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Abstract
In a recent experiment [9], a cell in the human medial temporal lobe (MTL) encoding one sensory
stimulus starts to also respond to a second stimulus following a combined experience associating
the two. We develop a theoretical model predicting that an assembly of cells with exceptionally
high synaptic intraconnectivity can emerge, in response to a particular sensory experience, to
encode and abstract that experience. We also show that two such assemblies are modified to
increase their intersection after a sensory event that associates the two corresponding stimuli.
The main technical tools employed are random graph theory, and Bernoulli approximations.
Assembly creation must overcome a computational challenge akin to the Densest K-Subgraph
problem, namely selecting, from a large population of randomly and sparsely interconnected cells,
a subset with exceptionally high density of interconnections. We identify three mechanisms that
help achieve this feat in our model: (1) a simple two-stage randomized algorithm, and (2) the
“triangle completion bias” in synaptic connectivity [14] and a “birthday paradox”, while (3) the
strength of these connections is enhanced through Hebbian plasticity.
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1 Introduction

How do sensory stimuli from entities in the outside world effect the creation of stable
memories in the animal cortex, and how are such memories modified by further experience,
for example by the introduction of associations between them? A recent experiment [9]
provides certain interesting insights into these fundamental questions. They recorded from a
total of 613 neurons in the medial temporal lobe (MTL, the brain region near the hippocampus
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long believed to be implicated in memory) of 14 human subjects. They presented, in a
particular rigorous protocol running over several stages, many images of places and people,
with repetitions and occasional superpositions. Several neurons were identified that fired
consistently at the presentation of a particular place or person. One particular neuron in one
subject may have fired consistently when an image of the Eiffel tower was presented, but
failed to fire when other images were presented, such as an image of Barack Obama (example
for the present illustration). Then a combined image of Obama in front of the Eiffel tower
was presented, and, predictably, the neuron fired (as it always does when the Eiffel tower is
seen). Remarkably, after this combined presentation the neuron also fired when an image of
Obama was shown: the subject had learned the association between the two!

In this paper we propose a model for the formation and association of memories, based
on random graphs and Hebbian plasticity, which we believe captures in a simplified way the
basic mechanisms involved in this phenomenon. Our model predicts that stable memories
will be formed in response to stimuli and that two such memories can “nudge closer together”
in response to a simultaneous presentation of the two stimuli. Interestingly, as explained in
Section 8, our results recall quite vividly the narrative of [5] about a related phenomenon in
mouse olfaction.

How is it possible, by monitoring a few dozen neurons of a subject (out of many million in
the MTL) and by presenting a hundred or so familiar images (as [9] and similar experiments
have done), to identify several neurons consistently responding the images? About the only
plausible explanation is that each image shown must excite a great number of neurons, and
must do so quite consistently. This and many other experiments (see [3, 13] for reviews)
confirm earlier theories and hypotheses going back to Hebb [8] that tokens of cognition (such
as the Eiffel tower) are represented by assemblies of many excitatory neurons1, often called
concept cells [12]. These assemblies are stable, in the sense that in the short term they fire
more-or-less consistently and as a whole with the same stimulus (absent new associations).
They are therefore believed to be densely connected through many and strong synapses.
Every time the corresponding cognitive entity is active in the brain, all these cells (more or
less) fire. In fact, the experiment of [9] even suggests that these assemblies are fluent in that
they can be changed dynamically in response to new experiences and associations.

Despite the emerging consensus that concept cell assemblies in the MTL are an important
piece of the puzzle of memory and cognition, and simulation results verifying that assemblies
can indeed emerge (see [11, 17], and [10] for related work on assembly binding) we are
not aware2 of theoretical models predicting the creation of cell assemblies, much less their
association. Here we present such a model for the formation of assemblies in a recurrent
network of memory neurons, in response to the spiking of a separate cell population of
sensory neurons representing the sensory experience – we call such spiking the presentation
of the stimulus.

We model the memory neurons as a directed Gn,p graph, and the projection from the
sensory neurons as a bipartite, one-way Gn,p graph. Our model assumes that firing of neurons
happens in discrete steps and synchronously. One key simplifying assumption of our model
is that, at each step, exactly K memory neurons fire, namely the ones receiving at that
instant the largest synaptic input. This is of course a strong simplifying assumption; it is
intended to capture the way in which the firing thresholds of the excitatory memory neurons
are regulated by inhibitory neurons (not modeled explicitly here), resulting in an equilibrium

1 Naturally, two such sets can overlap – and a simple calculation suggests that they are likely to do so.
2 Valiant’s important and relevant theory [15] is discussed extensively in the sequel.
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in which a relatively stable number of excitatory neurons end up firing.
We assume that the neural network is fixed; the only possible modification comes through

Hebbian plasticity: if there is a synapse (directed edge in the graph) from i to j, and i and j
fire in two consecutive steps in this order, then the strength of this synapse (and thus the
strength of the firing signal it can transmit theretofore) increases. Our model, and especially
our way of modeling inhibition, was inspired and informed by the discussion in [5] of a related
phenomenon in the mouse brain, see the description in Section 8.

