
Classification-assisted Query Processing for
Network Telemetry

Gioacchino Tangari
Macquarie University

gioacchino.tangari@mq.edu.au

Marinos Charalambides
George Pavlou

University College London
firstname.lastname@ucl.ac.uk

Clara Grazian
University of New South Wales

c.grazian@unsw.edu.au

Daphne Tuncer
Imperial College London

d.tuncer@imperial.ac.uk

Abstract—Network telemetry systems are responsible for pro-
viding operators with the necessary information to secure and
manage a network. As such, they should be able to respond,
in real-time, to a number of queries on events ranging from
performance impairments to attacks. While existing measure-
ment techniques can swiftly collect all the relevant data from
high-speed traffic streams, significant processing costs are faced
when aggregating and evaluating such data to generate elaborate
query responses. This paper explores the use of machine-learning
approaches for reducing the run-time processing cost of moni-
toring queries. A novel processing workflow is introduced, which
entails classifiers trained over recent traffic, automatically tuned
to match accuracy requirements of query responses, and applied
to sampled subsets of raw measurement data. Experiments with
representative monitoring queries on recent CAIDA traffic traces
demonstrate promising improvements on the query processing
capability, by up to 3x, while maintaining accuracy levels above
98%.

I. INTRODUCTION

Network telemetry is vital for network management and
security. By extracting and processing a wide range of network
metrics it enables relevant knowledge to be generated, which
can be used for various tasks including anomaly detection [28],
root cause analysis [4], and traffic engineering [22]. Modern
network telemetry approaches [32], [13], [18], [16] follow the
principles of software-defined measurements [31], [30], [21].
They provide a high-level interface that hides measurement
details to register monitoring requirements, and automatically
configure measurement operations to satisfy hardware con-
straints. In general, they operate as query processors that
receive declarative monitoring commands or queries, extract
raw measurement data from the traffic streams, and process the
data to identify a variety of network events and report them
in query responses.

Recent research has empowered network telemetry with
the right tools to extract raw measurement data from traffic
streams at line rate. Hashing techniques and sketch-based
approaches [9], [10], [30], [14] have emerged as standard ways
to collect measurement data with a limited computation and
memory footprint. While these advances have contributed to
the development of efficient extraction mechanisms, the task
of processing the collected data remains a costly operation. As
networks move to larger speed and scale, it becomes crucial to
reduce this cost in order to cope with massive traffic volumes
while providing real-time responses to heterogeneous sets of

queries. The efficient processing of measurement data can
enable dynamic resource management applications to operate
on shorter reconfiguration cycles, and it allows for faster
detection of network events – a key requirement to timely
react to security threats.

The main methods proposed in the literature for improving
the data processing efficiency have mostly been focusing on
ad-hoc design optimizations, tailored to specific telemetry
systems [22], [13], [24]. This paper presents a novel approach,
applicable to a wide range of queries, for reducing the cost of
monitoring query processing. In contrast to previous work, our
approach leverages intelligent filtering of the raw measurement
data collected through the monitoring pipeline, as opposed to
system-specific optimizations. We use a methodology based
on machine-learning classification algorithms to infer query
results from small measurement subsets, and take decisions
on the portions of data that can be proactively filtered prior
to the execution of standard data processing operations. In
particular, the proposed approach uses lightweight classifiers
that learn traffic properties based on recent measurements. To
protect query responses from classification errors, the clas-
sifiers are automatically configured to discard decisions with
low confidence levels, according to operators’ requirements on
the query response accuracy.

To demonstrate its capabilities, we integrate our solution to a
state-of-the-art traffic analysis tool based on software packet-
processing [22], [1], and we experiment with representative
query examples. The results, obtained with CAIDA traffic
traces from 2018 [2] and using short 10-seconds training sets,
show that large fractions of the extracted measurement data
– more than 50% and even up to 90% in some cases – can
be filtered out while satisfying accuracy requirements above
98%. This leads to substantial processing cost reductions and
up to 3x improvements of the query processing capability.

II. QUERY-BASED NETWORK TELEMETRY

Network telemetry systems must satisfy two fundamental
requirements: (i) provide a generic, declarative interface,
based on the definition of monitoring queries, and (ii) cope
with the complexity of query processing, from compilation to
the final push of monitoring reports, while satisfying stringent
monitoring accuracy goals.



