
Adjoint Logic with a 2-Category of Modes

Daniel R. Licata1 and Michael Shulman2 ?

1 Wesleyan University
2 University of San Diego

Abstract. We generalize the adjoint logics of Benton and Wadler (1996) and
Reed (2009) to allow multiple different adjunctions between the same categories.
This provides insight into the structural proof theory of cohesive homotopy type
theory, which integrates the synthetic homotopy theory of homotopy type theory
with the synthetic topology of Lawvere’s axiomatic cohesion. Reed’s calculus is
parametrized by a preorder of modes, where each mode determines a category,
and there is an adjunction between categories that are related by the preorder.
Here, we consider a logic parametrized by a 2-category of modes, where each
mode represents a category, each mode morphism represents an adjunction, and
each mode 2-morphism represents a morphism of adjunctions. For example, us-
ing this, we can give a mode theory for an adjoint triple L aM a R by using two
mode morphisms to generate two adjunctions between the same two categories,
and then using mode 2-cells to identify the right adjoint of one with the left ad-
joint of the other. Adding some additional structure to the mode 2-category gives
an instance that is closely related to the rules for cohesive homotopy type theory
in Shulman (2015). In this paper, we give a sequent calculus, show that identity
and cut are admissible, and define an equational theory on proofs. We show that
this syntax is sound and complete for pseudofunctors from the mode 2-category
to the 2-category of categories, adjunctions, and adjunction morphisms. Finally,
we investigate some constructions in the example mode theories discussed above.

1 Introduction

An adjunction F a U between categories C and D consists of a pair of functors F :
C → D and U : D → C such that maps FC −→D D correspond naturally to maps
C−→C UD. A prototypical adjunction, which provides a mnemonic for the notation, is
where U takes the underlying set of some algebraic structure such as a group, and F is
the free structure on a set—the adjunction property says that a structure-preserving map
from FC to D corresponds to a a map of sets from C to UD (because the action on the
structure is determined by being a homomorphism). Adjunctions are important to the
proof theories and λ -calculi of modal logics, because the composite FU is a comonad

? This material is based on research sponsored by The United States Air Force Research Lab-
oratory under agreement number FA9550-15-1-0053. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the United States Air Force Research Laboratory, the U.S.
Government, or Carnegie Mellon University.

on D , while UF is a monad on C . Benton and Wadler [2] describe an adjoint λ -calculus
for mixing linear logic and structural/cartesian logic, with functors U from linear to
cartesian and F from cartesian to linear; the !A modality of linear logic arises as the
comonad FU , while the monad of Moggi’s metalanguage [16] arises as UF . Reed [22]
describes a generalization of this idea to situations involving more than one category:
the logic is parametrized by a preorder of modes, where every mode p determines a
category, and there is an adjunction F aU between categories p and q (with F : q→ p)
exactly when q≥ p. For example, the intuitionistic modal logics of Pfenning and Davies
[21] can be encoded as follows: the necessitation modality� is the comonad FU for an
adjunction between “truth” and “validity” categories, the lax modality© is the monad
UF of an adjunction between “truth” and “lax truth” categories, while the possibility
modality � requires a more complicated encoding involving four adjunctions between
four categories. While specific adjunctions such as (−×A) a (A→−) arise in many
logics, adjoint logic provides a formalism for abstract/uninterpreted adjunctions.

In Reed’s logic, modes are specified by a preorder, which allows at most one ad-
junction between any two categories (more precisely, there can be two isomorphic ad-
junctions if both p≥ q and q≥ p). However, it is sometimes useful to consider multiple
different adjunctions between the same two categories. A motivating example is Law-
vere’s axiomatic cohesion [7], a general categorical interface that describes cohesive
spaces, such as topological spaces, or manifolds with differentiable or smooth struc-
tures. The interface consists of two categories C and S , and a quadruple of adjoint
functors Π0,Γ : C →S and ∆ ,∇ : S → C where Π0 a ∆ aΓ a∇. The idea is that S
is some category of “sets” that provides a notion of “point”, and C is some category of
cohesive spaces built out of these sets, where points may be stuck together in some way
(e.g. via topology). Γ takes the underlying set of points a cohesive space, forgetting the
cohesive structure. This forgetful functor’s right adjoint Γ a ∇ equips a set with codis-
crete cohesion, where all points are stuck together; the adjunction says that a map into a
codiscrete space is the same as a map of sets. The forgetful functor’s left adjoint ∆ a Γ

equips a set with discrete cohesion, where no points are stuck together; the adjunction
says that a map from a discrete space is the same as a map of sets. The further left ad-
joint Π0 a ∆ , gives the set of connected components—i.e. each element of Π0C is an
equivalence class of points of C that are stuck together. Π0 is important because it trans-
lates some of the cohesive information about a space into a setting where we no longer
need to care about the cohesion. These functors must satisfy some additional laws, such
as ∆ and ∇ being fully faithful (maps between discrete or codiscrete cohesive spaces
should be the same as maps of sets).

A variation on axiomatic cohesion called cohesive homotopy type theory [23, 24, 27]
is currently being explored in the setting of homotopy type theory and univalent foun-
dations [28, 29]. Homotopy type theory uses Martin-Löf’s intensional type theory as a
logic of homotopy spaces: the identity type provides an ∞-groupoid structure on each
type, and spaces such as the spheres can be defined by their universal properties using
higher inductive types [13, 14, 25]. Theorems from homotopy theory can be proved
synthetically in this logic [4, 5, 8, 9, 10, 12], and these proofs can be interpreted in a
variety of models [3, 6, 26]. However, an important but subtle distinction is that there
is no topology in synthetic homotopy theory: the “homotopical circle” is defined as a

higher inductive type, essentially “the free ∞-groupoid on a point and a loop,” which a
priori has nothing to do with the “topological circle,” {(x,y) ∈R2 | x2 +y2 = 1}, where
R2 has the usual topology. This is both a blessing and a curse: on the one hand, proofs
are not encumbered by topological details; but on the other, internally to homotopy type
theory, we cannot use synthetic theorems to prove facts about topological spaces.

Cohesive homotopy type theory combines the synthetic homotopy theory of homo-
topy type theory with the synthetic topology of axiomatic cohesion, using an adjoint
quadruple S a ∆ a Γ a ∇. In this higher categorical generalization, S is an (∞,1)-
category of homotopy spaces (e.g. ∞-groupoids), and C is an (∞,1)-category of co-
hesive homotopy spaces, which are additionally equipped with a topological or other
cohesive structure at each level. The rules of type theory are now interpreted in C , so
that each type has an ∞-groupoid structure (given by the identity type) as well as a
separate cohesive structure on its objects, morphisms, morphisms between morphisms,
etc. For example, types have both morphisms, given by the identity type, and topolog-
ical paths, given by maps that are continuous in the sense of the cohesion. As in the
1-categorical case, Γ forgets the cohesive structure, yielding the underlying homotopy
space, while ∆ and ∇ equip a homotopy space with the discrete and codiscrete cohesion.
But in the ∞-categorical case, ∆ ’s left adjoint SA (pronounced “shape of A”) general-
izes from the connected components to the fundamental homotopy space functor, which
makes a homotopy space from the topological/cohesive paths, paths between paths, etc.
of A. This captures the process by which homotopy spaces arise from cohesive spaces;
for example, one can prove (using some additional axioms) that the shape of the topo-
logical circle is the homotopy circle [27]. This allows synthetic homotopy theory to be
used in proofs about topological spaces, and opens up possibilities for using synthetic
homotopy theory as a tool in other areas of mathematics and theoretical physics.

This paper begins an investigation into the structural proof theory of cohesive homo-
topy type theory, as a special case of generalizing Reed’s adjoint logic to allow multiple
adjunctions between the same categories. As one might expect, the first step is to gen-
eralize the mode preorder to a mode category, so that we can have multiple different
morphisms α,β : p ≥ q. This allows the logic to talk about different but unrelated ad-
junctions between two categories. However, in order to describe an adjoint triple such
as ∆ a Γ a ∇, we need to know that the same functor Γ is both a left and right ad-
joint. To describe such a situation, we generalize to a 2-category of modes, where each
mode p determines a category, each morphism α : p ≥ q determines adjoint functors
Fα : p→ q and Uα : q→ p where Fα aUα , and each 2-cell e : α⇒ β : q≥ p determines
a morphism of adjunctions between Fβ aUβ and Fα aUα . Using this logic, an adjoint
triple is specified by the mode 2-category with

– objects c and s
– 1-cells d : s≥ c and n : c≥ s
– 2-cells 1c⇒ n◦d and d◦n⇒ 1s satisfying some equations

The 1-cells generate Fd aUd and Fn aUn, while the 2-cells are sufficient to prove that
Ud is naturally isomorphic to Fn, so we can define ∆ := Fn, ∇ := Un, and Γ := Ud

∼=
Fn and have the desired adjoint triple. Indeed, you may recognize this 2-category as
the “walking adjunction” with d a n—that is, we give an adjoint triple by saying that

the mode morphism generating the adjunction ∆ a Γ is itself left adjoint to the mode
morphism generating the adjunction Γ a ∇.

The main judgement of the logic is a “mixed-category” entailment A [α] ` C where
A has mode q and C has mode p and α : q ≥ p. Semantically, this judgement means a
morphism from A to C “along” the adjunction determined by α—i.e. a map Fα A→C
or A→Uα C.3 However, taking the mixed-mode judgement as primitive makes for a
nicer sequent calculus: U and F can be specified independently from each other, by left
and right rules, in such a way that identity and cut (composition) are admissible, and
the subformula property holds. While we do not consider focusing [1], we conjecture
that the connectives can be given the same focusing behavior as in [22]: F is positive
and U is negative (which, because limits are negative and colimits are positive, and
like-polarity connectives compose together well, matches what left and right adjoints
should preserve).

The resulting logic has a good definition-to-theorem ratio: from simple sequent cal-
culus rules for F and U , we can prove a variety of general facts that are true for any
mode 2-category (Fα and Uα are functors; FαUα is a comonad and Uα Fα is a monad;
Fα preserves colimits and Uα preserves limits), as well as facts specific to a particular
theory (e.g. for the adjoint triple above, Γ preserves both colimits and limits, because
it is an equivalent U∆ and F∇; the comonad [:= ∆Γ and monad] := ∇Γ are them-
selves adjoint). Moreover, we can use different mode 2-categories to add additional
structure; for example, moving from the walking adjunction to the walking reflection
(taking ∆∇ = 1) additionally gives that ∆ and ∇ are full and faithful and that [and]
are idempotent, which are some of the additional conditions for axiomatic cohesion.

We make a few simplifying restrictions for this paper. First, we consider only single-
hypothesis, single-conclusion sequents, deferring an investigation of products and ex-
ponentials to future work.

Second, on the semantic side, we consider only 1-categorical semantics of the deriva-
tions of the logic, rather than the ∞-groupoid/∞-topos semantics that we are ultimately
interested in. More precisely, for any 2-category M of modes, we can interpret the
logic using a pseudofunctor S : M → Adj, where Adj is the 2-category of categories,
adjunctions, and morphisms of adjunctions (conjugate pairs of natural transformations).
By S, each mode determines a 1-category, and derivations in the logic are interpreted
as morphisms in these categories. The action of S on 1- and 2-cells is used to interpret
F and U . We show that the syntax forms such a pseudofunctor, and conjecture that the
syntax is initial in some category or 2-category of pseudofunctors, but have not yet tried
to make this precise.

Third, we consider only a logic of simple-types, rather than a dependent type theory.
Consequently, we do not have an identity type available for proving equalities of proof
terms. However, we need an equational theory to make many of the statements we
would like to make (e.g. “UF is a monad” requires proving some equational laws),
and the definitional equalities arising from admissibility of cut and identity are not

3 We could instead use a structure that includes a basic notion of “morphisms along α ,’ such as
a Grothendieck bifibration over the 2-category of modes, or a pseudofunctor to the bicategory
of profunctors that are both representable and corepresentable; these are equivalent to the
structures used here.

sufficient. Thus, in addition to the sequent calculus itself, we give an equality judgement
on sequent calculus derivations. This judgement is interpreted by actual equality of
morphisms in the semantics above, but we intend some of these rules to be propositional
equalities in an eventual adjoint type theory.

