reference cell 

made from photonic bandgap fibre with a hollow core of diameter 14.4μm
[141]

. The advantages of this 

system were a reduced reliance on bulk optics and a very small reference cell volume (5 μl).  

 

Figure 26. A gas correlation system based on the complementary source modulation technique. After 

Dakin et al [138].  
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Problems with the correlation approach can occur with linearity and calibration
[137]

, and with gas 

selectivity, should a proportion of the target gas lines overlap with those of other species
[23]

. Changes 

in atmospheric temperature and pressure in either the sample or reference cells can affect the 

linewidth of narrow gas absorption lines and therefore introduce calibration errors
[23]

. A further problem 

is the need to maintain a reference cell with a fixed concentration of the target gas that is stable over 

the lifetime or calibration interval of the instrument, ruling out the use of reactive or unstable gases. 

Indeed, Kebabian et al have found that, in the case of NO2 detection, a temperature-dependent 

equilibrium between the target gas and its dimer in the reference cell caused thermal drifts in the 

output at the level of 0.5 ppm K
-1

, responsible for the limiting performance of their instrument
[142]

. 

Finally, correlation spectroscopy has found application in gas imaging through the work of Sandsten et 

al
[143]

. An image (for example of a petrochemical plant) is split through two arms of a gas correlation 

telescope, one of which contains a reference gas cell. The two images are then captured on precisely 

aligned CCD cameras and subtracted to form an image of the path-integrated concentration of the 

target gas species, which can be overlaid as a false colour image on a separate black and white 

image of the background scene, as shown in Figure 27. Use of the reference cell allows real-time 

subtraction of the background, allowing false colour imaging without the need to acquire a stable, gas-

free background image.  

 

Figure 27. False colour image of ethane leaking from a polyethylene plant, taken using a gas 

correlation imaging camera using background radiation as the light source. Taken from [143]. 

5 Spectrophotometry 

In contrast to the non-dispersive techniques described above, spectrophotometry is dispersive in the 

sense that the spectrum from a broadband source is dispersed by a wavelength – selective element 

such as a grating. Multiple gases may be detected provided that their absorption lines fall within the 

wavelength range of the spectrometer, and regions can often be found with little or no absorption to 

act as a reference, in the manner of the reference measurement in NDIR. The ability to screen for the 

presence of a large number of unknown compounds, and to identify and measure their concentrations, 

can be important, for example for first responders in security applications
[144]

. 

In the UV-visible region of the spectrum are a number of important gases with strong absorptions such 

as the BTEX compounds (benzene, toluene, ethlybenzene and xylene), NOx compounds, ozone, 

hydrogen sulfide (H2S) and sulphur dioxide (SO2) amongst others. Absorption strengths in the mid IR 
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are also sufficiently strong for good quality spectrophotometric measurements of gases to be made. 

However, use of the near IR spectrum is limited by the relatively weak absorption strengths of gases 

coupled with the limited signal to noise ratios of spectrophotometers compared with alternative 

methods (non-dispersive and tunable diode laser), the latter using discrete detectors and analogue 

first stage amplification. 

UV absorption spectroscopy is the basis of a number of commercial techniques to analyse gases, one 

example having a claimed sub ppm limit of detection for H2S, mercaptans and SO2 in process 

streams
[ 145 ]

. Typical broadband light sources include deuterium or xenon lamps in the UV and 

incandescent lamps in the near IR. These may be fibre optically coupled so that the electronics can be 

housed separately from the gas cell.  

However, UV spectral measurements of different gas species frequently overlap; to discriminate 

individual gases, spectra must be deconvolved, often using a partial least squares method. Because 

individual gas lines are often not fully resolved, the precise alignment of those lines with the spectral 

bins used to sample them can affect the measurements to a significant degree (up to 70% error
[146]

). 

For this reason, developers often calibrate their instruments using spectra measured with the 

instrument itself, rather than with library spectra. The nature and variability of the spectral background 

is also an important consideration when using such techniques, and in some applications may be the 

most important performance-limiting factor.  

Perhaps the most straightforward configuration for compact spectrophotometry is a simple single pass 

gas cell, fibre optic coupled at one end to a light source and at the other to a diode array 

spectrophotometer, as shown in Figure 28. For example, this configuration has been used by Xu et al 

to detect 1 ppm SO2 (with a deuterium lamp and 35 cm pathlength)
[147]

 and by Degner et al to make 

sub ppm measurements of ozone, NO2 and SO2 (LED source and 4 cm pathlength)
[148]

.  

 

Figure 28. Simple configuration for spectrophotometric gas sensing using a fixed pathlength gas cell. 

After [147].  

A second configuration in common use is used to make open path measurements over distance of 

tens to hundreds of metres, for environmental applications such as urban air quality monitoring or 

measuring volcano emissions. This is often (though not exclusively) combined with a spectral 

processing technique known as DOAS (differential optical absorption spectroscopy) in which, as the 

name suggests, measured spectra are pre-processed to give a first differential of the absorption as a 

function of wavelength
[149]

. Subsequent processing to extract overlapping absorption bands is eased 

by the reduced spectral baseline and increased sensitivity to sharper peaks. Absorbances as low as 

2 x 10
-5

 to 2 x 10
-4

 can be detected
[ 150]

. More advanced algorithms have also been developed to 

enable low concentration measurements to be made over shorter pathlengths typical of industrial 

applications
[151]

. 
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5.1 Spectrophotometer elements 

New designs for compact spectrophotometers have resulted from both advances in manufacturing 

techniques and from ingenuity on the part of developers. The field has been comprehensively 

reviewed by Wolffenbuttel in 2004
[152]

, Crocombe in 2008
[153]

 and Schuler et al in 2009
[154]

 (MEMs 

devices). The aims are to create systems that are simple, compact and have low power consumption, 

for routine use in permanently installed or portable monitors, with the added option of optical fibre 

coupling such that the light source and spectrometer may be located remotely from the sample. A 

sample of recent developments is summarised in Table 7. Some have been developed primarily for 

near IR spectroscopy of liquid samples in the process industries and are therefore of indirect interest 

to gas detection, but have been included for completeness. 

There has been great progress in the development of small (a few cm long) diode array spectrometers 

capable of measuring spectra in the UV-visible and near IR with moderate to good spectral resolution 

(0.04 nm in the UV
[155]

), sufficient to identify individual gas species. Figure 29 shows a schematic 

diagram. This has been combined with developments in Si or InGaAs diode arrays using CCD or 

CMOS technology. However, InGaAs arrays are relatively costly, bringing instrument prices to around 

$20,000
[156]

, therefore in this region alternative solutions have been sought that use discrete detectors, 

often using developments from the telecommunications industry (for example in TDLS – see section 

6). 

 

Figure 29. Schematic diagram of a CCD or CMOS array spectrometer.  

A number of groups have developed MEMs-actuated Fabry-Perot filters for use in spectroscopy
[154]

. 

For example, Neumann et al have developed and commercialised a tunable Fabry-Perot filter to 

replace the discrete filters typical of NDIR detector modules
[157]

. Their design employs a MEMS based 

etalon with an effective finesse of 46, giving a filter bandwidth of 86 nm at a centre wavelength of 4 μm 

(Δλ/λ ~ 2%). The effective tuning range that can be achieved using a single device could be used to 

measure several gases with neighbouring absorption bands, for example Figure 30 shows tuning over 

the range 3.9 – 5 μm. The team has also extended the wavelength capability to cover the 8-11 μm 

range
[158]

. 

Vaisala have integrated a similar tunable Fabry-Perot filter into their Carbocap
TM

 carbon dioxide 

monitor, capable of detecting 30ppm CO2 at 4.2μm
[159]

. The principle has been taken a stage further 

by the fabrication of a full miniature optical bench on a 14 mm base
[156]

 (see Figure 31), which has 

been commercially developed by Axsun Technologies Inc.  
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 (a) (b) 

Figure 30. Tunable MEMS based Fabry-Perot filter for use in NDIR based gas detection. (a) Device 

design, (b) transmission spectra obtained at different drive voltages. Taken from [157].  

 

 

Figure 31. Micro-optical bench (14 mm long) incorporating free space micro optics, a tunable Fabry-

Perot filter and fibre optic coupling. Taken from [156]. 

Another theme has been the development of compact interferometric spectrometers, including Fourier 

Transform (FT) spectrometers (FTIR or FTUV), which measure an interferogram whose transform 

yields the required transmission spectrum. FT spectrometers have two well-known advantages, both 

of which contribute to an improved signal to noise ratio compared to a spectrometer using a moveable 

grating with a discrete detector. These are higher optical throughput (Jacquinot’s advantage) and the 

so-called multiplex advantage, whereby a spectrum containing n spectral bins requires a 

measurement time t  n for the moveable grating spectrometer compared with t  n
1/2 

for a Fourier 

Transform spectrometer
[18]

.  

High quality laboratory FT spectrometers are typically based on a Michelson interferometer, one arm 

of which employs a moving mirror, the spectral resolution being inversely related to the optical path 

difference resulting from mirror displacement. Therefore high resolution FT spectroscopy necessarily 

requires a large footprint instrument. These spectrometers can also be complex and difficult to 

maintain, so the development of compact interferometric spectrometers containing no moving parts, or 

MEMS-actuated parts, has been an important achievement. Nevertheless, a reduction in size 
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necessarily results in lower resolution, as optical path differences in the interferometer, however 

created, are shorter.  

Chao et al have employed liquid crystals (LCs) which, having the largest electro-optic effect of any 

material, are able to create a relatively large optical path difference within a relatively compact 

distance, replacing the moving mirror in a standard Michelson based FT spectrometer. An FT 

spectrometer (see Figure 32) was developed around a 1 cm long LC clad waveguide to give over 

1 mm optical path difference with no moving parts, and a prototype has been used to measure various 

absorption features including acetylene gas at 1.540 μm
[ 160 ]

. The authors suggest that longer 

waveguides or multipass designs could deliver optical path differences of 1-10 cm in future devices to 

give even high spectral resolution. 
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Figure 32. (a) Conventional layout of an FT spectrometer using a Michelson interferometer. (b) Novel 

introduction of an optical path difference (OPD) using a liquid crystal device. After [160].  

Crocombe has analysed the scaling rules for high quality spectrophotometers, governing the effect on 

apparent source brightness and étendue of a decrease in dimensions of a factor 
[161]

.
.
NIR and UV-

visible spectrometers, considered to be shot noise limited, would suffer a degradation in signal to 

noise ratio by a factor of . In contrast, mid IR spectrometers, which are generally limited by detector 

noise, would suffer a degradation of factor . The most effective mitigation in the mid IR is to use 

multiplexing techniques (simultaneously detecting light falling into more than one spectral bin at a 

time)
[161]

. In the UV-visible and near IR, approaches are also based on improving source brightness 

and / or throughput.  

Other limiting factors for spectrometers include “spectral stray light” caused by light scattering from 

surface imperfections or imperfect light baffling
[168]

 (typically at a level of 0.1% in commercially 

available UV-visible diode array spectrometers
[ 162 ]

), and source flicker noise in incandescent or 

discharge sources (typically at a level of ΔI/I ~ 10
-3

-10
-5 [18]

). If stray light is caused by random 

scattering, it is likely to increase by a factor of 
2
 in the above analysis, whereas source flicker noise 

would result in a constant SNR regardless of the spectrometer size.  
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Table 7. Comparison of recently developed miniature spectrophotometers. Note that these have not all 

been used in gas detection. 

Technical basis Wavelength 
range λ 

Resolution 
Δλ

a
 

Footprint 
a,b

 / 
mm 

Time 
constant 

Limitation Ref 

FT using Wollaston 
prisms 

200-270 nm 0.75 nm ~ 200 x 200 x 
400 

5s Benzene 
2ppm.m 

[163] 

DOAS using miniature 
diode array 

200-850 nm 2 nm 250 4s NO2 3 ppb [164] 

FT with moving grating 250-800 nm 15-21 nm  > 150 Not stated Not stated [165] 

Spatial heterodyne 
interferometry 

307–310.5 
nm 

0.0058 nm 470 x 360 x 
240 

8s O3, ΔI/I ~ 
0.01-0.003 

[166] 

Holographic FT with 
wavefront shearing 

330nm – 
1μm 

3-25 nm > 30  Not stated ΔI/I ~ 10
-5

 [167] 

Grating spectrometer 
injection moulded in 
polycarbonate 

380-790nm 
 
680-1100nm 

7-10 nm 
 
7-8 nm 

~ 15 x 50 x 40 Not stated Stray light 
0.2% 

[168] 

Dual MEMS grating on 
CCD camera 

550-750nm 3 nm ~ 10 x 20 x 10 Not stated Not stated [169] 

Linear variable optical 
filter on CMOS camera 

580-720nm 2.2 nm ~ 50 x 50 x 50 Not stated Not stated [170] 

MEMS tunable Fabry-
Perot filter 

1-2.5 μm 0.025 nm 27 x 12 x 8 4s ΔI/I ~ 2 x 
10

-4
  

[156] 

Spectral cut-off of tapered 
leaky waveguide 

1.52-1.62 
μm 

1.5 nm < 10 Not stated Not stated [171] 

FT using arrayed 
waveguide grating 

1.548 – 
1.562 μm 

0.43 nm 16 x 20 Not stated Not stated [172] 

Liquid crystal waveguide 
FTIR 

1.45-1.7 μm 3-5 nm to 
<0.5nm 

~ 150 x 10 x 
50 

~ 0.5s Not stated [160] 

Dispersed 
supercontinuum source 

1.1-1.7 μm 0.04nm Not stated 1 ms Not stated [173] 

FT using MEMS 
reconfigurable grating  

2-4.5 μm 8-40 nm 
(20 cm

-1
) 

30 x 30 × 55 5s CO2 
60ppm.m 

[174] 

Standard Michelson FTIR 2.5-15μm 1-45nm 
(2 cm

-1
) 

440 x 310 x 
190 

Not stated Not stated [144] 

Spatially modulated prism 
interferometer 

7.5-12.5μm 6-16 nm 
(1 cm

-1
) 

~ 300 x 300 x 
300 

Design 
only 

ΔI/I < 0.01 [175] 

a Figures in italics have been calculated or estimated based on information supplied in each 

paper. 

b The footprint of the whole spectrometer is provided (including coupling optics where 

appropriate), not just the spectrally selective element. 

 

A number of alternative spectrometer designs is compared in Table 7. What is apparent is the diversity 

of technological approaches and of performance specifications in this field, resulting from a great 

variety of applications for field based spectrophotometry. For example, a high resolution spectrometer 
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has been configured for measurement of ozone with a spectral range of 307–310.5 nm and resolution 

of 0.0058 nm
[166]

, fully resolving the gas absorption lines but with no ability to measure other gases. In 

contrast, a micro FT spectrometer with a range of 2-4.5 μm has a resolution of 8-40 nm
[174]

. Taking 

CO2 detection as an example, this would be insufficient to resolve the individual gas lines, but with 

higher effective resolution than the bandwidth of filters used in NDIR, sufficient to measure a number 

of gas absorption bands. There are clearly compromises to be made between the need to identify 

individual species, the number of gases to be detected and limits of detection for those gases. 

Dell et al have pointed out that for many industrial spectrometer applications, high resolution is not 

necessarily required
[176]

. For many liquid or solid phase samples, measurement of individual species is 

not needed; rather one requires quantification of some derived parameter such as classification of 

crude oil, or total oxygen demand. An equivalent example in gas analysis might be measurement of 

calorific value of natural gas mixtures. Dell et al claimed that use of low resolution spectra (insufficient 

to resolve spectral features) combined with chemometric techniques can deliver adequate 

performance in these applications
[176]

.  

6 Tunable diode laser spectroscopy 

With tunable diode laser spectroscopy (TDLS), the emission wavelength of a narrow linewidth laser 

diode is scanned across an individual gas absorption line at very high resolution
[ 177 ]

. The 

measurement is effectively self-referenced by comparing the central peak absorption to the zero level 

on either side of the line. Working at such high resolutions therefore gives the following advantages: 

 High signal to noise ratios resulting from fully resolved gas lines and a narrow effective baseline. 

 A high degree of specificity to the target gas, as long as a region can be found for which the 

narrow individual absorption line of the target has no overlap with lines of potential interferents. 

This can often be achieved for small molecules, even for species within the same family (for 

example detection of methane against a background of other hydrocarbons
[10]

). 

