
Experiences with Worm Propagation Simulations

Arno Wagner
wagner@tik.ee.ethz.ch

Thomas Dübendorfer
duebendorfer@tik.ee.ethz.ch

Bernhard Plattner
plattner@tik.ee.ethz.ch

Roman Hiestand
romhiest@ee.ethz.ch

Computer Engineering and Networks Laboratory (TIK)
Swiss Federal Institute of Technology Zurich

ETH-Zentrum, CH-8092 Zurich

ABSTRACT
Fast Internet worms are a relatively new threat to Internet
infrastructure and hosts. We discuss motivation and possi-
bilities to study the behaviour of such worms and degrees of
freedom that worm writers have. To facilitate the study of
fast worms we have designed a simulator. We describe the
design of this simulator and discuss practical experiences we
have made with it and compare observation of past worms
with simulated behaviour. One specific feature of the simu-
lator is that the Internet model used can represent network
bandwidth and latency constraints.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive software (e.g., viruses, worms, Trojan horses); K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection—Invasive software (e.g.,
viruses, worms, Trojan horses); I.6 [Computing Method-
ologies]: Simulation and Modeling

General Terms
Security

Keywords
Internet Worms, Simulation, Bandwidth, Latency

1. INTRODUCTION
Internet worms, such as Code Red [2] or more recently

the Sapphire [3] are an emerging threat to Internet hosts
and infrastructure. These worms can compromise very large
numbers of hosts in a short time, down to a few minutes [16].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORM’03, October 27, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-785-0/03/0010 ...$5.00.

The compromised hosts can then be used to perform other
attacks, like massively Distributed Denial-of-Service attacks
[9, 4].
Study of the behaviour of a worm during its propagation

phase is important for several reasons. One is the creation of
early warning systems that can detect a propagating worm,
and in an ideal case also can give preliminary propagation
analysis and perhaps even a captured specimen. Today such
systems do not exist and significant work will be needed
to turn them into a reality. Another interesting aspect is
threat analysis with regard to speed and number of hosts a
worm can compromise in a specific time frame. Prediction
and analysis of collateral damage, e.g. ARP-floods in badly
configured subnets, is also an aspect that needs to be looked
into.
Since worms observed in the past cover only a small por-

tion of the possible parameter space, it is important for
countermeasure design to be able to roughly predict charac-
teristics a worm can have.
We believe that simulation is a key tool here and discuss

experiences made and insights gained with a prototypical
simulation tool for worm propagation.
The paper structure is as follows. We start with a more

detailed discussion of the motivations why worm behaviour
prediction is important in Section 2. Section 3 goes more
into the possibilities how worm propagation can be studied.
Section 4 examines the relevant parameter-space and how
these parameters relate to worm behaviour. In Section 5
we present the implemented simulator and give insights into
experiences made with it in Section 6. Finally we briefly
discuss the effects of IPv6 in Section 7 and give an overview
of related work in Section 8. Section 9 finishes the paper
with a conclusion.

2. WHY PREDICT WORM BEHAVIOUR?
The benefits of predicting worm behaviour are numerous:

• Better understanding of the behaviour of worms ob-
served in the past

• Estimations of a worm’s threat potential
• Estimations of the impact of future worms on the In-
ternet

34

• Basis of the design of detection mechanisms for worm
spreading

• Determination of parameters relevant for worm char-
acterisation

2.1 Traffic Prediction
Traffic prediction for the worm spreading phase helps to

estimate the decrease in performance of an affected network.
Slow spreading worms might not even be visible in traffic
monitoring tools as they are well hidden in regular traffic
variations. However, if specific characteristics of a worm are
known, a detection might still be possible.

2.2 Speed Prediction
The Sapphire worm infected more than 90% of all vul-

nerable hosts in the Internet within 10 minutes [10]. Since
manual intervention is too slow to deal with this, there is a
need for semi- or full-automatic tools that detect and anal-
yse a spreading worm and activate countermeasures in near
real-time.

2.3 Threat Evaluation
Given that modern worms have the potential to infect

most vulnerable hosts in the Internet within a short time,
these worms pose a real threat to the Internet infrastructure.
It is important to determine what the possibilities and limi-
tations of this attack tool are to concentrate countermeasure
efforts in the most vulnerable places.

3. SIMULATION AND ALTERNATIVES
We will now discuss different ways to study the charac-

teristics of a piece of self-propagating code.