In Section 2, we define the rules of the logic, prove admissibility of identity and cut,
and define an equational theory on derivations. In Section 3, we summarize some of
the constructions that are possible in the logic for any mode specification M , including
showing that the syntax determines a pseudofunctor M → Adj. In Section 4, we de-
scribe the 1-categorical semantics of the logic. Finally, in Sections 5 and 6, we examine
some specific mode specifications for adjoint triples, and discuss the relationship to the
rules for spatial type theory used in [27]. All of the syntactic metatheory of the logic
and the examples have been formalized in Agda [17], using a syntactic representation
of the sequent calculus and the equational theory as inductive families.4

2 Sequent Calculus and Equational Theory

2.1 Sequent Calculus

The logic is parametrized by a strict 2-category of modes. We write p,q for the 0-cells
(modes), α,β ,γ,δ : p≥ q for the 1-cells, and e : α ⇒ β for the 2-cells. We write β ◦α

for 1-cell composition in function composition order (i.e. if β : r ≥ q and α : q ≥ p
then β ◦α : r≥ p), e1 ·e2 for vertical composition of 2-cells in diagrammatic order, and
e1 ◦2 e2 for horizontal composition of 2-cells in “congruence of ◦” order (if e1 : α⇒ α ′

and e2 : β ⇒ β ′ then e1 ◦2 e2 : α ◦β ⇒ α ′ ◦β ′). The equations for 2-cells say that · is
associative with unit 1α for any α , that ◦2 is associative with unit 11, and that the inter-
change law (e1 · e2)◦2 (e3 · e4) = (e1 ◦2 e3) · (e2 ◦2 e4) holds. For convenience, we think
of the mode category as being fixed at the outset, and the syntax and judgements of the
logic as being indexed by the actual semantic objects/morphisms/2-morphisms of this
category; therefore, equal morphisms in the mode 2-category automatically determine
equal propositions, judgements, and derivations. An alternative would be to give a syn-
tax and explicit equality judgement for the mode category, which would be helpful if we
needed a mode theory where equality of morphisms or 2-morphisms were undecidable.

Each object p of the mode category determines a category, and objects of that cat-
egory are types; the syntactic judgement A typep will mean that A is an object of the
category p. A morphism α : q ≥ p in the mode category determines an adjunction be-
tween categories p and q, with Fα : q→ p and Uα : p→ q; syntactically, the action on
objects is given by Fα A typep when A typeq and Uα A typeq when A typep. We write
P for atomic propositions, each of which has a designated mode. To add additional
structure to a category or to all categories, we can add rules for additional connectives;
for example, a rule A+B typep if A typep and B typep (parametric in p) says that any
category p has a coproduct type constructor.

The sequent calculus judgement has the form A [α] ` C where A typeq and C typep
and α : q≥ p. This judgement represents a map from an object of some category q to an

4 See github.com/dlicata335/hott-agda/tree/master/metatheory/adjointlogic.

Sequent calculus rules:

Cq [α] ` Ap

Cq [α] ` Ap +Bp
Inl

Cq [α] ` Bp

Cq [α] ` Ap +Bp
Inr

Aq [α] ` Cp Bq [α] ` Cp

Aq +Bq [α] ` Cp
Case

Definitions of −∗(−) and ident− and cut − −:

e∗(Inl(D)) := Inl(e∗(D))
e∗(Inr(D)) := Inr(e∗(D))

e∗(Case(D1,D2)) := Case(e∗(D1),e∗(D2))

identA+B := Case(Inl(identA), Inr(identB))

cut (Inl(D)) (Case(E1,E2)) := cut D E1
cut (Inr(D)) (Case(E1,E2)) := cut D E2

cut D (Inl(E)) := Inl(cut D E)
cut D (Inr(E)) := Inr(cut D E)

cut (Case(D1,D2)) E := Case(cut D1 E,cut D2 E)if E is not a right rule

Equational theory:

D : A+B [α] ` C
D≈ Case(cut (Inl(identA)) D,cut (Inr(identB)) D)

Inl(UL
γ
e(D))≈ UL

γ
e(Inl(D)) Inr(UL

γ
e(D))≈ UL

γ
e(Inr(D))

Fig. 1. Sequent calculus and equations for coproducts

object of another category p along some adjunction Fα aUα . Semantically, this mixed-
category map can be interpreted equivalently as an arrow Fα A−→p C or A−→q Uα C.
In the rules, we write Ap to indicate an elided premise A typep.

The rules for atomic propositions and for U and F are as follows:

1⇒ α

P [α] ` P
hyp

Ar [α ◦β] ` Cp

Fα:r≥q Ar [β : q≥ p] ` Cp
FL

γ : r ≥ q γ ◦α ⇒ β Cr [γ] ` Aq

Cr [β : r ≥ p] ` Fα:q≥p Aq
FR

γ : q≥ p α ◦ γ ⇒ β Aq [γ] ` Cp

Uα:r≥q Aq [β : r ≥ p] ` Cp
UL

Cr [β ◦α] ` Ap

Cr [β : r ≥ q] ` Uα:q≥p Ap
UR

The rules for other connectives do not change α; for example, see the sequent calculus
rules for coproducts in Figure 1.

To understand the rules for F and U , it is helpful to begin with FL and UR. In
the special case where β is 1, these rules pass from Fα A [1] ` C and A [1] ` Uα C to
A [α] ` C, which makes sense because the judgement A [α] ` C is intended to mean
either/both of these. When β is not 1, these rules also express how Fα◦β and Uβ◦α

distribute over compositions (see below). While we do not formally give a focused
sequent calculus, we conjecture that these two rules are invertible: whenever you have
Fα A on the left or Uα A on the right, you can immediately apply the rule, no matter
what is on the other side of the sequent.

On the other hand, the other two rules UL and FR cannot be applied at any time,
because they involve some constraints that may not be satisfied. Consider FR: we have
α : q ≥ p and β : r ≥ p and want to reduce proving Fα A from C to proving A from C.
However, there is not necessarily any relationship between C’s mode r and A’s mode q,
because all we know is that both of these are bigger than p. Thus, to form a premise
sequent, we need to choose a γ : r ≥ q. To make adjunctions generated by different
morphisms be different, it is important that we choose not just any γ , but one where the
triangle that it forms with α and β is filled by a 2-cell, which is the second premise of
the rule. The case for UR is dual.

Because we are interested not only in provability, but also in the equational theory
of proofs in this logic, one might think the next step would be to annotate the sequent
judgement with a proof term, writing e.g. x : A[α] ` M : B. However, the proof terms
M would have exactly the same structure as the derivations of this typing judgement.5

so we instead use the derivations themselves as the proof terms. This corresponds to
an “intrinsic representation” in Agda. We sometimes write D : A [α] ` B to indicate
“typing” in the metalanguage; i.e. this should be read “D is a derivation tree of the
judgement A [α] ` B.”

We now give some examples to illustrate the rules; these examples and many more
like them are in the companion Agda code.

Example: Functoriality We expect F and U to be functors; the functorial action of F
on terms is derived as follows. Given α : q≥ p and D : A [1q] ` B, we have

1q : q≥ q 1 : 1q ◦α ⇒ α ◦1p D : A [1q] ` B

A [α ◦1p] ` Fα B
FR

Fα A [1p] ` Fα B
FL

Because M is a strict 2-category, the identity 2-cell has type 1q ◦α ⇒ α ◦1p.

Example: Comonad Define �α A := Fα (Uα A) where α : q≥ p. The comonad opera-
tions are defined as follows:

5 This is not the case in a dependently typed language that has a judgemental equality conversion
rule in the derivations but not the terms.

1 : p≥ p 1 : α ◦1p⇒ α

1 : 1⇒ 1
P [1] ` P

hyp

Uα P [α] ` A
UL

�α P [1] ` P
FL

1 : q≥ q 1 : α ⇒ α

1 : q≥ q 1 : α ⇒ α

1 : p≥ p 1 : α ⇒ α

1⇒ 1
P [1] ` P

hyp

Uα P [α] ` P
UL

Uα P [1] ` Uα P
UR

Uα P [α] ` �α P
FR

Uα P [1] ` Uα �α P
UR

Uα P [α] ` �α�α P
FR

�α P [1] ` �α�α P
FL

The same derivations work for an arbitrary type A if we replace the top-right derivations
of P [1] ` P by the admissible identity principle A [1] ` A, defined below (indeed, we
can always substitute an arbitrary type for an atomic proposition).

An advantage of using a cut-free sequent calculus is that we can observe some non-
provabilities: for example, there is not in general a map P [1p] ` �α P. By inversion, a
derivation must begin with FR, but to apply this rule, we need a γ : p ≥ q and a 2-cell
γ ◦α ⇒ 1, which may not exist.

Example: F preserves coproducts As another example, we show a map from Fα (P+Q)
to Fα P+Fα Q, which is part of an isomorphism:

1 : q≥ q 1 : α ⇒ α P [1] ` P
hyp1

P [α] ` Fα P
FR

P [α] ` Fα P+Fα Q
Inl

1 : q≥ q 1 : α ⇒ α Q [1] ` Q
hyp1

Q [α] ` Fα Q
FR

Q [α] ` Fα P+Fα Q
Inr

P+Q [α] ` Fα P+Fα Q
Case

Fα (P+Q) [1] ` Fα P+Fα Q
FL

The key idea is that we can apply the left rule for F first, and then case-analyze the
P+Q, before choosing between Inl and Inr on the right; this direction of map doesn’t
exist for Uα (P+Q) because the left rule for U cannot be applied until after applying
UR.

Example: F/U on identity and composition For identity and composition of 1-cells, an
obvious question is the relationship between F1 A and U1 A and A, between Fβ◦α A and
Fα (Fβ A), and between Uβ◦α A and Uβ (Uα A). We do not have definitional equalities
of types, but the types in each group are isomorphic (in a sense that will be made precise
below). For example, the maps for F are as follows:

P [1◦1] ` P
hyp1

F1 P [1] ` P
FL

1 : p≥ p 1 : 1◦1⇒ 1 P [1] ` P
hyp1

P [1] ` F1 P
FR

β : r ≥ p 1 : (β ◦α)◦1⇒ β ◦α

1 : r ≥ r 1 : 1◦α ⇒ α P [1] ` P
hyp1

P [β] ` Fβ P

P [(β ◦α)◦1] ` Fα (Fβ P)
FR

Fβ◦α P [1] ` Fα (Fβ P)
FL

1 : r ≥ r 1 : 1◦ (β ◦α)⇒ β ◦ (α ◦1) P [1] ` P
hyp1

P [β ◦ (α ◦1)] ` Fβ◦α P
FR

Fβ P [α ◦1] ` Fβ◦α P
FL

Fα (Fβ P) [1] ` Fβ◦α P
FL

Example: F/U on 2-cells For every 2-cell e : α⇒ β , we have derivations of Fβ P [1] `
Fα P and Uα P [1] ` Uβ P.

1 : q≥ q e : 1◦α ⇒ β P [1] ` P
hyp1

P [β] ` Fα P
FR

Fβ P [1] ` Fα P
FL

1 : p≥ p e : α ◦1⇒ β P [1] ` P
hyp1

Uα P [β] ` P
UL

Uα P [1] ` Uβ P
UR

These derivations determine an adjunction morphism between Fβ aUβ and Fα aUα .
The other directions (e.g. Fα P [1] ` Fβ P) are not provable in general.

2.2 Admissible Rules

Adjunction morphisms The following rule provides the action of a 2-cell e : α⇒ β on a
derivation D : A [α] ` B, yielding a new derivation which we write as e∗(D) : A [β] ` B.
Semantically, D is interpreted as a map Fα A −→ B (say), so to get a map Fβ A −→ B
we can precompose with the F part of the morphism of adjunctions determined by e.

α ⇒ β A [α] ` C
A [β] ` C

−∗(−)

Because we will care about the equational properties of this operation, we give its
definition as a transformation on derivations.

e∗(hype′) := hyp(e′ · e)
e∗(FR

γ

e′(D)) := FR
γ

e′·e(D)
e∗(FL(D)) := FL((1◦2 e)∗(D))

e∗(UL
γ

e′(D)) := UL
γ

e′·e(D)
e∗(UR(D)) := UR((e◦2 1)∗(D))

The hypothesis rule and FR and UL build in some movement along a 2-cell, so in those
cases we compose the e with the 2-cells that are already present. For FL and UR (and
for the rules for coproducts), the operation commutes with the rule.