 Fast operation; the wavelength of many diode lasers can be modulated at frequencies up to MHz, 

however commonly used signal recovery electronics is often limited to around 100 kHz. 

TDLS has been comprehensively reviewed elsewhere
[1,178,179]

, therefore the purpose of this section is 

to bring these reviews up to date with recent developments. 

6.1 Basic principles of TDLS 

For simple, single pass or folded path gas cells there are two commonly used techniques for TDLS, 

termed direct spectroscopy or line scanning, and wavelength modulation spectroscopy. Instruments 

based on both these techniques have been commercialised
[180]

. A general schematic that includes 

both approaches is given in Figure 33. In standard laser diodes, typically distributed feedback (DFB) 

lasers or vertical cavity surface emitting lasers (VCSELs), the emission wavelength is tuned by 

changing the temperature of the laser cavity over a few seconds via a Peltier element or more rapidly 

via the injection current at modulation rates that can extend into the MHz regime
[181]

. The latter also 

has the (usually undesirable) result of increasing the emitted power, known as residual amplitude 

modulation (RAM), shown in Figure 33(a). 
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Figure 33. Conventional configuration for TDLS employing a laser diode, showing detected signals as 

a function of laser drive current for (a) direct scanning of the gas line, or (b) 2
nd

 harmonic wavelength 

modulation spectroscopy (2f WMS). The effects of residual amplitude modulation can be seen in the 

rising background signal in plot (a). 

Direct spectroscopy involves scanning the output of a laser diode across one or more gas lines in a 

narrow range, by ramping the laser diode injection current. The resulting transmission shows a rising 

background (the laser’s output intensity increases with drive current) with a dip corresponding to the 

gas line absorption, as shown in Figure 33 (a). By carefully subtracting a zero reference, or by taking a 

ratio of the detected signal to the input light intensity, the gas absorption alone can be recovered. The 

potential for multi - gas detection is illustrated by a scan taken from a tunable DFB laser diode in 

Figure 34. 

 

Figure 34. Example of a dual gas measurement of methane and ethane using a wavelength scan from 

a single DFB laser. Taken from reference [182]. 

It is common to use a spectral fitting technique (typically the Marquardt - Levenburg algorithm
[183]

) to 

determine the gas concentration from a line trace. Spectral fitting allows several gas lines to be 

separated from a single trace, and has for example been used to detect methane and ethane levels in 

natural gas, with a limit of detection for methane at the ppm level using a 20cm pathlength
[184]

.  

Using wavelength modulation spectroscopy (WMS), an AC modulation signal is applied to the laser 

diode, giving a sinusoidal modulation of the emission wavelength that acts as a dither over absorption 

features
[177]

. The method confers two advantages: an improved signal : noise ratio resulting from 

improved sensitivity to curved spectral features of the appropriate width, and a zero baseline, 

improving zero stability. Gas is typically detected by recovering the 2
nd

 harmonic of the AC excitation 
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at the receiver with a lock-in amplifier, as shown in Figure 33. The typical forms of different 

demodulated harmonics are shown in Figure 35 for a single gas line.  

 

 

Figure 35. Generation of different harmonic signals in wavelength modulation spectroscopy (WMS). 

(a) DC scan through a single gas line, background-corrected to remove the residual amplitude 

modulation for clarity. (b) Form of 1f, 2f and 3f harmonics as a function of position in the current scan, 

displaced for clarity. The RAM creates a small but measurable DC offset on the 1f signal.  

The position of the absorption line in the trace can vary with operating conditions. It is not the gas 

absorption wavelength that varies, but the mean emission wavelength of the laser diode, which cannot 

be determined with sufficient precision to enable wavelength control, other than by reference to the 

position of the gas line. (Indeed, gas lines are often used as wavelength standards in 

telecommunications 
[185]

.)  

The odd harmonics are antisymmetric about the line centre (see Figure 35). A PID feedback loop 

using the 1
st
 or 3

rd
 harmonic to provide an error signal ensures that the emission wavelength remains 

locked to the gas absorption line. The 1
st
 harmonic has a “DC offset”, caused by RAM, that must be 

corrected for. This offset is absent (to first order) in the 3
rd

 harmonic, making this harmonic more 

robust as an error signal, a particularly valuable feature for systems subject to a wide dynamic range 

in the level of the returned signal and / or variable levels of DC background
[186]

. However, 3
rd

 harmonic 

demodulation is rarely implemented in low cost off-the-shelf lock-in amplifiers.  

Alternatively, a slow ramp may be added to the sinusoidal dither to provide a scan of the 2f signal over 

the region of the gas line. For some measurements, the target line’s position in the scan may be 

determined by reference to a neighbouring line of a different gas, whose presence can be 

guaranteed
[187]

. Line fitting algorithms are available to determine the concentration from the entire 

lineshape rather than just its peak value
[188]

. Providing a line scan rather than a single peak value can 
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improve SNRs by enabling post-detection filtering of interference fringes with FSRs that are much 

narrower or wider than the gas linewidth. 

To optimise WMS, the so-called modulation index (ratio of the modulation amplitude to the gas 

linewidth) is typically set equal to 2.2 for recovery of the 2f signal from a Lorentzian line profile
[189]

. Use 

may also be made of the phase difference between the 2f signals due to RAM and to gas absorption, 

in order to recover the former in the absence of the latter
[190]

. This can enable complete recovery of the 

gas lineshape in the face of variable pressure and temperature. Otherwise, sensor calibration 

demands knowledge of these parameters plus the characteristic response of the laser diode, which 

can vary from device to device. Chen et al have described a set of algorithms for determining the 

required parameters in situ, avoiding frequent instrument calibration
[191]

. 

6.2 Limitations and improvements to TDLS 

Detection sensitivity in TDLS is often limited by optical interference fringes rather than the theoretical 

limit given by detector noise 
[192,193]

. The fringes stem from Fabry-Perot etalons between reflecting or 

scattering surfaces such as mirrors, lenses, optical fibre end faces, detector and laser head windows, 

semiconductor surfaces, and components of multipass cells
[177]

, and also from low levels of optical 

feedback to the laser diode
[194]

. Gas absorption linewidths are narrow (full width at half maximum of 

~5 GHz at atmospheric pressure) and therefore to resolve the gas line requires the use of lasers with 

narrower emission linewidths; tens of MHz is typical, and more than adequate for pressure broadened 

gas lines. One consequence of the narrow linewidth is the long coherence length of the laser emission 

(typically tens of metres), which means that these interference effects are unavoidable for such high 

resolution spectroscopy.  

The gas sample cells themselves have been considered to be frequent culprits
[22]

, because typical 

lengths of the order of 30 mm give rise to fringes with a free spectral range of the order of 5 GHz. 

Despite the use of wedged windows and antireflection coated optics, small Fresnel reflections often 

persist in the optical path
[177]

 or develop after a period of time in the field
[44]

. Interference can also 

result from diffuse reflections from light scattering materials
[194]

, suggesting that dust or dirt could also 

cause problems. Over time, fluctuations in temperature and / or vibrations of the cavity cause the 

interference fringes to shift in wavelength such that they cannot be removed by subtraction of a zero 

baseline.  

Techniques to reduce the effects of interference fringes include: 

 Wedging and angling of all windows, antireflection (AR) coating of windows and lens surfaces, 

and angle polishing optical fibre ends. As long as the incident light is highly polarised, Brewster 

angle windows may be used. Reflections from each optical surface must be misaligned from the 

optical path.  

 Removing the windows altogether, from both the gas cell and from the laser diode and detector 

packages. This requires very careful sample conditioning to ensure that water vapour and 

especially condensation do not reach the laser diode. 

 Filtering out fringes by applying a higher frequency jitter to the laser diode and integrating the 

signal
[195]

, or post detection filtering using high pass filters
[177]

, low pass filters
[196]

 or Fourier 

domain analysis
[197]

. However, neither approach can deliver an improvement in signal to noise 

ratios for fringes whose FSR is comparable to the gas absorption linewidth
[177]

. 
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 Mechanically modulating the fringe spacing and integrating the signal. This has been 

implemented using longitudinal dithering of optical elements
[22]

, an oscillating mirror 
[192,198]

 and an 

oscillating Brewster-plate spoiler
[199]

. While effective, this approach limits the available detection 

bandwidth and adds to system complexity. 

 For fringes that result from optical feedback into the laser cavity, the effects can be reduced using 

optical isolators, but at custom wavelengths these can cost more than the laser diode itself. A 

feature of this form of interference is that it results in a modulation of the entire laser diode output, 

so that its effect can also be reduced by subtraction of an intensity reference
[194]

, as implemented 

in balanced detection schemes.  

To improve limits of detection, it is possible to use more advanced techniques. Operation at reduced 

pressure can improve the limit of detection in the following way, for a given gas concentration. In 

conditions dominated by pressure broadening of the gas lines, the absorption linewidth according to 

equations (3) and (4) is approximately proportional to pressure. This has the effect of reducing the 

width of the spectral baseline required to self-reference the measurement, and of shifting the 

interference problem towards fringes with a reduced FSR (and longer cavity length). Both effects lead 

to improvements in the limit of detection; for example, Engelbrecht has estimated an improvement 

factor of 7 for a pressure reduction from 1 atm to 0.08 atm (by a factor of 125) 
[200]

. 

Balanced detection schemes have been used not only to reduce the effects of optical feedback, but 

also to provide first order reduction of intensity noise and other fluctuations. Engelbrecht used such a 

scheme to detect absorbances as low as 6 x 10
-7

 Hz
-1/2

 for WMS measurements using the 

configuration shown in Figure 36
[200]

. Brewster angle windows were used for the gas cell, requiring the 

use of polarisation maintaining fibre between the spectrometer and the measurement location.  

 

Figure 36. Configuration for WMS based measurement of CO and CO2 using a balanced receiver, 

taken from [200].  

High frequency WMS makes use of the fact that the laser excess noise is reduced at higher 

frequencies, often obeying a 1/f characteristic at low frequencies
[201]

, as shown in Figure 37. If the 

signal : noise ratio for the measurement is to be improved, other sources of noise and uncertainty, 

such as interference fringes, must be reduced below the level of laser excess noise. For applications 

involving low levels of returned power and therefore high gain pre-amplifiers at the detector, the 
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operating frequency may be limited by the detector bandwidth to tens of kHz. For WMS, many 

commercial lock-in amplifiers are often limited to a maximum operating frequency of around 100 kHz; 

note that this determines the maximum frequency of the highest recovered harmonic.  

  
 (a) (b) 

Figure 37. Relative Intensity Noise (RIN) of laser diodes, showing a ~1/f noise characteristic at low 

frequencies and white noise thereafter. (a) Simulated noise current density of DFB lasers, supported 

by measurements on a single diode (NEL NLK1556STB) with a RIN of −140 dB/Hz, taken from [201]. 

(b) Noise frequency spectrum of a lead salt diode laser, taken from [31].  

Frequency Modulation Spectroscopy (FMS) uses modulation at radio frequencies (RF), typically 

hundreds of MHz. Detector-limited sensitivities of the order of 10
-7

 to 10
-8

 have been achieved
[196,202]

. 

Early work with lead salt diode lasers demonstrated that increasing the modulation frequency from 

2 MHz to 200 MHz could improve the SNR by several orders of magnitude
[31]

. For such lasers the RIN 

obeyed a 1/f noise characteristic for frequencies up to the order of 100 MHz
[31]

, therefore noise was 

minimised by operation at frequencies in the hundreds of MHz range. However, as Figure 37 shows, 

there may be little or no benefit for more recently available room temperature DFB lasers in the use of 

such high frequencies. 

Further developments are driven by the availability of high performance personal computers and the 

opportunities provided by digital signal processing. A PC based TDLS system has been implemented 

with four lock-in amplifier channels, with performance claimed to be equal to that of a standard system 

based around discrete lock-in amplifiers
[203]

. Various groups have developed board-level systems with 

2f WMS and line scanning, laser control, 2f demodulation and curve fitting for standalone sensors, 

including oxygen sensors 
[187,204]

, and methane / ethane
[184]

. Using arbitrary waveform programming, 

an optimal modulation signal has been devised for WMS that maximises the time spent sampling the 

most important elements of the spectrum in the curve fit, to give a twofold improvement in SNR
[205]

.  

6.3 Tunable lasers 

6.3.1 Solid state, monolithic devices 

In this section we consider laser diodes and their mid IR counterparts (which are not strictly diodes but 

can be operated in a similar manner). Typically in the near infrared, distributed feedback (DFB) diode 

lasers or vertical cavity surface emitting lasers (VCSELs) are used. Each must be custom made at a 

RIN = -140dB/Hz 

RIN = -150dB/Hz 

RIN = -160dB/Hz 

RIN = -170dB/Hz 

Shot noise 

Thermal amplifier noise 
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particular wavelength (the specific gas absorption line). Wavelength selection is required for mode-hop 

free singlemode operation; DFB lasers employ a grating structure, usually written above the active 

waveguide region, whereas VCSELs typically employ interference layers above and below the active 

layers. Custom lasers are required for any gases whose absorption lines do not overlap with the 1.3 or 

1.55 μm telecommunications bands (these bands cover weak CO and CO2 lines, H2S and NH3, but not 

the hydrocarbons, NO or stronger CO and CO2 lines). Only a limited range of such wavelengths is 

routinely available, and these custom devices are often the most expensive component for industrial 

systems.  

A number of attempts have been made to develop an alternative. Multimode absorption spectroscopy 

(“MUMAS”) proposes the use of simpler, low cost multimode (Fabry-Perot) laser diodes, allowing 

multiple emission modes to be absorbed by gas lines as they happen upon them
[206]

. The result is a 

convolution of the emission and absorption spectra, yielding useful information when spectra are 

relatively sparse. Figure 38 shows examples of the resulting spectra for acetylene. For the spectra to 

remain stable these laser diodes must be made with reduced gain in the cavity
[207]

.  

 

Figure 38. MUMAS spectra recorded around 1.529 μm for acetylene at a pressure of 10 Torr. The 

upper line shows the difference between the experimental and fitted curves. Taken from [206].  

Because the absorption lines for a given gas can be of the order of 100x stronger in the mid IR, there 

has been significant activity in recent years to develop a practical, room temperature tunable laser 

diode to cover this region. Unfortunately, conventional semiconductor technology, in which the emitted 

wavelength corresponds to a transition within a bandgap in the gain medium, reaches a thermal limit 

at longer wavelengths, whereby bandgap energies approach those of background thermal fluctuations 

in the material. Therefore until some years ago, the only commercially available devices were 

cryogenically cooled lead salt laser diodes. Nevertheless, longer wavelength extension of near IR 

wavelengths of standard semiconductor diode VCSELs and quantum well (QW) DFB lasers has 

resulted in emission at wavelengths up to 2.6 μm
[208]

 and 3.4 μm
[209,210]

 respectively. And the recent 

success of several alternative approaches has now resulted in almost complete coverage of the mid 

IR region with “turnkey” tunable lasers operating at close to room temperature (see Figure 39).  
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Figure 39. Wavelength coverage at the time of writing for “turnkey”, room temperature, solid state 

tunable lasers in the IR (above 1μm). Arrows indicate the direction of research activity in a rapidly 

developing field. The list of suppliers may not be exhaustive and does not include those supplying 

exclusively in the telecommunications bands (around 1.3 μm and 1.55μm). 

Quantum cascade lasers (QCLs) have been widely commercialised in both pulsed and CW forms, and 

have been recently reviewed by Capasso
[ 211]

. Artificially generated energy levels are created via 

nanometre scale quantum well structures, providing transitions that are independent of the material 

bandgap. Each electron passes through the cascade structure shown in Figure 40, emitting a photon 

at each stage
[212]

. Decoupling the emission wavelength from the bandgap has allowed QCLs to be 

developed over a very wide range of wavelengths from the mid IR to the terahertz (THz) region, 

however their use for gas sensing in the THz region has been limited
[211]

. As with semiconductor laser 

diodes, DFB structures are often used to ensure singlemode operation. Output powers can be 

significantly higher than with alternative lasers (hundreds of mW for commercially available, room 

temperature CW devices), necessitating greater attention to heat dissipation, but making them more 

suitable to applications that benefit from higher power such as photoacoustic or backscatter 

detection
[213]

. The appendix shows numerous examples of the use of QCLs for detection of different 

gas species; minimum detectable absorbances better than 10
-6

 are achievable
[387]

.  
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 (a) Diode lasers (b) Quantum cascade lasers 

  
 (c) Interband cascade lasers 

Figure 40. Comparison of energy levels and active region processes for (a) diode lasers, (b) quantum 

cascade lasers and (c) interband cascade lasers. After [213]. 