Query name Description Processing workflow
Heavy hitters [22] A traffic aggregate (srcIP) exceeding volume Khh extract 5-tuple bytes, srcIP

aggregate on srcIP (sum bytes)
evaluate sum > Khh

DDoS attack [30] A host (dstIP) reached by more than Kddos unique
sources

extract 5-tuple srcIP, dstIP
aggregate on dstIP (count distinct srcIPs)
evaluate count > Kddos

Slowloris attack [13] A host (srcIP) opening more than Ksl connections,
with average rate below Bsl

extract 5-tuple bytes, srcIP
aggregate on srcIP (mean bytes, count)
evaluate mean < Bsl & count > Ksl

Bursty source [22] A host (srcIP) generating more than X% bursty con-
nections, i.e., connections with more than Y% packets
coming in bursts

extract 5-tuple, #pkts, #pkts-in-burst, srcIP
aggregate on srcIP (isBursty())
evaluate %(isBursty() == 1) > X%

TABLE I: Representative monitoring queries

A. Monitoring queries

Monitoring queries are declarative commands issued to
identify a variety of events related to the network performance
and security. From a logical perspective, they entail combina-
tions of three building blocks. The first is the match & extract
component, which selects the portion of the network traffic
being in the scope of the query, and extracts raw information
based on packet size, header fields, or timestamp. The second
one, evaluate, corresponds to the set of logical and arithmetic
operations that check extracted information against a set of
conditions (query predicates). The last component, aggregate,
is the state aggregation function (e.g., sum, mean, count,
stddev) applied to monitoring data for evaluation or reporting
purposes. These components can be used to build complex
query-processing workflows, and aggregate-evaluate functions
can be iterated to check different predicates at different levels
of data aggregation.

Table I reports representative monitoring queries that are
used in this paper. Raw measurement data is extracted and
stored for each 5-tuple flow as in [22]. This data is then
periodically processed by aggregate-evaluate functions to pro-
duce query responses, based on a short (milliseconds or tens
of milliseconds) query reporting period. These monitoring
queries are further detailed below.
Heavy hitters (HH). This query returns all hosts (i.e., source IP
addresses) whose generated traffic exceeds a bytes threshold
Khh during the last query reporting interval. The results on
heavy hitters are widely used by network management, e.g.,
for the detection of anomalies, to decide on traffic engineering
configurations, to unveil server load inbalance in data centers.
DDoS attack (DDoS). This query returns DDoS victims [30],
i.e., those hosts (destination IP addresses) that have been con-
tacted by more than Kddos other hosts (source IP addresses).
Slowloris attack (Slowloris). Slowloris belongs to the category
of “slow” denials of service. This attack consists in sending
data over a large number of connections all with a very slow
rate, without hitting the idle connection timeout value on the
server. The query returns Slowloris-attack sources, i.e., those
source IP addresses generating more than Ksl connections, all
with byte rate below Bsl.

Bursty flow source (Bursty) A TCP / UDP flow is bursty if
more than Y% of its packets come in a burst [22], i.e., with
short interarrival times. This query returns bursty flow sources,
i.e., hosts (source IP addresses) for which more than X%
of generated flows are bursty. The information about bursty
flow sources can serve several network management tasks, for
example the analysis of Incast [7] congestion (by correlating
such information with packet loss).

B. The challenge of efficient query processing

With networks evolving to larger scale and higher traffic
speeds, the challenge for telemetry systems is to handle
heterogeneous sets of queries on short timescales (e.g., 10ms
epochs [22]) while facing large numbers of concurrent flows
(1000+ on 10ms intervals [25]) and increasing packet rates
(10Gbps+ on a single processor core in software-packet pro-
cessing platforms [22], [14]). As a result, a vast amount of
information needs to be processed to build query responses,
especially for stateful monitoring [24], [22] (e.g., groupby-
like state aggregation), with significant time and computation
consumed for the aggregate and evaluate execution.