Identity The identity rule is admissible:

Ap [1] ` Ap
ident

The general strategy is “apply the invertible rule and then the focus rule and then the
inductive hypothesis.” For example, for Fα A, the following reduces the problem to
identity on A:

1q : q≥ q 1 : 1◦α ⇒ α A [1] ` A

A [α] ` Fα A
FR

Fα:q≥p A [1] ` Fα A
FL

As a function from types to derivations, we have

identP := hyp1
identUα A := UR(UL1

1(identA))

identFα A := FL(FR1
1(identA))

Cut The following cut rule is admissible:

Ar [β] ` Bq Br [α] ` Cp

Ar [β ◦α] ` Cp
cut

For example, consider the principal cut for F :

e : γ ◦α1⇒ β D : A [γ] ` B
A [β] ` Fα1 B

FR
E : B [α1 ◦α] ` C

Fα1 B [α] ` C
FL

A [β ◦α] ` C
cut

In this case the cut reduces to

e◦2 1 : (γ ◦α1)◦α ⇒ β ◦α

D : A [γ] ` B E : B [α1 ◦α] ` C
A [γ ◦α1 ◦α] ` C

cut

A [β ◦α] ` C
−∗(−)

As a transformation on derivations, we have

cut (hype) (hype′) := hyp(e◦2 e′)
cut (FRγ

e(D)) (FL(E)) := (e◦2 1)∗(cut D E)
cut (UR(D)) (ULγ

e(E)) := (1◦2 e)∗(cut D E)
cut D (FRγ

e(E)) := FR
β◦γ
1◦2e(cut D E)

cut D (UR(E)) := UR(cut D E)
cut (FL(D)) E := FL(cut D E) if E is not a right rule

cut (ULγ
e(D)) E := UL

γ◦α
e◦21(cut D E) if E is not a right rule

The first case is for atomic propositions. The next two cases are the principal cuts, when
a right rule meets a left rule; these correspond to β -reduction in natural deduction. The
next two cases are right-commutative cuts, which push any D inside a right rule for E.

The final two cases are left commutative cuts, which push any E inside a left rule for
D. The left-commutative and right-commutative cuts overlap when D is a left rule and
E is a right rule; we resolve this arbitrarily by saying that right-commutative cuts take
precedence. Using the equational theory below, we will be able to prove the unrestricted
left-commutative rules.

Example: Adjunction As an example using identity and cut, we give one of the maps
from the bijection-on-hom-sets adjunction for F and U : given α : q ≥ p we can trans-
form D : Fα A [1] ` B into A [1] ` Uα B:

1 : q≥ q 1 : α ⇒ α A [1] ` A
ident

A [α] ` Fα A
FR

D : Fα A [1] ` B
A [α] ` B

cut

A [1] ` Uα B
UR

2.3 Equations

When we construct proofs using the admissible rules e∗(D) and identA and cut D E,
there is a natural notion of definitional equality induced by the above definitions of
these operations (e.g. identUα A is definitionally equal to UR(UL1

1(identA)))—the cut-
and identity-free proofs are normal forms, and a proof using cut or identity is equal
to its normal form. However, to prove the desired equations in the examples below,
we will need some additional “propositional” equations, which, because we are using
derivations as proof terms, we represent by a judgement D ≈ D′ on two derivations
D,D′ : A [α] ` C. This judgement is the least congruence closed under the following
rules. First, we have uniqueness/η rules. The rule for F says that any map from Fα A
is equal to a derivation that begins with an application of the left rule and then cuts the
original derivation with the right rule; the rule for U is dual.

D : Fα A [β] ` C

D≈ FL(cut (FR1
1(identA)) D)

Fη
D : C [β] ` Uα A

D≈ UR(cut D (UL1
1(identA)))

Uη

Second, we have rules arising from the 2-cell structure. For example, suppose we
construct a derivation by FRγ

e(D) for some γ : r≥ q and e : γ ◦α⇒ β , but there is another
morphism γ ′ : r≥ q such that there is a 2-cell between γ and γ ′. The following says that
we can equally well pick γ ′ and suitably transformed e and D, using composition and
e2∗(−) to make the types match up.

e : γ ◦α ⇒ β D : C [γ ′] ` A e2 : γ ′⇒ γ

FRγ
e(e2∗(D′))≈ FR

γ ′

((e2◦21)·e)(D
′)

e : γ ◦α ⇒ β D : C [γ ′] ` A e2 : γ ′⇒ γ

ULγ
e(e2∗(D′))≈ UL

γ ′

((1◦2e2)·e)
(D′)

Semantically, these rules will be justified by some of the pseudofunctor laws.
The final rules say that left rules of negatives and right rules of positives commute.

These are needed to prove the left-commutative cut equations in the case where E is a

right rule, because we chose to give right-commutative cuts precedence definitionally
(the full left-commutative equations seem necessary for proving some of the theorems
we want to prove below). For U and F , we have

(1◦2 e1) · e2 = (e3 ◦2 1) · e4

ULe2
(FRe1

(D))≈ FRe4
(ULe3

(D))

We elide the details of the typing of the 2-cells ei, which will not be needed below; they
are the most general thing that makes both sides of the conclusion type check.

Admissible rules The following equality rules are admissible for logic containing the
U/F rules described above and the coproduct rules in Figure 1. The proofs have a lot
of cases (about 800 lines of Agda total) but are not difficult, except for somewhat subtle
staging. The rules in each of the following groups (except the first) are proved by mutual
induction, and use the preceding groups:

1. For each D, e∗(D) is functorial on the 2-cell identity and vertical composition:

1∗(D) = D (e1 · e2)∗(D) = e2∗(e1∗(D))

It is important for the remaining proofs that these are definitional equalities, not ≈,
so that we can use them “in context” before we know that cut is well-defined on ≈.

2. e∗(−) is well-defined on ≈:

D≈ D′

e∗(D)≈ e∗(D′)

and e∗(−) commutes with cut:

e : α ⇒ α ′ e′ : β ⇒ β ′ D : A [α] ` B D′ : B [β] ` C
(e◦2 e′)∗(cut D D′)≈ cut (e∗(D)) (e′∗(D′))

3. Cut is associative:

cut D1 (cut D2 D3)≈ cut (cut D1 D2) D3

4. Cut is well-defined on ≈, identities are units for cut, and the left-commutative cut
rules hold always (they are true definitionally only when E is not a right rule).

cut D ident ≈ D cut ident D≈ D
D≈ D′

cut D E ≈ cut D′ E
E ≈ E ′

cut D E ≈ cut D E ′

cut (FL(D)) E ≈ FL(cut D E) cut (ULγ
e(D)) E ≈ UL

γ◦α
e◦21(cut D E)

3 Syntactic Constructions

In this section, we investigate some constructions on F and U that hold for any mode
specification M . Taken together, the first set of constructions shows that the syntax
forms a pseudofunctor M → Adj, where Adj is the 2-category of categories, adjunc-
tions, and conjugate natural transformations. This is a standard way of proving logical
completeness in categorical logic: we think of the pseudofunctors M →Adj as the class
of models of the syntax, so this shows that if something is true in all models M →Adj,
then it is true in the syntax, because the syntax forms a model.

Since the objects of Adj are categories, the first step is to associate a category with
each mode p. The rules for ≈ in the previous section imply that for each p, there is a
category whose objects are A typep and whose morphisms are derivations of A [1p] `
B quotiented by ≈, with identities given by ident and composition given by cut. We
write D•E as an infix notation for cut D E; this corresponds to writing composition in
this category in diagrammatic notation. Some standard category-theoretic terminology
applied to categories of this form unpacks as follows:

1. For A,B typep, an isomorphism A∼=B consists of a pair D : A [1] ` B and E : B [1] `
A such that D•E ≈ identA and E •D≈ identB.

2. For modes p and q, a functor from p to q consists of a function G0 from types
with mode p to types with mode q and a function G1 from derivations A [1] ` B
to derivations G0 A [1] ` G0 B, such that G1(identA) ≈ identG0A and G1(D •E) ≈
G1(D)•G1(E).

3. For two functors G,H : p→ q, a natural transformation t : G→ H consists of a
family of derivations DA : G0(A) [1] ` H0(A) for each A typep, such that for any
D : A [1p] ` B, cut DA (H1(D))≈ cut (G1(D)) DB. A natural isomorphism consists
of a natural transformation along with inverses demonstrating that each DA is an
isomorphism G0(A)∼= H0(A).

4. For two functors L,R : p→ q, an adjunction L a R (using the natural-bijection-of-
hom-sets definition) consists of functions −B : (L0(A) [1] ` B) → (A [1] ` R0(B))
and −C : (A [1] ` R0(B)) → (L0(A) [1] ` B) which are mutually inverse and such
that −B is natural in A and B: for D1 : A′ [1] ` A and D3 : B [1] ` B′ and D2 :
L0(A) [1] ` B, (L1(D1)•D2 •D3)

B ≈ D1 •DB2 •R1(D3) (it follows that −C is nat-
ural as well).

5. A morphism of adjunctions (or “adjunction morphism”) from L1 a1 R1 to L2 a2 R2

consists of two natural transformations tL : L1 → L2 and tR : R2 → R1 between
the corresponding functors that are “conjugate” under the adjunction structure [15,
§IV.7]. This means that for any D : L2(A) [1] ` B we have

(tL •D)B1 = DB2 • tR.

An adjunction isomorphism consists of an adjunction morphism together with in-
verses showing that tL and tR are each natural isomorphisms.6

6 This definition is equivalent to “two inverse adjunction morphisms,” similarly to how iso-
morphisms that are natural are the same as iso-natural transformations—we can recover the
conjugation condition for one direction from the other.

6. Because we treat equality of morphisms as propositional/proof-irrelevant, two ad-
junction morphisms (tL, tR) and (uL,uR′) between the same two adjunctions are
equal iff tL

A ≈ uL
A and tL

A ≈ uL
A for all A.

While these definitions are “external” (meta-theoretic), we are hopeful that it would
be possible to internalize them in a dependent type theory based on adjoint logic. For
example, although the above definition allows a functor to be given by arbitrary meta-
theoretic functions, in all of the examples we consider, the action on objects is in fact
given by a syntactic type with a “placeholder”, and the action on morphisms is given by
taking an assumed derivation D and applying rules to it. Similarly, all of the equalities
are proved by chaining together the equality rules (including the admissible ones, such
as associativity and identity of cut) from the previous section.

A pseudofunctor is a map between 2-categories that preserves identity and compo-
sition of 1-cells up to coherent isomorphism, rather than on the nose.7 In this case, we
have a pseudofunctor because F1 A∼= A∼=U1 A and similarly for composition, but these
are not equalities of types.

Theorem 1 (Syntax Determines a Pseudofunctor). The syntax of adjoint logic deter-
mines a pseudofunctor M → Adj:

1. An object p of M is sent to the category whose objects are A typep and morphisms
are (A [1p] ` B)/≈.

2. For each q, p, there is a functor from the category of morphisms q≥ p to the cate-
gory of adjoint functors between q and p.

– Each α : q≥ p is sent to Fα aUα in Adj—Fα and Uα are functors and they are
adjoint.

– Each 2-cell e : α ⇒ β is sent to an adjunction morphism (F(e),U(e)) : (Fβ a
Uβ)→ (Fα aUα), and this preserves 1 and e1 · e2.

3. F1 A ∼= A and U1 A ∼= A naturally in A, and these are conjugate, so there is an
adjunction isomorphism P1 between F1 aU1 and the identity adjunction.

4. Fβ◦α A∼= Fα (Fβ A) and Uβ◦α A∼=Uβ (Uα A) naturally in A, and these are conju-
gate, so there is an adjunction isomorphism P◦(α,β) between Fβ◦α aUβ◦α and
the composition of the adjunctions Fα aUα and Fβ aUβ . Moreover, this family
of adjunction isomorphisms is natural in α and β .

5. Three coherence conditions between P1 and P◦ are satisfied, which relate (1) P1

and P◦(α,1), (2) P1 and P◦(1,α), and (3) P◦(γ,β ◦α) composed with P◦(β ,α)
and P◦(γ,β) composed with P◦(γ ◦β ,α).

Proof. We have given a flavor for some of the maps in the examples above; the complete
construction is about 500 lines of Agda. There are many equations to verify—inverses,
naturality, conjugation, and coherence—but they are all true for ≈.

Next, we summarize some expected constructions on Fα a Uα . Of course, these
standard facts are corollaries of the above; the point is that we can construct them di-
rectly using the rules of the logic.

7 http://ncatlab.org/nlab/show/pseudofunctor

Lemma 1 (Some constructions on adjunctions). Let α : q≥ p. Then:

1. The composite functor �α A := Fα Uα A is a comonad:
counit :�α A [1] ` A naturally in A
comult :�α A [1] ` �α�α A naturally in A
comult• (� comult)≈ comult• comult and comult• counit≈ ident
and comult• (� counit)≈ ident.

2. The composite functor©α A :=Uα Fα A is a monad:
unit : A [1] ` ©α A naturally in A
mult :©α©α A [1] ` ©α A naturally in A
(©mult)•mult≈mult•mult and unit•mult≈ ident
and (© unit)•mult≈ ident.

3. F preserves coproducts: Fα (A+B)∼= Fα A+Fα B naturally in A and B.

Proof. We showed many of the maps above; the (co)monad laws, naturality conditions,
and inverse laws are all true for ≈; the construction is about 150 lines of Agda.

4 Semantics

Next, we show that we can interpret the rules of adjoint logic in any pseudofunctor
S : M → Adj. This shows that the syntax is sound for these models. On the semantic
side, we unpack the definition of a pseudofunctor as follows:

– We write Cp for S(p). We write “;” for composition of morphisms in Cp in dia-
grammatic order.