Interband cascade lasers (ICLs) cover an important gap in wavelength coverage between diode lasers 

and QCLs with a standard operating range between 2.5 and 4.4 μm. This wavelength region covers 

many interesting species as it includes fundamental C-H, O-H and N-H stretch vibrations. The ICL 

operating principle can be considered a hybrid of the conventional diode and QCL, and output powers 

are of the order of tens of mW
[214]

. Both pulsed and CW versions available, and fabrication procedures 

have been developed to create DFB structures for mode-hop free singlemode operation. Because of 

the relative immaturity of ICLs compared to their QCL counterparts there have been fewer instrument 

developments based around them, however NEAs of 10
-4

 – 10
-5

 are achievable
[215]

. 

6.3.2 Widely tunable laser systems 

External cavity lasers have long offered narrow linewidth, singlemode operation with tuning over a 

wide range
[216]

. In external cavity diode lasers (ECDL), a diode is used as the gain medium, often 

specifically engineered for use in an ECDL; such devices can be obtained commercially as “gain 

chips”, especially in the near IR spectral region. The external cavity then typically incorporates a 

separate wavelength-selective element, often a grating, in the Littrow 
[217]

 or Littman–Metcalf 
[218]

 

configurations, illustrated in Figure 41. The Littrow configuration is the simplest in that it involves fewer 
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optical elements and less initial alignment. However, the Littman-Metcalf configuration has the 

advantage of avoiding beam deflection during tuning.  

   

 (a) Littrow  (b) Littman-Metcalf 

Figure 41. External cavity diode lasers in standard Littrow or Littman-Metcalf configurations, using 

mechanically rotated gratings to provide wavelength tuning. Here, the emission is from the rear facet 

of the gain medium, however it can also be obtained from the zero order beam reflected from the 

grating. 

Recently there has been considerable activity to reduce the size of these lasers using MEMs 

technology, as reviewed by Liu and Zhang
[219]

. Singlemode tunable lasers have been realised using 

both Littrow and Littman-Metcalf schemes. As well as providing compactness for its own sake, this 

also has the advantage of enabling very short cavities, such that the wavelength selective element can 

more easily select a single cavity mode. However, Liu and Zhang noted that developments in 

packaging and device integration may be needed before many of these designs are used in real 

applications
[219]

.  

By adding a MEMS-actuated mirror to the top of a standard VCSEL, a group at TU München has 

increased the laser’s tuning range to between 20 and 60nm
[220]

. This would enable a “useful” range of 

gas detection wavelengths to be addressed using a smaller number of commercial products, which 

could increase effective production yields.  

The QCL operating principle allows the stacking of cascade regions with different emission 

wavelengths to create broadband gain within a single device. These are suitable for use in external 

cavity lasers with wide tuning that cover a range of different gas species
[221]

, and turnkey systems 

have been commercialised by several companies
[222]

. Hugi et al have demonstrated a single device 

capable of being tuned from 7.4 to 11.6 μm (432 cm
-1

) with an average output power of 15mW and 

linewidth below 2cm
-1 [223]

. An external cavity ICL has also been demonstrated, with a tuning range 

from 3.13 to 3.24 μm (110 cm
−1

), and output power of 1 to 4 mW across the tuning range
[224]

. These 

systems therefore have the potential to replace FTIR spectrometers for certain applications requiring a 

reduced wavelength range. 

The widest mode-hop free tuning range in the mid IR (around 1 μm tuning, dependent on 

configuration
[ 225 ]

) can often be achieved by using either of two nonlinear wavelength conversion 

schemes, in difference frequency generation (DFG) systems and optical parametric oscillators 

(OPOs). The key to this process is an optical crystal with a high nonlinear coefficient, which is 

transparent at the wavelengths concerned, such as lithium niobate (LiNbO3). However, LiNbO3 is only 

output gain 
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transparent up to 5μm, limiting its range of applicability and therefore interest has also grown in the 

use of alternative materials such as GaAs, with a transmission window from 0.9 – 17μm
[226,227]

. 

DFGs systems have been reviewed elsewhere by Richter et al 
[228]

. In general, the sources consist of 

two seed lasers - a pump (high power) at frequency p and a tunable source (lower power) at s, which 

are combined to produce an idler output at i= p- s  by conservation of energy (see Figure 42). For 

efficient nonlinear conversion, conservation of momentum also requires phase matching of the pump, 

signal and idler beams. The recent success of DFG based spectrometers owes much to developments 

in periodically poled lithium niobate (PPLN). These materials allow quasi phase matching schemes 

involving different grating periods for the pump, signal and idler beams, and also have the advantage 

of easier alignment than non periodically poled alternatives
[225]

. Quasi phase matching can be 

maintained over a wide tuning range by changing the temperature of the crystal while simultaneously 

tuning the source.  

DFG sources are limited in their output power by the damage threshold of the crystal and other 

effects
[229]

, however powers of up to tens of mW can be achieved
[230]

. DFG sources are particularly 

suited to the 3-4 μm region, which has been difficult to access with their main rivals, QCLs (see Figure 

39). To achieve a wide IR tuning range requires a widely tunable near IR source; fortunately, many 

suitable sources are available in the 1.55 μm near IR telecoms band. Fischer and Sigrist used a 1.5-

1.6 μm ECDL source to provide continuous tuning of the idler in the range 3.2 – 3.7μm, and used this 

in combination with photoacoustic detection (see section 8) to record spectra for methane, ethane and 

hydrogen chloride with low ppm level detection limits
[231]

. 

 

Figure 42. Schematic diagram of a difference frequency generation (DFG) source using periodically 

poled lithium niobate (PPLN). After [229].  

The need to realign the crystal and other components in these systems, as well as the physical size of 

the system compared to discrete laser devices, has precluded the use of DFGs in many field 

applications, however there are developments aimed at improving reliability and field robustness. By 

analysing various elements of the optical alignment in their system, Richter et al were able to show an 

NEA of 3x10
-7

 in the laboratory (with 10 minute averaging), deploying on an aircraft in a field campaign 

with a 10-fold deterioration in performance
[228]

. Cousin et al have also built a field deployable DFG 

employing telecommunications sources and fibre (although the PPLN crystal was still a free space 

component) and used this with a multipass cell at 3.28 μm to measure benzene at concentrations 

down to 50 ppb
[232]

.  

OPOs also make use of mixing between a pump, signal and idler beam in nonlinear crystals. In this 

case however, the signal beam is an output and wavelength tuning is achieved by altering the 

refractive indices of the crystal at the different wavelengths concerned. Momentum conservation 
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requires that np p=ns s+ni i, where np, ns and ni are the refractive indices at the pump, signal and idler 

wavelengths respectively, and likewise p, s and i are their respective frequencies
[ 233 ]

. As the 

crystals concerned are usually birefringent, the refractive indices can be altered by tilting the crystal, or 

a change in temperature can provide a relative change in the refractive indices. Compared to DFG 

systems, OPOs can deliver potentially greater wavelength flexibility (DFGs require the signal beam to 

be provided by a separate, tunable source) but can be sensitive to mechanical or thermal instability. 

Recent advances in OPO design have resulted in designs that are more robust and practical than in 

previous years, even including use in breadboard – transportable instruments 
[234]

.
.
Using an intracavity 

design, high conversion efficiencies can be obtained. For example a 3W pump power can provide 

300mW and 150mW of signal and idler power respectively, with an overall electrical power of 10W, 

and mode-hop-free tuning over hundreds of GHz is possible
[235]

. OPOs have enabled highly sensitive 

detection of hydrocarbons in the 3-4 μm region. By using a cavity-enhanced technique with an 

effective optical pathlength of around 3.5km, von Basum et al achieved an αmin of 1.6 x 10
-10

 cm
-1

Hz
-1/2

 

to give a limit of detection for ethane of 6 ppt Hz
-1/2

 
[236]

.  

6.3.3 Associated light sources 

Although not strictly lasers, the following light sources offer similar advantages and employ pump 

lasers in their generation, so they are included here. First, we consider new developments in 

supercontinuum (SC) sources using various types of optical fibre. Emitted beams have a high spectral 

density and are spatially coherent with low divergence
[237]

, therefore SC sources can be combined with 

long pathlength gas cells including the cavity-enhanced schemes of section 7. Although the generation 

process is relatively complex, involving several steps, all-fibre implementation means that sources are 

relatively rugged
[237]

. 

Typically, a beam from a pump laser is confined in a highly nonlinear fibre whose dispersion and other 

properties have been tailored to enhance nonlinear processes including self-phase modulation, four 

wave mixing and stimulated Raman scattering. Additional wavelengths are thus generated that merge 

to form a continuum. Supercontinua have been generated in standard telecoms fibre
[238,239]

 and optical 

fibre tapers
[240]

, however the use of femtosecond pulsed pumps with specially tailored PCF generally 

offers the highest conversion efficiency
[240,241]

. Through the use of chalcogenide fibre, SC spectra have 

been extended to mid IR wavelengths of up to 5 μm
[242]

, as shown in Figure 43.  

SC sources are often configured as non-dispersed broadband sources requiring a dispersive 

spectrometer to analyse and measure gas absorption. However, by employing a dispersion 

compensating module, the emission can be engineered to undergo rapid wavelength sweeps over the 

course of each pulse. Time-resolved spectra can then be recorded using a suitably fast detector / 

amplifier at repetition rates of up to around 1 MHz
[237]

. Pulse-to-pulse variation is high, however by 

averaging over a large number of pulses and carefully measuring simultaneous reference spectra, 

good performance can be achieved. Near IR measurement of methane has been demonstrated over 

the 1.63-1.7μm range with an NEA of 4 x 10
-3

 for a 1 ms averaging time
[237]

. Similarly Sanders has 

made rapid scanned (every 20 ns) measurements of water vapour, CO2, ethylene and ethanol at 

relatively high pressure (10 bar) in the range 1.35-1.55μm
[243]

. The equivalent spectroscopic linewidth 

of this source, limited by the scan rate and 300 fs pulse width, was 1cm
-1

 (~ 0.2nm or 30GHz), so fine 

detail in the spectra was not fully resolved.  
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Figure 43. Spectrum of a supercontinuum generated in chalcogenide fibre, extending into the mid IR. 

Taken from [242]. 

A final development is the use of frequency combs for gas spectroscopy. Originally developed for 

precision time and frequency metrology, frequency combs employ femtosecond (fs) pulsed lasers to 

generate a comb of precisely evenly spaced wavelength emission modes over a wide spectral range, 

with a spacing uniformity that can be better than a few parts in 10
17 [244]

. Their use in high resolution 

spectroscopy has been recently reviewed by Adler et al
[245]

. Typically the comb is mode-locked rather 

than being spectrally tuned according to the modulation schemes described in previous sections. The 

narrow spacing between modes of the comb (250 MHz for Er doped optical fibre based sources
[245]

, 

corresponding to 0.002 nm or 0.01 cm
-1

 at 1.55 μm) actually makes them potential replacements for 

broadband sources used in spectrophotometry, albeit with high spectral brightness and a collimated 

beam that enables the use of longer pathlength cells.  

Initially, frequency combs were based around mode-locked Ti: sapphire lasers, and reliable combs 

have also been built based on Er doped optical fibre in the telecommunications band around 

1.5 μm
[245]

. Nonlinear frequency conversion has enabled comb generation from the UV to the far IR, 

with the important mid IR region including DFG and OPO based generation
[246]

. Adler et al have used 

a high power OPO with tunable centre frequency, giving a comb width that varied from 0.3 μm to 

0.09 μm over the wavelength region 2.9 μm to 4.3 μm, respectively
[247]

. As illustrated in Figure 44, the 

light was analysed with an FTIR spectrometer, which limits the spectral resolution that can be 

achieved with this technique. Adler et al achieved a noise limited αmin of 3.8 x 10
-8

 cm
-1

 Hz
-1/2

 for each 

spectral element of their FTIR, which is some orders of magnitude better than the performance (where 

reported) of any of the developments of Table 7, for example. They measured absorption spectra of a 

range of analytes in the 2.9 - 4.6μm range, including nitrous oxide, formaldehyde, methane, ethane 

and isoprene. Compared with a conventional FTIR employing an incoherent source, measurements 

have higher spectral brightness and a better signal to noise ratio, which in turn enables shorter 

averaging times and faster FTIR scanning. 

 



 Page 50 

 

Figure 44. Use of a mid IR frequency comb as a source in FTIR spectroscopy. The collimated beam 

enables the use of a multipass Herriott cell. After [247]. 

Following a proposal by Schiller
[248]

, Coddington et al showed that by using two frequency combs with 

slightly different spacing, a continuously varying time delay was generated
[249]

, in the manner of the 

phase delay in the scanning Michelson interferometer of an FTIR spectrometer. The transmitted 

spectrum can be recovered by inverse Fourier transform of the time domain signal, hence the method 

being termed frequency comb Fourier transform spectroscopy (FC-FTS) 
[245]

. Coddington et al 

demonstrated measurement of the absorption spectrum of HCN gas using a frequency comb centred 

on 1.545 μm, with an NEA of 5x10
-4 [250]

, and Mandon et al have measured the spectrum of acetylene 

over an 80 nm range centred on 1.5 μm
[251]

. In the mid IR, Baumann et al have made measurements 

of the methane spectrum at 3.4 μm with an NEA of 3 x 10
-4 [252]

, and Schliesser et al used a GaSe 

element to provide a DFG based mid IR dual comb spectrometer covering the 9-12 μm region
[253]

. 

They demonstrated detection of ammonia in a 10 cm pathlength cell as well as remote detection of the 

gas over a 22 m path. Therefore, these developments appear to combine the signal to noise and 

resolution advantages of TDLS with the wide spectral coverage of FTIR, including the important mid IR 

spectral region. Compared to an FTIR, as yet the spectral coverage is more limited and the systems 

are more complex, but the lack of moving parts is an important advantage. 

6.4 Standoff detection of backscattered light 

Lasers provide the opportunity for novel detection geometries including remote standoff detection of 

gases, typically based on tunable diode lasers operating over distances of 10 m or more
[186,254,255]

. 

These systems use a laser beam aimed through open space at a target, collecting the backscattered 

light and applying a spectroscopic signal demodulation. Applications include the detection of natural 

gas leaks from low-pressure distribution pipes, with a methane detector based on a tunable DFB laser 

emitting light at 1.65 μm. The optical pathlength is variable and unknown, therefore performance is 

often quoted in a similar fashion to that of open path gas detectors, using the pathlength - integrated 

unit of ppm.m. Iseki et al have modelled their system’s reflectivity and noise performance, relating this 

to a minimum detectable gas concentration signals in ppm.m for different circumstances of target 

microwave 
reference 

OPO 
stabilisation 

fs-Yb:fibre laser 

Mid-IR OPO 
frequency comb 

stabilised 
reference laser 

fast-scanning Michelson 
interferometer 

A/D converter and computer 

SiPD 

MCZT 

1.06 μm 

0.78 μm 

gas inlet 
and 

outlet 

Herriott cell 

182 passes / 36.4m 

Key  SiPD:   silicon photodiode 
 MCZT: HgCdZnTe detector 



 Page 51 

reflectivity and distance
[254]

. They demonstrated gas leak detection with leak rates as low as 

0.01 litre min
-1

 and concentrations of around 100 ppm.m.  

Systems of this type are typically limited by the level of optical backscatter from the surface, which can 

be as low as 5%. For diffuse scattering from horizontal ground and a laser diode with power of the 

order of 10 mW, the level of light received at the photodiode can be in the nW range
[186]

, despite the 

use of large (15 cm diameter) high NA lenses, therefore (unusually for TDLS) detector noise 

dominates. Improvements have been made using higher power sources, through optical amplification 

of standard DFB laser output
[256]

, however for some applications this would compromise eye safety in 

public areas.  

Laser pointers preferentially sample the gas in a thin layer close to the ground in a highly localised 

area downwind of the leak source
[257]

. For this reason, the correspondence between the standoff 

measurement and that of a point sampling instrument is surprisingly good, as Figure 45 shows. 
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Figure 45. Correspondence between field measurements from a prototype laser pointer and flame 

ionisation detector (FID) targeted at the same sampling location, taken during a release of natural gas 

at 10 litre min
-1

. Taken from [257]. 