3.1 Mathematical Models
The most powerful approach is probably the creation of a

realistic mathematical model that allows behaviour predic-
tion in a closed form, i.e. with no or very little iteration.
The problem with this approach is that such models are not
generally available and are usually hard or even impossible
to create.

3.2 Testbeds
Testbeds allow to actually set free some self-replicating

code in an isolated and limited environment and to observe
its behaviour. The most obvious limit of a testbed is that
it cannot be created in a size approaching the size of the
Internet. Another serious problem is that a testbed needs
to use real self-propagating code, which is difficult to obtain.
There are also legal and moral problems with creating and
handling such code.

3.3 Real World "Experiments"
If a testbed is too limited, why not use the Internet itself?

While worm code authors certainly take this freedom, this
is not an option for scientific study because of the damage
being done. In a very limited sense the use of the whole
Internet is possible, namely in observing the behaviour of
worms that have been set free by people not hampered by
ethical considerations. We have observation equipment in
place in a moderately sized backbone network to observe the
next Internet outbreaks. See Section 8 for further details.

3.4 Simulation
In a sense simulation is a mathematical model in which

some of the functions used rely heavily on iteration. In or-
der to reduce computational complexity abstraction and ap-
proximation of the inner mechanisms of the object studied
is often used. This allows computation of functions that are
not well understood in a mathematical sense. The analyt-
ical approach of mathematical modelling is replaced with
an experimental approach, in which scenarios are simulated
and then analysed. Simulation is often a very effective tool
to understand complex processes.
A significant drawback of simulation is that due to ab-

straction the simulation results can differ significantly from
real behaviour of the system under study. A way to verify
and optimise simulation accuracy is to simulate events that
have been observed in the real system and compare simula-
tion outputs to the measured data.

4. WORM CHARACTERISTICS
There is significant freedom in worm design. For this

paper we do not care about the specific vulnerabilities ex-
ploited for system compromise, but only about time, band-
width and transport protocol used by a worm.
A worm writer basically implements the following process:

1. Identify a vulnerable host

2. Compromise the target host

3. Transfer the worm and activate it

For some vulnerabilities all these steps can be combined into
a single network packet, as was done in the case of the Sap-
phire. For others, the steps have to be done separately.
We believe that for the study of worm propagation a very

abstract view of these steps is sufficient. Steps 2 and 3 can
be modelled as exchange of a specific amount of data with
a specific protocol and optional time delay. Step 1 is a little
more complicated, but can still be modelled disregarding
vulnerability details.

TCP vs. UDP
The main choice in the transport protocol is whether it
is connection-oriented or not, for simplicity represented by
TCP and UDP. For worms that infect a distributed appli-
cation, like a P2P system, other models might be needed
[17]. The protocol used is usually directly determined by
the vulnerability that is exploited by the worm.
For the case of UDP, resource consumption in the attack-

ing host is small. A typical scenario is to send out UDP
packets to random hosts, while keeping very little state in-
formation for each target, or none at all if the attack can be
executed by sending a single UDP packet. Disadvantages
are that the size of a UDP packet is constrained to around
50 kiB1 and data packets with a payload larger than 1472
Bytes will be transported using IP-fragmentation.
Use of TCP incurs penalties for connection establishment,

timeouts and error handling. On the plus side there is no
data size limit. The most significant disadvantage of TCP is
that a connection attempt to a non-existing host fails only

1This is OS dependent. We found that e.g. Solaris has a
limit around 50 kiB, Linux a little higher. 64 kiB is the
definite protocol limit.

35

after a long timeout and consumes OS resources until it does.
There are ways around this, but they require that the worm
implements its own modified version of TCP, which makes
worm design more difficult and increases worm size.

Amount of Data Transferred
The time a worm needs to propagate after a vulnerable tar-
get has been identified depends mainly on worm size and
available bandwidth. Additional delays may be present, e.g.
if a reboot of the attacked host is needed. Data transfers
form a specific signature of a worm and can be used for
detection purposes. Obviously, a large worm will generally
propagate significantly slower and far more visible, so worm
writers will often aim to write small worms.