Recent research has investigated how to efficiently match-
on-traffic and extract raw measurement data from a packet
stream at line rate and with reduced memory footprints. To
this end, sketch-based techniques [30], [20], [14], [15], heap-
based solutions (e.g., top-k [19] counting), or simple hash
tables [22], [3] can be adopted. However, it is still unclear
how to curb the cost of query processing when looking at the
aggregation and evaluation of such amounts of measurement
data. Ad-hoc design optimizations have been proposed to
improve efficiency, e.g., [13], [24], [22], but their applicability
is limited to specific systems/implementations or is bound to
the use of programmable hardware-switch architectures.

Generally speaking, different approaches can be explored to
generate query responses at a reduced cost [6]. One possibility
is to reduce the pace at which raw data is processed for re-
porting the query results. However, performing the aggregate-
evaluate operations less frequently leads to increasing accu-
mulation of measurement data over longer periods of time,
which does not result in substantial benefit. In Fig. 1, we test
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Fig. 2: % of raw data retained in query responses

the impact of relaxed query-results reporting on a software
packet-processing pipeline based on Trumpet [1], using a
single CPU core1. As input, we use 10min of CAIDA traffic [2]
and apply the queries of Table I. To quantify the query
processing cost, we analyze how it affects the monitoring
performance in terms of supported traffic rate. As shown in
Fig. 1, increasing the reporting period from 1ms to 10ms
(Trumpet default) and 20ms improves the maximum traffic
rate by approx. 20% and 25%, respectively. Going beyond
20ms, the performance declines as more raw data accumulates
prior to processing – more CPU cycles are consumed by
aggregate-evaluate operations.

An alternative approach is to filter the original (raw) in-
formation sets considered in the evaluate and aggregate steps.
This is promising when only fractions of the raw measurement
data are retained to craft query responses. In fact, this applies
to all queries concerning events such as unusual or suspicious
behaviors or specific traffic patterns [22], [13], [32]. Fig. 2
shows the percentage of raw measurement data being used for
query responses on the same setup of Fig. 1. To make query
results more or less selective with respect to the total extracted
measurement data, we vary the thresholds of Table I2. As
observed, despite differences between queries, large fractions
of raw measurement data (65%+) could always be scrapped
without influencing the query responses, with peaks above

1We use a 3GHz CPU, with 8MB shared L3 cache
2We select 4 threshold configurations between the ranges Khh ∈

[1KB, 100KB], Kddos ∈ [10, 100], Xbursty ∈ [10, 100], Ksl ∈ [5, 50]

90% for the most selective configurations.
As the example shows, there is potential in reducing the

cost of query processing by filtering the raw measurement data
before the aggregate and evaluate steps are executed. However,
to exploit this a few key challenges need to be addressed. First,
a solution is required, applicable to a wide range of monitoring
queries, to accurately predict portions of the query results,
thus enabling intelligent filtering of the raw data. Second, this
should guarantee significant processing cost reductions with
respect to standard aggregate and evaluate operations. Lastly,
the accuracy of query results should not be compromised. We
address these challenges with a novel, classification-assisted,
query processing approach, which is described in the next
Section.

III. CLASSIFICATION-ASSISTED QUERY PROCESSING

To achieve intelligent filtering on the raw measurement data,
we enhance the standard query processing workflow with a
classification functionality, whose goal is to reduce the volume
of data in input to standard aggregate and evaluate steps. The
proposed methodology relies on the ability to derive classifiers
for each query type in order to predict query results from
subsets of the raw measurement data. In particular, classifiers
are constructed by learning traffic properties from recent
measurement results.

The main motivation for exploring a machine-learning ap-
proach is the flexibility towards heterogeneous monitoring
queries and measurement datasets. Existing techniques for
predicting traffic monitoring results generally suffer from
being query-specific. For example, ProgME [31] provides a
method for early Heavy Hitter identification based on testing
of probability ratios, while the work in [17] defines a pre-
diction algorithm, namely Threshold Random Walk, specific
to Port Scan detection. In contrast, off-the-shelf machine
learning classifiers do not require any particular knowledge
on the learning datasets, and can automatically build models
for measurement data following unknown distributions. This
makes them suitable to a wide range of monitoring queries.
Overview The proposed methodology is presented in Fig. 3.
The core of our solution is a set of machine-learning clas-
sifiers, one for each query, which take samples of the raw
measurement data as input and generate predictions on query-
related events. Each classifier uses a small subset of the raw
counters obtained from match & extract operations as features
for the prediction algorithm. For example, for a Heavy Hitters
query, the classifier receives a sample containing the byte
count of few 5-tuple flows with the same srcIP x, and returns
a probabilistic answer to the predicate is x a heavy hitter?.
Classifiers are trained on recent monitoring query results,
i.e., using labelled samples (i.e., for which the ground-truth
label is known) extracted from recent measurement data. The
output of classifiers is the key to exclude portions of the
raw measurement data from standard aggregate and evaluate
processing. For instance, answering predicate is x a heavy
hitter? allows raw counters matching srcIP x to be filtered
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Fig. 3: Classification-assisted query processing

