
Design Evolution of an Open Source Project Using an
Improved Modularity Metric

Roberto Milev, Steven Muegge, and Michael Weiss
Department of Systems and Computer Engineering

Carleton University
Ottawa, ON K1S 5B6, Canada

rmilev@connect.carleton.ca, smuegge@sce.carleton.ca,
weiss@sce.carleton.ca

Abstract. Modularity of an open source software code base has been associ-
ated with community growth, incentives for voluntary contribution, and a reduc-
tion in free riding. As a theoretical construct, it links open source software to
other domains of research, including organization theory, the economics of in-
dustry structure, and new product development; however, measuring the modu-
larity of an open source software design has proven difficult, especially for large
and complex systems. Building on previous work on Design Structure Matrices
(DSMs), this paper describes two contributions towards a method for examining
the evolving modularity of large-scale software systems: (1) an algorithm and
new modularity metric for comparing code bases of different size; and (2) evo-
lution analysis of Apache Tomcat to illustrate the insights gained from this ap-
proach. Over a ten-year period, the modularity of Tomcat continually increased,
except in three instances: with each major change to the architecture or imple-
mentation, modularity first declined, then increased in the subsequent version to
fully compensate for the decline.

1 Introduction

A growing body of theory and evidence suggests that modularity is of central relevance
to open source software projects and open source communities. O’Reilly [16, 17] ar-
gues that a highly modular “architecture of participation” is required to support the
growth of communities around “systems that are designed for user contribution”. Bald-
win and Clark [2] provide a theoretical argument that a more modular open source
code base will attract more voluntary contributions and have less free riding of non-
contributors than one that is less modular. Other domains, including organization the-
ory [19], and industry structure [4, 14], and product design [24], also hold modularity
as a central construct. It links the microstructure of these different domains, deep “in
the very nature of things” [1, p. 2], in ways that enable theorizing about the fundamen-
tal nature and extent of their interconnectedness [9, 21, 10]. However, measuring the
modularity of a software design has proven difficult in practice, especially for large
and complex systems [13, 15].

In this paper, we describe two contributions towards a method for examining the
evolving modularity of large-scale software systems using Design Structure Matrices
(DSMs) and modularity metrics. First, we extend work by MacCormack et al. [15],

20 Roberto Milev, Steven Muegge, and Michael Weiss

Fernandez [8], and Idicula [12] to develop an algorithm and new modularity metric
for comparing code bases of different size. Second, we illustrate the application of our
approach with a case study examining the evolution of Apache Tomcat from version
3.0 (released 1999) to version 6.016 (released 2008).

The body of this paper consists of seven remaining sections. Section 2 reviews the
salient literature on modularity, DSMs, and the modularity of open source software
projects. Section 3 describes a method for evolution analysis. Section 4 develops algo-
rithms and modularity metrics. Section 5 examines the evolving modularity of Apache
Tomcat. Section 6 discusses the findings. Section 7 concludes.

2 Background

This section reviews salient research on modularity, design structure matrices, and
recent studies on the modularity of open source software platforms. Our conceptual
framework closely follows that of Baldwin and Clark’s design rule theory [1], which
builds on well-established ideas in engineering design [21, 22, 6, 7], software engi-
neering [18], and complex adaptive systems [11]. Baldwin and Clark’s groundbreaking
work examined the role of modularity in the evolution of the computer industry, and
has since been applied to software systems, e.g. [2, 13, 15].

2.1 Modularity and software design

The design structure of an artifact is a list of all design parameters and the physi-
cal and logical interdependencies between them [1, pp. 21 and 25]. A module is a
unit whose structural elements are strongly connected among each other and relatively
weakly connected to elements in other units [1, p. 63]. Just as there are degrees of
connectedness, there are degrees of modularity, thus motivating interest in metrics and
techniques to measure the modularity of the structures comprising an artifact.

When the complexity of one of the elements crosses a certain threshold, that com-
plexity can be isolated by defining a separate abstraction that has a simple interface.
The abstraction hides the complexity of the element; the interface indicates how the
element interacts with the larger system [1, 18]. Modularity decreases complexity in
several ways. In particular, it allows designers to focus on individual modules rather
than the whole integrated artifact. This radically changes the design process and allows
for work on individual modules to be parallelized.

2.2 Design structure matrices

The Design Structure Matrix (DSM), pioneered by Steward [22] and extended by Ep-
pinger [6, 7], is an analysis tool for mapping complex systems. It provides a compact
representation of a complex system that visualizes the interdependencies between sys-
tem elements [3]. According to Baldwin and Clark [1, p. 43], “it is a powerful ana-
lytic device, because by using it we can see with clarity how the physical and logical

Design Evolution of an Open Source Project Using an Improved Modularity Metric 21