– We write Fα a Uα for S(α), and −Bα and −Cα for the two maps of hom-sets of
the adjunction. Naturality of the maps of hom-sets says that (Fα m1;m2;m3)

Bα =
m1;mBα

2 ;Uα m3 and (m1;m2;Uα m3)
Cα = Fα m1;mCα

2 ;m3.
– We write Fe : Fβ A −→ Fα A and Ue : Uα A −→ Uβ A when e : α ⇒ β for the

components of the two natural transformations in the adjunction morphism S(e) :
Fβ aUβ −→ Fα aUα . Functoriality gives that Fe·e′ = Fe′ ;Fe and F1 = 1 and
Ue·e′ = Ue;Ue′ and U1 = 1. The conjugation property specifies that for any m :
Fα A −→ B, we have mBα ;Ue =A−→Uβ B (Fe;m)Bβ , or equivalently that for any
m : A−→ Uα B, we have Fe;mCα =Fβ A−→B (m;Ue)

Cβ .
– We write F 1 : F1 A ∼= A and U 1 : U1 A ∼= A for the components of the two nat-

ural isomorphisms in the adjunction isomorphism S1 between F1 a U1 and the
identity adjunction. The conjugation property specifies that for any m : A −→ B,
(F 1

A;m)B1 = m;U 1
B
−1, and for any m : A−→ B, (m;U 1−1

)C1 = F 1;m. In par-
ticular, taking m = 1 in the former, (F 1

A)
B1 = (U 1

A)
−1.

– We write F ◦(β ,α) : Fβ◦α A∼=Fα (Fβ A) and U ◦(β ,α) : Uβ◦α A∼=Uβ (Uα A)
for the components of the two natural isomorphisms in the natural adjunction iso-
morphism S◦ between Fβ◦α aUβ◦α and the composition of the adjunctions Fα a
Uα and Fβ aUβ . Naturality in α,β means that for any e1 : β ⇒ β ′ and e2 : α ⇒
α ′, we have Fe1◦2e2 ;F ◦(β ,α) =F

β ′◦α ′ A−→Fα Fβ A F ◦(β ′,α ′);Fα ′ Fe1 ;Fe2 , or
equivalently F ◦(β ′,α ′);Fe2 ;Fα Fe1 , and similarly for U . The conjugation prop-
erty specifies that (m;U ◦(β ,α)−1)Cβ◦α =F ◦(β ,α);mCβ

Cα and similarly for−B .

– Using the fact that both M and Adj are strict 2-categories, and unpacking the
definition of horizontal composition of natural transformations, the three coherence
laws relating S◦ and S1 specify the following:
• F ◦(1,α)A

−1 =Fα F1 A−→Fα A Fα (F 1
A)

• F ◦(α,1)A
−1 =F1 Fα A−→Fα A F 1

(Fα A)

• U ◦(α,1)A
−1 =Uα U1 A−→Uα A Uα (U 1

A)

• U ◦(1,α)A
−1 =U1 Uα A−→Uα A (U 1

Uα A)
• F ◦(γ,β ◦α);F ◦(β ,α)=Fγ◦β◦α A−→Fα Fβ Fγ A F ◦(γ ◦β ,α);Fα F ◦(γ,β) and

similarly for U .

JA typepK is an object of Cp; we assume an interpretation is given for each atomic
proposition, and the basic rules of adjoint logic require only that we can interpret Fα A
and Uα A, which are interpreted as Fα JAK and Uα JAK.

We can interpret the judgement A [α] ` B as either a morphism Fα JAK −→ JBK
or a morphism JAK −→ Uα JBK. We choose Fα A −→ B because it seems like it will
generalize better to a multiple-hypothesis sequent. This means that the interpretations
of the rules for F do not use the adjunction structure, while the interpretations of the
rules for U do. We now consider the interpretation of the sequent calculus rules:

Theorem 2 (Soundness of the sequent calculus). There is a function J−K from deriva-
tions D : A [α] ` B to morphisms Fα JAK−→ JBK.

Proof. – For the hypothesis rule

e : 1⇒ α

P [α] ` P
hyp

we need a morphism Fα JPK−→ JPK, which we take to be the composite

Fα JPK
Fe- F1 JPK

F 1
- JPK

– For FL
D : A [α ◦β] ` C

Fα A [β] ` C
FL

the premise is interpreted as JDK : Fα◦β JAK−→ JCK and we want Fβ Fα JAK−→
JCK, so we take the interpretation to be

Fβ Fα JAK
F ◦(α,β)−1

- Fα◦β JAK
JDK- JCK

– For FR
γ : r ≥ q e : γ ◦α ⇒ β D : C [γ] ` A

C [β] ` Fα A
FR

the premise JDK is Fγ JCK−→ JAK, and we want Fβ JCK−→Fα JAK. Using func-
toriality, we have Fα JDK : Fα Fγ JCK−→ Fα JAK, so

Fβ JCK
Fe- Fγ◦α JCK

F ◦(γ,α)- Fα Fγ JCK
Fα JDK- Fα JAK

– For UL
γ : q≥ p e : α ◦ γ ⇒ β A [γ] ` C

Uα A [β] ` C
UL

The premise gives JDK : Fγ JAK −→ JCK, and we want Fβ Uα JAK −→ JCK. Us-
ing the adjunction, the premise gives JDKBγ : A −→ Uγ C and it suffices to give
Uα JAK−→ Uβ JCK. So we form the composite

Uα JAK
Uα (JDKBγ)- Uα Uγ C

U ◦(α,γ)−1
- Uα◦γ JCK

Ue- Uβ JCK

and then move it along the adjunction.
– For UR

C [β ◦α] ` A
C [β] ` Uα A

UR

The premise gives Fβ◦α JCK−→ JAK and we want Fβ JCK−→ Uα A. We have

Fα Fβ JCK
F ◦(β ,α)−1

- Fβ◦α JCK
JDK- JAK

so using the adjunction gives the result.
In summary, we have

JhypeK := Fe;F 1

JFL(D)K := F ◦(α,β)−1;JDK
JFRγ

e(D)K := Fe;F ◦(γ,α);Fα JDK
JUR(D)K := (F ◦(β ,α)−1;JDK)Bα

JULγ
e(D)K := (Uα (JDKBγ);U ◦(α,γ)−1;Ue)

Cβ

In general, an admissible inference rule need not hold in all models. However, in
this case, we are considering a class of models (pseudofunctors into Adj) in which the
admissible rules (e.g. cut and identity) are true.

Lemma 2. The admissible sequent calculus rules e∗(D) and identA and cut D E are
sound.

Proof. – For e∗(D), we have

e : α ⇒ β D : A [α] ` C
A [β] ` C

e∗(D)

The premise gives Fα JAK−→ JCK, and we want Fβ JAK−→ JCK so we have

Fβ JAK
Fe- Fα JAK

JDK- JCK

– For identity

A [1] ` A
ident

we want F1 JAK−→ JAK, so use F 1.

– For cut

D : A [β] ` B E : B [α] ` C
A [β ◦α] ` C

cut

the interpretations of the premises gives Fβ JAK−→ JBK and Fα JBK−→ JCK. To
get Fβ◦α JAK−→ JCK, we compose as follows:

Fβ◦α JAK
F ◦(β ,α)- Fα Fβ JAK

Fα JDK- Fα JBK
JEK- JCK

We now have two possible interpretations for the admissible rules: first, the one
given by expanding the definition in each instance, and second, the compositional defi-
nition given above. In the next few lemmas, we show that these agree:

Je∗(D)K = Fe;JDK
JidentAK = F 1

Jcut D EK = F ◦(β ,α);Fα JDK;JEK

Lemma 3. For all e : β ⇒ β ′ and derivations D : A [β] ` B, Je∗(D)K = Fe;JDK.

Proof. The proof is by induction on D, and in each case we can unfold the definition of
e∗(D), so we have to show:

– Fe;Jhype′K = Jhyp(e′ · e)K After unfolding definitions, it suffices to use functorial-
ity of Fe to show Fe′·e = Fe;Fe′ .

– Fe;JFRγ

e′(D)K = JFRγ

e′·e(D)K Again, Fe′·e = Fe;Fe′ suffices.
– Fe;JFL(D)K = JFL((1◦2 e)∗(D))K After unfolding definitions and applying the IH,

we need to know that Fe(Fα A);F ◦(α,β)−1 = F ◦(α,β ′)−1;F(1α◦2e)A as arrows
Fβ ′ Fα A−→ Fα◦β ′ A, which is true by naturality of F ◦(−,−) and F1 = 1 and
Fβ 1 = 1.

– Fe;JULγ

e′(D)K = JULγ

e′·e(D)K After unfolding the definitions, it suffices to use func-
toriality Ue′·e = Ue′ ;Ue and the conjugation property for −C .

– Fe;JUR(D)K = JUR((e◦2 1)∗(D))K After unfolding definitions and applying the
IH, we need to know that Fe;(F ◦(β ,α)−1;JDK)B =(F ◦(β ′,α)−1;Fe◦21α

;JDK)B

By naturality of the adjunction, the former is equal to (Fα (Fe);F ◦(β ,α)−1;JDK)B
and then naturality of F ◦(−,−) gives the result.

Lemma 4. For all types A, JidentAK = F 1
JAK.

Proof. The proof is by induction on A. In each case, we can unfold the definition of
identA, so we need to show:

– Case for P: F 1
P = Jhyp1K. Works because F1 = 1.

– Case for Fα A: F 1
Fα JAK = JFL(FR1

1(identA))K After unfolding the definitions and
using the IH, it suffices to show that the composite

F1 Fα JAK
F ◦(α,1)−1

- Fα JAK
F ◦(1,α)- Fα F1 JAK

Fα F 1
JAK- Fα JAK

is F1 Fα JAK, which is true by the F 1/F ◦ coherence laws.

– Case for Uα A: F 1
Uα JAK = JUR(UL1

1(identA))K
Expanding the definitions and using the IH and using U1 = 1, the right-hand side
is equal to

(F ◦(1,α)−1;(Uα ((F 1
JAK)

B1);U ◦(α,1)−1)Cα)Bα

By coherence F ◦(1,α)−1 =Fα (F 1
Uα JAK), so by naturality of −Bα , it’s equal to

F 1;((Uα ((F 1
JAK)

B1);U ◦(α,1)−1)Cα)Bα

and canceling −Cα
Bα gives

F 1;Uα ((F 1
JAK)

B1);U ◦(α,1)−1

so it suffices to show

Uα ((F 1
JAK)

B1);U ◦(α,1)−1 = 1

But ((F 1)B1)=U 1−1 by conjugation, and U ◦(α,1)−1 =Uα JAK−→Uα U1 JAK Uα U 1

by coherence, so this is true.

To prove the cut lemma, it will helpful to use the following equivalent defini-
tion of JULγ

e(D)K, which uses only F operations, except for the counit (1Uα JAK)
Cα :

Fα Uα A−→ A

Lemma 5. For any γ,e,D, JULγ
e(D)K = Fe ;F ◦(α,γ);Fγ (1

Cα

Uα JAK);JDK

Proof. By conjugation for Ue and U ◦, JULγ
e(D)K=Fe ;F ◦(α,γ);((Uα (JDKBγ))Cα)Cγ

By naturality of −Cα ,
(Uα (JDKBγ))Cα = 1Cα ;(JDKBγ)

and by naturality of −Cγ ,

(1Cα ;(JDKBγ))Cγ = Fγ (1Cα);(JDKBγ)
Cγ

so collapsing inverses gives the result.

Lemma 6. For all derivations D : A [β] ` B and E : B [β ′] ` C, we have

Jcut D EK = F ◦(β ,β ′);Fβ ′ JDK;JEK.

Proof. The proof is by the same induction on A,D,E that defines cut, and in each case
the cut reduces, so we need to show:

– F ◦(β ,β ′);Fβ ′ J(hype)K;J(hype′)K = Jhyp(e◦2 e′)K
After expanding definitions, we need to show that

F ◦(β ,β ′);Fβ ′ (Fe ;F 1);Fe′ ;F 1 = Fe◦2e′ ;F
1

We have Fβ ′ (Fe ;F 1) = Fβ ′ Fe ;Fβ ′ F
1 by functoriality, and Fe′ ;F1 F 1 =

Fβ ′ F
1;Fe′ by naturality of Fe′ , so the LHS equals

(F ◦(β ,β ′);Fβ ′ Fe;Fe′);F1 F 1;F 1

By naturality of F ◦in α,β , this equals

Fe◦2e′ ;F
◦(1,1);F1 F 1;F 1

Coherence implies that F ◦(1,1)−1 = F1 F 1, so collapsing inverses gives the re-
sult.