out, and in case of positive output to proactively add x to the
query response.

The design of the classifiers should satisfy two key require-
ments. First, classifiers should be computationally inexpensive,
so that the benefits from raw data filtering are not undermined
by the overhead of run-time classifications. To this end, we
experiment with small-sized samples only and we adopt a
logistic regression model whose run-time execution mainly
consists of a single exp function. Second, query responses
should effectively be protected from the erroneous predictions
a classifier may generate. As such, classifiers are automatically
configured to match user-specified requirements on the query
result accuracy. Based on this configuration, obtained from
an offline validation procedure, part of the classifier output
is automatically rejected when the estimated error risk is not
negligible. More specifically, each classifier output can fall
under three cases: (i) the input sample belongs to a positive
query result (e.g., classifier decision = x is a heavy hitter);
(ii) the sample corresponds to a negative query result (e.g.,
decision = x is not a heavy hitter); (iii) the decision on the
query result cannot be taken with a high level of confidence
(possible error). Only in case (iii) the portions of measurement
data to which the sample pertains are directed to standard
aggregate-evaluate, while in case (i) the predicted result is
directly included in the query response.
Workflow As depicted in Fig 3, our workflow includes
three phases: training phase, where the classification functions
are built, validation phase, where classifiers are configured
to preserve query result accuracy, and run-time classification
phase, where classifiers are run in the wild to take decisions
on incoming traffic. These are detailed below.

A. Training

The training phase is divided in two steps: (i) sampling,
which extracts training information (training sets) from recent
measurement data, and (ii) generation of classification func-
tions using the obtained training sets.
Sampling The training data is drawn from recent sets of raw
measurements, generated over previous query reporting inter-
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vals, that have been processed through standard aggregate-
evaluate operations. Specifically, the training set is created
by sampling recent sets of raw measurements and by adding
to each sample its ground-truth label represented as a binary
indicator, e.g., the sample corresponds to a heavy hitter (label
1) or not (label 0).

To make classifiers more efficient, sampling should ideally
be a query-dependent operation. This is because the size of the
samples and the way they are extracted (e.g., transformation
of the raw measurement set) depend on specific query char-
acteristics, such as its execution workflow or how selective it
is. In this work, we propose two sampling methods that cover
a wide range of queries.

The first method is used when aggregate-evaluate opera-
tions contain a cardinality-based predicate, e.g., for DDoS in
Table I. In this case, a random subset of the raw measurement
sets is selected based on sampling factor k. The extracted
values are then grouped on the aggregate key, e.g., the DstIP
in DDoS detection, and each sample in the training set is a
tuple containing the cardinality of a group and the associated
ground-truth label. The second method covers cases where
query predicates include aggregation functions such as mean,
sum, stddev e.g., for HH in Table I. In this case, the initial set
is first grouped on the aggregate key, e.g., the srcIP for HH.
For each group, K values are then randomly selected.
Classification functions Once formed, the training set is
used to build the classification functions. These are modelled
following the sigmoid function of logistic regression 1

1+e−z ,
where z is a linear function with parameters θ0, θ1, ..., θK and
K is the sample size. Such a model is selected due to its
high interpretability, independence from complex tuning, and
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low computational cost. For each input sample, the trained
model returns: (i) the predicted label lpredicted (1 if the sample
participates to a query-related event, 0 otherwise), and (ii) the
probability estimates p0, p1 associated with each label (with
p0+p1 = 1). Values of p1 (p0 respectively) indicate how likely
a sample is to be labelled as 1 (0 respectively) in the ground-
truth, and are used to quantify the confidence on individual
classification decisions.
Cost of classification While the output of classifiers allows
to reduce the data processing volume, the classifier execution
itself requires some computation. Here, we show that only a
limited execution cost is incurred by the model in use, and that
the benefits acquired from raw data filtering are not voided by
the classifier run-time. To quantify the cost of classifiers, we
measure the CPU usage of individual classification executions.
Results are shown in Fig. 4a in terms of CPU cycles for
different values of the sample size K.