!"#$% &#% $'()(% &)(% *(+)((#% ,-% .,//(.$(*/(##0% $'()(% &)(%

+)&*&$1,/#% ,-% 2,*"3&)1$40% $'"#% 2,$15&$1/+% 1/$()(#$% 1/%

2($)1.#% &/*% $(.'/16"(#% $,% 2(&#")(% $'(% 2,*"3&)1$4% ,-%

$'(%#$)".$")(#%.,27)1#1/+%&/%&)$1-&.$8%

9'(/%$'(%.,273(:1$4%,-%,/(%,-%$'(%(3(2(/$#%.),##(#%

&%.()$&1/% $')(#',3*0% $'&$%.,273(:1$4%.&/%;(% 1#,3&$(*%;4%

*(-1/1/+% &% #(7&)&$(% &;#$)&.$1,/% $'&$% '&#% &% #1273(%

!"#$%&'($8% <'(% &;#$)&.$1,/% '1*(#% $'(% .,273(:1$4% ,-% $'(%

(3(2(/$=% $'(% 1/$()-&.(% 1/*1.&$(#% ',>% $'(% (3(2(/$%

1/$()&.$#%>1$'%$'(%3&)+()%#4#$(2%?@0%ABC8%

D,*"3&)1$4% *(.)(&#(#% .,273(:1$4% 1/% #(5()&3% >&4#8%%

E/%7&)$1."3&)0%1$%&33,>#%*(#1+/()#%$,%-,."#%,/%1/*151*"&3%

2,*"3(#%)&$'()% $'&/% $'(%>',3(%1/$(+)&$(*%&)$1-&.$8%<'1#%

)&*1.&334% .'&/+(#% $'(% *(#1+/% 7),.(##% &/*% &33,>#% -,)%

>,)F%,/%1/*151*"&3%2,*"3(#%$,%;(%7&)&33(31G(*8%

%

!"!"#$%&'()#&*+,-*,+%#./*+'-%&#
<'(%)$*!+",-#%.(#.%$,/'#%!0% HIJDK0%71,/(()(*%;4%

J$(>&)*% ?@LC% &/*% (:$(/*(*% ;4% M771/+()% ?N0% LC0% 1#% &/%

&/&34#1#%$,,3%-,)%2&771/+%.,273(:%#4#$(2#8%%E$%7),51*(#%

&% #1273(% &/*% .,27&.$%)(7)(#(/$&$1,/% ,-% &% .,273(:%

#4#$(2%;4%)(7)(#(/$1/+% $'(% 1/$()*(7(/*(/.1(#% ;($>((/%

$'(%#4#$(2%(3(2(/$#%1/%&%51#"&3%-,)2%?OC8%%P..,)*1/+%$,%

Q&3*>1/%&/*%R3&)F%?@0%78%OSC0%TE$%1#%&%7,>()-"3%&/&34$1.%

*(51.(%;(.&"#(%;4%"#1/+%1$%>(%.&/%#((%1!#2,(3'%!#4,',>%

$'(% 7'4#1.&3% &/*% 3,+1.&3% #$)".$")(% ,-% &/% &)$1-&.$% +($#%

$)&/#21$$(*%$,%1$#%*(#1+/%7),.(##0%&/*%-),2%$'()(%$,%$'(%

,)+&/1G&$1,/%,-% 1/*151*"&3#%>',%>133% .&))4% $'(%7),.(##%

-,)>&)*8T%%%

P% IJD% 1#% &% #6"&)(% 2&$)1:% >1$'% ,--U*1&+,/&3% .(33#%

1/*1.&$1/+% *(7(/*(/.1(#% ;($>((/% $'(% #4#$(2%(3(2(/$#8%

P% 5&3"(% 1/%5!6% H$'(% .(33% &$%),>% !% &/*% .,3"2/% 6K%2(&/#%

$'&$% $'(%(3(2(/$%&$%7,#1$1,/%!%*(7(/*#% 1/%#,2(%>&4%,/%

$'(%(3(2(/$%&$%7,#1$1,/%68%%%V")%&/&34#1#%(273,4#%7!"'%4%

IJD#% $'&$% 1/*1.&$(% ,/34% $'(%7)(#(/.(%,)% &;#(/.(%,-%&%

(7(/(/.4% H&/% TWT% ,)% &% ;3&/F% .(330%)(#7(.$15(34K8%%

V$'()% IJD% .,/-1+")&$1,/#% &)(% 7,##1;3(% ?OC8%%

P3$()/&$15(340% .(33#% .,"3*% .,/$&1/% /"2()1.% 5&3"(#%>1$'%

1/-,)2&$1,/% &;,"$% $'(% #$)(/+$'% ,-% *(7(/*(/.1(#0% &/*%

2&1/%*1&+,/&3%.(33#%.,"3*%&3#,%.,/$&1/%1/-,)2&$1,/8%

X1+")(% A% #',>#% &% #1273(% #4#$(2% ,-% -,")% (3(2(/$#0%

3&;(3(*%P0%Q0%R0%&/*%I8%%P)),>#%1/*1.&$(%&%*(7(/*(/.4%

)(3&$1,/#'178% % M3(2(/$#% P0% R% &/*% I% &33% *(7(/*% ,/%

(3(2(/$%Q8%M3(2(/$%R%&3#,%*(7(/*#%,/%(3(2(/$%P0%&/*%

(3(2(/$% P% &3#,% *(7(/*#% ,/% (3(2(/$% I8%%

X1+")(% @% 1#% $'(% IJD% $'&$% *(#.)1;(#% $'(% *(7(/*(/.1(#%

;($>((/% $'(% (3(2(/$#% ,-% $'(% #4#$(2% 1/% X1+")(% A8% <'(%

IJD% #',>#%>'($'()% ,)% /,$% $'(%),>% (3(2(/$% *(7(/*#%

,/% $'(% .,3"2/% (3(2(/$8% <'(%IJD% 1#% /,$% #422($)1.&3%

;(.&"#(%$'(%*(7(/*(/.4%)(3&$1,/#'17%1#%/,$%#422($)1.&3%

H1-%(3(2(/$%P%*(7(/*#%,/%(3(2(/$%Q% 1$%*,(#%/,$%12734%

$'&$%(3(2(/$%Q%&3#,%*(7(/*#%,/%(3(2(/$%PK8%

! "

$

%&'&(%)*+(

%&'&(%)*+(%&'&(%)*+(%&'&(%)*+(%&'&(%)*+(

%
%

!"#$%&'()'*+,-./&'0102&-'3"24'5&.&65&67"&0'

%

% P% Q% R% I%

P% 8% W% % W%

Q% % 8% % %

R% W% W% 8% %

I% % W% % 8%

'

!"#$%&'8)'9:;'%&.%&0&62"6#'24&'&+,-./&'0102&-'