By scanning the laser pointer in a raster fashion, it is possible to construct a low resolution 2-D image 

of the gas plume
[258]

 (the 10 x 10 pixel resolution and 1 frame/s refresh rate being limited by the very 

low light intensities at the detector). In comparison with passive gas imaging using the NDIR principle 

or gas correlation cells, the main advantage is that the technique provides a reliable zero 

measurement in the absence of a gas leak. Higher power lasers can provide greater resolution and / 

or refresh rates, and the use of the mid IR again improves detection limits. For example, Stothard et al 

used a 55 mW OPO source at 3.3μm to record images of methane leaks with 100 x 150 pixels and 

refresh rates of 3 frames/s, with a limit of detection of 30 ppm.m
[259]

.  
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6.5 Light scattering in TDLS 

Recent research has considered the use of diffusely transmitting or reflecting optics as alternatives to 

windows or mirrors
[ 260 ]

. The advantages are very simple alignment and improved stability to 

temperature changes. In reflective cells, the optical configuration is similar to that found in the standoff 

laser pointers of the previous section, albeit with a fixed, known pathlength. Chen et al have used a 

diffuse reflector manufactured from anodised aluminium in order to improve sensor robustness in a 

challenging industrial environment (the exhaust of a combustion furnace), with background fluctuations 

at the level of ΔI/I ~ 10
-5

 
[188]

. A group at Lund University have used TDLS to explore gas 

concentrations held within porous and scattering media including pharmaceutical samples
[261]

 and 

biological tissue
[262]

. Their work with oxygen confined in nanoporous media (γ-alumina) has shown that 

surprisingly long optical pathlengths can be achieved, and evidence for line broadening effects beyond 

levels expected for gases at atmospheric pressure
[263]

. 

When such materials are used in high resolution spectroscopy, the well-known, structured interference 

fringes of conventional gas cell configurations are disrupted, interference effects still dominate. These 

are random interference, namely laser speckle
[260]

, interferometric speckle
[ 264 ]

 and self-mixing or 

feedback interference effects
[194]

. Although the latter exist in many conventional TDLS schemes, they 

can be particularly troublesome for diffusely reflecting materials. Similar interference effects are also 

observed when using integrating spheres as gas cells, because the inner surface of these devices is 

designed to closely match a perfect Lambertian (diffuse) scatterer
[35]

. Many of these undesirable 

effects can be reduced by vibrating or rotating the scattering target
[263,260]

.  

7 Cavity enhanced techniques 

Significant recent activity in this area merits its inclusion as a separate section. Furthermore, cavity-

enhanced cells have been used with all three spectral readout or demodulation techniques described 

above (non-dispersive, spectrophotometry and TDLS), which have much in common when applied to 

cavity – enhanced systems. General reviews of cavity-enhanced techniques and their relative 

performance have been produced by Paldus and Kachanov
[265]

, and Foltynowicz et al 
[266]

. 

In each of the techniques described here, extremely long pathlength cells are constructed using high 

reflectivity (R > 99.99%) mirrors, which can be achieved using dielectric coatings. Resonant cavities 

are formed in the manner of a high finesse Fabry-Perot etalon. The finesse of the cavity, F, is given 

by
[245]

:  

 
   
 

 
 

for high R 
1 1

R
F

R R
 (9) 

And the pathlength enhancement (ratio of average pathlength Leff to physical cell length L) is equal to 

βF/π, where β is a factor that depends on the coupling scheme used, such that 1 ≤ β ≤ 2 
[245]

. The 

equivalent pathlength of the cell, Leff, is then given by 

 
 





for high R
1

eff
L

L
R

 (10) 



 Page 53 

Enhancements can be up to 10
5
 using mirrors with R of up to 99.999%

 [266]
, significantly better than for 

standard multipass cells (see Table 3) where the best enhancements are of the order of 10
2 

-10
3
. 

Mirrors of this quality may also be referred to by their optical loss in ppm. One issue that this raises is 

the use of dichroic coatings to achieve such high mirror reflectivities. The coatings restrict the 

wavelength range of operation, and the small changes in R over that range result in a varying optical 

pathlength as a function of wavelength. Figure 46 illustrates the variation in R and F with wavelength 

for a typical high finesse cavity in the near IR. Finally, to maintain cell performance it is vital to ensure 

that mirrors remain clear of dust or condensation during use, either of which would contribute to optical 

losses, reducing R.  

 

Figure 46. Variation in reflectivity R and finesse F for a typical high finesse cavity in the near IR, 

illustrating the effect of using dichroic mirrors on the wavelength range of operation. Taken from [246]. 

The free spectral range of the cavity is of the order of hundreds of MHz for cavities whose physical 

length L is tens of cm long (FSR=c/2L) 
[266]

. For tunable lasers with linewidths of the order of tens of 

MHz, it can therefore be a challenge to couple to the cavity efficiently because of the narrow linewidth 

of cavity modes. There are two main choices; (i) to couple to a single cavity mode, adjusting the cavity 

length to locking it to the laser emission, which increases complexity, or (ii) to average over a large 

number of modes, which reduces the mean coupling efficiency. The different techniques described 

below adopt different approaches to address these issues.  

7.1 Cavity ringdown spectroscopy 

Cavity ringdown spectroscopy (CRDS) was pioneered by O’Keefe and Deacon
[ 267]

, building on a 

technique previously used to measure mirror reflectivity. Reviews of different instrumental schemes 

have been completed by Berden et al (2000) 
[268]

, Brown (2003)
[269]

 and more recently for optical fibre 

based cavities by Waechter et al (2010) 
[47]

. There is also a recently published book on the subject, 

edited by Berden and Engeln
[270]

. 

Light coupled into a high finesse cavity builds up and decays exponentially as the source is turned on 

and off. Absorption measurements are made via the exponential decay time; any loss in the cavity 

results in a reduction of the decay time, and as long as overall losses are small, decay times can be 
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measured using high sensitivity detectors operating with kHz bandwidths. Sources of loss in the cavity 

include mirrors with less than 100% reflectivity, scattering and imperfections in alignment (all of which 

have broadband effects) as well as spectral absorption by the target species, which may be 

distinguishable by a spectral baseline or reference measurement. The exponential decay envelope of 

the measured signal takes the general form 

 t
I I exp ct



 
   

 
0

 (11) 

Where τ is the characteristic decay time in the absence of absorption. The following source modulation 

techniques have been used in CRDS 
[47]

 (see Figure 47): 

(a) A CW source may be switched off rapidly (directly or using an external modulator), after which 

the detector observes smooth exponential decay. Alternatively, the source and cavity modes 

may be rapidly swept with respect to one another. The term cavity leak-out spectroscopy 

(CALOS) has also been used
[271]

. 

(b) A single input pulse results in a series of pulses at the detector within an exponentially decaying 

envelope. The pulses may be filtered out by suitable choice of detection bandwidth to leave a 

smooth envelope. 

(c) For a rapidly modulated CW source, a phase shift is introduced at the detector, equal to τ. 

Phase shift cavity ringdown spectroscopy (PS-CRDS) employs simple analogue detection 

electronics, avoiding the need to digitise ringdown traces and fit exponential decay curves 

 

 

Figure 47. Different forms of CRDS, showing detector signals (dotted lines) for the following forms of 

input (solid lines): (a) CW source switched off rapidly; (b) single pulse input; (c) rapidly modulated CW 

source used in phase shift CRDS. Modified from [47].  

O’Keefe and Deacon discussed the important characteristics of pulsed CRDS
[267]

. By using laser 

pulses shorter than the cavity round trip time, the problem of coupling to specific modes within the 

cavity is avoided and the emission wavelength may be scanned over an absorption feature. The 

method has the advantage of being relatively insensitive to power fluctuations, since the ringdown time 

is determined by measuring the relative intensity decay. This makes the technique particularly suited 

to sources that must be operated in pulsed mode, as pulse-to-pulse intensity variation can otherwise 

time 
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be a significant source of noise. A disadvantage is the need to fit the recorded trace to an exponential 

decay; multiple exponential decay terms can cause problems in fitting
[272]

. 

As with other absorption measurements, a zero reference can be recorded without an absorber in the 

cell, more than one signal can be recorded at different (non-absorbing) wavelengths, or many signals 

recorded as a function of wavelength, the zero determined using a baseline correction. αmin values of 

10
-10

 cm
-1

 Hz
-1/2

 are achievable, often limited by system drifts between one ringdown event and the 

next
[266]

 and noise resulting from excitation of multiple cavity modes by pulsed sources with relatively 

broad linewidths
[273]

. This is an improvement over standard TDLS, largely because equivalent cell 

pathlengths can be of the order of 10 km. Use of confocal cavities enables relatively simple 

construction (see Figure 48). The technique has been used in an industrial application subject to 

vibration (measurement of emissions on carbon sequestration sites)
[274]

 and has formed the basis of a 

commercial instrument
[363]

. 

 

Figure 48. Cavity ringdown absorption cell using standard optomechanical components to give a 

physical length of 15 cm and equivalent pathlength of 12 km, used to detect acetone with a 266 nm 

pulsed laser. Taken from [275]. 

He and Orr developed a CW scheme involving a rapidly swept cavity length using a piezoelectric 

actuator, measuring build-up and ringdown times as cavity modes moved in and out of 

correspondence with laser emission
[276]

. Use of a heterodyne receiver to detect light reflected from the 

cavity also enabled the separation of the ringdown cell from the transceiver optics such that the two 

can be linked via optical fibre. For the basic cell, an αmin of 5 x 10
-10

cm
-1

Hz
-1/2

 was achieved with a 

relatively simple configuration. αmin values of 10
-9

 cm
-1

 are typical for this technique
[265]

, limited by 

variations in the level of light injected into the cavity from one event to the next, as a result of coupling 

to variable cavity modes
[265]

. Huang and Lehman have shown that the fundamental sensitivity limit for 

the swept-cavity technique is worse than for techniques using a modulated CW source, and its 

success relies on the use of sources such as external cavity diode lasers that have low phase 

noise
[277]

. 
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By using CW tunable lasers with narrow linewidths and locking a single cavity mode to the laser 

emission, the statistical variations of different modes are avoided
[265]

. An αmin as low as 

8.8 x 10
-12 

cm
-1

Hz
-1/2

 has been achieved at low operating pressures (1-3 Torr)
[273]

.
 
Using an adaptation 

of the now well-established Pound-Drever-Hall technique
[278]

, two orthogonal polarisation states were 

employed, one used for mode locking in a servo loop and the other carrying the ringdown signal. This 

approach ensured that mode locking was achieved under the same conditions as ringdown 

measurement, being matched in both wavelength and beam position within the cavity during a 

ringdown event. A variation on this approach had one beam acting as a local oscillator in a heterodyne 

detection scheme and the other, with a slight frequency shift, carrying the ringdown signal
[410]

. The 

local oscillator beam was used to lock one TEM00 cavity mode to the laser emission and the second 

coupled to another TEM00 mode and used for ringdown measurements. An NEA of 2x10
-9

cm
-1

 was 

achieved for a measurement integration time of around 2 ms.  

Finally, laser self-locking has been achieved by allowing a proportion of the light reflected from the 

cavity to feed back to the laser. A technique known as optical feedback CEAS (OF-CEAS) employs a 

V-shaped cavity as shown in Figure 49. With this method, Romanini et al were able to solve the 

problem of direct feedback from the cavity input mirror and feed back only wavelengths corresponding 

to cavity modes
[279]

. The distance from laser to cavity was carefully controlled such that it remained in 

phase with the laser emission, resulting in a line narrowing effect, which could be beneficial in high 

resolution studies. During a laser wavelength scan the laser jumps or mode-hops from one cavity 

mode to the next, each time giving a measurement perfectly aligned with the maximum transmission 

peak of that mode, enabling higher precision spectroscopic data. Morville et al demonstrated αmin 

better than 10
-9

cm
-1

 Hz
-1/2

 with this system, and also noted its relative simplicity and robustness 

compared to their standard CW CRDS set-up
[280]

. 

 

Figure 49. V-shaped cavity used for optical feedback CRDS and CEAS (OF-CRDS and OF-CEAS). 

The phase of the feedback is controlled using a PZT actuated mirror. After [280].  

Engeln et al reported the first use of phase shift cavity ringdown spectroscopy (PS-CRDS) for gas 

detection, applied to a weak O2 absorption line at 635 nm
[281]

. Using a 45 cm cell with R ~99.85% 

mirrors gave a ringdown time of approximately 600 ns, detected with a lock-in amplifier as a phase 
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Key L: lens, LD: laser diode, M: mirror, PD: photodiode
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shift of a 2 MHz intensity modulation applied to a CW laser beam. Absorption measurements were 

made by normalising the out of phase component of the modulation by the in phase component, thus 

making the measurement independent of intensity variation. Further advantages of this technique are 

that the duty cycle is improved (from a typical 0.01% to an effective 50% 
[281]

), giving an increased 

signal : noise ratio, and no stabilisation of the cavity is required. Van Helden et al have shown that by 

correcting for the effects of amplified spontaneous emission (ASE) from the laser source, accurate 

quantitative measurements can be made, and demonstrated an αmin of 2x10
-8

cm
-1

 around 800 nm with 

an integration period of 0.5 s
[282]

. A disadvantage of PS-CRDS is that the light couples efficiently into 

cavity modes only 5-10% of the time
[283]

, depending on the finesse of the cavity. 

Finally, Nikolaev et al have reported a different scheme in which light entered the cavity at a slight 

angle off-axis, and was subsequently detected by a series of spatially separated detectors, each 

corresponding to a different mean pathlength
[284]

. Thus, the ringdown time could be determined by the 

difference in intensity measured by each of the photodiodes, rather than in the time domain, avoiding 

the need to turn the light source on and off and also avoiding the issue of mode coupling to the cavity. 

An advantage was the abilty to record spectral data more rapidly (one data point every 5 μs). An αmin 

of 8 x 10
-7

cm
-1

 was estimated for averages over 100 neighbouring spectral points, corresponding to an 

integration period of 0.5 ms. 

CRDS has been used with broadband CW sources as well as with lasers. The broad emission of the 

source covers a large number of cavity modes and the measurement essentially averages over these, 

but overall coupling efficiency is reduced as a result. Ball et al
[285]

 used broadband radiation from a 

Nd:YAG pumped pulsed dye laser at 662±2 nm to detect the NO3 radical in a cell with 95 cm base 

length and mirrors with R>99.995% over the wavelength range. Light from the cavity was directed to 

an imaging spectrometer where, by clocking the CCD array, ringdown times across the wavelength 

range could be obtained. An αmin of 4 x 10
-8

 cm
-1

 was estimated. The principle has been extended to 

use of a visible LED
[286]

, with a photomultiplier tube used to detect ringdown events with sufficient 

sensitivity to compensate for the low optical throughput. Hamers et al have developed PS-CRDS for 

use with a CW xenon arc lamp in an FTIR spectrometer, measuring Fourier transformed in-phase and 

out-of-phase components of the signal
[ 287 ]

. With this technique they were able to demonstrate 

detection of O2 around 764 nm, with spectral coverage limited in principle by the bandwidth of their 

high reflectivity dichroic mirrors (R>0.999 over the range 700-900 nm).  

Problems can arise with low overall coupling efficiencies in very high finesse cavities, especially for 

many broadband sources with relatively low spectral densities. However, Petermann and Fischer
[288]

 

have shown that an acousto-optic modulator (AOM) within the cavity can be used to divert light into 

and out of the cavity, allowing efficient coupling during the build-up phase and active “dumping” of the 

light onto a photodetector at specified points in the ringdown phase. Losses due to the AOM were 

limited to 0.002 per round trip, so that the cavity finesse was not compromised. The resulting αmin was 

estimated at 1.8 x 10
-8

cm
-1

 for a single spectral channel containing μW of power, with a total 

measurement time (for a full spectrum) of 25 s. 

Although CRDS has achieved remarkable equivalent pathlengths and detection limits, it relies on the 

use of fast detection electronics to quantify small differences between ringdown times that may be in 

the ms-μs regime, and fit its form to an exponential decay curve, sometimes with more than one 

exponential term. This requires digitisers that are both fast (in the 100 MHz regime) and high precision 

(14-16 bit). Use of the Levenberg – Marquardt fitting algorithm can be computationally intensive, 
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limiting the speed of the technique
[265]

. A number of analogue demodulation techniques have therefore 

been proposed. Spence et al demonstrated that a logarithmic amplifier can be used to convert an 

exponentially decaying signal to a square wave
[273]

, but the electronics required were prohibitively 

complex. Faster fitting algorithms have also been proposed to give 10 kHz measurement rates
[289]

, as 

well as frequency domain analysis via fast Fourier Transforms (FFT) of pulsed ringdown decays
[290]

 

and square wave modulated CW light
[291]

. 