As depicted in the figure, the cost is O(K) for K ≥ 10.
When K ≤ 5, the cost is driven by the computation of the
exp function (only significant operation). Note that 50 cycles
(K ≤ 5), corresponding to approximately 17ns on the server
used1, is no more than 25% of the time consumed for a single
packet at 14.8Mpps (10 Gbps of small packets). However,
classifications do not operate at the packet granularity, but
at the one of query aggregation keys. Assuming query results
at the 5-tuple flow granularity (worst case) and a reporting
period of 10ms, the classifier overhead is 17ns·Nflows

10ms , close
to 0.1% of CPU time for 1000 active flows in the 10ms
intervals [25]. Furthermore, significant overhead reductions
(up to 45%) can be achieved by pre-computing values of
the sigmoid function 1

1+e−z , thus reducing the execution of
the classifier to the update of z plus a small array lookup.
Overall, this results in no more than 1 - 1.5% CPU overhead
when 20 different measurement queries3 are applied to the
totality of traffic. While smaller sample sizes can further
curb the classification overhead, the choice of smaller K can
degrade the classification accuracy. We chose K = 5 for all
experiments in Section IV, which guaranteed reasonable CPU

3This cardinality is in line with the number of different measurement
queries/applications used in [32] (i.e., 17) or [13] (i.e., 11)

overhead and only incurred limited accuracy reductions (less
than 1%) compared to a larger sample size (K = 20).

Note also that no substantial gain can be obtained by choos-
ing a different classification model. As shown in Fig. 4b, the
run-time overhead of logistic-regression classifiers is slightly
less than that of other popular (and simple) models such as
Decision Tree and Naive Bayes. These results are obtained
for K = 5 – additional costs similar to the ones in Fig. 4a
can be also expected for these algorithms in case of larger
sample size K, e.g., due to increasing Decision Tree depth,
or more parameters required by Naive Bayes to estimate the
probability of the sample belonging to a positive query result.

B. Validation

The goal of the validation phase is to refine the trained
classifiers so that accuracy requirements of query responses
can be met. Since the classifications are not error-free by
definition, accepting all lpredicted labels in output would result
to incorrect query results. Intuitively, errors are particularly
likely when the confidence on the classification is low, for
instance when (p0, p1) = (0.55, 0.45).

To correctly tune the classifiers, we need to determine the
right ranges of probability estimates p0, p1 under which the
predicted labels lpredicted can be safely accepted. Specifically,
a probability threshold pthresh should be selected, such that
classification results are accepted only if max(p0, p1) ≥
pthresh. A value pthresh = 0.5 corresponds to accepting all
lpredicted labels. This setup maximizes the filtering, i.e., the
amount of raw data excluded from aggregate-evaluate, but at
the same time it also maximizes the risk of injecting errors in
the query responses.

The tuning is conducted by analyzing the relation between
the accuracy of query responses and the different pthresh
setups. To this end, we use additional sets of labelled samples
(validation sets) whose total volume is below 25% of the
training set 4. Accuracy is quantified using the Precision, i.e.,
the ratio of the monitored query-related events that are true,
and the Recall, i.e., the fraction of detected true events. Fig 5
shows examples of this analysis for the queries in Table I. As
observed, the value of pthresh can have a significant impact on
the query response accuracy, especially on the Recall (many
events missed by the queries). In addition, different queries
follow different trends, which indicates that query-specific
pthresh settings are required.