%

X,)%$'(%#,-$>&)(%#4#$(2#%(:&21/(*%'()(0%,")%*(#1+/%

(3(2(/$#% &)(% 8'9', (3'**$*, &/*% ,")% *(7(/*(/.1(#% &)(%

%$&$%$"($*% ;($>((/% .3&##(#8% % D,)(% -,)2&3340% .3&##% :%

(7(/#%,/%.3&##%;%1-%&/4%,-%$'(#(%.,/*1$1,/#%&)(%2($Y%%

!"R3&##%:%1/'()1$#%-),2%H(:$(/*#K%.3&##%;8%

!"R3&##%:%'&#%&%*(.3&)(*%-1(3*%,-%$47(%;8%

!"P%2($',*% -),2%.3&##%:%2&F(#% &% .&33% $,%&%2($',*%

-),2%.3&##%;8%%%

9(% (:$)&.$% $'1#% 1/-,)2&$1,/% &"$,2&$1.&334% -),2% $'(%

.,*(;&#(%"#1/+%&%2($',*%*(#.)1;(*%1/%#(.$1,/%S8,

<3.*#$%!"+,)(,)+&/1G(#% $'(% IJD% (3(2(/$#% $,%2,)(%

.3(&)34%51#"&31G(%&/*%&/&34G(%*(7(/*(/.4%)(3&$1,/#'17#8%%

<'(% &"$,2&$(*% .3"#$()1/+% &3+,)1$'2#% (273,4(*% 1/% $'1#%

#$"*4%&)(%*(#.)1;(*%1/%#(.$1,/%Z%%

%

!"0"#123,4/+'*5#/)3#26%)#&2,+-%#&27*8/+%#
Q&3*>1/%&/*%R3&)F%?S0%78%AAANC%&)+"(%,/%$'(,)($1.&3%

+),"/*#%$'&$%$'(%&).'1$(.$")(%,-%&%.,*(;&#(%1#%&%.)1$1.&3%

-&.$,)% $'&$% 31(#% &$% $'(% '(&)$% ,-% $'(% ,7(/% #,").(%

*(5(3,72(/$%7),.(##8%%I)&>1/+%,/%I(#1+/%["3(%<'(,)4%

?@C0% $'(4%&)+"(% $'&$%*(#1+/#%'&5(%,7$1,/U5&3"(%;(.&"#(%

&%/(>%*(#1+/%.)(&$(#%$'(%)1+'$%;"$%/,$%$'(%,;31+&$1,/%$,%

&*,7$%1$8%%P%2,*"3&)%*(#1+/%&33,>#%-,)%(:7()12(/$&$1,/%

&/*% .'&/+(#% >1$'1/% 2,*"3(#% >1$',"$% *1#$");1/+% $'(%

-"/.$1,/&31$4% ,-% $'(% >',3(% #4#$(28% % <'(% &"$',)#% "#(%

+&2(% $'(,)4% $,% #',>% $'&$% 1/.)(&#(*% 2,*"3&)1$4% H&/*%

$'"#% 1/.)(&#(*% ,7$1,/% 5&3"(K% '&#% $>,% (--(.$#% ,/% $'(%

(5(3,72(/$% 7),.(##8% X1)#$0% 1$% 1/.)(&#(#% $'(% !"($"#!9$%

,-% *(5(3,7()#% $,% +($% 1/5,35(*% &/*%)(2&1/% 1/5,35(*% 1/%

Fig. 1a. Example system with
dependencies

!"#$% &#% $'()(% &)(% *(+)((#% ,-% .,//(.$(*/(##0% $'()(% &)(%

+)&*&$1,/#% ,-% 2,*"3&)1$40% $'"#% 2,$15&$1/+% 1/$()(#$% 1/%

2($)1.#% &/*% $(.'/16"(#% $,% 2(&#")(% $'(% 2,*"3&)1$4% ,-%

$'(%#$)".$")(#%.,27)1#1/+%&/%&)$1-&.$8%

9'(/%$'(%.,273(:1$4%,-%,/(%,-%$'(%(3(2(/$#%.),##(#%

&%.()$&1/% $')(#',3*0% $'&$%.,273(:1$4%.&/%;(% 1#,3&$(*%;4%

*(-1/1/+% &% #(7&)&$(% &;#$)&.$1,/% $'&$% '&#% &% #1273(%

!"#$%&'($8% <'(% &;#$)&.$1,/% '1*(#% $'(% .,273(:1$4% ,-% $'(%

(3(2(/$=% $'(% 1/$()-&.(% 1/*1.&$(#% ',>% $'(% (3(2(/$%

1/$()&.$#%>1$'%$'(%3&)+()%#4#$(2%?@0%ABC8%

D,*"3&)1$4% *(.)(&#(#% .,273(:1$4% 1/% #(5()&3% >&4#8%%

E/%7&)$1."3&)0%1$%&33,>#%*(#1+/()#%$,%-,."#%,/%1/*151*"&3%

2,*"3(#%)&$'()% $'&/% $'(%>',3(%1/$(+)&$(*%&)$1-&.$8%<'1#%

)&*1.&334% .'&/+(#% $'(% *(#1+/% 7),.(##% &/*% &33,>#% -,)%

>,)F%,/%1/*151*"&3%2,*"3(#%$,%;(%7&)&33(31G(*8%

%

!"!"#$%&'()#&*+,-*,+%#./*+'-%&#
<'(%)$*!+",-#%.(#.%$,/'#%!0% HIJDK0%71,/(()(*%;4%

J$(>&)*% ?@LC% &/*% (:$(/*(*% ;4% M771/+()% ?N0% LC0% 1#% &/%

&/&34#1#%$,,3%-,)%2&771/+%.,273(:%#4#$(2#8%%E$%7),51*(#%

&% #1273(% &/*% .,27&.$%)(7)(#(/$&$1,/% ,-% &% .,273(:%

#4#$(2%;4%)(7)(#(/$1/+% $'(% 1/$()*(7(/*(/.1(#% ;($>((/%

$'(%#4#$(2%(3(2(/$#%1/%&%51#"&3%-,)2%?OC8%%P..,)*1/+%$,%

Q&3*>1/%&/*%R3&)F%?@0%78%OSC0%TE$%1#%&%7,>()-"3%&/&34$1.%

*(51.(%;(.&"#(%;4%"#1/+%1$%>(%.&/%#((%1!#2,(3'%!#4,',>%

$'(% 7'4#1.&3% &/*% 3,+1.&3% #$)".$")(% ,-% &/% &)$1-&.$% +($#%

$)&/#21$$(*%$,%1$#%*(#1+/%7),.(##0%&/*%-),2%$'()(%$,%$'(%

,)+&/1G&$1,/%,-% 1/*151*"&3#%>',%>133% .&))4% $'(%7),.(##%

-,)>&)*8T%%%

P% IJD% 1#% &% #6"&)(% 2&$)1:% >1$'% ,--U*1&+,/&3% .(33#%