Scanning Strategy
The scanning strategy is the method used to select the next
host to be probed. One end of the spectrum is random
scanning, which selects a next IP address at random. This
is one of the most primitive strategies. Surprisingly, worm
authors have often failed to write clean random scanners [10,
2]. Mistakes include constant PRNG seeding after propaga-
tion and use of inferior PRNGs with non-even value distri-
bution. Random scanning has also been implemented with
preference for addresses in the same subnet and other mod-
ifications.
On the other end of the spectrum is partial or full pre-

determination of the target sequence. The worm operator
does a stealthy reconnaissance creating a list of vulnerable
hosts. The list of targets, called hitlist, is then added to the
worm. Each new copy of the worm created in propagation
then gets a part of the remaining hitlist to work on.
Hitlist scanning can be used to speed up the initial slow

phase of worm propagation. It does not work so well in later
phases, when a lot of infected hosts are active. It is possi-
ble to combine an initial propagation mechanism based on
a moderately-sized hitlist with a random scanning method
that takes over when the hitlist has been processed. The
main disadvantage of using hitlists is that their creation
might be detected, leading to countermeasures before the
worm is set free.

Latency vs. Bandwidth Limit
Even though Code Red I and Sapphire both used random
scanning, their propagation speed was different by several
orders of magnitude. The number of Sapphire infected hosts
doubled initially every 8.5 seconds while the Code Red Iv2
worm population had an initial doubling time of about 37
minutes [10]. The reason for this difference lies in the choice
of the transport protocol and in the size of the transferred
worm code.
Sapphire uses a single UDP packet with a total size of

404 bytes. Since there is no connection establishment with
UDP, the spreading speed is mostly independent of latency
but strongly dependent on bandwidth. An infected host
can send as many infection packets as its network link and
protocol stack allow.
Code Red uses TCP, which implies the use of a three way

handshake for connection establishment. Consequentially
latency is the main limit on propagation speed. In addition
OS constraints limit the number of parallel connection at-
tempts that can be made. Latency limited worms can also
become bandwidth limited when their scanning traffic ex-

ceeds network resources. For Code Red this happened after
about 15 hours.

5. SIMULATOR DESIGN
The simulator is started from the command line under

X11. It was developed under Linux, but should run under
most Unix-like operating systems without modification. It
first reads the parameter values and then opens two plot
windows. The speed plot shows the number of infected hosts
vs. time and the traffic plot shows the total scanning and
infection traffic vs. time. Plain text output is also available.
The simulator code is available upon request to the authors.

5.1 Simulator Structure
Our aim was to create a modular and flexible simulator

that can easily be extended. We chose the scripting language
Perl as basis for the implementation, since it is well suited
for rapid prototyping and is fast enough for our purposes
as our evaluation in 6.2 shows. Perl modules are used to
structure the code and to facilitate extensions. Plotting is
done with gnuplot. A pipe is kept open to each instance of
gnuplot and automatically2 flushed to generate an updated
plot when the simulator has finished a number of iteration
steps.

5.2 Internet Model
The Internet model is at the very core of our simulator.

We were looking for a model that is complex enough to rep-
resent prevalent characteristics of today’s Internet. At the
same time it had to be simple enough to enable efficient sim-
ulations. Inspired by the Napster and Gnutella P2P client
connection measurements in [15] we chose a model that ab-
stracts from single hosts.

bandwidth:
 1 Mbps
latency:
 100 ms

bandwidth:
 128 Kbps
latency:
 300 ms

bandwidth:
 64 Kbps
latency:
 1000 ms

bandwidth:
 3 Mbps
latency:
 60 s

1 Mbps
100 ms

3 Mbps
60 ms

1000 ms
64 Kbps

64 Kbps
1000 ms

128 Kbps
300 ms

128 Kbps
300 ms

128 Kbps
300 ms

64 Kbps
1000 ms

1 Mbps
100 ms

64 Kbps
1000 ms

Figure 1: Example for a configuration of our Inter-
net model

Our model divides the Internet into n different groups of
hosts that belong to sub-networks with similar characteris-
tics. Each host group has two defining parameters: band-
width and latency. The bandwidth and latency of a connec-
tion between any two groups are chosen as the minimum
bandwidth and maximum latency of the groups. Figure 1
shows a 4-group configuration of the Internet model that is

2This can be done in Perl by using select(G); $| = 1;,
with G being the handle of the pipe.