We prove formally that, in this model, when a stimulus is presented through the repeated
firing of a set of sensory neurons representing the stimulus, a corresponding stable assembly of
neurons can indeed be formed, with high probability. We also show that two such assemblies,
once both formed in response to the presentations of two different stimuli at different times,
can subsequently be modified by increasing their intersection in response to the simultaneous
presentation of the corresponding stimuli (as happens in the “Obama at Eiffel” example).
We first analyze a linearized version of the model, in which thresholds and saturation are
ignored; we arrive at a dynamical system (Eq. 3.1), which we were able to solve through an
equilibrium equation in closed form. We establish convergence under minimal assumptions,
see Theorem 3.1. The analytical solution (see the statement of Theorem 3.1) recalls vividly
the description of the related phenomenon in mouse olfaction [5], see Section 8.

We then proceed to analyze the strongly nonlinear dynamics of the full model. We prove
that, here too, the description of [5] prevails: already after two steps of stimulus spiking,
a set of cells has been selected comprised of two kinds, quite balanced in cardinality: cells
that have strong projection from the stimulus population, and cells to which those project
strongly (see Theorem 4.1(1)). Subsequent steps modify this assembly in rather limited ways
(Theorem 4.1(2)).

Furthermore, simulations show that, if two stimuli A and B are presented in the order A,
then B, then A + B (both stimuli spike), then A, then B, association happens: the assemblies
responding to A and B change slightly so they intersect a little more. We prove an analytical
result (Theorem 5.1) establishing that some fraction of the two assemblies will indeed migrate
towards each other.

Synaptic Density of Assemblies and Valiant’s Model

Ever since Hebb, assemblies were conjectured to be dense in synaptic connections. In fact,
several of our proofs take advantage of the fact that synaptic density within the assembly
being formed is markedly higher than random. The synaptic density of the formed assemblies
is further enhanced in a more sophisticated random graph model that we call G++

n,p , capturing
experimental observations [14, 7] that the distribution of synaptic connections is biased
towards triangle completion (see Section 6); in this model a combinatorial birthday paradox
argument establishes that, for the parameter range of interest, assemblies are far more
intraconnected than one would expect.

High synaptic density of assemblies is a major advantage when it comes to the maintenance
of stability and consistency, but of course is a severe design burden at creation time3:

In a random graph, how do you select an induced subgraph that is much more dense
than average?

3 According to Les Valiant (private communication to CHP, 2017) dense assemblies are “infinitely harder”
to create than the items of Valiant’s theory, discussed next.

ITCS 2018
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This looks and feels like the intractable Densest K-subgraph problem [4]; in Section 6 we
briefly discuss how our proposed mechanism can be abstracted as a rather apt algorithm
for solving approximately this computational problem in a Gnp graph, and how it compares
with other known algorithms for it.

The high synaptic density of assemblies is one point of stark contrast of our theory of
assemblies against L. G. Valiant’s theory of items. More than two decades ago, Valiant
articulated his important computational theory of cortex. He proposed an elegant model of
cortex consisting of neurons connected through random synaptic connections and equipped
with an automaton-like vicinal programming language. He proposed that tokens of human
cognition, such as “Eiffel” and “Obama”, are represented in cortex by sets of neurons called
items, which can be combined, through vicinal algorithms, in ways akin to logical gates to
form new items, and associations between such. Unlike our current theory of assemblies, an
item in Valiant’s theory is an arbitrary set of neurons with no particularly high connectivity.
Perhaps the most critical difference between Valiant’s theory and our current discussion of
assemblies, and our main technical contribution, is this: Valiant’s vicinal programming model
allows a generous repertoire of elementary instructions (modifications of the parameters of
neurons and synapses, such as threshold and synaptic strength as an arbitrary function of
local state), whereas our model is far more minimalistic, relying only on the simple, and
rather standard and broadly accepted, rule of Hebbian plasticity explained next, and a
simplified rigorous treatment of inhibition.