1/*1.&$1/+% *(7(/*(/.1(#% ;($>((/% $'(% #4#$(2%(3(2(/$#8%

P% 5&3"(% 1/%5!6% H$'(% .(33% &$%),>% !% &/*% .,3"2/% 6K%2(&/#%

$'&$% $'(%(3(2(/$%&$%7,#1$1,/%!%*(7(/*#% 1/%#,2(%>&4%,/%

$'(%(3(2(/$%&$%7,#1$1,/%68%%%V")%&/&34#1#%(273,4#%7!"'%4%

IJD#% $'&$% 1/*1.&$(% ,/34% $'(%7)(#(/.(%,)% &;#(/.(%,-%&%

(7(/(/.4% H&/% TWT% ,)% &% ;3&/F% .(330%)(#7(.$15(34K8%%

V$'()% IJD% .,/-1+")&$1,/#% &)(% 7,##1;3(% ?OC8%%

P3$()/&$15(340% .(33#% .,"3*% .,/$&1/% /"2()1.% 5&3"(#%>1$'%

1/-,)2&$1,/% &;,"$% $'(% #$)(/+$'% ,-% *(7(/*(/.1(#0% &/*%

2&1/%*1&+,/&3%.(33#%.,"3*%&3#,%.,/$&1/%1/-,)2&$1,/8%

X1+")(% A% #',>#% &% #1273(% #4#$(2% ,-% -,")% (3(2(/$#0%

3&;(3(*%P0%Q0%R0%&/*%I8%%P)),>#%1/*1.&$(%&%*(7(/*(/.4%

)(3&$1,/#'178% % M3(2(/$#% P0% R% &/*% I% &33% *(7(/*% ,/%

(3(2(/$%Q8%M3(2(/$%R%&3#,%*(7(/*#%,/%(3(2(/$%P0%&/*%

(3(2(/$% P% &3#,% *(7(/*#% ,/% (3(2(/$% I8%%

X1+")(% @% 1#% $'(% IJD% $'&$% *(#.)1;(#% $'(% *(7(/*(/.1(#%

;($>((/% $'(% (3(2(/$#% ,-% $'(% #4#$(2% 1/% X1+")(% A8% <'(%

IJD% #',>#%>'($'()% ,)% /,$% $'(%),>% (3(2(/$% *(7(/*#%

,/% $'(% .,3"2/% (3(2(/$8% <'(%IJD% 1#% /,$% #422($)1.&3%

;(.&"#(%$'(%*(7(/*(/.4%)(3&$1,/#'17%1#%/,$%#422($)1.&3%

H1-%(3(2(/$%P%*(7(/*#%,/%(3(2(/$%Q% 1$%*,(#%/,$%12734%

$'&$%(3(2(/$%Q%&3#,%*(7(/*#%,/%(3(2(/$%PK8%

! "

$

%&'&(%)*+(

%&'&(%)*+(%&'&(%)*+(%&'&(%)*+(%&'&(%)*+(

%
%

!"#$%&'()'*+,-./&'0102&-'3"24'5&.&65&67"&0'

%

% P% Q% R% I%

P% 8% W% % W%

Q% % 8% % %

R% W% W% 8% %

I% % W% % 8%

'

!"#$%&'8)'9:;'%&.%&0&62"6#'24&'&+,-./&'0102&-'

%

X,)%$'(%#,-$>&)(%#4#$(2#%(:&21/(*%'()(0%,")%*(#1+/%

(3(2(/$#% &)(% 8'9', (3'**$*, &/*% ,")% *(7(/*(/.1(#% &)(%

%$&$%$"($*% ;($>((/% .3&##(#8% % D,)(% -,)2&3340% .3&##% :%

(7(/#%,/%.3&##%;%1-%&/4%,-%$'(#(%.,/*1$1,/#%&)(%2($Y%%

!"R3&##%:%1/'()1$#%-),2%H(:$(/*#K%.3&##%;8%

!"R3&##%:%'&#%&%*(.3&)(*%-1(3*%,-%$47(%;8%

!"P%2($',*% -),2%.3&##%:%2&F(#% &% .&33% $,%&%2($',*%

-),2%.3&##%;8%%%

9(% (:$)&.$% $'1#% 1/-,)2&$1,/% &"$,2&$1.&334% -),2% $'(%

.,*(;&#(%"#1/+%&%2($',*%*(#.)1;(*%1/%#(.$1,/%S8,

<3.*#$%!"+,)(,)+&/1G(#% $'(% IJD% (3(2(/$#% $,%2,)(%

.3(&)34%51#"&31G(%&/*%&/&34G(%*(7(/*(/.4%)(3&$1,/#'17#8%%

<'(% &"$,2&$(*% .3"#$()1/+% &3+,)1$'2#% (273,4(*% 1/% $'1#%

#$"*4%&)(%*(#.)1;(*%1/%#(.$1,/%Z%%

%

!"0"#123,4/+'*5#/)3#26%)#&2,+-%#&27*8/+%#
Q&3*>1/%&/*%R3&)F%?S0%78%AAANC%&)+"(%,/%$'(,)($1.&3%

+),"/*#%$'&$%$'(%&).'1$(.$")(%,-%&%.,*(;&#(%1#%&%.)1$1.&3%

-&.$,)% $'&$% 31(#% &$% $'(% '(&)$% ,-% $'(% ,7(/% #,").(%

*(5(3,72(/$%7),.(##8%%I)&>1/+%,/%I(#1+/%["3(%<'(,)4%

?@C0% $'(4%&)+"(% $'&$%*(#1+/#%'&5(%,7$1,/U5&3"(%;(.&"#(%

&%/(>%*(#1+/%.)(&$(#%$'(%)1+'$%;"$%/,$%$'(%,;31+&$1,/%$,%

&*,7$%1$8%%P%2,*"3&)%*(#1+/%&33,>#%-,)%(:7()12(/$&$1,/%

&/*% .'&/+(#% >1$'1/% 2,*"3(#% >1$',"$% *1#$");1/+% $'(%

-"/.$1,/&31$4% ,-% $'(% >',3(% #4#$(28% % <'(% &"$',)#% "#(%

+&2(% $'(,)4% $,% #',>% $'&$% 1/.)(&#(*% 2,*"3&)1$4% H&/*%

$'"#% 1/.)(&#(*% ,7$1,/% 5&3"(K% '&#% $>,% (--(.$#% ,/% $'(%

(5(3,72(/$% 7),.(##8% X1)#$0% 1$% 1/.)(&#(#% $'(% !"($"#!9$%

,-% *(5(3,7()#% $,% +($% 1/5,35(*% &/*%)(2&1/% 1/5,35(*% 1/%

Fig. 1b. DSM representing the example
system

structure of an artifact gets transmitted to its design process, and from there to the
organization of individuals who will carry the process forward.”