7.2 Cavity-enhanced absorption spectroscopy 

In principle, what distinguishes cavity ringdown spectroscopy from cavity-enhanced absorption 

spectroscopy (CEAS) is that CRDS measurements are made in the time domain, with the measured 

absorption being a direct function of ringdown times or phase shifts. In CEAS, the measured intensity 

of light leaking out from the cavity is integrated over time periods much longer than the ringdown time, 

enabling the use of simpler electronics while still retaining the long pathlengths of high-finesse cavities. 

The detection bandwidth required for CEAS can be in the region 10-200 kHz compared with > 1 MHz 

for CRDS, depending on the finesse of the cavity
[292]

. The technique was first demonstrated in two 

almost simultaneous papers: by O’Keefe
[293]

 (referred to as integrating cavity output spectroscopy, 

ICOS), and Engeln et al 
[294]

 (referred to as cavity enhanced absorption spectroscopy, CEAS). Many 

practitioners now use the term ICOS for the techniques involving integration over a large number of 

cavity modes by dithering either the cavity length and / or the laser wavelength
[ 295 ]

, with CEAS 

reserved for alternative variations (see below), and this is the convention adopted here.  

A large number of closely spaced cavity modes is excited; mode fluctuations dictate that the larger the 

number that can be averaged, the better the noise characteristics. To increase the degree of 

averaging, the cavity modes may be dithered by a PZT actuator on one of the cavity mirrors on a 

timescale faster than the integration time for each measurement point. To avoid undesirable saturation 

effects associated with the build-up of light in the cavity (as in CRDS), the cavity must also be dithered 

on a timescale faster than the ringdown / build-up time
[295]

. Alternatively the laser emission wavelength 

can be dithered, to capture more cavity modes, with an amplitude that still permits resolution of the 

gas line. Limitations to ICOS include the statistical residual uncertainty caused by intentional coupling 

to a finite number of cavity modes, and the low mean optical throughout.  

 

Figure 50. Off-axis integrated cavity output spectroscopy (OA-ICOS) as implemented by Baer et al, 

taken from [296]. The etalon was used for relative wavelength measurements during a scan by the 

laser diode.  
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A development is the use of off-axis ICOS (OA-ICOS), shown in Figure 50. The method was 

introduced by Paul et al 
[297]

 and their paper clearly explains the basic principles. The off-axis geometry 

increases the round-trip time of the cell by arranging a re-entrant condition after a large number of 

passes in the manner of a Herriott cell; both conventional and astigmatic variants are possible in 

principle. This in turn creates a more densely spaced series of cavity modes with a narrower FSR, as 

illustrated in Figure 51.  

For very long re-entrant conditions, the mode spacing becomes narrower than the mode width, the 

latter governed by slight mechanical imperfections of the cavity. The cavity transfer function then no 

longer contains discrete Fabry-Perot modes, but ideally approaches an average transmission that is 

constant as a function of wavelength, albeit a low transmission (T ~ 0.5% for Paul et al
[297]

). Thus, 

intensity fluctuations due to mode instabilities are minimised. There are a number of practical benefits 

compared with standard ICOS including simpler alignment, reduced system complexity and reduced 

feedback / interference effects because of the off-axis injection of light into the cavity
[297]

. The result is 

a highly sensitive method that is capable of field deployment, and can be used with both direct spectral 

scanning of the gas line
[296]

, and 2f WMS
[298,299]

, with NEAs in the range 10
-6

 – 10
-7

, often at reduced 

sample pressure. The reader is referred to a detailed discussion of the design considerations and 

compromises required in OA-ICOS written by Moyer et al
[300]

, with specific reference to the Harvard 

system used for airborne measurement of water isotopologues. 

 

Figure 51. Comparison of on-axis and off-axis ICOS, showing the cavity mode structure superimposed 

on the gas absorption lineshape. In the off-axis case the cavity mode structure collapses to a 

continuum or quasi-continuum in which the FSR is much narrower than the laser linewidth and cannot 

be resolved. After [292].  

Engel et al 
[292]

 have demonstrated an αmin of 1.9 x 10
-12

cm
-1

Hz
-1/2

 for direct spectroscopy via OA-

ICOS, at reduced pressure (200 Torr) and using a 110cm base length cavity with an equivalent 
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pathlength of approximately 2.7 km. The system was limited by unwanted transient effects caused by 

coupling to spurious cavity modes, taking the appearance of white noise at the detector. Other 

limitations to OA-ICOS include, again, the low optical throughput. Dyroff has pointed out
[301]

 that for a 

given cell base length and source, there is an optimum mirror reflectivity / pathlength that depends on 

the source power and level of detector noise; longer pathlengths may not always be better in this 

respect as they require higher reflectivities that reduce the received power at the detector.  

A practical issue with such techniques is the need for calibration; the equivalent pathlength of the cell 

is a sensitive function of the mirror reflectivity (see equation (10)). Even if the reflectivity of the mirror 

coatings can be known with sufficient precision at the wavelength of operation, in practice cavity 

losses can be introduced by small changes in geometry during alignment, scattering from 

imperfections in the mirror surfaces, or surface degradation in use. Maintaining a stable pathlength 

under field conditions is an engineering challenge, requiring thermo-mechanical stability, isolation from 

dust in sampled air and temperature management to avoid condensation of water.  

Fortunately, self-calibrating instruments have been developed that use time domain information to 

provide knowledge of the cell pathlength. A team at Los Gatos Research Inc developed an instrument 

for field use employing OA-ICOS
[296]

, for which the cavity modes approached a continuum. After 

scanning the laser wavelength through the gas line using direct spectroscopy, the laser was switched 

off rapidly and a ringdown measurement made at a non-absorbing wavelength. By measuring  in 

equation (11) (equal to cLeff for a non-absorbing cavity), the value of Leff can be determined for every 

scanned measurement at a wavelength adjacent to the measurement wavelength (close enough to 

have effectively the same mirror reflectivity and therefore the same pathlength). This instrument has 

been in continuous development and used in a number of field campaigns
[302,303,304]

.  

Also making use of time domain information, phase shift measurements have been used to calibrate 

the effective pathlength or ringdown time
[305]

. When the source intensity is modulated at a frequency 

approaching 1/ (where  is the ringdown time), a phase delay is observed between the input and 

measured modulations, measurable using two channels of a lock-in amplifier. As mentioned in the 

previous section, the phase delay itself has also been used to determine the absorption within the 

cavity; such techniques are equally well described as phase shift cavity ringdown or phase shift cavity 

enhanced spectroscopy (PS-CEAS). Kasyutich et al have employed the phase shift method in OA-

ICOS and shown that it is possible to recover gas concentrations with high accuracy as long as a 

significant potential source of error, the effect of ASE of the laser source, is accounted for
[283]

. 

Broadband CEAS (BB-CEAS) has been developed in the UV, visible and near IR using both 

incoherent and partially coherent sources, namely a Xe discharge lamp
[306,307]

, visible LEDs
[308]

, UV 

LEDs
[309]

, a near IR superluminescent LED (SLED)
[310]

 and a supercontinuum source emitting from 630 

to 720 nm
[ 311 ]

.
.
In each case, the output was directed to a high sensitivity spectrograph or FTIR 

spectrometer and the incoherent or short coherence length of the sources meant that there was no 

need to either lock or dither the cavity. For NO2 measurement, a compact and robust instrument has 

been made using optical fibre to couple light from an LED emitting in the 441 - 462 nm range, though a 

cell with base length 1.5m and mirror reflectivity 99.976% 
[312]

. Its limit of detection for NO2 was 

between 100 and 240 ppt, corresponding to an αmin of between 3 x 10
-9

 cm
-1

 and 8 x 10
-9

 cm
-1

. 

Obtaining a good calibration of optical pathlength can be an issue for broadband CEAS, as noted by 

Langridge et al 
[312]

, because the beam from these sources is less well-collimated than a laser beam, 

resulting in geometric light loss from the cavity and excitation of cavity modes with higher losses. Thus 
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the effective pathlength must be determined using the same beam geometry as that used for 

measurement and not, for example, a better collimated laser beam at the same wavelength. Laurila et 

al solved this problem for their supercontinuum source by using an acousto-optic tunable filter (AOTF) 

to simultaneously provide narrowband light filtration and scanning enabling pathlength calibration by 

measurement of phase shifts in PS-CRDS, without affecting the alignment of the system in normal 

operation
[ 313 ]

. A further issue for UV-visible spectroscopic techniques is the need to deconvolve 

potentially overlapping absorption features together with spectral losses caused by light scattering 

from aerosols over the long effective pathlengths used. Fortunately there is a wealth of such 

techniques used in DOAS (see section 5), where such long pathlengths are the norm. 

Broadband NO2 measurement has been further developed by Kebabian et al 
[314]

 using PS-CEAS in a 

method they refer to as cavity attenuated phase shift spectroscopy (CAPS). Here, the distinction 

between PS-CRDS and PS-CEAS breaks down – both involve measurement of phase shifts (time 

domain data) integrated over a measurement period. However, the techniques described as cavity-

enhanced often use an off-axis configuration, or broadband sources, in each case measuring over an 

integrated quasi continuum of cavity modes. In the work of Kebabian et al, the need for fast 

modulation and measurement of signal phases meant that spectroscopic measurements were not 

possible. Instead, a non-dispersive technique was used with a bandpass filter centred at 430nm. A 

limit of detection of 0.3ppb was demonstrated for an integration time of 600s, corresponding to an αmin 

of 10
-8

 cm
-1

Hz
-1/2

. Shifting the measurement wavelength to 455nm avoided spectral interference from 

neighbouring absorption bands of glyoxal and methyl glyoxal, however a potential interference with 

high levels of ozone remained
[315]

. Kasyutich et al reduced the likelihood of cross-species interference 

by using a narrowband 404nm diode laser in an OA-CEAS configuration also involving phase shift 

measurements to give automatic self-calibration of the effective cavity pathlength
[316]

. Demonstrated 

performance was similar, with a detection limit for NO2 of 0.24ppb. Because of the low level of spectral 

interference anticipated in urban air, such methods have the potential to replace the widespread use of 

chemiluminescent NO2 detectors for environmental research and air quality monitoring.  

Various techniques have been used to improve mode-locked laser based CEAS, along similar lines to 

those already discussed for CRDS. By locking the laser emission to a single cavity mode, coupling 

efficiency improves dramatically and there can be a reduction in noise associated with laser 

instabilities. The Pound-Drever-Hall technique
[278]

 has been used, which adds experimental complexity 

and typically allows locking for several minutes
[317]

. Fortunately, a simpler and more stable self-locking 

variant of ICOS has been developed known as optical feedback cavity-enhanced spectroscopy, OF-

CEAS, with the same V-shaped cavity as that used in OF-CRDS (see Figure 49). With this, Morville et 

al have achieved an αmin in their baseline of 5×10
−10

 cm
−1

 for scans averaged over 1s
[318]

. Alternative 

configurations for OF-CEAS include Brewster angle plate injection into a linear confocal cavity
[319]

 and 

a triangular ring cavity
[320]

. The superior robustness of OF-CEAS is demonstrated by the development 

of instruments for airborne measurement of atmospheric methane
[321]

 and in situ measurement of 

volcano emissions
[322]

.  

A technique known as noise immune cavity-enhanced optical heterodyne spectroscopy (NICE-OHMS) 

has been developed, also known as cavity enhanced frequency modulation spectroscopy (CEFMS), 

reviewed by Foltynowicz et al
[266]

. The modulation frequency is set equal to the FSR of the cavity and 

the laser emission is locked to a cavity mode, such that the central carrier and both side-bands 

(resulting from the high frequency modulation) are transmitted through the cavity. By tuning the cavity 

length using a PZT actuator, the laser wavelength is also tuned as a result of the servo mechanism 
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locking it to a cavity mode. The modulation must also be actively locked during the tuning process, as 

it has the side-effect of causing small changes to the FSR.  

Why is this technique “noise immune”? For most cavity-enhanced techniques, there is a statistical 

uncertainty in the measured intensity in any one cavity mode, caused by laser frequency noise. 

However, in NICE-OHMS the fluctuations in the carrier are equally present in the side-bands as they 

are similarly matched to cavity modes; in this respect the measurement is self-referenced. 

Demodulation of the FM signal recovers the gas absorption unaffected by this form of noise. So long 

as other noise sources are also minimised, the technique is capable of delivering measurements close 

to the fundamental shot noise limit 
[266]

. 

NICE-OHMS has been used for “Doppler-free” (low pressure, ultra narrow linewidth) spectroscopy, in 

which counter-propagating beams are used within a linear cavity, but this can exacerbate optical 

interference fringes. By implementing NICE-OHMS in a ring cavity to suppress such etalons and by 

removing other baseline effects, Bell et al have demonstrated methane detection in a cell with Leff ~ 

2.3 km and an αmin of 4 x 10
-11

 cm
-1 

Hz
-1/2

 
[323]

.  

Finally, there have been various developments involving optical frequency combs. Gherman and 

Romanini showed that it was possible to align and mode-lock the frequency comb emission lines with 

the modes of a high finesse cavity, by fine scale alteration to the cavity length
[244]

. They used a 

conventional CCD spectrometer to analyse the transmitted light and demonstrated measurement of 

the spectrum of acetylene in the 858-862 nm region. By using a low noise balanced receiver, 

Foltynowicz et al have improved the detection sensitivity to give an αmin of 1.7 x 10
-12

 cm
-1

 per spectral 

element, with a 400s acquisition time for a full spectrum
[324]

.  

7.3 High finesse optical fibre cavities  

There has been great interest in the use of gas cells in which the high finesse cavity is created within 

optical fibre, either using high reflectivity elements such as fibre Bragg gratings or by looping the fibre 

to form a ring resonator
[47]

. A schematic diagram of the latter is shown in Figure 52.  

Stewart et al developed the first fibre loop cavity for gas detection coupled to a micro-optic gas cell 

with a pathlength of 5cm
[325]

. Because of relatively high losses in the loop (compared to free space 

CRDS), an erbium doped fibre amplifier (EDFA) was used in combination with a variable attenuator, 

the latter providing fine adjustment of the loop gain so as to control the ringdown time. Ringdown times 

were extended to a tens of μs by the use of tens of metres of optical fibre within the loop and gain 

control, however it was difficult to maintain cavity stability over time
[326]

. In another study by von Lerber 

and Sigrist
[327]

, the high finesse fibre cavities were sensitive to bending losses in the fibre, confirming 

one of the practical difficulties in stabilising the system over time. Another problem is the high level of 

ASE noise introduced by the EDFA, causing accuracy problems similar to those seen in free space 

systems. Ni et al have used a digital adaptive filter to reduce the ASE noise, improving their system 

sensitivity by a factor of 8 and giving a limit of detection of 100 ppm acetylene at 1.531 μm (pathlength 

not stated) 
[328]

.  
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Figure 52. Schematic diagram of a fibre ring resonator implementation of CRDS. The erbium doped 

fibre amplifier and variable attenuator together allow the cavity finesse to be maintained despite high 

(and potentially variable) losses in the loop. Taken from [325].  

8 Photoacoustic detection 

Photoacoustic spectroscopy (PAS) of gases has been covered in excellent reviews by Elia et al
[329]

, 

and Zoltan et al 
[330]

. Photoacoustic sensors differ in the way that the absorbed light is detected. In 

traditional transmission sensors, we monitor the level of absorbed light by comparing the light intensity 

in the presence and absence of gas absorption, according to equation (1). In photoacoustic sensors, 

the absorbed light is measured directly, as illustrated in Figure 53. Light energy absorbed by an 

analyte is converted to heat; for gases this generally occurs via molecular collision-induced non-

radiative relaxation of excited states. The temperature increase causes the analyte and surrounding 

matrix (gas, liquid or solid) to expand. If the light is chopped or modulated, the expansion produces 

pressure waves that can be detected using a microphone
[331]

.  

 

Figure 53. Detection of the photoacoustic effect in a closed cell. The pressure waves are not to scale; 

typically acoustic wavelength  cell dimensions. 

I 
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The advantages are: 

(i) The detected signal is directly proportional to the intensity of light absorbed, ΔI, rather than to 

that transmitted, I. The effects of shot noise, flicker noise and relative intensity noise (associated 

with the light source) are greatly reduced. For the same reason, in TDLS the relative magnitude 

of interference fringes can also be reduced. 