36

used in our simulator. Details of the host distribution can
be found in Table 1. We also specified a 10-group configu-
ration, given in Table 2. The average bandwidth per host
in Table 1 is 1157 kbit/s for Napster and 1544 kbit/s for
Gnutella, for Table 2 it is 1176 kbit/s.
The given percentages are measurements from [15] and

assume that the user population of Napster and Gnutella
are representative for the whole Internet. The differences
between the Napster and the Gnutella numbers show that
this approach is not very accurate. Still these are the best
figures we were able to find.
The details of the underlying measurements as well as

more information on host characteristics in the Napster and
Gnutella P2P filesharing systems can be found in [15]. For
continued usefulness of the model and the simulator these
numbers will have to be updated from time to time.

Bandwidth Napster Gnutella Latency

64 kbit/s 32% 10% 1,000 ms
128 kbit/s 5% 14% 300 ms
1 Mbit/s 38% 38% 100 ms
3 Mbit/s 25% 38% 60 ms

Table 1: Internet models with 4 groups

Our Internet model turned out to be powerful enough to
simulate many cases of worm behaviour. Still for some cases
modifications were needed to get realistic results, as dis-
cussed in Section 6.
The model could easily be extended to support asymmet-

ric connections in order to simulate ADSL or Cable modem
connections that e.g. in some European countries have a
downstream speed which is two to four times faster than
the upstream speed. Also, the TCP slow start behaviour is
not modelled. However, as most worms are rather of small
size, it could be represented by choosing a lower bandwidth
than the actually available bandwidth.
The nature of our Internet model is well suited for a quan-

titative analysis of worm spreading, however it is not suited
for traffic prediction for a specific host.

Bandwidth Napster Latency

14.4 kbit/s 4% 1000 ms
28.8 kbit/s 1% 1000 ms
33.6 kbit/s 1% 1000 ms
56 kbit/s 23% 1000 ms
64 kbit/s 3% 1000 ms
128 kbit/s 2% 300 ms
256 kbit/s 44% 300 ms
512 kbit/s 14% 100 ms

1.544 Mbit/s 5% 60 ms
44.736 Mbit/s 2% 60 ms

Table 2: Internet model with 10 groups

5.3 Implemented Worm Parameters
Table 3 provides an overview of all worm and Internet

parameters implemented by our simulator and gives their
value range.

5.4 Implemented Scanning Strategies
The simulator implements three different scanning strate-

gies, namely Random Scanning with even distribution, Hitlist
Scanning with a user-defined hitlist and Local Forced Scan-
ning that scans local IP addresses with a higher rate than
remote addresses.
The effect of hosts being already infected during worm

spreading is taken into account by reducing the success prob-
ability of an infection attempt:

P (infect) :=
|vulnerable hosts| − |infected hosts|

|all hosts| (1)

For each time step the simulator sums up the infection
probabilities, as defined in (1), for each host scanned to de-
termine the number of newly infected hosts. An error is
introduced here because two scanning hosts could select the
same target in a time step. This error is small as long as
the number of vulnerable hosts is significantly lower than
the number of all hosts. Therefore (1) is presently used in
the simulator.

5.5 Output and Reporting
The simulator produces a text file that describes all pa-

rameter values for the simulation, as well as numeric data
files suitable for Gnuplot input. In addition the graphical
plots are displayed and updated on the screen while the sim-
ulation is in progress.
Traffic: The traffic plot shows the total traffic generated

by the scanning and propagation of the simulated worm over
time.
Spreading Speed: The spreading speed plot shows the

total number of infected hosts over time.

5.6 Simulator Limitations
The simulator assumes an even distribution of the vulner-

able hosts over the different speed groups. The Code Red
worms attacked many installations of the IIS web server with
the owners of the hosts not even aware they were running a
web server, because IIS had been installed as part of other
software packages. Accordingly the vulnerable hosts were
pretty evenly distributed over all speed groups. However if
a worm targets an application that is only installed on hosts
that are specifically designated as servers, the vulnerable
hosts will tend to be in the faster groups.
Countermeasures by network and host operators are not

modelled in the simulator. The effects of such countermea-
sures will vary heavily depending on human behaviour and
technical parameters and hence can hardly be modeled reli-
ably.

6. PRACTICAL EXPERIENCES
In order to test and validate the simulator design and

implementation, we did a number of practical experiments.
Most are centered around the Code Red and Sapphire worms
and variants of these, since they are probably the best un-
derstood fast worms that have been observed in the wild.