– F ◦(β ,β ′);Fβ ′ J(FRγ
e(D))K;J(FL(E))K = J(e◦2 1)∗(cut D E)K

After unfolding the definitions on the left-hand side, and using Lemma 3 and the
IH on the right-hand side, the calculation consists of using naturality of F ◦

A
−1 in

A to show that Fβ ′ Fα JDK;F ◦(α,β ′)−1 = F ◦(α,β ′)−1;Fα◦β ′ JDK, using natu-
rality of F ◦(α,β) in α,β to show F ◦(β ,β ′);Fβ ′ Fe = Fe◦21

β ′ ;F ◦(γ ◦α,β ′),
and using the associativity coherence to show F ◦(γ ◦ α,β ′);Fβ ′ (F

◦(γ,α)) =
F ◦(γ,α ◦β ′);F ◦(α,β ′).

– F ◦(β ,β ′);Fβ ′ J(UR(D))K;J(ULγ
e(E))K = J(1◦2 e)∗(cut D E)K

Unfolding the definitions, using Lemma 3 and the IH, we need to show LHS =
RHS, where

LHS := F ◦(β ,β ′);Fβ ((F ◦(β ,α)−1;JDK)Bα);(Uα (JEKBγ);U ◦(α,γ)−1;Ue)
C

β ′

RHS := F1◦2e ;F ◦(β ◦α,γ);Fγ JDK;JEK

Using conjugation to move Ue and U ◦(α,γ)−1 outside of the −Cβ ′ , we have

(Uα (JEKBγ);U ◦(α,γ)−1;Ue)
C

β ′ = Fe ;F ◦(α,γ);(Uα JEKBγ)Cα
Cγ

By naturality of −Cα , the right-hand side of that is equal to

Fe ;F ◦(α,γ);(1Cα ;JEKBγ)Cα
Cγ

and then by naturality of −Cγ , that is equal to

Fe ;F ◦(α,γ);Fγ (1Cα);(JEKBγ)
Cγ

so collapsing inverses, we have overall that

(Uα (JEKBγ);U ◦(α,γ)−1;Ue)
B

β ′ = Fe ;F ◦(α,γ);Fγ (1Cα);JEK

Therefore

LHS = F ◦(β ,β ′);Fβ ((F ◦(β ,α)−1;JDK)Bα);Fe ;F ◦(α,γ);Fγ (1Cα);JEK

Moving Fe to the left using its naturality, this is equal to

F ◦(β ,β ′);Fe ;Fα◦γ ((F
◦(β ,α)−1;JDK)Bα);F ◦(α,γ);Fγ (1Cα);JEK

and then moving it to the left again using naturality of F ◦(α,γ) in α,β gives

F(1◦2e) ;F ◦(β ,α ◦ γ);Fα◦γ ((F
◦(β ,α)−1;JDK)Bα);F ◦(α,γ);Fγ (1Cα);JEK

and moving F ◦
A(α,β) to the left using naturality in A gives

F(1◦2e) ;F ◦(β ,α ◦ γ);F ◦(α,γ);Fγ Fα ((F ◦(β ,α)−1;JDK)Bα);Fγ (1Cα);JEK

By the associativity coherence, this is equal to

F(1◦2e) ;F ◦(β ◦α,γ);Fγ F ◦(β ,α);Fγ Fα ((F ◦(β ,α)−1;JDK)Bα);Fγ (1Cα);JEK

so collecting the three terms that are under Fγ , to show that LHS=RHS, it suffices
to show that

F ◦(β ,α);Fα ((F ◦(β ,α)−1;JDK)Bα);(1Cα) = JDK

By naturality of the adjunction,

Fα ((F ◦(β ,α)−1;JDK)Bα);(1Cα) = (((F ◦(β ,α)−1;JDK)Bα);1)Cα

= (F ◦(β ,α)−1;JDK)

so collapsing inverses gives the result.
– F ◦(β ,β ′);Fβ ′ JDK;J(FRγ

e(E))K = JFRβ◦γ
1◦2e(cut D E)K

After unfolding the definitions and using the IH on the right-hand side, the proof
uses naturality of Fe A in A to show Fβ ′ JDK;Fe = Fe ;Fγ◦α JDK, naturality
of F ◦

A in A to show Fγ◦α JDK;F ◦(γ,α) = F ◦(γ,α);Fα Fγ JDK, naturality of
F ◦(α,β) in α,β to equate F ◦(β ,β ′);Fe =F1◦2e ;F ◦(β ,γ ◦α) and the associa-
tivity coherence to equate F ◦(β ,γ ◦α);F ◦(γ,α) =F ◦(β ◦γ,α);Fα (F ◦(β ,γ)).

– F ◦(β ,β ′);Fβ ′ JDK;J(UR(E))K = JUR(cut D E)K
After expanding definitions and using the IH, we need to show

F ◦(β ,β ′);Fβ ′ JDK;(F ◦(β ′,α)
−1;JEK)Bα

= (F ◦(β ◦β
′,α)

−1;F ◦(β ,β ′ ◦α);Fβ ′◦α JDK;JEK)Bα .

By the associativity coherence,

F ◦(β ◦β
′,α)

−1
= Fα (F ◦(β ,β ′));F ◦(β ′,α)

−1;F ◦(β ,β ′ ◦α)
−1

and plugging this in to the RHS and then collapsing inverses gives

(Fα F ◦(β ,β ′);F ◦(β ′,α)
−1;Fβ ′◦α JDK;JEK)Bα .

By naturality of Bα , this is the same as

F ◦(β ,β ′);(F ◦(β ′,α)
−1;Fβ ′◦α JDK;JEK)Bα

By naturality of F ◦(β ′,α)−1, this is the same as

F ◦(β ,β ′);(Fα Fβ ′ JDK;F ◦(β ′,α)
−1;JEK)Bα

so using naturality of Bα again gives the result.

– F ◦(β ,β ′);Fβ ′ J(FL(D))K;JEK = JFL(cut D E)K (note: we could assume that E is
not a right rule, but this assumption is not necessary). After expanding the defini-
tions and using the IH, the main step is to use the associativity coherence to show
F ◦(α,β ◦β ′);F ◦(β ,β ′) = F ◦(α ◦β ,β ′);Fβ ′ (F

◦(α,β)).

– F ◦(β ,β ′);Fβ ′ J(ULγ
e(D))K;JEK= JULγ◦β ′

e◦21(cut D E)K (note: we could assume that
E is not a right rule, but this assumption is not necessary).
Applying Lemma 5, to the left and the right sides, and using the IH, we need to
show LHS = RHS, where

LHS := F ◦(β ,β ′);Fβ ′ Fe;Fβ ′ F
◦(α,γ);Fβ ′ Fγ (1Cα);Fβ ′ JDK;JEK

RHS := Fe◦21;F ◦(α,γ ◦β ′);Fγ◦β ′ (1Cα);F ◦(γ,β ′);Fβ ′ JDK;JEK

By naturality of F ◦(α,β) in α,β

F ◦(β ,β ′);Fβ ′ Fe = Fe◦21;F ◦(α ◦ γ,β ′)

and by the associativity coherence,

F ◦(α ◦ γ,β ′);Fβ ′ F
◦(α,γ) = F ◦(α,γ ◦β

′);F ◦(γ,β ′)

so

LHS = Fe◦21;F ◦(α,γ ◦β
′);F ◦(γ,β ′);Fβ ′ Fγ (1Cα);Fβ ′ JDK;JEK

Therefore using naturality of F ◦(γ,β ′)A in A to move it to the right gives the result.

Next, we validate the rules for ≈.

Theorem 3 (Soundess of the equational theory.). If D≈ D′ then JDK = JD′K.

Proof. Because the goal is equality of morphisms, the congruence (equivalence rela-
tion, compatibility for each derivation constructor) rules are all true. It remains to vali-
date the axioms:

– JDK = JFL(cut (FR1
1(identA)) D)K when D : Fα A [β] ` C

After expanding the definitions and using Lemmas 4, 6, it suffices to show

F ◦(α,β)−1;F ◦(α,β);Fβ (F1;F ◦(1,α);Fα F 1);JDK = JDK

This is true because F1 = 1 and because F ◦(1,α)−1 =Fα F 1, so canceling iden-
tities and inverses gives the result.

– JDK = JUR(cut D (UL1
1(identA)))K when D : C [β] ` Uα A

After expanding the definitions and using Lemmas 4, 6, it suffices to show

(F ◦(β ,α)−1;F ◦(β ,α);Fα JDK;(Uα (F 1B1);U ◦(α,1)−1;U1)
Cα)Bα = JDK

Canceling the F ◦(β ,α) and using naturality of −Bα , this is equal to

JDK;((Uα (F 1B1);U ◦(α,1)−1;U1)
Cα)Bα

so it suffices to show that the later is the identity. Canceling the adjunction round-
trip and U1, it is equal to

Uα (F 1B1);U ◦(α,1)−1

By conjugation for F 1, we have F 1C1 = U 1, and by the associativity coherence,
we have U ◦(α,1)−1 = Uα U 1, so canceling inverses gives the result.

– JFRγ
e(e2∗(D))K = JFRγ ′

((e2◦21)·e)(D)K when e : γ ◦α ⇒ β and D : C [γ ′] ` A and e2 :
γ ′⇒ γ .
After expanding the definitions and using Lemma 3, we need to show

Fe;F ◦(γ,α);Fα Fe2 ;Fα JDK = F(e2◦21)·e;F ◦(γ ′,α);Fα JDK

This is true using functoriality to show F(e2◦21)·e = Fe;F(e2◦21), and naturality of
F ◦(α,β) in α,β to show F(e2◦21);F ◦(γ ′,α) = F ◦(γ,α);Fα Fe2 .

– JULγ
e(e2∗(D))K = JULγ ′

((1◦2e2)·e)
(D)K when e : γ ◦α ⇒ β and D : C [γ ′] ` A and e2 :

γ ′⇒ γ .
Using Lemmas 5 and 3, we need to show

Fe;F ◦(α,γ);Fγ (1Bα);Fe2 ;JDK = F(1◦2e2)·e;F ◦(α,γ ′);Fγ ′ (1
Bα);JDK

By functoriality, F(1◦2e2)·e = Fe ;F1◦2e2 , and by naturality of F ◦(α,β) in α,β ,
F(1◦2e2);F

◦(α,γ ′) = F ◦(α,γ);Fe2 , so the right-hand side is equal to

Fe;F ◦(α,γ);Fe2 ;Fγ ′ (1
Bα);JDK

so using naturality of Fe2 gives the result.
– JULβ

e2
(FRγ

e1
(D))K= JFRδ3

e4
(ULγ

e3
(D))K when (1◦2 e1) · e2 = (e3 ◦2 1) · e4, where e1 :

(γ ◦α)⇒ β and e2 : (δ1 ◦β)⇒ δ2 and e3 : (δ1 ◦γ)⇒ δ3 and e4 : (δ3 ◦α)⇒ δ2 and
Expanding the definitions and using Lemma 5, we need to show

Fe2 ;F ◦(δ1,β);Fβ (1Cδ1);Fe1 ;F ◦(γ,α);Fα JDK
= Fe4 ;F ◦(δ3,α);Fα Fe3 ;Fα F ◦(δ1,γ);Fα Fγ (1

Bδ1);Fα JDK

Using naturality of Fe1 and F ◦(γ,α), the left-hand side is equal to

Fe2 ;F ◦(δ1,β);Fe1 ;F ◦(γ,α);Fα Fγ (1
Cδ1);Fα JDK

so it suffices to show

Fe2 ;F ◦(δ1,β);Fe1 ;F ◦(γ,α) = Fe4 ;F ◦(δ3,α);Fα Fe3 ;Fα F ◦(δ1,γ)

Using naturality of F ◦(α,β) in α,β the LHS equals

Fe2 ;F1◦2e1 ;F ◦(δ1,γ ◦α);F ◦(γ,α)

and the RHS equals

Fe4 ;Fe3◦21;F ◦(δ1 ◦ γ,α);Fα F ◦(δ1,γ)

But F ◦(δ1,γ ◦α);F ◦(γ,α) = F ◦(δ1 ◦ γ,α);Fα F ◦(δ1,γ) by the associativity
coherence, and Fe2 ;F1◦2e1 = Fe4 ;Fe3◦21 by functoriality using the assumption
that (1◦2 e1) · e2 = (e3 ◦2 1) · e4.

Just as the class of models we are considering supported interpretations of e∗(D)
and identA and cut D E in general, the admissible rules for ≈ hold in general:

Theorem 4 (Soundness of admissible equational rules). The admissible rules for
D≈ D′ in Section 2.3 are true in the semantics.

Proof. – For 1∗(D) = D and (e1 · e2)∗(D) = e2∗(e1∗(D)), by Lemma 3, we need to
show Fe;JDK = JDK and Fe1·e2 ;JDK = Fe2 ;Fe1 ;JDK, which are true by functori-
ality.