2 Our Model

There is a memory area M consisting of n neurons randomly connected through synapses
according to the directed Gn,p model (for every i 6= j ∈M , the probability that there is
a synapse (i, j) is p).
There is a sensory area S, whose neurons project through synapses to the neurons in M
according to the one-way bipartite Gn,p model (for every i ∈ S, j ∈M , the probability
that there is a synapse (i, j) is p). A stimulus is a set of L neurons in S.
Firing of neurons happens in discrete steps 1, 2, . . . , t, ... and in synchrony. The present-
ation of a stimulus is the firing of the corresponding S neurons for a large number of
subsequent steps (such repetitive firing is called spiking).
Each synapse (i, j) (within M and from S to M) has a strength wij , initially 1.
We denote the set of neurons in M that fire at time t by F t ∩M (the set F t includes also
neurons in S). This set is defined as follows: We first calculate for each neuron i ∈M
its synaptic input Iti =

∑
j∈F t−1 wji, the sum of all synaptic weights of the synapses to i

coming from neurons j ∈M ∪ S that fired at the previous step. Then F t is the set of K
neurons in M with the largest Iti .
Justification: In a simple model of the cortex, besides the excitatory neurons considered
here there are also inhibitory neurons, whose role is, roughly speaking, to make sure that
the number of firing excitatory neurons is not excessive. There are random synaptic con-
nections between the two populations: Excitatory neurons project positively to inhibitory
neurons, while inhibitory neurons project negatively on excitatory ones, increasing their
firing threshold. Here we assume that, at the equilibrium of this random process, exactly
K of the (excitatory) neurons in M will fire. This is obviously a strongly simplifying
assumption, inspired by the narrative about inhibition in [5]. We are confident that a
more detailed random graph model of the process described above would also result in a
number of firing neurons that is strongly concentrated, by the law of large numbers, near
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a value K; this would be an interesting extension of our work, which we intend to pursue.
Hebbian plasticity. If there is a synapse (i, j) and it so happens that i ∈ F t and j ∈ F t+1,
then the weight of this synapse is increased by a small amount β > 0, say4.

Indicative ranges of these parameters for the human MTL are these: n = 107, p =
10−3,K = L = 104, and β = 0.1. In our simulations we use values such as n = 103− 104, p =
10−2,K = L = 102, and β = 0.1.

3 The Linearized System

We start with a simplified model that ignores the nonlinearity of thresholds (a useful and
familiar mathematical simplification from the theory of artificial neural networks). The
assembly creation process is then captured by the following dynamical system, where zj is
the stimulus projection strength at neuron j, xj(t) the activation probability of neuron j at
time t and Wij(t) is the strength of the synapse ij at time t:

xj(t+ 1) = zj + (WTx(t))j
Wij(t+ 1) = Wij(t) + βxi(t)xj(t+ 1) (1)

In addition, the pre-synaptic weights at each neuron are normalized to sum to 1 after each
weight update. We assume that initially W is a random adjacency matrix in Gn,p, and that
at time 0, the activations x(0) are set to 1 for a random subset of K neurons and 0 for the
rest.

I Theorem 1. With high probability over W and x(0), the dynamics (1) converge linearly
to the following equilibrium (ij ∈ E denotes a synapse from i to j):

x∗j = zj +
∑
i:ij∈E(x∗i )2∑
i:ij∈E x

∗
i

.

This equation captures and verifies in a rather striking way the description of a similar
phenomenon in [5], see Section 8: the probability that a neuron joins the assembly has
two components, the first being the size of the stimulus projection on the neuron, and the
second a function of the corresponding probabilities of (recursively) its presynaptic neurons
– a function that is monotonically increasing in the region of interest (most neurons have
near-zero probabilities, while the rest have comparable probabilities).

Proof. An equilibrium activation x∗ must satisfy

x∗ = z +WTx∗ and so x∗ = (I −WT )+z

where A+ is the pseudo-inverse of A. The equilibrium weight matrix satisfies:

W ∗ij =
W ∗ij + βx∗i x

∗
j∑

l:lj∈EW
∗
lj + β

∑
l:lj∈E x

∗
l x
∗
j

.

Therefore, using the fact that we normalize the incoming synaptic weights of each node:

W ∗ij(1 + β(
∑
l:lj∈E

x∗l )x∗j ) = W ∗ij + βx∗i x
∗
j

4 Or instead multiplied by 1 + β, or in either case up to a saturation level B. Our results are robust with
respect to these popular variants of Hebbian plasticity.

ITCS 2018
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which implies

W ∗ij = x∗i∑
l:lj∈E x

∗
l

and therefore

x∗j = zj +
∑
i:ij∈E(x∗i )2∑
i:ij∈E x

∗
i

.