A DSM is a square matrix with off-diagonal cells indicating dependencies between
the system elements. A value in di j (the cell at row i and column j) means that the
element at position i depends in some way on the element at position j. Our analysis
employs binary DSMs that indicate only the presence or absence of a dependency (an
“X” or a blank cell, respectively). Alternatively, cells could contain numeric values
with information about the strength of dependencies, and main diagonal cells could
also contain information.

Figure 1a shows a simple system of four elements, labeled A to D. Arrows indicate
a dependency relationship. Elements A, C and D all depend on element B. Element C
also depends on element A, and element A also depends on element D. Figure 1b is
the DSM that describes the dependencies between these elements. The DSM shows
whether or not the row element depends on the column element. It is not symmetrical,
because dependencies are not necessarily mutual (if element A depends on element B,
this does not imply that element B also depends on element A).

The software systems examined here are implemented in Java. However, the ap-
proach and metrics proposed here are generally applicable, provided appropriate tools
for extracting dependencies from the code base. The design elements are Java classes
and our dependencies are references between classes. More formally, class A depends
on class B if any of these conditions are met:

• Class A inherits from (extends) class B.
• Class A declares a field of class B.
• A method from class A calls a method in class B.

We extract this information automatically from the code base using a method de-
scribed in section 4. Clustering reorganizes the DSM elements to more clearly vi-
sualize and analyze dependency relationships. The automated clustering algorithms
employed in this study will be described in a separate paper.

22 Roberto Milev, Steven Muegge, and Michael Weiss

2.3 Modularity and open source software

Baldwin and Clark [2] argue on theoretical grounds that the architecture of a code base
is a critical factor that lies at the heart of the open source development process. Draw-
ing on design rule theory [1], they argue that designs have option-value because a new
design creates the right but not the obligation to adopt it. A modular design allows for
experimentation and changes within modules without disturbing the functionality of
the whole system. The authors use game theory to show that increased modularity (and
thus increased option value) increases the incentives of developers to get involved and
remain involved in the development process, and decreases the amount of free riding
in the equilibrium. Both effects promote growth of the developer community, suggest-
ing that modularity of design is critical to the success of an open source development
project.

MacCormack et al. [15] employ DSMs to empirically compare the design struc-
tures of two software products, the Linux kernel and the Mozilla web browser. They
propose a clustering algorithm to measure dependencies that is an important improve-
ment over previous work [8, 12]. By calculating marginal changes in cost rather than
the total cost of the matrix, computation time is significantly reduced. However, the
comparison of the Linux kernel and Mozilla critically depends on selecting versions
of the systems that are comparable in terms of number of source files (elements in the
DSM). One motivation of our work was to remove this restriction, and to allow the
comparison of code bases of different size.

LaMantia et al. [13] build on [15] to examine the evolution over time of two soft-
ware products, the open source Apache Tomcat application server and a closed source
commercial server product (not identified by name). They introduce a coarse metric
that represents the change ratio between the consecutive versions in the product evo-
lution. The authors conclude that DSMs and Design Rule Theory [1] can explain how
real-world modularization activities allow for different rates of evolution to occur in
different modules, and create strategic advantage for a firm.

Looking across the literature on modularity, DSMs, and open source software, we
find cogent arguments that a highly modular design is needed to attract and empower a
community of developers around an open source project; designs that are more modu-
lar generate more opportunities for creating and exchanging work between open source
developers. Additionally, we find a small but growing body of research employing
DSMs, clustering algorithms, and modularity metrics to analyze the design of com-
plex software systems.

3 Method

Our method for examining the evolving modularity of large-scale software systems
implemented in Java builds on the DSM methods and algorithms of MacCormack et
al. [15] and LaMantia et al. [13], but differs from past work in several aspects. As with
[15, 13], we automate dependency extraction from the software code base, employ
design structure matrices for visualization and analysis of dependency information,

Design Evolution of an Open Source Project Using an Improved Modularity Metric 23

and compute cost metrics as measures of modularity. We differ from [15] in our unit
of analysis (Java classes rather than C source files) and from [15, 13] in our use of the
relative clustered cost metric (described in Section 4).

Our design elements are Java classes and our dependencies are references between
classes, whether by inheritance, declared fields, or method calls. Because dependencies
between Java classes can be extracted from the compiled code of a software system,
we need only obtain binary distributions of the selected versions.

The steps of our method are as follows:

1. Select the versions to be analyzed and obtain their binary distributions.
2. For each version, extract the dependency information from the compiled code.
3. Create DSM instances and extract cost metrics.

4 Modularity Metrics

This section describes three algorithms and modularity metrics implemented. Propa-
gation cost (Section 4.1) measures the extent to which a change in one element impacts
other elements. It is a representation of the degree of coupling without consideration of
the proximity between elements. Clustered cost (Section 4.2) is a more sophisticated
metric that assigns different costs to dependencies based on the locations of elements
within clusters. It has an important limitation in that it can only be used to compare
DSMs of similar sizes [15]. Relative clustered cost (Section 4.3) extends the clustered
cost metric to compare DSMs of different sizes. It, therefore, avoids the above limita-
tion of the clustered cost metric. The propagation cost and clustered cost metrics were
previously implemented by MacCormack et al. [15]. The relative clustered cost metric
is a new contribution of this paper.

