This is the documentation for the latest development branch of MicroPython and may refer to features that are not available in released versions.

If you are looking for the documentation for a specific release, use the drop-down menu on the left and select the desired version.

2. Pulse Width Modulation

Pulse width modulation (PWM) is a way to get an artificial analog output on a digital pin. It achieves this by rapidly toggling the pin from low to high. There are two parameters associated with this: the frequency of the toggling, and the duty cycle. The duty cycle is defined to be how long the pin is high compared with the length of a single period (low plus high time). Maximum duty cycle is when the pin is high all of the time, and minimum is when it is low all of the time.

  • More comprehensive example with all 16 PWM channels and 8 timers:

    from time import sleep
    from machine import Pin, PWM
    try:
        F = 10000  # Hz
        D = 65536 // 16  # 6.25%
        pins = (2, 4, 12, 13, 14, 15, 16, 18, 19, 22, 23, 25, 26, 27, 32, 33)
        pwms = []
        for i, pin in enumerate(pins):
            f = F * (i // 2 + 1)
            d = min(65535, D * (i + 1))
            pwms.append(PWM(pin, freq=f, duty_u16=d))
            sleep(2 / f)
            print(pwms[i])
    finally:
        for pwm in pwms:
            try:
                pwm.deinit()
            except:
                pass
    

    Output is:

    PWM(Pin(2), freq=10000, duty_u16=4096)
    PWM(Pin(4), freq=10000, duty_u16=8192)
    PWM(Pin(12), freq=20000, duty_u16=12288)
    PWM(Pin(13), freq=20000, duty_u16=16384)
    PWM(Pin(14), freq=30030, duty_u16=20480)
    PWM(Pin(15), freq=30030, duty_u16=24576)
    PWM(Pin(16), freq=40000, duty_u16=28672)
    PWM(Pin(18), freq=40000, duty_u16=32768)
    PWM(Pin(19), freq=50000, duty_u16=36864)
    PWM(Pin(22), freq=50000, duty_u16=40960)
    PWM(Pin(23), freq=60060, duty_u16=45056)
    PWM(Pin(25), freq=60060, duty_u16=49152)
    PWM(Pin(26), freq=69930, duty_u16=53248)
    PWM(Pin(27), freq=69930, duty_u16=57344)
    PWM(Pin(32), freq=80000, duty_u16=61440)
    PWM(Pin(33), freq=80000, duty_u16=65535)
    
  • Example of a smooth frequency change:

    from time import sleep
    from machine import Pin, PWM
    
    F_MIN = 1000
    F_MAX = 10000
    
    f = F_MIN
    delta_f = F_MAX // 50
    
    pwm = PWM(Pin(27), f)
    
    while True:
        pwm.freq(f)
        sleep(1 / f)
        sleep(0.1)
        print(pwm)
    
        f += delta_f
        if f > F_MAX or f < F_MIN:
            delta_f = -delta_f
            print()
            if f > F_MAX:
                f = F_MAX
            elif f < F_MIN:
                f = F_MIN
    

    See PWM wave on Pin(27) with an oscilloscope.

    Output is:

    PWM(Pin(27), freq=998, duty_u16=32768)
    PWM(Pin(27), freq=1202, duty_u16=32768)
    PWM(Pin(27), freq=1401, duty_u16=32768)
    PWM(Pin(27), freq=1598, duty_u16=32768)
    ...
    PWM(Pin(27), freq=9398, duty_u16=32768)
    PWM(Pin(27), freq=9615, duty_u16=32768)
    PWM(Pin(27), freq=9804, duty_u16=32768)
    PWM(Pin(27), freq=10000, duty_u16=32768)
    
    PWM(Pin(27), freq=10000, duty_u16=32768)
    PWM(Pin(27), freq=9804, duty_u16=32768)
    PWM(Pin(27), freq=9615, duty_u16=32768)
    PWM(Pin(27), freq=9398, duty_u16=32768)
    ...
    PWM(Pin(27), freq=1598, duty_u16=32768)
    PWM(Pin(27), freq=1401, duty_u16=32768)
    PWM(Pin(27), freq=1202, duty_u16=32768)
    PWM(Pin(27), freq=998, duty_u16=32768)
    
  • Example of a smooth duty change:

    from time import sleep
    from machine import Pin, PWM
    
    DUTY_MAX = 65535
    
    duty_u16 = 0
    delta_d = 256
    
    pwm = PWM(Pin(27), freq=1000, duty_u16=duty_u16)
    
    while True:
        pwm.duty_u16(duty_u16)
        sleep(2 / pwm.freq())
        print(pwm)
    
        if duty_u16 >= DUTY_MAX:
            print()
            sleep(2)
        elif duty_u16 <= 0:
            print()
            sleep(2)
    
        duty_u16 += delta_d
        if duty_u16 >= DUTY_MAX:
            duty_u16 = DUTY_MAX
            delta_d = -delta_d
        elif duty_u16 <= 0:
            duty_u16 = 0
            delta_d = -delta_d
    

    PWM wave on Pin(27) with an oscilloscope.