While several methods can be considered to select the value
of pthresh, the main approaches in the literature [23] [11]
rely on Receiver Operator Curve (ROC) analysis. Specifically,
different values of pthresh determine different operating points
on the ROC, and choosing the optimal pthresh corresponds
to finding a optimal ROC cut-off. A widely-used approach
is to select the cut-off maximizing Youden Index [29], or
equivalently, the highest Sensitivity+Specificity point of the
curve. However, solving such an optimization problem for

4The choice reflects standard machine learning practices, where train-
ing/validation sets are 80/20 splits of total labelled-samples set
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each monitoring query can be daunting. To reduce complexity,
we resort to testing for each classifier a random set of pthresh
values in [0.5, 1.0]. After each test, the obtained Precision and
Recall values (Fig 5) are compared against operator-specified
thresholds. The selected pthresh value is the lowest for which
both Precision and Recall meet the requirements. For example,
in the case of HH query in Fig 5 and for 98% Precision and
Recall requirements, a value pthresh ≈ 0.9 is selected.

C. Run-time classification

Trained and configured classifiers are applied in the wild to
pre-process the raw measurement data extracted for each active
query. The run-time classification starts with the extraction of
small samples of the raw-measurement set, performed through
the same mechanism as the one adopted in the training phase.
Each sample, corresponding to a specific aggregate key (e.g.,
a specific srcIP for HH detection), is then passed as input
feature set to the query’s classifier, which returns a pair
[lpredicted, (p0, p1)]. If max(p0, p1) ≥ pthresh, the result is
accepted, i.e., the predicted query result lpredicted is accepted
and the portion of raw data matching the sample aggregate key
is discarded. Otherwise, the measurement data is redirected to
the aggregate-evaluate functions for standard processing.

IV. EXPERIMENTATION WITH MULTI-GBPS TRAFFIC
ANALYSIS

We experiment with the proposed classification-assisted
approach by applying it on a multi-Gbps traffic analysis tool.
Our study is conducted in three steps. At first, we quantify
the filtering of raw measurement data achieved by classifiers
at run-time. Then, we investigate the resulting cost reductions
in the processing of different monitoring queries. Lastly, we
explore the extent to which the approach can meet stringent
operator requirements on the accuracy of query responses. The
testbed and datasets used for the experiments are described
below.
Testbed We integrate classifiers with a multi-Gbps traffic
inspector based on software packet-processing, which is run-
ning on a single CPU core1. The tool is based on the Trumpet
framework [1], [22] and relies on a hash table, indexed on
the flow 5-tuples, to buffer raw measurements extracted from

the traffic stream. Query responses are periodically generated
based on a fixed reporting interval T = 20ms. During each
interval, measurement data samples (obtained from sampled
flow-entries) are applied to the trained classifiers. If the
classification decision is accepted, the flow-entries matching
the aggregate key of the sample are excluded from further
processing, and the predicted label is kept for the query
response. For the remaining flow-entries, measurements are
instead grouped by aggregate key and checked against the
query predicates, which corresponds to the baseline aggregate-
evaluate workflow.
Datasets and training setup Experiments are performed us-
ing 1 hour of CAIDA traffic from the passive-2018 dataset [2].
Specifically, we rely on 60 different CAIDA pcap traffic traces,
each of 1-minute duration, captured on a high-speed backbone
link – more than one million packets per second – from New
York to Sao Paulo.5

For each experiment, the classifiers are trained for 10
seconds, i.e., using 10 consecutive seconds of CAIDA traffic,
reserving the last 2s for validation. For the four queries
in Table I, the average pthresh values obtained from the
validation are 0.86 (Heavy Hitters), 0.97 (DDoS attack), 0.92
(Slowloris attack) and 0.99 (Bursty Source). The classifiers
are then used to process the following 30 minutes of traffic.
Lastly, the default sampling setup used in the training phase
is k = 10% and K = 5.

A. Measurement data volume

At first, we assess the potential of our classifiers to filter
large data volumes (based on their prediction output) while
generating accurate query responses. To this end, we run
experiments with different pthresh setups and, for each one,
we measure the ratio of filtered measurement data, as well as
the Precision and Recall of final query responses. The results
are depicted in Fig. 6 and show that with a query response
accuracy above 98% (both Precision and Recall), 50%, 55%,
70% and 98% of measurement data can be safely filtered for

5CAIDA traffic traces are widely used to evaluate traffic measurement
approaches, and have been adopted in recent proposals on network telemetry
such as [13] (10 minutes total CAIDA traffic used) and [32] (1 minute total
CAIDA traffic used)
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Slowloris, Heavy Hitters, DDoS, and Bursty Source queries,
respectively. The levels of filtering are significant, despite
using a small 10s training set, but different query behaviors
can be observed. The different behaviors reflect how difficult it
is for classifiers to discriminate between positive and negative
samples, which in turn depends on query configurations and
recent traffic characteristics. Interestingly, the query selectivity
alone cannot explain the different filtering ratios. For example,
Slowloris is the most selective query in Fig. 2 (i.e., only a small
fraction of the measurement data is retained to craft the query
response), however no more than 50% of its measurement data
can be filtered while meeting accuracy requirements.