4.1 Propagation cost

As noted in Section 2.2, each cell of the DSM holds a binary value that indicates the
presence or absence of a dependency. Alternatively, we can think of this as a matrix,
D, of direct dependencies, di j, or dependencies of path length 1:

D1 = DSM =


d11 d12 . . . d1N
d21 d22 . . . d2N
.
dN1 dN2 . . . dNN

 (1)

We can identify indirect dependencies by raising D to successive powers; the re-
sults show the direct and indirect dependencies for successive path lengths:

Di = D×Di−1 if i > 1 (2)

The visibility matrix, V , is the sum of these matrices:

24 Roberto Milev, Steven Muegge, and Michael Weiss

V =
N

∑
i=0

Di =


v11 v12 . . . v1N
v21 v22 . . . v2N
.
vN1 vN2 . . . vNN

 (3)

Following MacCormack [15], we are interested only in the presence or absence
of dependencies. The binary visibility matrix, V ′, offers us computational advan-
tages over the visibility matrix, V . Operations on binary numbers are performed more
quickly than operations on real numbers, permitting faster execution times for com-
puting the successive powers of n for the dependency matrix, D:

V ′ = f (V) =
{

v′i j = 0 if vi j = 0
v′i j = 1 if vi j > 0 (4)

Propagation cost is the sum of all elements of the binary visibility matrix, V ′,
divided by the square of N, the total number of design elements. It indicates the pro-
portion of elements that may be affected on average, either directly or indirectly, when
a change is made to one element in the system.

PropagationCost =

(
N

∑
i=0

N

∑
i=0

v′i j

)
/N2 (5)

4.2 Clustered cost

The propagation cost measure only considers the existence of dependencies, and does
not consider whether the dependencies occur between elements located in the same
or different modules of the system. The clustered cost measure assigns different costs
to dependencies based on the location within clusters of the elements between which
they occur. This requires clustering the DSM nearly into an “idealized modular form”
[15], in which there are no dependencies between clusters.

Idicula [12] described a total coordination cost clustering algorithm that groups
tasks into clusters with minimal interdependencies. The algorithm is noteworthy be-
cause it allows for clustering when the number and the size of the clusters are not
known in advance, and it introduces stochastic clustering. After a random element is
selected, bids to join a cluster are calculated from all existing clusters. Fernandez [8]
and Thebeau [23] each propose further refinements that improve on the basic algorithm
that gives special treatment to vertical buses in the clustering process.

Some elements in software systems contain functions that are commonly used by a
large number of other elements. These vertical buses are excluded from the clustering
process and dependencies to these elements are assigned significantly lower clustered
cost. A bus threshold parameter determines the minimal proportion of elements that
must depend on a particular element for it to be considered a vertical bus. Setting
this parameter too low would select too many classes as vertical buses, leaving no
inter-cluster dependencies for the clustering algorithm to work with. Similarly, setting
this parameter too high would select too few vertical buses. Through a trial-and-error

Design Evolution of an Open Source Project Using an Improved Modularity Metric 25

process, we saw no large variations in clusters for bus threshold values greater 10%.
Thus, we set the bus threshold parameter to 10% like [15].

Cluster membership is determined by a dependency cost measure that assigns a
smaller cost to dependencies between elements within the same cluster than to ele-
ments in different clusters. It also assigns a smaller cost to dependencies on vertical
buses than to dependencies between elements belonging to the same cluster:

DependencyCost(i, j) =

nλ di j if i and j are in the same cluster
Nλ di j if i and j are not in the same cluster
di j if j is a vertical bus

(6)

where n is the size of the smallest cluster containing both i and j, and λ is a user-
defined parameter. There is no “correct” choice for the value of λ , however, the litera-
ture [15] suggests to set λ = 2, as the number of potential interactions among elements
increases as a power law with the number of elements in a cluster.

Aggregation of the dependency costs between all elements in a DSM results in the
clustered cost measure as defined below:

ClusteredCost =
N

∑
i=1

N

∑
j=1

DependencyCost(i, j) (7)

Initially, each element is placed into its own cluster. As with [12, 8, 23], the algo-
rithm selects a random element and accepts bids from other clusters for that element.
If the element joins a cluster, the dependency costs for the elements in both its orig-
inal and new clusters change, thus changing the overall clustered cost of the DSM.
The bid of each cluster represents the decrease in the clustered cost if the element was
to join that cluster. If the highest bid results in a decrease in the clustered cost, the
DSM is rearranged and the element is added to the winning cluster. These steps are
repeated for the next randomly chosen element. The iterative process ends when no
further improvements in the clustered cost can be achieved for a given threshold num-
ber of iterations. Following [15], we set this threshold equal to N. The clustered cost
algorithm is described by the pseudo code in Figure 2.

4.3 Relative clustered cost

The clustered cost measure is useful only when comparing software code bases of the
same size or of similar size. MacCormack et al. [15] use this measure to compare the
modularity of Mozilla with a similarly sized version of Linux. However, the clustered
cost measure cannot be used to compare DSMs of different sizes.

The dependency cost is proportional to the number of dependencies in the DSM,
and its value is always greater than or equal to 1. Because the clustered cost measure is
an aggregate of all the dependency costs, a larger DSM is more likely to have a higher
clustered cost. To develop a relative measure of clustered cost to compare code bases

26 Roberto Milev, Steven Muegge, and Michael Weiss

Input: design structure matrix
Output: clusters
place each element in its own cluster
repeat

select an element i
accept bids for element i from all clusters
determine the highest bid
if bid improves clustered cost then

move element i to the winning cluster
end

until no more improvement to clustered cost

Fig. 2. Clustered cost clustering algorithm

of different sizes, we define a new dependency cost function. We can normalize1 the
dependency cost function by dividing it by N2λ :

RelativeDependencyCost(i, j) = DependencyCost(i, j)/N2λ (8)

The relative dependency cost function is as good a distance measure as the original
dependency cost function because the ratios between costs in each of the three cases are
unchanged. Using the relative dependency cost function in the bidding process results
in the same output. As the clustered cost measure is an aggregate of all dependency
costs, the newly defined dependency cost defines a measure that is relative to the size
of the DSM. We define relative clustered cost as follows:

RelativeClusteredCost =
N

∑
i=1

N

∑
j=1

RelativeDependencyCost(i, j) (9)

Relative clustered cost is not proportional to the size of the DSM, and has values
in the interval between 0 and 1. Regardless of DSM size, it has a minimum value of 0
if the DSM is without any dependencies, and a maximum value of 1 if each element
is in a cluster of its own and all elements are interdependent. Therefore, the relative
clustered cost measure can be used to compare DSMs of different sizes.

5 Evolving Modularity of Apache Tomcat

This section reports our findings from employing the method previously described in
sections 3 and 4 to examine the evolving code base of an open source system.