(ii) Scattered light, which in conventional spectrophotometry would reduce the effective value of I0 

thus giving a spurious absorption measurement, has less effect on the photoacoustic signal 
[332]

. 

(iii) The dynamic range of the technique can be large. 

(iv) No photodetector is required for the main signal, which can improve performance in the longer 

wave mid IR where standard uncooled detectors have poor detectivity. Although a 

photodetector may still be required to normalise the signals against incident power, the effects 

of detector noise are reduced when we combine this with point (i). 

A disadvantage is that if the background matrix changes, relaxation processes and pathways can 

change, with a consequent alteration in the signal level. For example, for detection of methane in air 

there is interaction between methane and oxygen with a fast transfer of energy from excited methane 

to oxygen (faster than the modulation frequency), and a slow relaxation of oxygen molecules (not 

detectable at typical modulation frequencies). This process significantly reduces photoacoustic signal 

strengths
[333]

. The key point is the time constant of the energy relaxation pathway in relation to the time 

of one modulation cycle. Hence at increased sample pressures, PA signal generation can be more 

efficient because more frequent collisions increase the likelihood of energy transfer from molecular 

vibration to translation (V-T relaxation) within any modulation cycle
 [334]

. 

Photoacoustic detection can be applied in combination with any of the spectroscopies mentioned in 

this article, and in the right circumstances can deliver an order of magnitude or more improvement in 

the limit of detection. Because the received signal is usually proportional to the excitation power Io, 

and the limiting noise is independent of Io, system performance is often compared using a normalised 

figure of merit based on the minimum detectable absorbance αmin, namely αminIo in units of cm
-1
W. 

A disadvantage of photoacoustic systems is that they are highly sensitive to background acoustic 

noise and vibrations. In field use, this can be the performance-limiting feature, yet can vary from site to 

site and is hard to predict. For other measurements, this noise would be reduced by increasing the 

modulation frequency f, as the magnitude of background vibrations is generally inversely proportional 

to frequency
[330]

. However, the photoacoustic signal, resulting from integration of the energy absorbed 

during each modulation cycle, is also proportional to 1/f, so the general result is no net improvement in 

signal to noise ratio.  

To avoid background acoustic noise, a number of designs use a non-absorbing reference channel 

which can be positioned in a differential geometry. Provided that the reference channel is located 

close to the sample channel (displaced by less than the acoustic wavelength for the modulation 

frequency used), this can experience background vibrations to the same extent as the sample channel 

and their effect can be minimised.  

Acoustically resonant systems have been used extensively to amplify the acoustic signal; Figure 54 

shows a number of different geometries in use. This can provide a large signal enhancement; one 

example based on a quartz resonator has a Q factor of over 10,000
[335]

. Care must be taken if the 

limiting noise is background acoustic noise, in which case the noise might be amplified by an equally 
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large amount. However, it is possible to place potential sources of such noise at pressure nodes, 

rather than antinodes, to suppress excitation of the background at the resonant frequency. Such 

sources can include gas inlets and windows, which can generate pressure signals at the modulation 

frequency as a result of fractional absorption within the window material. 

 

Figure 54. Schematic designs for different types of resonant photoacoustic cell. (a) Simple organ pipe 

resonator, (b) organ pipe with buffer volumes at each end, (c) Helmholtz resonator with sample and 

reference chambers (configured in this case for solid samples), (d) closed cylinder with excitation of 

coaxial resonant modes, (e) closed cylinder with excitation of azimuthal resonant modes, (f) cylindrical 

cell with suppression of window noise. Taken from [336].  

Kosterev et al have pointed out that, in the linear region of the Beer Lambert law (equation (1)), the 

signal S from a resonant photoacoustic cell is equal to
[334]

: 

 CIQ CIQ
S

f V f A

 
    (12) 

Where I is the optical power in W, Q is the quality factor of the resonant cell, V is the cell volume, A is 

the cross-sectional area, f is the modulation frequency and η is a system efficiency factor that takes 

into account the microphone transfer function and other potential loss factors. It can be seen from 

equation (12) that the signal is no longer a function of optical pathlength, therefore the latter can be 

reduced without affecting the signal to noise ratio. For a resonant system, smaller dimensions would 

require a higher modulation frequency, but we have already seen that if the limiting noise is due to 

background acoustic vibration, the higher frequency might not result in a deterioration in signal to 

noise ratio.  

Resonant cells with a high Q (>500) require active temperature stabilisation in order to maintain the 

resonance, otherwise temperature – induced variation of the velocity of sound in air will allow the 

system to drift away from the resonant peak. Miklós et al calculated that, for responsivity to drift by 
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less than 1%, the temperature change ΔT must be kept within QΔT ≤ 56, and QΔT ≤ 138 for a 10% 

drift
[336]

.  

Background acoustic noise can be reduced by making use of the phase difference between the 

background noise and signal in resonant systems, ensuring pressure nodes correspond to inlets for 

gases
[ 337 ]

, supports and the location of windows
[330]

. Saarela et al further used a differential 

microphone arrangement, giving signals 180° out of phase from opposite ends of the cell, as shown in 

Figure 55, and measuring the difference between the two. In this way, acoustic noise from other 

sources affecting the microphones equally was suppressed. Window noise can be reduced by use of 

wavelength modulation, since absorption by windows is normally a broadband effect that affects the 

entire baseline
[329]

.  

 

Figure 55. Differential microphone arrangement of Saarela et al, after [337]. The dashed line 

corresponds to the amplitude of standing pressure waves in the cell.  

A conventional resonant cell has been miniaturised by Gorelik and Starovoitov
[ 338 ]

. Although 

apparently simple (see Figure 56), its design is based on a detailed consideration of resonant acoustic 

modes. The position of the microphone and windows has been optimised so as to maximise the PA 

signal magnitude at the microphone and minimise spurious background effects. With an incident 

power of 66 mW, a normalised αmin of 3.2 × 10
-8

 cm
-1

 W Hz
-1/2

 was demonstrated with a signal 

averaging time of 0.13 s.  

 

Figure 56. Miniature resonant photoacoustic cell designed by Gorelik and Starovoitov, with an optical 

pathlength of 1 cm. Shading indicates the amplitude of pressure waves in the resonant acoustic mode. 

Windows were placed at the Brewster angle B to the optical path and the microphone was placed at 

position M. After [338].  
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The quartz-enhanced PAS (QEPAS) system of Rice University was also designed with acoustic noise 

suppression in mind. The sensor including optical pathlength is very small (a few mm in length) and 

can be located within a larger sample volume. The quartz tuning fork (QTF) at the heart of the sensor 

is a quadrupole, conferring excellent immunity to externally generated noise, which tends to move the 

prongs of the tuning fork in a similar direction and therefore is less likely to induce quadrupole 

vibrations. An example of such a QTF is shown in Figure 57. The piezoelectric current generated by 

the QTF is detected using a transimpedance amplifier, giving a normalised αmin in the range 

10
-8 

- 10
-9

 cm
−1

W Hz
-1/2

 
[334,335]

. The QEPAS sensor has been demonstrated in detection of many 

different gases (see multiple references in Table 8) using tunable lasers including near IR DFB and 

VCSELs, QCLs and DFG sources. 

 

Figure 57. Typical quartz tuning fork as adapted by Rice University for PAS, shown next to a scale 

marker ruled in mm. Taken from [334]. 

To improve sensitivity, a number of groups have developed microcantilevers as an alternative to 

microphones. The microcantilevers have very low mechanical compliance and show large deflections 

in response to pressure waves, their displacement detected optically via deflection of a reflected laser 

beam
[339]

 or interferometrically
[340]

. The latter system used a differential geometry that conferred some 

immunity to background noise, giving a normalised αmin of 1.7×10
−10

 cm
−1

W Hz
-1/2

 when used for 

detection of CO2 at 1.572 μm. Recent miniaturisation of the latter system has led to the device pictured 

in Figure 58.  

Lindley et al have completed an intercomparison of three different PA cell designs, ensuring that the 

three cells were used under similar laboratory conditions and with similar excitation sources
[341]

. The 

three designs were a simple resonant tube similar to that in Figure 54 (a), a differential cell based on 

resonant flow tubes and the microcantilever system of reference [340]. Their work confirmed the 

superior sensitivity of the microcantilever design, with normalised αmin (1σ) values of 1.6×10
−7

, 

8.5×10
−8

 and 1.1×10
−9

 cm
−1

WHz
−1/2

 obtained respectively.  

Lindley et al also investigated improvements to PA sensitivity by using an erbium doped fibre amplifier 

(EDFA) to increase the incident power from a few mW to over 1 W. Limits of detection for acetylene 

were improved for all PA cell types, for example by a factor of 152 with the microcantilever cell for a 

power increase from 1.5mW to 1.2 W (a factor of 10
3
). However, in all cases the improvement in 

performance was lower than the proportional increase in power, and normalised values of αminI0 
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deteriorated. The authors attributed this to several factors including increased ASE noise from the 

EDFA, possible saturation effects, and a possible deterioration in beam quality. Saarela et al simply 

increased the incident light power from their LED sources by directing as many of them as possible 

(10 in total) to the centre of their resonant cell. Further techniques to improve sensitivity include the 

use of a resonant photoacoustic cell placed within a multipass Herriott cell, such that the laser beam 

was required to pass through the cell windows with every pass
[ 342 ]

, and use of an open-ended 

resonant tube placed within a confocal cavity
[343]

.  

 

Figure 58. Differential photoacoustic cell incorporating a microcantilever sensor, designed to be 

addressed interferometrically via optical fibre (not shown). The scale marker is a Euro ten cent coin 

(20 mm diameter). Taken from [344]. 

Photoacoustic spectroscopy has been used by Varga et al in combination with TDLS at 1.57μm to 

measure H2S in natural gas process streams
[345]

, based on a differential resonant PA cell designed by 

Miklos et al
[336]

 (see Figure 54 (c) for a single, non-differential example). The results of laboratory tests 

have been reported, with a limit of detection of 0.16 ppm. This good performance was established by 

comparing measurements from gas pipelines containing sour gas (with H2S) and sweetened gas (H2S 

removed), and by use of piped zero reference gases to prevent short-term drift effects. This provided 

an almost perfect reference, to correct for matrix interfering chemical species as well as environmental 

changes and acoustic noise that could also affect the measurement. Successful operation on a natural 

gas processing plant was also reported for an 18 month period, during which time the system was 

claimed to run “totally unattended”. Although performance data for this period were not explicitly 

stated, agreement with alternative methods of H2S measurement was within 0.5 ppm; to maintain this 

level of performance in a noisy environment is an achievement. 

9 Comparison of different gas detection techniques 

The difficulties in comparing different techniques have been nicely discussed by Moyer et al 
[300]

. 

Almost inevitably, a figure of merit that makes sense in one application is of limited value in another, or 

difficult to calculate. Within this article, we have attempted to compare performance using the common 

metrics of NEA and αmin. However, a brief summary prevents us from factoring in other needs such as 

response time requirements, the need to avoid cross-interference to a particular species in certain 

applications, the ability to reduce sample pressure to use narrower linewidths, limits on cost, 

complexity or space. Furthermore, normalising these metrics to the measurement bandwidth in Hz
1/2

 

makes an assumption that limits of detection will be improved by increasing the averaging time; this is 
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true up to a point determined by drift effects. For detailed discussions on these issues for particular 

systems, the reader is directed to the original papers. 

Practitioners usually find that performance achieved in the laboratory is rarely replicated in the field. 

What is the scientific basis for this? In optical systems there are a number of possibilities. It can be 

difficult to maintain the precise alignment needed, especially in systems with long equivalent 

pathlengths. Uncontrolled or unknown variations in temperature and pressure within the sample can 

affect accuracy by altering the linewidth γ and absorption strength S in equation (3), and matrix effects 

can also alter γ. Finally, optical interference fringes can affect any of the spectroscopic techniques 

described in this article, but particularly TDLS. Fringes on the zero baseline will drift as a result of 

thermal expansion or contraction of the responsible cavity. As optical gas detection often involves 

measuring changes from the baseline rather than absolute measurements, fringe drift is unlikely to 

affect laboratory measurements made within a few minutes, but can cause a marked deterioration in 

performance over longer time periods, especially for large or rapid temperature excursions. Methods 

to reduce such deterioration include active temperature stabilisation of the instrument
[346]

 and frequent 

re-zeroing the instrument with clean air (sometimes known as “zero air”)
[228]

, all of which comes at a 

cost to instrument complexity. 

 

Figure 59. Allan variance for different configurations of a TDLS based instrument designed for airborne 

measurement of atmospheric formaldehyde. Taken from [228].  

An Allan variance plot is often used to visualise the effect of signal averaging and drift
[347]

. This plot 

shows the variance (σ
2
) or standard deviation (σ) in optical signals as a function of averaging time for 

the instrument. An example is shown in Figure 59 for a TDLS based system designed to measure 

formaldehyde in the atmosphere from onboard aircraft – a challenging environment, owing to wide 
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excursions in both temperature and pressure of the external environment, vibration of the aircraft itself, 

and constraints on the size, weight and power of the system. As expected, at shorter averaging times 

the measurement is limited by white noise and therefore the variance is inversely proportional to 

averaging time. However, after some optimum averaging time, drift effects can be seen as a rise in 

variance as averaging time is increased. The point at which this happens, and the extent to which 

performance deteriorates thereafter, are both application– and installation– specific for a given 

instrument. As Figure 59 shows, the difference in limit of detection between an optimised laboratory 

instrument and an airborne instrument in flight is a factor of 5. The authors noted that re-zeroing with 

zero air once a minute often improved the performance
 [228]

. 

Notwithstanding our disclaimer above, we have compared the performance of broad categories of 

optical gas detection techniques in terms of both NEA and αmin. Plots of these figures of merit versus 

optical pathlength for different systems are shown in Figure 60; the plots are based on data from the 

references in this article, including Table 8 in the appendix, and therefore represent real, demonstrated 

experimental performance.  

What can we learn from this analysis? The following observations can be made. 

 Broadband measurements (NDIR, BB-CEAS) are confirmed to suffer worse signal to noise ratios 

than equivalent narrowband techniques, and the long pathlength spectroscopy of DOAS has 

performance that lies between broadband measurements and very high resolution, tunable laser 

measurements, as we might expect. 

 The techniques with the lowest αmin, ie those best able to detect low gas concentrations, are those 

for which very long pathlengths (up to tens of km) can be established, namely tunable laser based, 

cavity-enhanced techniques. 

 One might have expected that techniques with longer pathlengths would show a deterioration in 

NEA owing to the increased optical complexity of the system (ie they might be more likely to exhibit 

troublesome interference fringes). The evidence here does not support this in general, but the trend 

appears to hold within a number of individual categories. It may be that the best instruments have 

been designed to avoid interference fringes through a combination of balanced detection and 

thermal management. It is also true that performance limits are often reported for short-term 

measurements, whereas the effect of fringes will cause drift over the longer term. 

 For the short optical pathlengths used, PAS shows very good performance compared with other 

techniques; this may well be due to the pathlength invariance of equation (12) already discussed. 

 When comparing 2f WMS and TTFMS, no overall difference in performance was observed, 

therefore these categories were combined into one. This may be, as discussed in section 6.2, 

because of improvements in the relative intensity noise of laser diodes since TTFMS was first 

devised. 

 One might have expected a difference in performance between directly scanned TDLS and 2f 

WMS, but at the lower end of the NEA and αmin scales, the evidence shows that these techniques 

perform similarly. As previously discussed, the best performance for each technique is due to the 

use of balanced detection systems that compensate for laser intensity fluctuation and certain types 

of interference. If both techniques are limited in practice by optical interference fringes, their limits 

should be the same. It is possible that direct TDLS would also be limited by the bit resolution of 
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data acquisition systems, however the availability in the last few years of digital / analogue 

converters with 18 bit or greater resolution may have removed this obstacle.  

 There is a plethora of recently emerged cavity-enhanced techniques, which have been categorised 

separately because of the field’s relative immaturity compared to the others here. Of the cavity-

enhanced techniques, OA-ICOS appears to be demonstrating excellent performance and has the 

advantage of being one of the simpler cavity-enhanced techniques to implement. 