B. Query processing cost

We now investigate the benefits of the classification-assisted
approach on the query processing cost. Since our implemen-
tation is based on software packet-processing, such cost can
be quantified by measuring the CPU time (tproc) consumed
to craft query responses from the raw measurement data
extracted during each reporting interval. To experiment with
different query workloads, we split the flow-address space and
assign one query to each /12 prefix. In a mixed workload
the query is randomly selected from Table I, while in other
workloads all considered queries are of the same type. For
all experiments performed, the classifiers are configured to
achieve 98% Precision and Recall.

As shown in Fig. 7a, nearly 60% of CPU time is saved
on average for a mixed workload, while the gain obtained for
specific query types is in accordance with the filtering ratios in
Fig. 6, e.g., the processing time for Bursty is reduced by more
than 10x on average, as more than 90% of measurement data
is filtered by classifiers. Reduced processing time can translate
to more query responses handled over a reporting interval. In
particular, assuming a constant time for raw data extraction6,
the guaranteed (minimum) number of simultaneous queries
supported by our implementation is more than 3x higher than
the baseline in mixed workload conditions.

Reduced query processing times can also improve the
traffic speed supported by traffic analysis. To evaluate this,

6In our implementation, this time is dominated by hashing and flow-entry
retrieval executed for each packet, irrespectively of the query workload

we split the experiments in 1 minute chunks, and for each
chunk we measure the maximum traffic rate the monitoring
implementation can cope with, i.e., without dropping packets.
As Fig. 7b shows, the classification-assisted approach can
significantly speed up the monitoring pipeline, with gains in
traffic rate up to 30%. Such gains (e.g., +3 Gbps) are also
significantly higher than the ones operators could obtain (see
Sec.II-B) by fine-tuning the reporting interval (≤ +1.5 Gbps).

C. Query response accuracy

Finally, we evaluate the extent to which the classifiers can
meet stringent requirements on the query response accuracy.
We select a target accuracy of 98% (Precision and Recall) to
be used in the validation phase, and for each 1-minute chunk
we compute the deviation from this threshold. For example, a
+0.01 Recall deviation corresponds to 99% Recall. As shown
in Fig. 8a, our approach satisfies, on average, the desired
accuracy levels, despite some differences between queries.
Interestingly, negative deviations do not exceed −0.02 with the
default training setup, i.e., 10s training set for 30min traffic.
However, different choices on (i) the amount of traffic (in
seconds) used for training (Fig. 8b) and, (ii) the classifier re-
training frequency (Fig. 8c), can have a noticeable impact on
accuracy: up to 4% negative deviations recorded when training
is infrequent, e.g., every hour, or when it relies on very small
datasets, e.g., only 1s of traffic. Overall, the classifier training
phase should be quick and lightweight in terms of dataset
size in order to support the online re-training of classifiers on
recent traffic. More extensive training could require more time
and computation and as such undermine the resource savings
from classifications, and based on Fig. 8b it would also bring
limited accuracy improvements in our experimental settings.

V. LIMITATIONS OF THIS STUDY

Supported query types To be supported by the proposed
workflow, a measurement query should meet two require-
ments. First, each query predicate (i.e., each condition in
the evaluate block) should produce a binary output (e.g., is
srcIP x a heavy hitter (1) or not (0)?), since our solution
relies on binary classifiers. Second, the conditions in the query
predicates should be on raw counts (e.g., number of packets,
flows, bytes) or on aggregate values such as mean or sum.
While most of the monitoring queries considered in recent
work [13] [22] [32] [24] satisfy these two conditions, sev-
eral exceptions exist. Representative examples of unsupported
queries are the Flowlet size histogram query in [24], which
returns the histogram over length of flows, and the Lifetime of
connections query in [32], which reports the duration of TCP
connections. In addition to the above requirements, another
key condition is the existence of labelled data for the query.
In particular, if the training data contains no example of the
query-related event, the query cannot be supported.
Impact of query selectivity By relying on data filtering
to curb the query processing cost, our approach is highly
dependent on the query selectivity levels. To obtain substantial
savings, it requires that only small subsets of the measurement
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Fig. 8: Accuracy deviations from 98% Precision and Recall targets