6.1 Impact of Internet Model
The Internet model serves as an approximation of the real

Internet. Since precise overall Internet bandwidth and la-
tency figures are not available, the model also serves as a
method to estimate bandwidth and latency based on a lim-
ited observation of these characteristics in real distributed

37

Worm parameter Unit Lower limit Upper limit

Hosts in the Internet hosts 1 4,294,967,296
Vulnerable hosts hosts 1 hosts in the Internet
Start population hosts 1 vulnerable hosts
Simulation time span seconds 0 no limit
Transport protocol TCP or UDP – –
TCP resend on timeout enable/disable – –
TCP timeout milliseconds 0 no limit
Worm size (without header) bytes 0 65535
Parallel scans (TCP) or scans per second (UDP) – 0 no limit
Additional time to infect a host milliseconds 0 no limit
Hitlist enable/disable – –
Hitlist length hosts 0 hosts in the Internet
Probability a hitlisted host is vulnerable - 0% 100%

Table 3: Simulation Parameters

Internet applications, in our case P2P filesharing. It turned
out that the Internet models needed to be adjusted to some
degree to get realistic simulation results.

Sapphire
Sapphire is bandwidth-limited. Its propagation speed is
roughly linear with the bandwidth directly available to the
already infected hosts. When a high number of hosts has
been infected, there can also be additional limitations be-
cause of ISP and backbone bandwidth limits. We assume a
vulnerable population of 75,000 hosts.
Figure 2 shows a simulation graph obtained with the 10-

group Internet model from Table 2. The initially infected
population was 100 hosts distributed over the different speeds
according to group size. The simulation deviates signifi-
cantly from the observed propagation speed of the Sapphire
in [10], likely because the Internet has gotten faster since
the Napster measurements were taken. If the 100 initially

 100

 1000

 10000

 100000

 0 500 1000 1500 2000

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 2: Sapphire: Infection Speed

infected hosts are chosen from the fastest group and in addi-
tion the fastest group is enlarged to 10% (taking evenly from
the other groups) the initial doubling time is about 6 seconds
and the scanning rate after 3 minutes is about 50 million per
second, giving a very rough approximation for the observed
Sapphire behaviour. The simulation then reaches an infec-

tion level of 90% after about 275 seconds. Figures 3 and 4
show the resulting infection and traffic plots. It can be seen
that the lack of fast hosts cause the propagation speed to
be sub-exponential.

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 3: Sapphire: Speed with adjusted model

From these experiments we conclude that the initially in-
fected population (obtained via hitlist or pre-infection) while
critical for the propagation speed, need not be large. 100 fast
vulnerable hosts are probably easy to find. From there on
plain random scanning is quite effective.
To demonstrate the possibilities of the simulator, we give

some more examples. The parameters are the same as for
the second simulation above. Figure 5 shows Sapphire with
15,000 vulnerable hosts. The worm now needs about 1030
seconds for a 90% infection degree. This demonstrates that
UDP worms with random scanning can still be used for rel-
atively small vulnerable populations.
Figure 6 demonstrates the effect of an infection latency,

for example a reboot after infection, here chosen to be 100
seconds. Infection of 90% of the vulnerable hosts now takes
about 660 seconds, which shows that even with a significant
infection latency the worm is still quite fast.

38

 1e+09

 1e+10

 1e+11

 1e+12

 0 50 100 150 200 250 300 350 400

tr
af

fic
 [b

ps
]

time [sec]

Figure 4: Sapphire: Traffic with adjusted model

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200 1400

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 5: Sapphire: 15,000 vulnerable hosts

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 6: Sapphire: 100 sec. infection latency

Code Red
To validate our simulator’s results for TCP-based worms,
we tried to approximate the behaviour of Code Red Iv2.

Therefore we combined data from different analyses in order
to choose the most accurate parameters for our simulation.
The plot by CAIDA [11] as shown in Figure 7 was used as
a reference to estimate the simulator’s accuracy.

Figure 7: Code Red Iv2: Measurements of infected
hosts by CAIDA

For the simulation we assumed 360,000 vulnerable hosts
(7). The TCP timeout of CodeRed Iv2 was set to 21 sec-
onds ([20]) and the number of parallel threads sending out
scanning packets was set to 100 ([13]). TCP resending was
disabled and a time step of 1s for the simulation was defined.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10000 20000 30000 40000 50000 60000 70000 80000

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 8: Code Red Iv2: Infection speed simulation
matches measurements