 

 
 (a) 

 
 (b) 

Figure 60. Summarised performance of different categories of gas detection techniques as a function 

of optical pathlength: (a) NEA, (b) αmin.  
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harmonic wavelength modulation 

spectroscopy, ICOS – integrated cavity 
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NDIR – non-dispersive infrared, NICE-

OHMS – noise-immune cavity-enhanced 

optical heterodyne spectroscopy, PAS – 

photoacoustic spectroscopy, TTFMS – 

two-tone frequency modulation 

spectroscopy. 
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10 Discussion and conclusions 

One of the technical compromises in optical gas sensing is to work at very high resolution with limited 

wavelength coverage, or to make measurement over a wide range of wavelengths but with a worse 

signal to noise ratio. The same is true of review articles; in an article of this breadth we cannot cover 

any one area with sufficiently high resolution to do it justice, and neither can we report on every clever 

advance that has been reported in the field. We can only hope not to have missed anything of great 

significance, and apologise where we have done so. Instead, we hope to gain by drawing out common 

themes and comparisons across the field. And fortunately there exists a number of excellent review 

articles able to probe more deeply into the individual techniques described here. A second problem 

with measurements is the response time; as soon as a measurement has been reported, it is out of 

date, and in general the larger the sample size, the longer the response time. The response time of 

this article has been well over a year owing to its large sample size, plus a sampling delay time of a 

few months for the review and publication process. 

From section 9, it is obvious that the dynamic range of “optical gas sensing” is large. We haven’t 

considered upper limits of detection of any of these techniques, yet the lower limit of detection, defined 

by the αmin parameter, covers nine orders of magnitude, with instruments ranging from a simple 

source, pathlength and detector (NDIR) to complex laser systems under active control. The range of 

applications is consequently very large for a common signal transduction mechanism, and a number of 

those applications have been mentioned throughout this article. 

A number of general trends can be identified going forward. Firstly, the mid IR region has opened up 

to TDLS with the availability of turnkey, room temperature laser diodes now covering almost the entire 

range from 1.3 to 11 or 16μm, depending on whether we consider pulsed or CW lasers. This is having 

a knock-on effect on the availability of supporting mid IR technology, from optical fibre to diagnostic 

instruments for visualising beams or resolving emission spectra at high resolution; previously, such 

technology was largely developed for IR imaging applications. At the same time, technology 

developed originally for the telecommunications industry at around 1.55μm is extending its reach into 

the 2-3 μm region and even up to 3.5 μm. For certain components, such as multi-channel detectors for 

NDIR, device integration and improved packaging have facilitated more widespread uptake of the gas 

detection technique. Integration and packaging of lasers, photodetectors and associated optics might 

therefore be an area ripe for further development, taking know-how from the telecommunications 

industry. 

Several developments are helping to close the gap between spectrometers with broad wavelength 

coverage but limited resolution / signal to noise ratios, and narrow band, ultra high resolution 

measurements made using tunable lasers. With external cavity systems, the wavelength coverage of 

the latter is increasing, and recent developments in dual frequency comb based Fourier transform 

spectroscopy may widen coverage still further. At the same time, many novel optical techniques have 

been applied to the problem of improving spectrometer performance, as previously described in 

section 5. It is possible that some consolidation may result, with one or two key technologies gaining 

commercial significance, perhaps even one day replacing the FTIR in both the lab and the field. 

Cavity-enhanced techniques have developed rapidly over the last decade and there is a wide variety 

of different techniques to choose from. The precise choice of technique may currently be dictated by 
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the characteristics of whatever laser is available to cover the wavelength region of choice. However, 

as mid IR lasers develop further, we may also see consolidation in this field.  

Finally, several small photoacoustic devices have recently been developed. Their small size has 

advantages for system response time and is potentially an advantage in itself for example in portable 

equipment. However, at present the overall size of any instrument would be dominated by the physical 

size of the laser focusing optics and other associated optics. It might be that improvements in 

packaging of the latter is needed to realise the full benefits of using such small optical cells. 

Using optical absorption offers a number of advantages that alternative technologies cannot provide. 

Because measurement are based on a fundamental physical property of the target molecule, some 

mechanisms of failure associated with materials based technologies are avoided, including poisoning-

induced drift, lack of selectivity and batch-to-batch variation in responsivity. Optical gas measurements 

are usually self-referenced, which means that it is possible to design auditable instruments that “know” 

whether they have failed (eg by a failure of a light source or a failure to direct sufficient light in and out 

of the sample). Finally, the rapidity of the signal transduction, and the fact that the measurement can 

be made in situ, means that optical instruments can have a significantly faster speed of response than 

alternative technologies (the highest reported detection bandwidth in Table 8 is 1.2MHz, which is 

unusual, but  response times of 1s are common). 

Arguably the biggest disadvantage of optical gas detection is its cost; compared to materials based or 

electrochemical sensors, they are significantly more expensive, even for the simplest NDIR sensor. 

For many one-off applications, where there is no alternative method, this does not matter. Use in 

industrial environments and field based measurement remains a challenge, especially where there are 

also cost constraints. Fortunately there exists a large number of niche applications for which optical 

systems make both scientific and commercial sense. A second disadvantage is also a strength; a high 

degree of selectivity also means that multiple gas species are hard to detect simultaneously without a 

proportional increase in system complexity. Finally, by using optical absorption, we have to be led by 

the information content available in an absorption spectrum. There are some gases that are more 

challenging to measure: those without a permanent dipole (eg H2, N2, O2) with insignificant infrared 

absorption, and those that happen to have small absorption coefficients (eg H2S). A second challenge 

is to be able to measure a wider range of gas compounds such as larger molecules including volatile 

organic compounds (VOCs), which have broader spectra with lower information content, requiring 

wider wavelength coverage and greater reliance on spectral fitting algorithms. The problem of access 

to interesting parts of the spectrum is now easing greatly and opening up many new applications.  

To conclude, optical gas sensing remains an important field that complements other gas detection 

technologies. The opportunities afforded by new technology, together with the challenges that remain, 

will make this an exciting and rapidly developing field for many years to come. 



 Page 74 

Appendix Performance comparison of optical gas detection techniques 
Table 8. Comparison of performance indicators for optical detection of different gases 

 

We have completed a survey of recent published results for the detection of a number of gas species 

and summarized these in Table 8. We note the following facts concerning the survey. 

1. In this table, we report on a survey of recently reported developments in optical absorption of a 

range of gases, namely ammonia (NH3), benzene (C6H6), carbon dioxide (CO2), carbon monoxide 

(CO), ethane (C2H6), formaldehyde (H2CO), hydrogen sulfide (H2S), methane (CH4), nitric oxide 

(NO), nitrous oxide (N2O), nitrogen dioxide (NO2), sulphur dioxide (SO2) and water vapour (H2O). We 

chose this list somewhat arbitrarily, however aiming for a balance between gases of concern in 

environmental, safety and industrial applications, and choosing those with sufficient reported activity to 

make a comparison table worth producing. 

2. Techniques were surveyed over the preceding 5 - 10 years using the Thomson Reuters and Scopus 

databases. Where few papers were found for a given gas, the timescale was extended. Examples are 

presented showing detection capability for different techniques; where more than one paper was found 

that refers to the same technique, to avoid repetition the best reported performance was included (in 

many cases, repeated papers have reported improvements to a technique by the same team). 

3. Where possible, different studies have been compared using the minimum detectable absorbance 

(in absorbance units, AU) and the minimum detectable absorption coefficient (in cm-1), in all cases 

stating the 1σ values. Where reported by authors themselves, these have been quoted normalised by 

the measurement bandwidth in Hz1/2. Where we have calculated figures of merit (for example 

calculating the minimum detectable absorbance using the authors’ stated minimum detectable 

absorption coefficient and stated pathlength), the result is given in italics. 

4. In the case of photoacoustic techniques, the incident power in W has been stated and detection 

limits normalised to an incident power of 1W, in the expectation that signal to noise ratios are 

proportional to that incident power. This is standard practice in the field and most authors report in this 

manner. 

5. For open path measurements, detection limits are reported in the pathlength-integrated form, for 

example as ppm.m rather than ppm. In some applications such as urban air quality, it is rare for the 

gas “sample” to occupy the measured pathlength homogeneously, rather it is more typical for gas 

clouds to be present over shorter distances. 

6. Different studies are listed first in order of the gas detected, then in order of wavelength (records at 

similar wavelengths are grouped together), and finally in decreasing order of minimum detection limit 

by concentration. Concentrations are expressed as parts per million 10
6
 (ppm), billion 10

9
 (ppb) or 

trillion 10
12

 (ppt), in all cases by volume. 

 

Key 

BB-CEAS - broadband cavity-enhanced spectroscopy, CRDS – cavity ringdown spectroscopy, direct TDLS – 

directly scanned tunable diode laser spectroscopy, DOAS – differential optical absorption spectroscopy, 2f WMS 

– 2
nd

 harmonic wavelength modulation spectroscopy, ICOS – integrated cavity output spectroscopy, OA-ICOS – 

off-axis ICOS, OF-CEAS – optical feedback CEAS, NDIR – non-dispersive infrared, NICE-OHMS – noise-immune 

cavity-enhanced optical heterodyne spectroscopy, PAS – photoacoustic spectroscopy, QEPAS – quartz-

enhanced PAS, TTFMS – two-tone frequency modulation spectroscopy. 
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Table 8. Comparison of performance indicators for optical detection of different gases 

Gas Wave-length Path-
length 

Response / 
averaging 
time 

Min detectable 
absorbance, NEA 

Min detectable 
absorption coefficient, 
αmin 

Min detect-
able gas 
concentration  

Technique Ref 

         

ammonia 
NH3 

190-230nm 150m 1s 5 × 10
-5

 3 × 10
-9

 cm
-1

 0.15 ppm.m DOAS [348] 

200-230nm 60.5 cm 1s Not stated Not stated 1 ppm CCD 
spectrometer 

[349] 

1.532 μm 3m 6s 3.5 × 10
-5

 1.2×10
-7

 cm
-1

 7-14 ppm 2f WMS, 

waveguides 
[67]

 

1.532 μm 36 m 30 s 1.4 × 10
-4

 3.9 × 10
-8

 cm
-1

 0.2 ppm Direct TDLS [350] 

1.532 μm 4 cm 10s 4× 10
-8

 1.3×10
-10

 cm
-1 

W Hz
-1/2 

1×10
-8

 cm
-1

 
50 ppb Direct TDLS 

PAS, 40mW 
[351] 

1.512 μm Not 
stated 

30s Not stated 8 × 10
-10

 cm
-1

 18ppb ICOS  [352] 

1.532 μm 5.4 mm 10s Not stated 4.7 × 10
-10

 cm
-1

 
4.7 × 10

-10
 cm

-1
 W 

2.4 ppb WMS, PAS 
1W 

[353] 

1.532 μm 5.0 km 1s 1.4×10
−5

  2.8 × 10
-11

 cm
-1

 Hz
-1/2

 0.7 ppb OA-ICOS [296] 

1.527 μm Not 
stated 

<60s Not stated 8  10
-11

 cm
-1

 Hz
-1/2

 0.4ppb CRDS [354]  

2.00 μm 5.3 mm 1 s 4.7 × 10
-9

 W Hz
-1/2

 
2.2 × 10

-5
 Hz

-1/2
 

8.9 × 10
-9

 cm
-1 

W Hz
-1/2

 
2.2 × 10

-5
 cm

-1
 Hz

-1/2
 

3 ppm WMS, QEPAS 
0.4mW 

[335] 

2.33μm ~10km 1/8Hz ~ 10
-3

 10
-9

 cm
-1

 14 ppb OF-CEAS [322] 

9.22 μm 11 cm 30 s 2.0 x 10
-7

 2.4 × 10
-7

 cm
-1

 W Hz
-1/2

 

1.2×10
−7

 cm
−1

 Hz
-1/2

 

0.2 ppb WMS, PAS 
2W 

[355] 

9.7 μm 1.6 m 5 s Not stated Not stated 80 ppm NDIR [129] 

10.34 μm 76 m 1s Not stated Not stated 0.2 ppb Direct TDLS [388] 

         

benzene 
C6H6 

230-260nm 100 m 5s Not stated Not stated 2ppm.m Open path 
spectrometer 

[163] 

239-302nm 740 m 120s full 
scan 

1.4 × 10
-2

 1.9 × 10
-7

 cm
-1

 0.54 ppb 
0.4 ppm.m 

DOAS [356] 

5.1 μm 107 m 4 s. Not stated Not stated 1 ppm 2f WMS [357] 

14.8 μm 10 cm 1s Not stated Not stated 11.5 ppm Direct TDLS [358] 

         

carbon 
dioxide 

CO2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.532 μm 3m 6s 3.5 × 10
-5

 1.2×10
-7

 cm
-1

 Not stated 2f WMS, 
waveguides 

[67]
 

1.54 μm 51 m 30 min (full 
spectrum) 

3.1 x 10
-3

 1.6 x 10
-6

 cm
-1

 Not stated BB- CEAS [359] 

1.5408 μm ~ 2.25 
km 

145 μs ~ 2.5×10
-4

 Hz
-1/2

 1.1  10
-9 

cm
-1 

Hz
-1/2

 500 ppm CRDS [360] 

1.570 μm 0.5 m 10 s Not stated Not stated 400 ppm Multimode 
correlation 2f 
WMS 

[361] 

1.582 μm 1 m 1 s 6  10
-7

 6  10
-9

 cm
-1

 9 ppm 2f WMS, 
balanced 
receiver 

[200] 

1.597 μm Not 
stated 

2s 6.8 × 10
-4

 5.8 × 10
-9

 cm
-1

 Hz
-1/2

 Not stated OF-ICOS [362] 

1.573 µm ∼ 68 m 33 s 2.3  10
−7

 Hz
−1/2

 3.4  10
-11

 cm
-1

 Hz
-1

 3.6 ppm Hz
−1/2

 2f WMS OA-
ICOS 

[298] 

1.572 μm 8.7 cm 2.6 s 4.1 x 10
-8

 3.6 x 10
-9

 cm
-1

 
1.7×10

-10
 cm

-1 
W Hz

-1/2
 

1.9 ppm 2f WMS PAS 
30mW 

[340] 

1.603 μm ~ 12 km 5 s 1.9  10
-5

 1.6  10
-11

 cm
−1

 Hz
-1/2

. 0.1 ppm CRDS [363] 
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Table 8. Comparison of performance indicators for optical detection of different gases 

Gas Wave-length Path-
length 

Response / 
averaging 
time 

Min detectable 
absorbance, NEA 

Min detectable 
absorption coefficient, 
αmin 

Min detect-
able gas 
concentration  

Technique Ref 

carbon 
dioxide 

CO2 

1.6055 μm 15.2 m 1.9 s 3.8  10
−5 

Hz
−1/2

 2.5 ×10
−8

cm
−1

Hz
−1/2

 590 ppm Direct TDLS [364] 

1.997 μm 20 m 1.7 s Not stated Not stated Not stated 
1-3% accuracy  

Direct TDLS [365] 

2.0035 μm 5.3 mm 1 s 1.9  10
-3

 Hz
-1/2

 

7.4  10
-9

 W Hz
-1/2

 

3.5  10
-3

 cm
-1

 Hz
-1/2

 

1.4  10
-8

 cm
-1

 W Hz
-1/2

 

18 ppm 2f WMS 
QEPAS 
0.4mW 

[335] 

4.2 μm 24 mm < 1s Not stated Not stated 1600 ppm NDIR [103] 

4.2 μm 1.4 mm 10s Not stated Not stated 100 ppm Correlation [137]
 

4.2 μm 40 mm 0.1 s < 10
-3

 < 2.5 x 10
-4

 cm
-1

 25 ppm NDIR [84] 

4.24 μm 1m 20s Not stated Not stated 16 ppb FTIR, 
waveguide 

[64]
 

         

carbon 
monoxide  

CO 
 

1.582 μm 1 m 1 s 6.4  10
-7

 6  10
-9

 cm
-1

 5 ppm 2f WMS, 
balanced 
receiver 

[200] 

1.564 μm Not 
stated 

30s Not stated 8 × 10
-10

 cm
-1

 0.9 ppm ICOS, 
frequency 
comb  

[352] 

1.565 μm 4.2 km 1s 1.4 × 10
−5

  3.1 × 10
-11

 cm
-1

 Hz
-1/2

 12 ppb OA-ICOS [296] 

1.565 μm 2.7km 1s 5.1  10
-7

 Hz
-1/2

 1.9  10
-12

 cm
-1

Hz
-1/2

 Not stated OA-ICOS [292] 