The mathematically demanding part is the proof of convergence; this follows from Lemma
2 below (whose proof can be found in the Appendix): the first part shows progress in each
step at a rate depending on the spectral gap of W (t), and the second part shows that weight
updates cannot slow down the convergence. In addition, convergence implies stability: If at
a later time the same input signal is presented, the same probabilities of formation will be
effected. The “high probability” clause of the theorem refers to the fact that the following
events are highly probable for random W and x(0): (a) W is irreducible, and (b) at each
time t, the matrix W (t) has non-negligible spectral gap, and therefore the lemma applies. J

I Lemma 2. Let W be an n×n nonnegative, irreducible matrix and z ∈ Rn
+ be a nonnegative

vector.
1. The iteration x(t+ 1) = z +WTx(t) with random x(0) satisfies

‖WTx(t+ 1)‖2

‖x(t+ 1)‖2
2

>
‖WTx(t)‖2

‖x(t)‖2
2

.

2. Let the weight update rule (1) be applied repeatedly to synapse weights W for some β > 0
and current activation vector x. Then for each cell j, the vector w of incoming synaptic
weights converges to a vector w̃ which satisfies

w̃ · x
‖w̃‖2

≥ w · x
‖w‖2

.

4 The Nonlinear System

Continuing to the full nonlinear model, our quantitative narrative of assembly forma-
tion (see Theorem 4.1 below) also recalls the key features in the description in [5]. Let
A(1), A(2), . . . , A(t), . . . denote the sets of K cells in the memory area firing at each discrete
time step t > 0 during stimulus presentation. It is clear that A(1) consists of the cells with
the largest projection from the stimulus – we intuitively think of these cells as “born rich”.
At the next step, the theorem states that A(2) contains a balanced mix of A(1) cells, and
cells that have strong combined projection from the stimulus and from A(1). In experiments,
the quantity λ capturing this balance is indeed reasonably far from 0 and 1 for the range of
interest (see Figure 1b). Moreover, assuming powerful enough synaptic plasticity, subsequent
sets A(t) will converge rapidly to the final assembly A. Thus the theorem reasserts the
interpretation of [5]. In the statement of the theorem, asymptotics are in terms of n, assuming
that K is bounded from above and below by powers of n (e.g., K =

√
n).

I Theorem 3. The following hold with high probability over random initial synaptic connec-
tions:
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(a) Fraction of new activations.

(b) Solutions to the β, λ equation.

Figure 1 Illustration of Theorem 3. The first plot is the relative size of the newly activated cells
A(t) \A(t− 1) in each iteration, with n = 2000,K = L = 2

√
n = 89.

1. For all t ≥ 2, we have

|A(t) ∩A(1)| = (λ+ o(1))K

for a constant λ ∈ (0, 1) depending on the synapse probability p, plasticity factor β,
plasticity ceiling B and the ratio of assembly size to input size K/L.

2. For large enough β and B, there is a λ̄ < 1 s.t. for all t ≥ 2 we have

|A(t) \A(t− 1)| ≤
(
(1− λ̄)t + o(1)

)
K.

Thus, the sequence of activated sets stabilizes rapidly, with the change to the previous set
decaying geometrically with the number of steps. This can be seen in simulation, even for
modest parameter values (see Figure 1a).

I Lemma 4. Let X ∼ Bin(n, p). Then for t > np,

Pr(X ≥ t) ≤ exp
(
−nH

(
p,
t

n

))
where H(p, q) = q log(q/p) + (1− q) log((1− q)/(1− p)) is the entropy function.

For p < 0.5 and np < t < 2np, the above bound is at most exp(−(t− np)2/np). We will use
this in the proof of the main theorem.

Proof of Thm. 3. The set A(1) consists of the K cells that receive the maximum total signal
from the L stimulus cells. Since we model synaptic structure as a random graph with synapse

ITCS 2018



57:8 Long Term Memory

probability p, each cell j receives a signal yj =
∑
i∈SWij where S is the set of stimulus

cells. This is the Bernoulli distribution B(L, p), the sum of L independent Bernoulli random
variables each with expectation p. The yj ’s for different cells j are independent and thus the
set A(1) is exactly the K-cap of (K largest samples from) n independent copies of B(L, p).
This is the tail of the the Bernoulli B(L, p) of probability K/n. A simple calculation using
the Binomial tail bound (Lemma 4) gives us that the threshold for the K-cap is (very close)
to

t1 = pL+
√
pL ln(n/K)

where n is the total number of cells in the MTL, and each cell in A(1) receiving at least this
much signal from the stimulus.

For the second step, the distribution of the signal to a cell depends on whether it is in
A(1) or not. A cell j not in A(1), receives the signal of the input stimulus as well as the
signal from cells in A(1). We approximate this distribution by the Binomial B(K + L, p),
which ignores the conditioning that such a cell j was not in the K-cap of the initial Binomial;
the latter conditioning can only reduce the probability that a cell not in A(1) is a winner in
the next round. For a cell j in A(1), the signal from the external stimulus cells is fixed by
the first step but amplified by a factor (1 + β) due to plasticity; the signal from the K cells
in A(1) is random. So their signal comes from the distribution (1 + β)t1 + B(K, p). The
threshold for the K-cap of this joint distribution is then close to

t2 = (1 + β)t1 + pK +
√
pK ln K

λK
= p(K + L) +

√
p(K + L) ln n

(1− λ)K

where λ is the fraction of A(2) that is also in A(1). The equation above can be solved
numerically for λ. For our range of interest, with K = L = 2

√
n, for λ in [0.1, 0.4], the

plasticity parameter β is in [0.3, 0.6], and gets slightly smaller for larger graph size (see
Figure 1b).