Our results for the number of infected hosts against time
using the 4-group (Napster-based) model are shown in Fig-
ure 8 and closely matches the reference plot. The plot does
not show the effects of countermeasures put into place by
network and host administrators that are present in CAIDA’s
plot. The arrow in Figure 7 shows where these countermea-
sures begin to affect the worm’s spreading.
The logscale plot in Figure 9 shows nicely the exponential

increase in he number infected hosts.
Finally in the traffic log as shown in Figure 10, it can

be observed that at the saturation level of 360,000 infected

39

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10000 20000 30000 40000 50000 60000 70000 80000

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 9: Code Red Iv2: Infection speed simulation
matches measurements

hosts, a traffic of roughly 0.5 GBit/s is generated. Each
host accounts for roughly 1.5 kbit/s as 100 parallel threads
on each host send TCP SYN packets within each 21 sec-
onds timeout interval. The fluctuations in the traffic shap-
ing stems partially from a high synchronisation of the hosts
due to a fixed time reference for all hosts in our simulator.

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 0 10000 20000 30000 40000 50000 60000 70000 80000

tr
af

fic
 [b

ps
]

time [sec]

Figure 10: Code Red Iv2: Traffic simulation

6.1.1 Parameter Variations
A simulation of CodeRed Iv2 with the 10-group model

showed only negligible differences to the 4-group case. A
decrease of CodeRed’s worm size to the size of Slammer
showed only a slight decrease in the generated traffic. This is
not surprising as the rather large worm code only propagates
to vulnerable hosts and hence most of the traffic is caused
by scanning other hosts.

6.2 Simulator Performance
Simulator performance varies widely with the input pa-

rameters. We did most of our experiments on an AthlonXP
2200+ under Linux 2.4., with a time resolution of 50ms for

the UDP simulations and 1 second for the TCP simulations.
For UDP simulations we have observed a simulation run-

time of below 20% simulated time for a 4 group model. With
a 10-group model overall simulation time was still lower than
simulated time in many cases. A high infection latency time
is the one factor that slows down things massively, since
more state has to be kept. Reducing the time resolution
drastically speeds things up, which allows to balance accu-
racy against performance. We believe that simulator per-
formance is good enough for many applications.
The Perl-based implementation allows easy modification

if a need to simulate additional effects arises. We feel that
this flexibility is more important than the benefits of a faster
implementation with a compiled language. However the sim-
ulator presented here is not suitable for a simulation with
a large number of host groups, that e.g. model individual
subnets. But we are not aware of speed and topology statis-
tics that could be used as basis of such a model. Even if
they were available, we think that Internet topology is too
unstable for such a detailed model to stay usable without
frequent and possibly costly updates.

7. IPV6 AND RANDOM SCANNING
IPv6 offers a 128 bit address space [14, 8]. It is not quite

clear how much structure will be contained in addresses ac-
tually assigned to hosts in the future. For example only 1/8
of the address space is currently assigned to global unicast
addresses. Furthermore 64 bits may be used for interface
identification. In case of an 48 bit MAC address, there are
significantly less than 48 bits of randomness in these 64 bits,
although the structure is not very simple. Still we expect
that random scanning will be ineffective with wide deploy-
ment of IPv6. One possible way around this problem is
already in use by email-based worms. The idea is to use lo-
cally known addresses as targets. Addresses can be found in
local DNS caches, ARP caches, currently open connections,
web browser bookmarks, contact lists of P2P systems and
other places. It remains to be seen how effective such mech-
anisms are and whether worms can achieve fast propagation
speeds under IPv6 without resorting to large hitlists.

8. RELATED WORK
Generally speaking the Internet is difficult to simulate,

a good overview can be found in [7]. Still with a narrow
focus the task becomes easier. In [20] there is a simulation-
based analysis of the Code Red worm using methods from
epidemiology.
One of the first to recognise the immense threat worms are

to the Internet is N. C. Weaver who coined the term ”Warhol
Worm” [19] for very fast worms. This work is extended in
[16].
Since worms can be used to compromise a large number

of hosts, they can be used in direct preparation of massively
Distributed Denial of Service attacks. There is a lot of work
that shows the possibilities to fight (D)DoS attacks in end-
systems or end-networks. For example, many variants of IP-
traceback deal with the problem of identifying the sender of
spoofed IP packets.

DDoSVax
The simulator described in this paper was created in the con-
text of a research project called DDoSVax [6]. The project

40

deals with detection, analysis and countermeasures for DDoS
attacks, as well as worms used in preparation of such attacks.
The focus is on backbone networks and consequentially on
massive network events that are visible on the backbone
level.