2.3 μm 40cm 4s Not stated Not stated < 11ppm 2f WMS [366] 

2.33μm ~10km 8Hz ~ 10
-3

 10
-9

 cm
-1

 16 ppb OF-CEAS [322] 

4.94 μm 1 m 40 s Not stated Not stated < 400 ppm 
15% accuracy 

Direct TDLS [352] 

4.4–4.8 μm 30 cm 3 s 1.7 × 10
-3

 5.7 x 10
-5

 cm
-1

 1.1 ppm.m 
2% accuracy 

Direct TDLS [367] 

4.6 μm 1.4 mm 10s Not stated Not stated 170 ppm Correlation, 
FPI 

[137]
 

4.5524 μm 5.3 mm 3 s 2.2  10
-5

 Hz
-1/2

 

2.8  10
-7

 W Hz
-1/2

 

4.1 10
-5

 cm
-1 

Hz
-1/2

 

5.3  10
-7

 cm
-1 

W Hz
-1/2

 

0.28 ppm QEPAS / 2f 
WMS 13 mW 

[368]   

4.633 μm 36 m 0.8 s 6.3 × 10
-5

 5 × 10
-9

 cm
-1

 Hz
-1/2

  0.55 ppb 2f WMS QCL [369]
 

4.6024 μm 400m 1 s  Not stated Not stated 0.2 ppb 
1% accuracy  

ICOS [302]
 

         

ethane 
C2H6 

3.348 μm 1.35 km 0.5 s 1.1 x 10
-3

 Hz
-1/2

 8.1 × 10
-9

 cm
-1

 Hz
-1/2

 0.48 ppb Hz
-1/2

 OA-ICOS [370] 

3.34 μm 100 m 1 s 3.6 × 10
-5

 Hz
-1/2

 3.6 x 10
-9

 cm
-1

 Hz
-1/2

 150 ppt Herriott 2f 
WMS ICL 

[371] 

3.344 μm. 201 m 1 s 2.1 × 10
-5

 1.05 × 10
−9

 cm
−1

 Hz
−1/2

 70 ppt Herriott 2f 
WMS 

[372]
 

3.3 μm ~ 3.5 
km 

60 s ~ 4.9 × 10
-4

 1.4×10
−9

 cm
−1

 70 ppt CRDS [386] 

3.352μm ~ 3.5 
km 

180s ~ 6 x 10
-5

 Hz
-1/2

 1.6 x 10
-10

 cm
-1

Hz
-1/2

 6 ppt Hz
-1/2

 ICOS [236] 

         

form-
aldehyde 

H2CO 
 
 
 

2.29 μm 26.5 cm Not stated Not stated Not stated <1 ppm WMS PAS [373] 

3.53 μm 83 m 3 s 2.1×10
−4

 Hz
-1/2

 
[215]

 2.1×10
−8

 cm
-1

 
[215]

 50 ppb OA-ICOS [374] 

3.5 μm 18 m 13s 2 x 10
-4

 1×10
-7

 cm
-1

 30 ppb Direct TDLS, 
DFG 

[375] 

3.54 μm 26.5 cm Not stated Not stated Not stated < 10 ppb WMS PAS [373] 
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Table 8. Comparison of performance indicators for optical detection of different gases 

Gas Wave-length Path-
length 

Response / 
averaging 
time 

Min detectable 
absorbance, NEA 

Min detectable 
absorption coefficient, 
αmin 

Min detect-
able gas 
concentration  

Technique Ref 

form-
aldehyde 

H2CO 
 

3.56 μm 100 m 1 s 2.1 × 10
-4

 Hz
-1/2

 2.1 × 10
-8

 cm
-1

 Hz
-1/2

 3.5 ppb 2f WMS 
Herriott 

[371] 

3.52–3.59 
μm 

4 cm 3 s 2.5 x 10
-8

 W Hz
-1/2

 6.2×10
−9

Wcm
−1

Hz
−1/2

 3 ppb 2f WMS PAS 
65 mW 

[376] 

3.50 μm 1.2 km 2 s 8 × 10
-4

 7 × 10
-9

 cm
-1

 2 ppb CW CRDS [271] 

3.53 μm 5.3 mm 10 s 1.2 x 10
-8

 W Hz
-1/2

 
3.4 x 10

-6
 Hz

-1/2
 

2.2 × 10
-8

 cm
-1

 W Hz
-1/2

 
6.5 × 10

-6
 cm

-1
 Hz

-1/2
 

0.6 ppb QEPAS 
3.4 mW power 

[377] 

3.53 μm 100 m 260 s 1.7 × 10
-7

 1.7 × 10
-11

 cm
-1

 5 ppt WMS Herriott  [378] 

         

Hydrogen 
sulfide 

H2S 

190-230nm open 5s Not stated Not stated 4 ppm.m Open path 
spectrometer 

[163] 

1.59 μm 5 m Not stated Not stated Not stated 42 ppm 2f WMS [379] 

1.578 μm 1 m 1s 5.3 × 10
-7

 5.3 × 10
-9

 cm
-1

 4 ppm TTFMS [380] 

1.5745 μm 10cm 3s 1 × 10
-7

 8 × 10
-10

 cm
-1

 W Hz
-1/2

 
1 × 10

-8
 cm

-1
 

0.17 ppm Direct, PAS 
40 mW 

[345] 

1.5716 μm 1.8 km 2 s 1 × 10
−5

 0.5 × 10
−10

 cm
−1

  0.22 ppb OA-ICOS [381] 

         

methane 
CH4 

 

 

1.513 μm 2.3 km 0.3s 9 x 10
-6

 Hz
-1/2

 4x10
-11

 cm
-1

 Hz-
1/2

 Not stated NICE-OHMS [323] 

1.66 μm ≥12 cm Not stated ~ 2x10
-3

 ~ 2x10
-4

 cm
-1

 100 ppm NDIR [382] 

1.684μm 20 cm 2s Not stated Not stated 4.3ppm Direct TDLS [184]
 

1.6482μm 74 m 1.5 – 10s 4 - 8  10
-5

 Not stated 0.1 ppm Direct TDLS, 
Herriott 

[29] 

1.654 μm 252 m 2s Not stated Not stated 20 ppb Direct TDLS, 
Herriott 

[383] 

1.659 μm 9.4 km 1s Not stated Not stated ±1 ppb OF-CEAS [321] 

1.651 μm ~12 km 5s 1.9  10
-5

 1.6  10
-11

 cm
−1

 Hz
-1/2

. 0.5 ppb CRDS  [363] 

1.654 μm 2.1 km 1 s 1.4×10
−5

  6.7 × 10
-11

 cm
-1

 Hz
-1/2

 0.3 ppb OA-ICOS [296] 

1.73µm 646 m 210 s 1.2 × 10
-2

 Hz
-1/2

 1.8  10
-7 

cm
-1

 Hz
-1/2

 3.4 ppm Hz
-1/2

 ICOS [384] 

2.33μm ~10km 8 s ~ 10
-3

 10
-9

 cm
-1

 0.4ppm OF-CEAS [322] 

3.3 μm ~ 4cm 105 s Not stated Not stated 170 ppm NDIR [105] 

3.3 μm 1.4 mm 10s Not stated Not stated 5 ppm Correlation [137]
 

3.3 μm 6.8 m 60 s 3.5×10
−4

 Hz
-1/2

 5.0×10
−7

 cm
-1

 Hz
-1/2

 15 ppb Direct, Herriott, 
balanced 
detection  

[215] 

3.314 μm 13 m 120 s 6.5  10
-4

 Hz
-1/2

 5.8  10
-7

 cm
-1

 Hz
-1/2

 3 ppb Hz
-1/2

 TTFMS, 
Herriott 

[385] 

3.2 μm ~ 3.5 
km 

200 s ~7 × 10
-4

 2.0×10
−9

 cm
−1

 0.16 ppb CRDS [386]  

3.428 μm 13 m Not stated 6.510
-6

 Hz
-1/2

 5.3×10
-9

 cm
-1

 Hz 
-1/2

 30 ppt Hz-1/2 TTFMS, 
Herriott 

[385] 

7.3 μm 20cm 1.2MHz 6×10
−7

 Hz
-1/2

 3×10
-8

 cm
-1

 Hz
-1/2

 Not stated TTFMS [387] 

7.7 μm 1m 20s 
(instrument
) 

Not stated Not stated 520 ppb FTIR, 
waveguide 

[64]
 

7.84 μm 1 km 1 s 5.6 × 10
−4

 Hz
−1/2

 5.6 × 10
−9

cm
−1

Hz
−1/2

 8 ppb OF-CEAS [317] 

8.03 μm 76 m 1s 4.6×10
−5

 Hz
-1/2 [215]

 6.1×10
−9

 cm
-1

 Hz
-1/2 [215]

 1 ppb Direct TDLS, 
Herriott 

[388] 
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Table 8. Comparison of performance indicators for optical detection of different gases 

Gas Wave-length Path-
length 

Response / 
averaging 
time 

Min detectable 
absorbance, NEA 

Min detectable 
absorption coefficient, 
αmin 

Min detect-
able gas 
concentration  

Technique Ref 

Nitric 
oxide 
NO 

 

190-230nm 100 m 5s Not stated Not stated 4 ppm.m Open path 
spectrometer 

[163] 

200-230nm Not 
stated 

3.4 s Not stated Not stated 5 ppm  DOAS [389] 

1.81 μm 68 cm 10s 4.8 × 10
-6

 7 × 10
-8

 cm
-1

 100 ppm Direct TDLS [390] 

5.263 μm 21 cm 1.25 s 7.2×10
−6

 Hz
−1/2

 3.4×10
-7

 cm
-1

 Hz
-1/2

 2.7 ppm Direct TDLS [391] 

5.4 μm 50 cm 0.04 s 9 × 10
-4

 1.8 × 10
-5

 cm
-1

 0.5 ppm.m 
1 ppm 

Direct TDLS [392] 

5.405 μm 9 m 0.48 s Not stated Not stated 13 ppb  2f WMS, 
waveguide  

[393] 

5.216 µm 75m 15s Not stated Not stated 2ppb 2f WMS OA-

ICOS  
[394] 

5.47 μm ~500m 4 s 2.6×10
-4

 ~5.3×10
-9

 cm
-1

 1.2 ppb ICOS [395]
 

5.263 μm 1.5 km 4s ~6 x 10
-4

 ~4 × 10
-9

 cm
-1

 0.7 ppb ICOS [396] 

5.26 μm 76 m 1s Not stated Not stated 0.3 ppb Direct TDLS [388] 

5.405 μm 76 m 30 s 6.7×10
-5

 Hz
-1/2

 8.8 × 10
-9

 cm
-1

 Hz
-1/2

 0.2 ppb 2f WMS [397] 

5.263 μm 70m 30s 1.4×10
-6

 2×10
−10

 cm
−1

 0.1 ppb Hz
-1/2

 Direct TDLS [398] 

5.33 μm ~ 2.4 
km 

70 s ~ 5 x 10
-5

 Hz
-1/2

 2×10
-10

 cm
-1

 Hz
-1/2

 7 ppt  CW CRDS [399] 

         

Nitrous 
oxide 
N2O 

 

4.55 μm 5.3 mm 3 s 4.2 x 10
-7

 Hz
-1/2

 
8.0 x 10

-9
 W Hz

-1/2
 

7.9×10
−7

 cm
−1

 Hz
-1/2

 
1.5×10

−8
 cm

−1
W Hz

-1/2
 

4 ppb QEPAS, SF6 
added 
19 mW 

[368]
 

4.46 μm 76 m 1s ~ 2% Not stated 0.38 ppb Direct TDLS, 
Herriott 

[388] 

5.4 μm 50 cm 0.04 s ~5×10
-5

 ~10
-6

 cm
-1

 10 ppm.m 
20 ppm 

Direct TDLS [392] 

6.2 μm 4 m 10s Not stated Not stated 2 ppm NDIR, White [117] 

8.0 μm 20cm 1/1.2MHz 6×10
−7

 Hz
-1/2

 3×10
-8

 cm
-1

 Hz
-1/2

 Not stated TTFMS [387] 

7.84 μm 1 km 1 s 5.6 × 10
−4

 Hz
−1/2

 5.6 × 10
−9

cm
−1

Hz
−1/2

 2 ppb OF-CEAS [317] 

7.87 μm 76 m 1s Not stated Not stated 0.16 ppb Direct TDLS, 
Herriott 

[388] 

        
 

Nitrogen 
dioxide 

NO2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

400-450nm 60m 500s  
(full scan) 

210
-4

 3x10
-8

 cm
-1

 14 ppm DOAS [400] 

463 nm 50 cm 2 s Not stated Not stated 3 ppm  CCD 
spectrometer 

[401] 

453 nm  3.6 

cm 

2.1 s  5.8 x 10
-7

 Hz
-1/2

 1.6×10
−7

 cm
−1

Hz
−1/2

 
1.4×10

−6
 cm

−1
WHz

−1/2
 

10 ppb BB PAS  
9W 

[337] 

411 nm 5.4 km 0.1 s 1.9 x 10
-5

 3.5×10
−9

 cm
-1

 200 ppt OF-CEAS [402] 

430 nm Not 
stated 

600s Not stated 1 x 10
-8

 cm
-1

Hz
-1/2

 300 ppt BB-PS-CEAS [314] 

441-462nm 34.5m 30s 1.3 x 10
-5

 3-8 x 10
-9

 cm
-1

 100-240 ppt BB-CEAS [312] 

639 nm 50 cm 0.1s 6.6×10
-7

 1.3 × 10
-8

 cm
-1

 5 ppb.m 
10 ppb 

Direct TDLS [403] 

635 nm 160m 6s Not stated Not stated 7 ppb TTFMS open 
path 

[404] 

6.09 μm 2 km Not stated Not stated Not stated 1.2 ppb CRDS [405] 
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Table 8. Comparison of performance indicators for optical detection of different gases 

Gas Wave-length Path-
length 

Response / 
averaging 
time 

Min detectable 
absorbance, NEA 

Min detectable 
absorption coefficient, 
αmin 

Min detect-
able gas 
concentration  

Technique Ref 

Nitrogen 
dioxide 

NO2 

6.25μm. 9.2cm 120 s Not stated Not stated 0.5 ppb PAS  
300mW 

[406] 

6.23 μm 40 m 1s 6.4 × 10
-6

 1.6 × 10
-7

 m
-1

 75 ppt 2f WMS, White [195] 

         

Sulfur 
dioxide 

SO2 

190-nm 100 m 5s Not stated Not stated 6 ppm.m Open path 
spectrometer 

[163] 

300 nm 35cm 3s Not stated Not stated 1 ppm CCD 
spectrometer 

[407] 

290-310nm 19cm 60s Not stated Not stated 0.4 ppm Correlation [135] 

7.505 μm 1.44 m 10 s 1.8 × 10
-4

 Hz
-1/2

 1.25 × 10
-6

 cm
-1

 Hz
-1/2

 2 ppm.m Hz
-1/2

 Direct TDLS [408] 

         

Water 
vapour 

H2O 
 

652 nm ~10.8 
km 

10 s 3 × 10
-3

 2.9×10
−9

 cm
−1

 Not stated BB-CEAS [409] 

833.6 nm 350 m 2 ms 6 × 10
-5

 1.710
-9 

cm
-1

 1 ppm CRDS [410] 

1.396 μm 5.3 mm 1s 1.1 x 10
-6

 Hz
-1/2

 
9.2 x 10

-9
 W Hz

-1/2
 

2.1 × 10
-6

 cm
-1

 Hz
-1/2

 
1.7×10

-8
 cm

-1 
W Hz

-1/2
 

9 ppm QEPAS  
8mW 

[411] 

1.393 μm 10 m 50 s Not stated Not stated 1.6 ppb TTFMS [412] 

1.3925 μm. 46.7m 70 s 2 × 10
-6

 3.5 × 10
-9

 cm
-1

Hz
-1/2

 70 ppt 2f WMS 

Herriott 
[413] 

1.651 μm ~12 km 5s 1.9  10
-5

 1.6  10
-11

 cm
−1

 Hz
-1/2

. 50 ppm CRDS  [363] 

1.997 μm 20m 1.7s Not stated Not stated Not stated Direct TDLS, 
Herriott 

[200] 

6.7 μm 4.2 km Up to 100s 3.6 x 10
-4

 
(full scan) 

2.4×10
−11

 cm
−1

Hz
−1/2

 0.28 ppm OA-ICOS [300] 
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