1 The choice of this factor is informed by the logic that, in the extreme case, where each element
is in a cluster of its own and all elements are interdependent, clustered cost will be N ·Nλ =
N2λ .

Design Evolution of an Open Source Project Using an Improved Modularity Metric 27

Apache Tomcat is an open source application server developed and maintained
by the Apache Foundation (http://apache.org). It is implemented in Java. Fig-
ure 3 provides a simplified view of the Tomcat architecture as having two major and
distinct functional modules: the Tomcat server core (Tomcat-main), and Jasper, a sep-
arate module that processes Java Server Pages (according to the JSP specification).
Tomcat-main and Jasper are linked only through the J2EE API.

!"#$%%&'()*'+,#-)./0#$%)(1/#2+3()*#
!

"#$%! %&'($)*! +&,)+(%!)-+! .$*/$*0%! .+)1! &1,2)3$*0!

(#&! 1&(#)/%4! %).(56+&! ())2%4! 6*/! ')1,-(6($)*62!

620)+$(#1%! /&%'+$7&/! $*! ,+&8$)-%! %&'($)*%! ()! &961$*&!

(#&!&8)28$*0!')/&76%&!).!6!%).(56+&!,+)/-'(:!!!

;,6'#&!")1'6(! $%! 6*!),&*! %)-+'&! <686!6,,2$'6($)*!

%&+8&+! /&8&2),&/! 6*/! 16$*(6$*&/! 73! (#&! ;,6'#&!

=)-*/6($)*! >#((,?@@6,6'#&:)+0A:! =$0-+&! B! ,+)8$/&%! 6!

%$1,2$.$&/! 8$&5!).! (#&!")1'6(! 6+'#$(&'(-+&4! ')*%$%($*0!

).! (5)! 16C)+! 6*/! /$%($*'(! .-*'($)*62! 1)/-2&%?! (#&!

")1'6(! %&+8&+! ')+&! >")1'6(D16$*A4! 6*/! <6%,&+! E! 6!

%&,6+6(&! 1)/-2&! (#6(! ,+)'&%%&%! <686! F&+8&+! G60&%!

>6'')+/$*0! ()! 6! <FG! %,&'$.$'6($)*A:! ")1'6(D16$*! 6*/!

<6%,&+!6+&!')**&'(&/!)*23!(#+)-0#!(#&!<HII!;GJ:!

!

!"##$%&'

!
(
)
*
+
,

-./0(12/(34

!
!

!"#$%&'()'*"+,-"."&/'0"&1'2.'32+45678'5%49"6&46$%&'

!

K8&+! (#&! (&*D3&6+! ,&+$)/! 7&(5&&*! LMMM! 6*/! HNNO4!

(#&+&!5&+&!.)-+!16C)+!+&2&6%&%!).!;,6'#&!")1'6(?!!

!";,6'#&! ")1'6(! B:94! 76%&/!)*! (#&!)+0*62!

$1,2&1&*(6($)*%!).! (#&! F&+82&(! H:H! 6*/! <FG! L:L!

%,&'$.$'6($)*%! /)*6(&/! ()! (#&! ;,6'#&! =)-*/6($)*!

73!F-*!P$'+)%3%(&1%:!

!";,6'#&!")1'6(!Q:94! $1,2&1&*($*0! (#&!F&+82&(!H:B!

6*/! <FG! L:H! %,&'$.$'6($)*%! 6*/! R6(62$*6! E! 6! *&5!

%&+82&(!')*(6$*&+!76%&/!)*!6!/$..&+&*(!6+'#$(&'(-+&!

!";,6'#&!")1'6(!S:94! $1,2&1&*($*0! (#&!F&+82&(!H:Q!

6*/!<FG!H:N!%,&'$.$'6($)*%:!

!";,6'#&! ")1'6(! T:9! >(#&! 26(&%(! 8&+%$)*A4!

$1,2&1&*($*0! (#&! F&+82&(! H:S! 6*/! <FG! H:L!

%,&'$.$'6($)*%:!

"#&+&!5&+&!16*3!1$*)+!8&+%$)*%!5$(#$*!&6'#!16C)+!

+&2&6%&:!!!

"672&! L! /&%'+$7&%! (#&! *$*&! 8&+%$)*%! %&2&'(&/! .)+!

6*623%$%:!!U$*6+3!6*/!%)-+'&!')/&!).!622!;,6'#&!")1'6(!

+&2&6%&%! $%! 686$2672&! .)+! /)5*2)6/! .+)1! (#&! ,+)C&'(!

6+'#$8&%!>#((,?@@6+'#$8&:6,6'#&:)+0@/$%(@()1'6(A:!

35:-&';)'32+456'0&%8"2<8'8&-&46&/'.2%'5<5-=8"8'
!

>&%8"2<'?&-&58&'

/56&'

@&84%",6"2<'

567$ 8+06$
9:::$

-;+$34313(<$%*(0;+$-./0(1$=+,)3.46$

56969$ 8+06$
"777$

-;+$ >34(<$=+,)3.4$.>$-./0(1$5696?$ 341,.@A0+@$
B%C$)A**.,1D$)+,=<+1$,+<.(@34E$ (4@$ F+G$
)+,=+,$0.44+01.,)$>.,$''H$(4@$I+1)0(*+6$

56"6J$ I.=6$
"779$

-;+$ >34(<$=+,)3.4$.>$-./0(1$56"6?$ 341,.@A0+@$
4+F$ >+(1A,+)$ (4@$ /(K.,$ 0;(4E+)$ >.,$
3/*,.=34E$*+,>.,/(40+$(4@$)1(G3<31L6$

5656"$ %*,6$
"77"$

-;+$0A,,+41$*,.@A013.4$,+<+()+$.>$-./0(1$56?$
>343);+@$ 1;+$,+>(01.,34E$+>>.,1$(4@$ 341,.@A0+@$
($ /.,+$ /.@A<(,$ @+)3E4$ GL$ (<<.F34E$ (@@34E$
(4@$,+/.=34E$ /.@A<+)$ 1;(1$ 0.41,.<$ 1;+$
+?+0A13.4$.>$)+,=<+1$,+MA+)1)6$