– For the congruence rules:

D≈ D′

e∗(D)≈ e∗(D′)
D≈ D′

cut D E ≈ cut D′ E
E ≈ E ′

cut D E ≈ cut D E ′

By assumption, JDK= JD′K or JEK= JE ′K. By Lemma 3 and 6, Je∗(D)K and Jcut D EK
are compositional in JDK and JEK, so the conclusions are equal as well.

– For (e◦2 e′)∗(cut D D′)≈ cut (e∗(D)) (e′∗(D′)) where e : α ⇒ β and e′ : α ′⇒ β ′,
by Lemmas 3 and 6, we need to show

F(e◦2e′);F
◦(α,α ′);Fα ′ (JDK);JD′K = F ◦(β ,β ′);Fβ ′ Fe;Fβ ′ JDK;Fe′ ;JD′K

Using naturality for Fe′ , the right-hand side equals

F ◦(β ,β ′);Fβ ′ Fe;Fe′ ;Fα ′ JDK;JD′K

so naturality of F ◦(α,β) in α,β gives the result.
– For cut D1 (cut D2 D3)≈ cut (cut D1 D2) D3, by Lemma 6, we need to show

F ◦(β1,β2 ◦β3);Fβ2◦β3 JD1K;F ◦(β2,β3);Fβ3 JD2K;JD3K
= F ◦(β1 ◦β2,β3);Fβ3 F ◦(β1,β2);Fβ3 Fβ2 JD1K;Fβ3 JD2K;JD3K

By naturality of F ◦(β2,β3)A in A, the LHS equals

F ◦(β1,β2 ◦β3);F ◦(β2,β3);Fβ2 Fβ3 JD1K;Fβ3 JD2K;JD3K

so the associativity coherence gives the result.
– For cut D ident ≈ D, by Lemmas 6 and 4, it suffices to show

F ◦(β ,1);F1 JDK;F 1 = JDK

By naturality of F 1, the left-hand side equals F ◦(β ,1);F 1;JDK, so coherence
(and a unit law for Cp—interpreting a unit law for the syntax involves a unit law
for the semantics) gives the result.

– For cut ident D≈ D, by by Lemmas 6 and 4, it suffices to show

F ◦(1,β);Fβ F 1;JDK = JDK

which is true by coherence (and a unit law for Cp).

– The unrestricted left-commutative rules cut (FL(D)) E ≈ FL(cut D E) and
cut (ULγ

e(D)) E ≈ UL
γ◦α
e◦21(cut D E) were checked as part of the proof of Lemma 6

above.

Lemma 7 (Interpretation of Coproducts). If each Cp has coproducts, then Theorem 2
and Lemmas 3 and 4 and 6 and Theorem 3 are true when the rules for coproducts in
Figure 1 are added to the logic.

Proof. Write inl : A −→ A+B and inr : B −→ A+B and [m1,m2] for the coproduct
maps.

– First, we show how to interpret the sequent calculus rules. For Inl(D) and Inr(D),
define

JInl(D)K := JDK; inl
JInr(D)K := JDK; inr

The left case makes sense because JDK : JCK −→ JAK, so post-composing with inl
has the right codomain; the other case is analogous.
For JCase(D1,D2)K, we essentially need to do the proof that left adjoints preserve
coproducts: we have JD1K : Fα A −→ C and JD2K : Fα B −→ C and we want a
map Fα (A+B)−→ C, which we define as follows:

JCase(D1,D2)K := [JD1KBα ,JD2KBα]Cα

– Next, we give the new cases of Lemma 3, where e : α⇒ β and the given derivation
has mode α . For Inl(D), we need to show

Je∗(D)K; inl = Fe;JDK; inl

which is immediate by the IH (and associativity). The Inr(D) case is analogous. For
Case(D1,D2), after expanding the definitions and using the IH, we need to show

[(Fe;JD1K)Bβ ,(Fe;JD2K)Bβ]Cβ = Fe;([JD1KBα ,JD2KBα])Cα

By conjugation, the right-hand side equals

([JD1KBα ,JD2KBα];Ue)
Cβ

and the left-hand side equals

[JD1KBβ ;Ue,JD2KBβ ;Ue]
Cβ

and these are equal by the uniqueness part of the universal property for coproducts.
– Next, we give the new case of Lemma 4: JCase(Inl(identA), Inr(identB))K = F 1.

After expanding the definitions and using the IH, we need to show

[(F 1; inl)B1 ,(F 1; inr)B1]C1

By conjugation for F 1, this is equal to

[inl;U 1−1
, inr;U 1−1

]C1

By uniqueness for coproducts, this is equal to

([inl, inr];U 1−1
)C1

By conjugation for U 1, this is equal to

F 1; [inl, inr]

and by uniqueness for coproducts, [inl, inr] = 1A+B.
– Next, we give the new cases of Lemma 6. There are 5 reductions; we show the
Inl(−) cases of the principal and right-commutative cuts, and the left-commutative
cut case; the Inr(−) cases are analogous.
• For cut (Inl(D)) (Case(E1,E2)) := cut D E1, by the IH we need to show that

F ◦(β ,β ′);Fβ ′ JDK;JE1K=F ◦(β ,β ′);Fβ ′ JDK;Fβ ′ inl; [JE1K
B

β ′ ,JE2K
B

β ′]Cβ ′

By naturality of β ′C, Fβ ′ inl; [JE1K
B

β ′ ,JE2K
B

β ′]Cβ ′ =(inl; [JE1K
B

β ′ ,JE2K
B

β ′])Cβ ′ ,
which by the universal property for coproducts equals (JE1K

B
β ′)Cβ ′ , which

equals JE1K by collapsing inverses.
• For cut D (Inl(E)) := Inl(cut D E), the result is immediate by the IH.
• For cut (Case(D1,D2)) E := Case(cut D1 E,cut D2 E), by the IH we need to

show that

[(F ◦(β ,β ′);Fβ ′ JD1K;JEK)Bβ◦β ′ ,(F ◦(β ,β ′);Fβ ′ JD2K;JEK)Bβ◦β ′]Cβ◦β ′

= F ◦(β ,β ′);Fβ ′ [JD1KBβ ,JD2KBβ]Cβ ;JEK

Conjugating the F ◦(β ,β ′) outside the−Cβ◦β ′ , and then conjugating the result-
ing U ◦(β ,β ′) outside the −Bβ◦β ′ , the left-hand side is equal to

F ◦(β ,β ′);([((Fβ ′ JD1K;JEK)Bβ ′)Bβ ,((Fβ ′ JD2K;JEK)Bβ ′)Bβ]Cβ)Cβ ′

By naturality of the adjunction, this is the same as

F ◦(β ,β ′);([(JD1K;JEKBβ ′)Bβ ,(JD2K;JEKBβ ′)Bβ]Cβ)Cβ ′

and then

F ◦(β ,β ′);([JD1KBβ ;Uβ (JEKBβ ′),JD2KBβ ;Uβ (JEKBβ ′)]Cβ)Cβ ′

By uniqueness for coproducts, this is

F ◦(β ,β ′);(([JD1KBβ ,JD2KBβ];Uβ (JEKBβ ′))Cβ)Cβ ′

By naturality of the adjunction, that is

F ◦(β ,β ′);(([JD1KBβ ,JD2KBβ])Cβ ;(JEKBβ ′))Cβ ′

and then

F ◦(β ,β ′);Fβ ′ (([JD1KBβ ,JD2KBβ])Cβ);(JEKBβ ′)
C

β ′

so collapsing inverses gives the result.

– For D≈ Case(cut (Inl(identA)) D,cut (Inr(identB)) D) (where D : A+B [α] ` C),
we need to show that

[(F ◦(1,α);Fα F 1;Fα inl;JDK)Bα ,(F ◦(1,α);Fα F 1;Fα inr;JDK)Bα]Cα

By coherence, F ◦(1,α) = Fα F 1−1, so this is

[(Fα inl;JDK)Bα ,(Fα inr;JDK)Bα]Cα .

By naturality of the adjunction, this is

[inl;JDKBα , inr;JDKBα]Cα .

which by uniqueness for coproducts is

(JDKBα)Cα .

so collapsing inverses gives the result.
– The rule Inl(ULγ

e(D))≈ULγ
e(Inl(D)) (and the analogous rule for Inr(D)) is immedi-

ate by Lemma 5, because JULγ
e(D)K precomposes JDK with something, and JInl(D)K

postcomposes JDK with inl.

5 Adjoint Triples

In this section, we consider two mode theories for adjoint triples L aM a R. The first
corresponds to a general adjoint triple, while the second adds some additional properties
motivated by the triple ∆ a Γ a ∇ in axiomatic cohesion.

5.1 Walking Adjunction

Our first mode 2-category is the walking adjunction d a n, which is generated by

– objects c and s
– 1-cells d : s≥ c and n : c≥ s
– 2-cells unit : 1c⇒ n◦d and counit : d◦n⇒ 1s satisfying
(1d ◦2 unit) · (counit◦2 1d) = 1 and (unit◦2 1n) · (1n ◦2 counit) = 1.

The 1-cells specify two adjunctions Fd aUd and Fn aUn . However, the functoriality
of F and U on 2-cells also yields adjunctions Fd aFn and Ud aUn . Since a right or left
adjoint of a given functor is unique up to isomorphism, it follows that the two functors
Ud ,Fn : c→ s are isomorphic, resulting in an adjoint triple Fd a (Ud

∼= Fn) a Un .
However, rather than proving Fd a Fn or Ud aUn and then concluding Ud

∼= Fn from
uniqueness of adjoints, we can construct the isomorphism directly:

Lemma 8. Ud A∼= Fn A naturally in A.

Proof. One way to define the maps is to use the constructions of Theorem 1 and
Lemma 1 (the adjunction, the isomorphisms for F/U on 1 and ◦, and the action of
F/U on 2-cells, the comonad structure):

Ud A - F1 Ud A
Fcounit- Fd◦n Ud A - Fn (Fd Ud A) - Fn (A)

For Fn A→Ud A, transpose A - U1 A
Uunit- Un◦d A - Un Ud A

However, we can also write the maps directly as follows:

d : s≥ c counit : d◦n⇒ 1
1 : c≥ c 1 : d⇒ d A [1] ` A

ident

Ud A [d] ` A
UL

Ud A [1] ` Fn A
FR

unit : 1⇒ n◦d A [1] ` A
ident

A [n◦d] ` A
−∗(−)

A [n] ` Ud A
UR

Fn A [1] ` Ud A
FL

In the Agda code, we verify that these are inverse and natural.

We can develop some of the expected properties of an adjoint triple L aM a R, such
as the fact that the “left” comonad LM is itself left adjoint to the “right” monad RM,
and consequently, LM preserves colimits. In this case, we have L = Fd , M =Ud

∼= Fn ,
and R =Un , and we write �d A := Fd Ud A and©n A :=Un Fn A.

Theorem 5 (Properties of an adjoint triple).

1. �d a©n

2. �d (A+B)∼=�d A+�d B

Proof. Using the fact that functors preserve natural isomorphisms, Lemma 8, and prop-
erties of U and F from Theorem 1, we can prove that �d A and©n A are isomorphic to
a single F and U , respectively:

�d A = Fd Ud A∼= Fd Fn A∼= Fn◦d A
©n A =Un Fn A∼=Un Ud A∼=Un◦d A

This implies the above properties because Fn◦d aUn◦d (Theorem 1) and Fn◦d preserves
coproducts (Lemma 1) and these facts respect natural isomorphism.

From a polarity point of view, it is unusual for a comonad FU A to preserve pos-
itives, because the negative connective U interrupts focus/inversion phases. Here, this
behavior is explained by the fact that Fd Ud A is isomorphic to a single positive connec-
tive Fn◦d A. The ambipolar middle connective in an adjoint triple thus emerges from the
presence of two isomorphic connectives, one positive and one negative.

5.2 Walking Reflection

In our motivating example of axiomatic cohesion, the adjoint triple ∆ aΓ a∇ has some
additional properties. We now write [for the comonad ∆Γ and] for the monad ∇Γ . [
takes a cohesive space and “retopologizes” it with the discrete cohesion, while] takes a
cohesive space and retopologizes it with the codiscrete cohesion. Intuitively, retopolo-
gizing twice should be the same as retopologizing once, because each retopologization
forgets the existing cohesive structure; that is, we want [[A ∼= [A and]]A ∼=]A and
[]A∼= [A and][A∼=]A. Moreover, ∆ and ∇ should be full and faithful, because a map
between discrete or codiscrete spaces is exactly a map of sets.

We can capture these properties by considering a different mode 2-category, the
“walking reflection”. This has the same objects and generating morphisms as the walk-
ing adjunction, but we now take d◦n= 1, with the counit being just the identity 2-cell,
and the equations for unit : 1⇒ n◦d simplify to unit◦2 1n = 1 and 1d ◦2 unit= 1. Note
that the only non-identity morphisms of this mode category are d, n, and n◦d.