This establishes the intersection between A(1) and A(2) is at least a λ fraction with high
probability. The first part of the theorem says that almost all of this intersection remains
activated for all future time steps. To see this, note that after step 2, the weights from the
input as well as from the all of A(1) to cells in the intersection are increased again by a
factor 1 + β. These cells, which were already ahead, and are now further ahead. The rest of
A(1), A(2) are strictly inferior and the cells outside A(1) ∪A(2) have gained no advantage
at all, even ignoring the effect of the cap. The advantage of the intersection gets magnified
with each iteration.

The general proof for both parts proceeds by induction on t. We claim inductively that,
with high probability, any cell that is activated for a second time remains activated for all
future steps. To see the inductive step, clearly such cells have an advantage over all other
cells of factor of at least (1 + β) for the signal coming from the external input cells, and
for the signal coming from all such cells in the previous iteration (which are an increasing
fraction of K, by the hypothesis). When such a cell is activated for the second time, it was
already ahead of all other cells not in the activated set; this advantage is magnified by a
factor of 1 + β for the signal from the input and from all such cells. Among the remaining
cells, some will be activated for the second time and some for the first time. The relative
fraction is bounded by λ̄ via a calculation similar to the base case above – at each step the
competition is between cells that have just been activated and received a (1 + β) boost for
the first time on part of their input signal (a diminishing fraction of K of such cells), and
most of the n other cells that have not felt any plasticity yet. J
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This result and its proof, as well as the equilibrium result for the linearized model,
imply consistency and stability of the assemblies formed: If the same stimulus (or even a
fairly similar stimulus, in some appropriate metric) is presented at a later time (even after
certain limited changes in the weights of the circuit) then with high probability the same
(more-or-less) cells will fire.

5 Association

The experiment with the sequence of presentations A, B, A + B, A, B, described in the
introduction shows that, after the joint presentation, the assemblies that respond to A and
B “creep closer together,” increasing their intersection to reflect the association between the
two stimuli (see Figure 5.1). To understand and illustrate the underlying mechanism, we
shall consider a stylized special case of assembly creation. In particular, we assume that
plasticity is so intense that the assembly corresponding to stimulus A consists of only the
cells receiving the K largest signal from stimulus A, and similarly for B. The advantage of
this assumption is that it allows us to study the association phenomenon divorced from the
subtleties of the proof of Theorem 4.1. Consider now the presentation of A + B; we can
show the following (we assume for algebraic convenience that K = L):

I Theorem 5. There is a µ > 0 such that, with high probability, at least a µ fraction of the
cells of the assembly for B will respond to the next presentation of A, and vice-versa.

Proof. It is easy to see that, upon the presentation of A + B, the K cells that will fire consist
of a fraction of the cells of assembly A and a fraction of the cells of assembly B, namely
those that maximize the combined signal from A +B. The signal the cells of assembly A
receives from stimulus A is very close to the K-cap Lp(1 +

√
2 ln(n/K)

Lp ), while from assembly
B they only receive a binomial distribution with mean Lp (since those cells have not been
selected for B). By symmetry, with high probability the number of cells from each of the two
assemblies that fire will be very close to K

2 . Let us call these sets 1
2A and 1

2B, respectively.
We claim that all cells in 1

2A receive a signal from stimulus A equal to Lp(1 +
√

2 ln(n/K)
Lp ) as

before, plus a signal from stimulus B equal to Lp(1+
√

2 ln(n/K)
Lp )), since they were selected to

be the cells in assembly A that are above the median with respect to received signal from B.
Now notice that there are about pK2 synapses between 1

2A and 1
2B. After the presentation

of A + B, these synapses, as well as the synapses from stimulus A to 1
2B, are boosted to

plasticity saturation (since their endpoint cells spiked together for long enough).
If stimulus A is presented next, all cells of assembly A will fire at the first step. At

the second step, however, they will have new competition (which was missing at assembly
creation time) from the cells in 1

2B which have, during the presentation of A + B, acquired
strong synapses from stimulus A and assembly A. As in our analysis in the proof of Theorem
4.1, the threshold equation for µ becomes, after simplification 1

2 +
√

2 ln(n/k)+
√

2 ln( 1
1−µ ) =√

2
3 ln( 1

2µ ). The third term of the lhs is negligible for small µ, and the rhs can take over the
other two terms by selecting µ appropriately small. J

This argument gives µ < 1%, which is conservative: the fractions of the two assemblies
that intersect after association seem to amount to several percent (see Figure 2a). A similar
statement can also be shown in the absence of the high plasticity assumption, by focusing on
A(1) ∩A(2) (which we know is a constant fraction of K), instead of the whole assembly.