data are retained to craft query responses, which in turn
depends on the thresholds used in the query predicates. In
particular, as shown in Fig. 2, less selective query configu-
rations would result in smaller amounts of measurement data
that can be safely discarded, i.e., without incurring accuracy
degradation. Hence, this would negatively impact the trade-off
between resource savings and query response accuracy.
Impact of dynamic traffic patterns Experiments on CAIDA
passive traces have shown that classifiers achieve high query
response accuracy using only few seconds traffic as training
data and then running with no further training for several
minutes. However, in real network telemetry systems the
classifiers could be exposed to more variable traffic patterns
compared to the traces we used. This can negatively impact the
query response accuracy if classifiers are not re-trained with
an adaptive re-training period that follows the traffic dynamics.

VI. RELATED WORK

Sampling-based traffic monitoring Sampling techniques are
widely used for measuring and analyzing network traffic with
limited CPU and memory resources. A number of approaches
relies on simple packet-based sampling (e.g., Netflow [8]),
where on average 1 every N (e.g., 100, 1000) packets is
captured and analyzed, to characterize traffic matrices and
the flow size distribution [12] [27]. Other proposals applies
more complex sampling schemes such as flow-based sampling
(where only subsets of the flow space are tracked, e.g., based
on hash ranges [26]) or per-flow packet sampling (where only
a portion of every flow is captured, e.g., [5]).

Our approach also adopts sampling for the run-time traf-
fic monitoring operations. However, while in previous work
the sampling strategy acts on what packet or flow to cap-
ture/record, in our proposal all the raw data needed for
the measurement queries are collected (i.e., from all pack-
ets/flows), and sampling is used when processing such data
to craft query responses. Compared to previous work, the
advantage is that when the extracted data samples are not
highly predictive for the query results (based on machine-
learning classifiers), our workflow can still resort to the
standard processing of the total set of measurement data, i.e.,

with no sampling. This protects the telemetry system from the
loss of monitoring result accuracy that is generally incurred
by sampling-based measurement techniques [26] [27].
Network telemetry systems Several network-telemetry sys-
tems have been recently proposed [13] [24] [32] [22], which
rely on declarative, query-based interfaces to express a range
of different telemetry tasks. To support larger traffic vol-
umes and query workloads, these proposals provide differ-
ent, system-specific, solutions. Sonata [13] splits aggregate-
evaluate load between programmable switches and telemetry
stream collectors at servers. Marple [24] relies on a memory
backend on commodity hardware to facilitate stateful group-
by operations. Trumpet [22] adopts double-buffering of mea-
surement data to interleave the aggregate-evaluate steps on
previous data with match & extract on new traffic. In contrast
with these system optimizations, our proposal consists in a
new query processing workflow that achieves processing cost
reductions through intelligent data filtering.

VII. CONCLUSION

We have investigated a novel approach, applicable to a wide
range of monitoring queries, to reduce the cost of measurement
data processing. This relies on the ability to train lightweight
machine-learning classifiers used to achieve intelligent filter-
ing of data. Experiments conducted on representative query
examples and recent CAIDA traffic traces have shown that
such an approach can effectively reduce processing workloads
while preserving reporting accuracy, even when using no more
than 10s training for 30min traffic. Despite the large volume
of traffic data on which our approach was tested, the use
of a single set of traces still limits our conclusions on the
applicability of the approach under more heterogeneous traffic
conditions. We plan to address this limitation in future work by
experimenting with different sets of real-world traffic traces,
as well as on extensive sets of synthetic traffic patterns. Future
work will also investigate the applicability of the approach to
broader query sets, and it will explore how to dynamically set
the training duration and re-training frequency based on query
and traffic properties (e.g., for different times of the day).
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