We write ∆ := Fd , Γ := (Ud
∼= Fn), and ∇ :=Un , so [= �d and] =©n . Since

in particular we still have an adjunction, this mode theory inherits all the theorems from
the previous section; but it also has the following additional properties:

Theorem 6 (Properties of the walking reflection).

1. [[A∼= [A and]]A∼=]A naturally in A.
2.][A∼=]A and []A∼= [A naturally in A.
3. Fd and Un are full and faithful.

Proof. The first two parts say that “retopologizing” twice is the same as the “outer”
retopologization. To prove them, using Theorem 1, the equality of morphisms d◦n= 1
implies that

Fn Fd A∼= Fd◦n A = F1 A∼= A
Ud Un A∼=Ud◦n A =U1 A∼= A

Consequently, by Lemma 8, the other (co)monads besides [and] are trivial:

©d A =Ud Fd A∼= Fn Fd A∼= A
�n A = Fn Un A∼=Ud Un A∼= A

Thus, we have idempotence:

[[A = Fd (Ud Fd (Ud A))∼= Fd Ud A = [A
]]A =Un (Fn Un (Fn A))∼=Un Fn A =]A

and that composing discrete and codiscrete retopologization is the same as the outer
one:

[]A = Fd (Ud Un (Fn A))∼= Fd Fn A∼= Fn◦d A∼= [A
][A =Un (Fn Fd (Ud A))∼=Un Ud A∼=Un◦d A∼=]A

Finally, we check that Fd and Un are full and faithful. This follows by general
category-theoretic arguments from the triviality of ©d and �n (see [15, §IV.3]), but
to avoid needing to prove the Yoneda lemma in our formalization, we give an explicit

argument instead. Consider Fd ; an analogous argument works for Un . We want to show
that the functoriality on derivations Fd (D : A [1] ` B) : Fd A [1] ` Fd A is a bijection.
Above, we showed that Fn is post-inverse to Fd —we have a natural isomorphism i :
Fn Fd A ∼= A. Therefore we can map a derivation D : Fd A [1] ` Fd B to a derivation of
A [1] ` B by

A
i−1
- Fn Fd A

Fn D- Fn Fd B
i- B

By naturality of i, this function is post-inverse to Fd (i.e. (i−1 • (Fn Fd D) • i) ≈ D),
which shows that Fd is faithful. To show that it is full, we need to check the other
composite, which simplifies to checking that for D′ : Fd A [1] ` Fd B,

(Fd Fn D′)•Fd i≈ Fd i•D′

(i.e. that Fd i is a natural isomorphism between the inclusion functor from the full sub-
category whose objects are of the form Fd A, and the functor Fd Fn restricted to this
subcategory). To show this, we prove that Fd i is equal to the Fd A component of the
following natural transformation j, which uses unit : 1⇒ n◦d

Fd Fn A - Fn◦d A
Funit- F1 A - A

The fact that Fd i ≈ jFd A follows from the pseudofunctor associativity/unit coherences
(used to show Fd i≈ (F◦(n,d)•F◦(d,n◦d)) and F◦(d,1) = F1

Fd A) and naturality of the
composition isomorphism (used to show Funit •F◦(d,1)≈F◦(d,n◦d)). Then (Fd Fn D′)•
j ≈ j •D′ is exactly the naturality square for j.

6 Spatial Type Theory

Next, we consider a further refinement of the walking reflection mode theory, and con-
nect it to the rules for spatial type theory used in Shulman [27]. The walking reflection
mode theory allows us to work with cohesive types (which have mode c) and non-
cohesive types (which have mode s). However, because ∆ and ∇ are full and faithful,
it is not strictly necessary to ever work in s itself—we could equivalently work in the
image of ∆ or ∇ in c. If we wish to restrict ourselves to constructions in c, we can
simplify the mode theory to the (strictly) idempotent monad:

– object c
– 1-cell r : c≥ c such that r ◦ r = r, so the only 1-cells are 1 and r
– 2-cell unit : 1⇒ r satisfying t◦2 unit = 1 and unit◦2 r = 1, so the only 2-cells are

11, 1r, and unit.

This mode theory embeds in the walking reflection, with r := n◦d, so we could equiv-
alently work in the c-types above.

For this mode theory, we define [:= Fr and] :=Ur . In the walking reflection, we
defined [:=�d and] :=©n and then proved (in the proof of Theorem 5) that [∼=Fn◦d
and] ∼=Un◦d . Here, we take the other side of this isomorphism as the definition, so we
immediately have [a] and [preserves coproducts by Theorem 1 and Lemma 1, but
we must prove that they are (co)monads. A simple route to this is to prove absorption,
because []A = Fr Ur A which is a monad by Lemma 1, and dually.

Theorem 7 (Idempotence and Absorption). [[A∼= [A and]]A∼=]A and][A∼=]A
and []A∼= [A naturally in A.

Proof. Because r◦ r= r, idempotence is just the composition isomorphisms F◦ and U◦

from Theorem 1. The absorption isomorphisms are constructed directly; see our Agda
formalization.

In the remainder of this section, we explore some alternative proof theories for this
mode theory. If we think of these alternative proof theories as other ways to write deriva-
tions in adjoint logic with the walking idempotent-monad mode theory, then we would
like them to be sound (can be translated into adjoint logic) and complete (adjoint logic
can be translated into them), and for soundness-after-completeness to be the identity up
to ≈. This way, any construction we do in the alternative proof theory could be done in
adjoint logic, and any derivation in adjoint logic an be translated into a derivation in the
alternative proof theory that represents its ≈-equivalence class. We give three alterna-
tive proof theories, two sequent calculi and one natural deduction system, all of which
have these properties. The first specialized calculus eliminates the choices of γ and e in
FL and UR, which simplifies the construction of proofs, and has a simple generalization
to multi-assumption sequents. The second specialized calculus, and an equivalent nat-
ural deduction system, treat positive types more similarly to how they are traditionally
handled in intensional type theory, and corresponds closely to the rules for spatial type
theory used in [27].

6.1 Keep assumptions crisp as long as possible

For this mode theory, there are two 1-cells r and 1, the general sequent calculus rules
allow choices of γ and e in FRγ

e(D) and ULγ
e(D). However, it turns out that we can

without loss of generality always take γ to be r and e to be 1 in these rules, and use only
the following instances of the rules:

P [1] ` P
hyp11 P [r] ` P

hypunit

A [r] ` B
A [] `]B

UR(−)
A [r] ` B
]A [r] ` B

ULr1(−)
A [r] ` B
A [r] ` [B

FRr
1(−)

A [r] ` B
[A [] ` B

FL(−)

A [α] ` B
A [α] ` U1 B

UR(−)
A [α] ` B

U1 A [α] ` B
ULα

1 (−)
A [α] ` B

A [α] ` F1 B
FRα

1 (−)
A [α] ` B

F1 A [α] ` B
FL(−)

Intuitively, we have two kinds of assumptions, which we call cohesive (A[1c]) and
crisp (A[r], r for cRisp). A crisp assumption is the judgemental analogue of [A—i.e.
it means we know A retopologized with the discrete cohesion. The admissible princi-
ple unit∗(identA) : A [r] ` A says that a crisp assumption of A can be used to prove A
itself, so a crisp assumption is stronger than a cohesive one. The [left rule says that
if we know [A either crisply or cohesively, then we know A crisply. The [right rule
says that we can map into [B by mapping into B, as long as the assumption is already
crisp (this constraint prevents using a cohesive variable to map into a discrete type). The

added restriction relative to the general adjoint logic rules is that we can, without loss
of generality, always keep the crispness of A in the premise—there is never any reason
to demote it to a cohesive variable at this time. The] right rule says that if we are map-
ping into the codiscretization of B, then we can make the assumption crisp. The] left
rule says that knowing the codiscretization crisply is the same as knowing A crisply,
because in either case we know A under the discrete retopologization. Here the added
restriction relative to the general adjoint logic rules is that we always assume A crisply
in the premise; we could instead assume it cohesively (take γ = 1), but we can without
loss of generality keep it crisp.

These rules are clearly sound (they are a subset of adjoint logic) and are also com-
plete:

Theorem 8. For all D : A [α] ` B, there is a derivation D′ : A [α] ` B that uses only
the above rules and satisfies D≈ D′.

Proof. For this mode theory, the only mode is c, the only 1-cells are 1 and r, and the
only 2-cells are 11 and 1r and unit. The case for hype is immediate, since the only
2-cells from 1 are 11 and unit, and we have included both of those.

We have included rules for F and U for both 1-cells 1 and r; we discuss why the
rules for] are complete ([and F1 and U1 are analogous). For UR, a general instance
of the rule will have some β in the conclusion, and pass to r ◦β in the premise. But β

must be 1 or r, and in either case the premise is r, so the IH gives the result. For UL, a
general instance will have the form

r ◦ γ ⇒ β A [γ] ` C
Ur A [β] ` C

UL

Here γ can be 1 or r, but in either case β must have been r, because for either value of
γ we have r ◦ γ = r and there is no 2-cell r⇒ 1. Moreover, the only 2-cell r⇒ r is 1, so
the derivation must be of the form

A [γ] ` C
Ur A [r] ` C

UL
γ

1(−)

By the IH we have an equivalent derivation D′ : A [γ] ` C that uses only the restricted
rules. If γ is r, this gives the result. If γ is 1, then we can make a derivation

D′ : A [1] ` C
A [r] ` C

unit∗(−)

Ur A [r] ` C
ULr1(−)

and show using the equational rules that ULγ

1(D
′)≈ULr1(unit∗(D

′)). It remains to show
a lemma that unit∗(D) is closed under the restricted rules, which can be proved by
induction on D. The complete proof of this theorem is about 250 lines of Agda.

For this restricted sequent calculus, there is a natural generalization to a multiple
assumption sequent, where each of the assumptions is either cohesive or crisp. We write
Γ for a context consisting of assumptions A[1] or A[r]. We write Γ ↑crisp for a context

where each cohesive assumption A[1] has been promoted into a crisp assumption A[r],
and each A[r] has been kept the same. We write Γ ↓coh for a context where each cohesive
assumption A[1] has been dropped, and each crisp assumption A[r] has been kept the
same. Then the multi-assumptioned rules are as follows:

P[1] ∈ Γ

Γ ` P
P[r] ∈ Γ

Γ ` P
Γ ↑crisp ` B

Γ `]B
Γ ,A[r] ` B
Γ ,]A[r] ` B

Γ ↓coh ` B
Γ ` [B

Γ ,A[r] ` B
Γ , [A[] ` B

The left rules are just the single-assumption left rules in context. The single-assumption
] right rule promotes the one assumption to crisp; here, we promote all assumptions.
The single-assumption [right rule insists that the one assumption be crisp; here, we
drop all non-crisp assumptions. The rules for [are reminiscent of the �A modality in
Pfenning and Davies [21], with crisp corresponding to the valid judgement, except here
we can apply a left rule to a valid/crisp assumption of �A, because [is an F which is
a positive-to-positive connective. The right rule for] is reminiscent of the right rule for
the proof irrelevance/erasability modality [A] in Pfenning [19, 20], though the left rule
is different.8 Like in Figure 1, the left rule for coproducts would allow elimination on a
coproduct in either mode:

Γ ` A
Γ ` A+B

Γ ` B
Γ ` A+B

Γ ,(A+B)[α],A[α] `C Γ ,(A+B)[α],B[α] `C
Γ ,(A+B)[α] `C

6.2 Restricted Rules for Positives

The treatment of positive types (such as [and +) in sequent calculi is a bit different
than how positives are typically treated in intensional type theory. In sequent calculi,
the goal is generally to have the subformula property, and for the identity and cut rules
to be admissible (if not for the entire logic, then for as large a fragment as possible).
To achieve this, certain left commutative cuts are used as part of the cut admissibility
algorithm, and are therefore definitional equalities; e.g. in defining cut we said

cut (Case(D1,D2)) E = Case(cut D1 E,cut D2 E) if E is not a right rule

However, these left-commutative cuts for positives are not typically taken as defini-
tional equalities in intensional dependent type theories. From a sequent calculus point
of view, a positive type in intensional type theory is treated more like a (positive) base
type/atomic proposition that is equipped with an elimination constant of function type.
For example, for coproducts, the elimination constant is

case : (A→C)→ (B→C)→ ((A+B)→C)

and this is often used via (iterated) implication-left:

Γ ` A→C Γ ` B→C A+B ∈ Γ Γ ,C ` D
Γ ` D

8 The [A] type in that work is a product-preserving functor with no additional properties, so it
cannot be mapped into adjoint logic in a straightforward way, because all of our functors have
more properties.

This builds in a cut from the result type of the case C to the overall goal D, so we do
not need to reduce left-commutative cuts.