ITCS 2018
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(a) Association fraction in the standard
model Gn,p.

(b) And in the extended model G++
n,p .

Figure 2 Illustration of association à la Ison et al [9].The intersection of the assemblies for
stimuli A and B, before and after a joint A+B presentation, over 20 trials with n = 2000 cells and
assembly/stimulus sizes K,L = d2

√
ne = 89. Trials sorted by size of initial overlap.

6 The Model G++
n,p and the Birthday Paradox

As we have seen, the assemblies created by the process analyzed here have higher density than
random sets of cells, essentially due to the second step of the stimulus presentation (Theorem
4.1(1)). This effect is enhanced considerably if we adopt a more sophisticated random graph
model. Experiments in [14, 7] and elsewhere suggest that synaptic connectivity in brain
areas including parts of the MTL is not uniformly random, but biased towards reciprocity
and triangle completion. Reciprocity means that, even though the overall density of edges
remains p, conditioned on synapse ij being present, the probability of synapse ji is larger
than p, perhaps between 3 and 5 times larger. Triangle completion means that, conditioned
on the existence of synapses ij and ik, the probability of synapse jk is similarly larger.

Here we shall ignore reciprocity bias, and adopt a limited form of triangle completion
bias: Again, the overall density of edges is p, except that, conditioned on the synapses ij
and ik being present, where i is a sensory cell and j, k are memory cells, the probability of
synapse jk is γp for some γ > 1. The reason we ignore reciprocity bias is because it seems
to have only a small effect on our present focus; the reason we restrict triangle completion
bias in the bipartite graph between the sensory and memory areas is because this part of
triangle completion matters most, and also because there are formal difficulties involved in
the precise definition of a generative model of random non-bipartite directed graphs with
triangle completion bias. We call the resulting random graph model G++

n,p .
Within this model, and for some reasonably broad range of parameters, we can show

that there is substantial enhancement of the density of the assemblies. The underlying
mathematical reason is the birthday paradox: Upon presentation of a stimulus, memory
cells receive a signal of strength Lp on average – that is, on the average they each have Lp
presynaptic stimulus cells. Consider two cells i and j in the memory area, and call them
siblings if they have a common presynaptic cell in the stimulus; the chance that this is the
case is clearly p2L. Suppose however that we have identified a subset S of memory cells
whose signal is known to be of strength at least αLp for some α > 1; for example, within
the initial cells A1 of the assembly (recall Theorem 4.1 (1)), α = 1 +

√
2 ln(n/K)

pK . Then
the chance that two cells in S are siblings is increased to α2p2L. For parameter values
n = 107, L = K = 103, p = 10−2 (all very much within the range of interest), the probability
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of two cells of S being siblings is increased from .1 to about .8. Since in G++
n,p two siblings

have enhanced probability of synaptic connection, say γ = 4, it follows that the synaptic
density within the region A1 of an assembly in G++

n,p will be more than 3 times its value
in Gn,p. The rest of the assembly will also have increased interconnections, because of a
similar birthday paradox argument, but in addition for the reasons obtaining in the proof of
Theorem 4.1(1). Adding plasticity to the picture, we conclude that assembly creation selects
a set of cells with denser and stronger synaptic connections than random, and achieves this
in three ways: Through the second step of the creation process (Theorem 4.1(1)); through
plasticity; and through triangle completion and the birthday paradox in the G++

n,p model.
Our experiments show that in G++

n,p assembly formation converges faster than in Gn,p,
while the association effect of the previous section does not change much.

7 The Densest K-Subgraph Problem

Finding a set of K nodes with maximum density is an intractable problem to solve exactly
or approximately in general graphs. The mechanism for assembly creation proposed here can
be abstracted as an approximation heuristic for Gn,p graphs:
1 Select a set S of λK nodes at random
2 Let T be the (1− λ)K nodes with highest number of edges from S

3 Return S ∪ T; optimize λ ∈ (0, 1)
It does fairly well: The expected density of the result is about p(1 +

√
ln n

K

2Kp ), compared
to density p of a random set. The expected maximum density of a K-node subgraph of
Gn,p (achievable through exponential exhaustive search) turns out to be – after a calculation
paralleling that in [2] (see also [6]) – the solution to this equation Kx ln p = Kx ln x− 2 lnn,
which turns out to be dmax = 2 logn

KW ( 2 log n
Kp )

, where W (·) is the Lambert W function5.