    Output is:

    PWM(Pin(27), freq=998, duty_u16=0)
    PWM(Pin(27), freq=998, duty_u16=256)
    PWM(Pin(27), freq=998, duty_u16=512)
    PWM(Pin(27), freq=998, duty_u16=768)
    PWM(Pin(27), freq=998, duty_u16=1024)
    ...
    PWM(Pin(27), freq=998, duty_u16=64512)
    PWM(Pin(27), freq=998, duty_u16=64768)
    PWM(Pin(27), freq=998, duty_u16=65024)
    PWM(Pin(27), freq=998, duty_u16=65280)
    PWM(Pin(27), freq=998, duty_u16=65535)
    
    PWM(Pin(27), freq=998, duty_u16=65279)
    PWM(Pin(27), freq=998, duty_u16=65023)
    PWM(Pin(27), freq=998, duty_u16=64767)
    PWM(Pin(27), freq=998, duty_u16=64511)
    ...
    PWM(Pin(27), freq=998, duty_u16=1023)
    PWM(Pin(27), freq=998, duty_u16=767)
    PWM(Pin(27), freq=998, duty_u16=511)
    PWM(Pin(27), freq=998, duty_u16=255)
    PWM(Pin(27), freq=998, duty_u16=0)
    
  • Example of a smooth duty change and PWM output inversion:

    from utime import sleep
    from machine import Pin, PWM
    
    try:
        DUTY_MAX = 65535
    
        duty_u16 = 0
        delta_d = 65536 // 32
    
        pwm = PWM(Pin(27))
        pwmi = PWM(Pin(32), invert=1)
    
        while True:
            pwm.duty_u16(duty_u16)
            pwmi.duty_u16(duty_u16)
    
            duty_u16 += delta_d
            if duty_u16 >= DUTY_MAX:
                duty_u16 = DUTY_MAX
                delta_d = -delta_d
            elif duty_u16 <= 0:
                duty_u16 = 0
                delta_d = -delta_d
    
            sleep(.01)
            print(pwm)
            print(pwmi)
    
    finally:
        try:
            pwm.deinit()
        except:
            pass
        try:
            pwmi.deinit()
        except:
            pass
    

    Output is:

    PWM(Pin(27), freq=5000, duty_u16=0)
    PWM(Pin(32), freq=5000, duty_u16=32768, invert=1)
    PWM(Pin(27), freq=5000, duty_u16=2048)
    PWM(Pin(32), freq=5000, duty_u16=2048, invert=1)
    PWM(Pin(27), freq=5000, duty_u16=4096)
    PWM(Pin(32), freq=5000, duty_u16=4096, invert=1)
    PWM(Pin(27), freq=5000, duty_u16=6144)
    PWM(Pin(32), freq=5000, duty_u16=6144, invert=1)
    PWM(Pin(27), freq=5000, duty_u16=8192)
    PWM(Pin(32), freq=5000, duty_u16=8192, invert=1)
    ...
    

    See PWM waves on Pin(27) and Pin(32) with an oscilloscope.

Note: New PWM parameters take effect in the next PWM cycle.

pwm = PWM(2, duty=512) print(pwm) >>> PWM(Pin(2), freq=5000, duty=1023) # the duty is not relevant pwm.init(freq=2, duty=64) print(pwm) >>> PWM(Pin(2), freq=2, duty=16) # the duty is not relevant time.sleep(1 / 2) # wait one PWM period print(pwm) >>> PWM(Pin(2), freq=2, duty=64) # the duty is actual

Note: machine.freq(20_000_000) reduces the highest PWM frequency to 10 MHz.

Note: the Pin.OUT mode does not need to be specified. The channel is initialized to PWM mode internally once for each Pin that is passed to the PWM constructor.

The following code is wrong:

pwm = PWM(Pin(5, Pin.OUT), freq=1000, duty=512)  # Pin(5) in PWM mode here
pwm = PWM(Pin(5, Pin.OUT), freq=500, duty=256)  # Pin(5) in OUT mode here, PWM is off

Use this code instead:

pwm = PWM(Pin(5), freq=1000, duty=512)
pwm.init(freq=500, duty=256)