In adjoint logic specifically, there is another difference between the left rules for
positives that we have been using and the use of an elimination constant. The adjoint
logic left rules allow eliminating a positive assumption such as (A+B)[α] for any α ,
keeping A[α] and B[α] in the premises. For example, we can eliminate a crisp assump-
tion of A+B, getting crisp assumptions in the premises. As we have seen in Lemma 1,
this allows us to prove that Fα preserves coproducts using only the judgemental struc-
ture of the calculus, without mentioning the right adjoint connective Uα (indeed, we
must be able to do this if the logic is to have the subformula property)—essentially
because some of the proof that F preserves coproducts goes into the semantic interpre-
tation (see Lemma 7). On the other hand, if we instead specify a positive type using the
usual elimination constant in adjoint logic, then it is not automatic that we can elim-
inate on (A+B)[r] preserving the A[r] and B[r] in the premises—using the right rule
for A→C would give an assumption A[1], not A[r]. However, as we will see below, for
coproducts this can be proved using U .

There are reasons to explore a calculus where all positives are treated via the elim-
ination constant approach. First, if we do not include the left-commutative reductions
definitionally, then the syntax can be interpreted in models where they do not hold
strictly (such as ones where positives involve a fibrant replacement). Second, the elimi-
nation constant approach seems necessary for infinite types such as the natural numbers,
to allow strengthening the induction formula (unless one uses an infinitely wide proof
tree with an ω-rule). Moreover, the elimination constant approach seems necessary for
certain higher inductive types, which semantically should not be preserved by [. Thus,
treating all positives with elimination constants is more uniform. (On the other hand,
there are also arguments for having the general left rules as rules for the connectives
where they do make sense, such as finite colimits, since this gives the subformula prop-
erty for as large a sublogic as possible.)

We use the following sequent calculus A [α]
 B to illustrate the idea of specify-
ing all positives by elimination constants. For simplicity, we make all cuts derivable,
and defer to future work an investigation of cut reduction for only principal and right-
commutative cuts (the stuck left-commutative cuts prevent using the usual structural
argument [18]). The rules are as follows:

A [r]
 A A [1]
 A
A [β]
 B B [α]
 C

A [β ◦α]
 C

A [r]
 B
A [α]
]B

A [r]
 B
]A [r]
 B

A [r]
 B
A [r]
 [B

A [r]
 C
[A [1]
 C

C [α]
 A
C [α]
 A+B

C [α]
 B
C [α]
 A+B

A [1]
 C B [1]
 C
(A+B) [1]
 C

On the first line, we have identity (for both crisp and cohesive variables) and cut as
derivable rules; the identity rules could be restricted to positives and atoms and made
admissible for negatives in order to force η-expansion. The rules for] and the right

rules for [and + are the same as in Section 6.1. The left rules for positives are restricted
to cohesive variables, and the left rule for coproducts binds cohesive variables in the
branches.

However, in the presence of cut and identity rules, we can derive the more gen-
eral left rules for crisp positive assumptions (A+B)[r] and [A[r]. For [A, this is just
precomposition with using a crisp variable:

[A [r]
 [A
A [r]
 C
[A [1]
 C

[A [r]
 C

The fact that this works is quite specific to this mode theory, where forgetting the r-
ness of the assumption and then reintroducing it arrives at the same place, because of
idempotence. For A+B, we need to use] on the right to derive the more general rule:

A [r]
 C
A [1]
]C

B [r]
 C
B [1]
]C

(A+B) [1]
]C
C [r]
 C
]C [r]
 C

(A+B) [r]
 C

(A similar move is necessary to prove crisp [-induction from [-induction—that is, in
a dependently typed theory where C itself might depend either crisply or cohesively
on [A—even though it was not necessary to get crisp [-recursion from [-recursion.)
Observe that, if we were to apply a left-commutative cut reduction to this derivation, it
would reduce to an instance of the (A+B) [r] ` C left-rule (crisp coproduct elimination).

This sequent calculus is sound and complete for the original one:9

Theorem 9. There are functions (A [α] ` B)↔ (A [α]
 B) and the composite from
A [α] ` B to itself is the identity up to ≈.

Proof. The proof is about 150 lines of Agda.

6.3 Natural deduction

Finally, to connect to the rules used in [27], we convert the previous sequent calculus to
a natural deduction system:

A [r] `nd A A [1] `nd A

A [r] `nd B

A [α] `nd]B

C [r] `nd]A

C [r] `nd A

C [r] `nd A

C [r] `nd [A

C [α] `nd [A A [r] `nd B

C [α] `nd B

C [α] `nd A

C [α] `nd A+B

C [α] `nd B

C [α] `nd A+B

C [α] `nd A+B A [1] `nd D A [1] `nd D

C [α] `nd D

9 removing F1 and U1 from the original calculus or adding rules for them here

The cut/substitution rule
A [β] `nd B B [α] `nd C

A [β ◦α] `nd C

is not included, but it is admissible, because each rule allows for precomposition.
This natural deduction system is also sound and complete for adjoint logic with this

mode theory, and the the proof factors through the above sequent calculus:

Theorem 10. There are functions (A [α] ` B)↔ (A [α]
 B)↔ (A [α] `nd B) and
back, and the composite from A [α] ` B to itself is the identity up to ≈.

Proof. The proof is about 150 lines of Agda.

We can generalize these natural deduction rules to multiple assumptions as follows,
writing ∆ for the crisp assumptions A[r] and Γ for the cohesive assumptions A[1]:

A ∈ Γ

∆ ;Γ ` A
A ∈ ∆

∆ ;Γ ` A

∆ ,Γ ; · ` B
∆ ;Γ `]B

∆ ; · `]A
∆ ;Γ ` A

∆ ; · ` A
∆ ;Γ ` [A

∆ ;Γ ` [A ∆ ,A;Γ ` B
∆ ;Γ ` B

∆ ;Γ ` A
∆ ;Γ ` A+B

∆ ;Γ ` B
∆ ;Γ ` A+B

∆ ;Γ ` A+B ∆ ;Γ ,A `C ∆ ;Γ ,B `C
∆ ;Γ `C

These rules, generalized to dependent types, are exactly the rules used in an investiga-
tion of cohesive type theory in Shulman [27]. Here, we have given a proof theoretic
explanation for them, by connecting them to a particular mode theory in adjoint logic.
A next step for future work is to analyze the normal forms of the β -only equational
theory for positives (avoiding the left-commutative equations that are obtained by the
translation to adjoint logic). It is unclear whether structural cut elimination/hereditary
substitution [30] can be used to do this, because the unreduced left-commutative cuts
break the subformula property; however, it should be possible to prove normalization
using a logical relations argument (an equality algorithm for positives with only β -rules
was considered in Licata and Harper [11]).

7 Conclusion

In this paper, we have defined an adjoint logic that allows multiple different adjunctions
between the same categories, shown soundness and completeness of the logic in pseudo-
functors into the 2-category of adjunctions, and used some specific mode theories to
model adjoint triples and the [and] modalities of axiomatic cohesion. While we have
considered only a single-hypothesis sequent through most of the paper, we discussed
a generalization to multiple hypotheses for the specific mode theory in Sections 6, and
the generalization of these rules to dependent types is discussed in Shulman [27]. One
area for future work is to extend the general adjoint logic with multiple assumptions and
dependent types. This would provide a context for investigating the shape modality S a

[. Using the present theory, we could certainly give a mode theory with one mode and
Sa [a] , or with two modes and Sa∆ aΓ a∇, but it remains to be investigated whether
this can provide the right properties for S beyond adjointness. On the one hand, too much
might be true: S does not preserve identity types, but the general dependently typed rules
for F might force it to do so. On the other, too little might be true: for applications such
as relating the shape of the topological circle to the homotopical circle, extra properties
are needed, such as SR∼= 1. Both of these issues can be addressed as in [27] by treating
S not as an abstract adjoint, of the kind we can represent using the mode 2-category,
but as a defined type (specifically, a higher inductive), which among other things has
the property that it is adjoint to [(adjoint logic / spatial type theory is still essential
for representing [and] themselves). Another area for future work is to consider ∞-
category semantics, rather than the 1-categorical semantics of derivations that we have
considered here. A final area for future work is to investigate applications of other mode
theories in our generalized adjoint logic, beyond the motivating example of cohesive
homotopy type theory.

Acknowledgments We thank Jason Reed for discussions about this work.

Bibliography

[1] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3):297–347, 1992.

[2] N. Benton and P. Wadler. Linear logic, monads and the lambda calculus. In IEEE
Symposium on Logic in Computer Science. IEEE Computer Society Press, 1996.

[3] M. Bezem, T. Coquand, and S. Huber. A model of type theory in cubical sets.
Preprint, September 2013.

[4] E. Cavallo. The mayer-vietoris sequence in HoTT. Talk at Oxford Workshop on
Homotopy Type Theory, November 2014.

[5] K.-B. H. (Favonia). Covering spaces in homotopy type theory. Talk at TYPES,
May 2014.

[6] C. Kapulkin, P. L. Lumsdaine, and V. Voevodsky. The simplicial model of univa-
lent foundations. arXiv:1211.2851, 2012.

[7] W. Lawvere. Axiomatic cohesion. Theory and Applications of Categories, 19(3):
41–49, 2007.

[8] D. R. Licata and G. Brunerie. πn(Sn) in homotopy type theory. In Certified Pro-
grams and Proofs, 2013.

[9] D. R. Licata and G. Brunerie. A cubical approach to synthetic homotopy theory.
In IEEE Symposium on Logic in Computer Science, 2015.

[10] D. R. Licata and E. Finster. Eilenberg-maclane spaces in homotopy type theory.
In IEEE Symposium on Logic in Computer Science, 2014.

[11] D. R. Licata and R. Harper. A formulation of Dependent ML with explicit equality
proofs. Technical Report CMU-CS-05-178, Department of Computer Science,
Carnegie Mellon University, 2005.

[12] D. R. Licata and M. Shulman. Calculating the fundamental group of the cirlce in
homotopy type theory. In IEEE Symposium on Logic in Computer Science, 2013.

[13] P. L. Lumsdaine. Higher inductive types: a tour of the
menagerie. http://homotopytypetheory.org/2011/04/24/

higher-inductive-types-a-tour-of-the-menagerie/, April 2011.
[14] P. L. Lumsdaine and M. Shulman. Higher inductive types. In preparation, 2015.
[15] S. Mac Lane. Categories For the Working Mathematician, volume 5 of Graduate

Texts in Mathematics. Springer, second edition, 1998.
[16] E. Moggi. Notions of computation and monads. Information And Computation,

93(1), 1991.
[17] U. Norell. Towards a practical programming language based on dependent type

theory. PhD thesis, Chalmers University of Technology, 2007.
[18] F. Pfenning. A structural proof of cut elimination and its representation in a log-

ical framework. Technical Report CMU-CS-94-218, Department of Computer
Science, Carnegie Mellon University, 1994.

[19] F. Pfenning. Intensionality, extensionality, and proof irrelevance in modal type
theory. In IEEE Symposium on Logic in Computer Science, 2001.

[20] F. Pfenning. Proof irrelevance, constructive logic course notes. Avail-
able from https://www.cs.cmu.edu/~fp/courses/15317-f08/lectures/

08-irrelevance.pdf, 2008.

[21] F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Mathe-
matical Structures in Computer Science, 11:511–540, 2001.

[22] J. Reed. A judgemental deconstruction of modal logic. Available from www.cs.

cmu.edu/~jcreed/papers/jdml.pdf, 2009.
[23] U. Schreiber. Differential cohomology in a cohesive ∞-topos. http:

//ncatlab.org/schreiber/show/differential+cohomology+in+a+

cohesive+topos; arXiv:1310.7930, 2013.
[24] U. Schreiber and M. Shulman. Quantum gauge field theory in cohesive homotopy

type theory. In Workshop on Quantum Physics and Logic, 2012.
[25] M. Shulman. Homotopy type theory VI: higher inductive types. http://golem.

ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html,
April 2011.

[26] M. Shulman. Univalence for inverse diagrams, oplax limits, and gluing, and ho-
motopy canonicity. arXiv:1203.3253, 2013.

[27] M. Shulman. Brouwer’s fixed-point theorem in real-cohesive homotopy type the-
ory. In preparation, 2015.

[28] The Univalent Foundations Program, Institute for Advanced Study. Homo-
topy Type Theory: Univalent Foundations Of Mathematics. Available from
homotopytypetheory.org/book, 2013.

[29] V. Voevodsky. A very short note on homotopy λ -calculus. http://www.math.

ias.edu/vladimir/files/2006_09_Hlambda.pdf, September 2006.
[30] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical frame-

work I: Judgments and properties. Technical Report CMU-CS-02-101, Depart-
ment of Computer Science, Carnegie Mellon University, 2002. Revised May 2003.