A competing algorithm is the Cliques algorithm: Let c = logn
log 1

p

, the maximum size of a
clique that we know how to produce in Gn,p:

Repeat K
c times: create a clique of size c.

The resulting density is p+ c
K , which does not compare well with the present algorithm.

Another competitor is the Greedy algorithm:
Repeat n−K times: delete the lowest degree node.

Greedy is hopelessly sequential (and thus irrelevant to our concerns here), and it is not known
how to estimate its performance in Gn,p, but in experiments it does perform better than
AssemblyCreation. Naturally, AssemblyCreation performs much better in G++

n,p , arguably a
more realistic model of synaptic connectivity.

8 A Distant Mirror: The Mouse Piriform Cortex

The memories in the human MTL discussed here are often termed “abstract,” and not
without justification. During sensory processing, the stimulus is coded, over several stages
e.g. in the visual cortex, in a distributed way. This coding spatially reflects the perceived
reality, in that features of the perceived reality (such as edges, frequencies, color, motion) are
processed and coded by neural systems specializing in those features. After the conclusion of
sensory processing, a process may be initiated, possibly mediated and supervised by some
attention mechanism, that creates a new, sparse representation of the perceived item in

5 Many thanks to Cris Moore for help in this calculation

ITCS 2018



57:12 Long Term Memory

the MTL, in which any links to the perceived world have been severed through random
projection; this is the sense of abstraction imputed above.

A simple instance of this phenomenon has been identified recently in a rather unexpected
place, the piriform cortex of the mouse [5]. Odorant molecules excite olfactory receptors
in the animal’s nose specializing in that molecule, and the axons of those excite in turn a
small area (glomerulus) in the olfactory bulb; here again, each glomerulus specializes in one
odor out of many hundreds. Next, the odorant’s glomerulus projects strongly to the piriform
cortex, creating a seemingly uniformly random – “abstract,” disconnected from the outside
world – sparse representation of the odorant. Here is the prescient interpretation in [5] of
their experimental findings about this latter phenomenon:
1. An odorant may [cause] a small subset of [...] neurons [in the piriform cortex to fire].
2. This small fraction of [...] cells would then generate sufficient recurrent excitation to

recruit a larger population of neurons.
3. The strong feedback inhibition resulting from activation of this larger population of neurons

would then suppress further spiking.
4. In the extreme, some cells could receive enough recurrent input to fire [...] without

receiving [initial] input.
This narrative was an important inspiration for the present work, and the mathematical

analysis of our model (Theorems 3.1 and 4.1) recalls it with rather striking fidelity.

9 Discussion and Further Research

We provide rigorous proof that, in a strongly simplified mathematical model of the brain,
an assembly can emerge in response to spiking stimulus cells, will be exceptionally dense
in synapses (a nontrivial algorithmic feat in a random network), and will fire consistently
on future presentations of the stimulus; furthermore, upon a joint representation of two
established stimuli, the assemblies will adapt by increasing their intersection (as has been
observed in experiments). Despite the restrictions of our model, our probabilistic approach is
quite robust, and we expect that several extensions can be obtained with further calculation.
One such model would include a more realistic model of inhibition through a Gaussian
synaptic input whose mean increases with excitatory activity (and no fixed K). Another
extension would be to show robustness of assembly formation to perturbation of the stimulus,
initial random excitatory activity, and noise. Also, it would be interesting to compare our
results with simulations of biologically more realistic models, and to test experimentally if
indeed assemblies in brains are more densely connected than random.

It would be interesting to see if the kind of mechanism hypothesized in this paper is present
in other cognitive functions besides long term memory. One such is that of visual invariants,
the mysterious ability by humans to identify, e.g., various rotations, postures, zooms, and
occlusions of a familiar face, or even identify those visual images with a voice waveform or
a string of characters. Our experiments show that, if two stimuli are presented together
repeatedly, then the corresponding assemblies keep coming closer and closer; eventually they
may become indistinguishable, and one can wonder if this mechanism cannot be part of the
neural basis of invariants.

More ambitiously, what if two stimuli – or existing assemblies, encoding let us say to two
parts of a sentence – are projected to another brain area (the same way a single stimulus is
projected in the basic mechanism of this paper)? The assembly thus formed can be thought
of as encoding a Merge [1] of the other two, that is, the new root of a syntax tree. Also, a
mechanism akin to our assembly creation called assembly pointer has been studied recently
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through computational experiments [10]. An assembly pointer creates a copy of an extant
assembly in a different brain area – perhaps a copy of the assembly for the lexical element
“give” in another brain area where verbs get ready for syntax (see [16] for recent experimental
evidence suggesting such activities in various areas of the cortex). It would be exciting
to explore whether variants of the proposed mechanism can be the basis of beginning to
understand how language is implemented in the Brain.