9. CONCLUSION
Understanding worms and their propagation mechanisms

is a relatively new research area with significant impact on
Internet stability. It is likely to grow even more important
when worm writers get more experienced and outbreaks get
more common. Because software engineering techniques can
only mitigate part of the risks and are often not even applied
to any reasonable degree, many hosts will remain vulnerable.
The only solution dealing with the residual risk is for the
Internet infrastructure to obtain defensive mechanisms. For
the specific problems of worms, early detection is the key to
any defence [12].
We have shown that simulation relying on a relatively sim-

ple Internet-model and implemented in a scripting language
can provide valuable insights into worm propagation events.
One problem is that relatively few global outbreaks of fast

worms have been observed so far, and the observation detail
was not very good in these cases. But there are certainly
more fast Internet worms to be expected. We are working on
better observation equipment and we will use measurement
data gathered in the future to refine and improve future
versions of the simulator.

10. ACKNOWLEDGEMENTS
Part of the DDoSVax project [6] is funded by SWITCH.

11. REFERENCES
[1] P. Barford and D. Plonka. Characteristics of Network

Traffic Flow Anomalies. In ACM SIGCOMM Internet
Measurement Workshop, 2001.

[2] CAIDA. CAIDA Analysis of Code-Red. http:
//www.caida.org/analysis/security/code-red/.
visited June, 2003.

[3] CERT. CERT Advisory CA-2003-04 MS-SQL Server
Worm.
http://www.cert.org/advisories/CA-2003-04.html,
2003.

[4] R. K. C. Chang. Defending against Flooding-Based
Distributed Denial-of-Service Attacks: A Tutorial.
IEEE Communications Magazine, October 2002.

[5] R. Danyliw and A. Householder. CERT Advisory
CA-2001-19 ”Code Red” Worm Exploiting Buffer
Overflow In IIS Indexing Service DLL.
http://www.cert.org/advisories/CA-2001-19.html,
2001.

[6] DDoSVax. http://www.tik.ee.ethz.ch/~ddosvax/.

[7] S. Floyd and V. Paxson. Difficulties in Simulating the
Internet. IEEE/ACM Transactions on Networking,
2001.

[8] http://www.ipv6.org/.

[9] J. Mirkovic, J. Martin, and P. Reiher. A Taxonomy of
DDoS Attacks and DDoS Defense Mechanisms.
http://www.lasr.cs.ucla.edu/ddos/ucla_tech_

report_020018.pdf, 2002.

[10] D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, and N. Weaver. Inside the slammer
worm. IEEE Security and Privacy, 4(1):33–39, July
2003.

[11] D. Moore, C. Shannon, and J. Brown. Code-Red: a
case study on the spread and victims of an Internet
worm. In Proceedings of the ACM/USENIX Internet
Measurement Workshop, Marseille, France, November
2002.

[12] D. Moore, C. Shannon, G. Voelker, and S. Savage.
Internet Quarantine: Requirements for Containing
Self-Propagating Code. In Proceedings of the 2003
IEEE Infocom Conference, San Francisco, CA, April
2003.

[13] R. Permeh, M. Maiffret, and R. Permeh. eEye Digital
Security Advisory .ida Code Red Worm.
http://www.eeye.com/html/Research/Advisories/

AL20010717.html, July 2001.

[14] RFC 3513: Internet Protocol Version 6 (IPv6)
Addressing Architecture.

[15] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
measurement study of peer-to-peer file sharing
systems. In Proceedings of Multimedia Computing and
Networking 2002 (MMCN ’02), San Jose, CA, USA,
January 2002.

[16] S. Staniford, V. Paxson, and N. Weaver. How to 0wn
the Internet in Your Spare Time. In Proc. USENIX
Security Symposium, 2002.

[17] A. Wagner and B. Plattner. Peer-to-peer systems as
attack platform for distributed denial-of-service. In
ACM SACT Workshop, Washington, DC, USA, 2002.

[18] L. Wall, T. Christiansen, and R. L. Schwarz.
Programming Perl, 2nd Edition. O’Reilly, 1996.

[19] N. C. Weaver. http:
//www.cs.berkeley.edu/~nweaver/warhol.html,
2001.

[20] C. C. Zou, W. Gong, and D. Towsley. Code Red
Worm Propagation Modeling and Analysis. In
Proceedings of the 9th ACM conference on Computer
and communications security, Washington, DC, USA,
November 2002.

41