Acknowledgment. An inspiring discussion with Richard Axel on assemblies in the mouse’s
piriform cortex is gratefully acknowledged.
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10 Appendix

Proof of Lemma 2. Let W =
∑
i σiuiv

T
i be the SVD of W , and v =

∑
i αivi. Without loss

of generality, assume
∑
i α

2
i = 1. Then for any integer k,

‖W kv‖2 = vT (WT )kW kv =
∑
i

α2
iσ

2k
i = E(X2k)

where the random variable X is equal to σi with probability α2
i . Then x(t) is proportional

to (v +Wv + . . .W tv) and the desired inequality can be stated as follows:

vT (I +W + . . .+W t+1)TWTW (I +W + . . .+W t+1)v
vT (I +W + . . .+W t+1)T (I +W + . . .+W t+1)v

≥ vT (I +W + . . .+W t)TWTW (I +W + . . .+W t)v
vT (I +W + . . .+W t)T (I +W + . . .+W t)v

which is equivalent to:

E(X2(1 +X + . . .+Xt+1)2)E((1 +X + . . .+Xt)2)
≥ E(X2(1 +X + . . .+Xt)2)E((1 +X + . . .+Xt+1)2)

or

E(X
2(1−Xt+2)2

(1−X)2 )E( (1−Xt+1)2

(1−X)2 ) ≥ E(X
2(1−Xt+1)2

(1−X)2 )E( (1−Xt+2)2

(1−X)2 ).

Define f1, f2, g1, g2 : R+ → R+ to be each of the functions inside the expectations in the
order above, so that the inequality is

E(f1(X))E(f2(X)) ≥ E(g1(X))E(g2(X)).

Observe that for any X, we have

f1(X)f2(X) = g1(X)g2(X).

Moreover, for any X,Y , we claim that

f1(X)f2(Y ) + f1(Y )f2(X) ≥ g1(X)g2(Y ) + g1(Y )g2(X).

For our choice of functions, this is

X2(1−Xt+2)2

(1−X)2
(1− Y t+1)2

(1− Y )2 + Y 2(1− Y t+2)2

(1− Y )2
(1−Xt+1)2

(1−X)2

≥ X2(1−Xt+1)2

(1−X)2
(1− Y t+2)
(1− Y )2 −

Y 2(1− Y t+1)2

(1− Y )2
(1−Xt+2)2

(1−X)2

which is equivalent to

X2(1−Xt+2)2(1− Y t+1)2 + Y 2(1− Y t+2)2(1−Xt+1)2

≥ X2(1−Xt+1)2(1− Y t+2)2 + Y 2(1− Y t+1)2(1−Xt+2)2

or

(X2 − Y 2) (1−Xt+2)2

(1− Y t+2)2 ≥ (X2 − Y 2) (1−Xt+1)2

(1− Y t+1)2
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which is always true. Therefore, we have

E(f1(X))E(f2(X))− E(g1(X))E(g2(X))

=
∑
i

αif1(Xi)
∑
i

αif2(Xi)−
∑
i

αig1(Xi)
∑
i

αig2(Xi)

=
∑
i<j

αiαj(f1(Xi)f2(Xj) + f1(Xj)f2(Xi)− g1(Xi)g2(Xj)− g1(Xj)g2(Xi))

+
∑
i=j

α2
i (f1(Xi)f2(Xi)− g1(Xi)g2(Xi))

≥ 0.

Moreover this holds with strict inequality unless X = Y , i.e., two of the singular values of W
are equal. Thus the rate of convergence is at least the minimum singular value gap of W .

For the second part, note that the vector w consists of only the nonzero synapses into
some cell j, and so the update rule on each synapse can be written as wij = wij +βjxi where
βj = βxj . Treating w and x as indexed only by i, the cells with synapses to a fixed j, we
write(

w̃ · x
‖w̃‖2

)2
= ((w + βjx) · x)2

‖w + βjx‖2
2

=
(w · x)2 + β2

j ‖x‖4
2 + 2βj(w · x)‖x‖2

2

‖w‖2
2 + β2

j ‖x‖2
2 + 2βj(w · x)

and need to show that this is greater than

(w · x)2

‖w‖2
2
.

Comparing, the inequality becomes

((w · x)2 + β2
j ‖x‖4

2 + 2βj(w · x)‖x‖2
2)‖w‖2

2 > (w · x)2(‖w‖2
2 + β2

j ‖x‖2
2 + 2βj(w · x))

which is implied by the Cauchy-Schwartz inequality:

‖w‖2
2‖x‖2

2 ≥ (w · x)2

applied twice. J
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