J676N$ O016$
"77"$

-;+$ >34(<$,+<+()+$.>$ -./0(1$ J6?$ 341,.@A0+@$
1;+$P(1(<34($)+,=<+1$0.41(34+,6$

J6965Q$ R+G6$
"77N$

-;+$<(1+)1$*,.@A013.4$,+<+()+$.>$-./0(1$J696?$
,+>(01.,+@$ J6?$ (4@$ 341,.@A0+@$!ST2G()+@$
(@/343)1,(13.4D$($4+F$P.L.1+$0.44+01.,D$(4@$
($,+F,311+4$!()*+,$!H&$0./*3<+,6$$$$$

U67657$ %AE6$
"77J$

-;+$ >34(<$,+<+()+$.>$-./0(1$U676?$ 341,.@A0+@$
+,>.,/(40+$ 3/,.=+/+41)$ (4@$ ($ 4+F$
)1(4@(<.4+$(**<30(13.4$@+*<.,+,6$

U6U6"N$ %AE6$
"77Q$

-;+$<(1+)1$*,.@A013.4$,+<+()+$.>$-./0(1$U6U6?$
G,.AE;1$ 3/*,.=+/+41)$ 34$ *+,>.,/(40+D$
)1(G3<31LD$(4@$1.1(<$0.)1$.>$.F4+,);3*6$

N6769N$!(46$
"77V$
$

-;+$ <(1+)1$ *,.@A013.4$,+<+()+$.>$ -./0(1$ N6?$
GA3<@)$.4$ 3/*,.=+/+41)$ 34$ U6U$ (4@$
341,.@A0+)$ /+/.,L$ A)(E+$.*13/3W(13.4)D$
(@=(40+@$ 'O$ 0(*(G3<313+)D$ (4@$,+>(01.,+@$
0<A)1+,34E6$

!

=)+! &6'#! 8&+%$)*!).! ")1'6(! $*! "672&! L4! 5&!

&961$*&/! (#&! <6%,&+! 6*/! ")1'6(D16$*! 1)/-2&%!

%&,6+6(&234!6*/!62%)!7)(#!1)/-2&%!')17$*&/:!=)+!&6'#!

6*623%$%4!5&!')1,-(&/!(#&!.)22)5$*0!1&(+$'%?!

!"V-17&+!).!'26%%&%!

!"V-17&+!).!/&,&*/&*'$&%!>*)*DW&+)!XFP!&2&1&*(%A!

!" G+),606($)*!')%(!>/&.$*&/!$*!%&'($)*!S:LA!

!"V-17&+!).!8&+($'62!7-%%&%!>.$9&/!(#+&%#)2/!).!LNYA!

!"V-17&+!).!'2-%(&+%!>,)%(D'2-%(&+$*0!620)+$(#1A!

!"R2-%(&+&/!')%(!>/&.$*&/!$*!%&'($)*!S:HA!

!"Z&26($8&!'2-%(&+&/!')%(!>/&.$*&/!$*!%&'($)*!S:BA!

;%!*)(&/! $*!%&'($)*!S4! (#&!')%(!1&(+$'%!6+&!1&6*$*0.-2!

)*23! $*!')1,6+$*0! (5)!)+!1)+&!8&+%$)*%[! (#&3!,+)8$/&!

)!%0.$'6*(!$*.)+16($)*!$*!$%)26($)*:!

"672&! H! +&,)+(%! *-17&+!).! '26%%&%4! /&,&*/&*'$&%4!

6*/! '2-%(&+%:! ! =$0-+&! Q!)8&+263%! 6! /&%'+$,($)*!).!

6+'#$(&'(-+62! '#6*0&%! 6*/! 6! ,2)(!).! *-17&+!).! '26%%&%!

)*!6!/&8&2),1&*(!($1&2$*&:!!=$0-+&!S!,+)8$/&%!XFP%!).!

;,6'#&! ")1'6(! S:S:HT! 7&.)+&! 6*/! 6.(&+! '2-%(&+$*0:!!

=$0-+&%! TDLL! ,2)(! ,+),606($)*! ')%(! 6*/! +&26($8&!

'2-%(&+&/!')%(!1&(+$'%!.)+!&6'#!8&+%$)*:!

Fig. 3. Simplified view of the Tomcat architecture

Over the ten-year period between 1999 and 2008, four major versions of Apache
Tomcat were released, shown here with the versions of key specifications:

• Apache Tomcat 3.x is based on the original implementations of the Servlet 2.2 and
JSP 1.1 specifications donated by Sun Microsystems.
• Apache Tomcat 4.x implements the Servlet 2.3 and JSP 1.2 specifications and

Catalina, a new servlet container based on a different architecture.
• Apache Tomcat 5.x implements the Servlet 2.4 and JSP 2.0 specifications.
• Apache Tomcat 6.x implements the Servlet 2.5 and JSP 2.1 specifications.

Since support for specific standards specifications is of primary importance to
Tomcat users, major version numbers for Tomcat mirror the versions of the Servlet
and JSP specifications that Tomcat supports. There were many minor versions within
each major release. However, a change in major version numbers does not necessarily
correspond to major changes in the structure of the code base.

Thus, when we selected the versions of Tomcat for our analysis, we identified
significant architectural events in the evolution of the Tomcat code base, such as major
changes to the architecture to improve performance, or the introduction of the Catalina
servlet container. Table 1 describes the nine versions selected for analysis. Binary and
source code of all Apache Tomcat releases is available for download from the project
archives (http://archive.apache.org/dist/tomcat).

For each version, we examined the Tomcat-main and Jasper modules separately,
and in combination. For each analysis, we computed the following metrics:

• Number of classes
• Number of dependencies (non-zero DSM elements)
• Propagation cost (defined in section 4.1)

28 Roberto Milev, Steven Muegge, and Michael Weiss

• Number of vertical busses (fixed threshold of 10%)
• Number of clusters (post-clustering algorithm)
• Clustered cost (defined in section 4.2)
• Relative clustered cost (defined in section 4.3)

As noted in Section 4, the cost metrics are meaningful only in comparing two or more
versions; they provide no significant information in isolation. Table 2 reports the num-
ber of classes, dependencies, and clusters. Figure 4 provides DSMs of Apache Tomcat
5.5.26 before and after clustering. The graphs in Figs. 5a to 5f plot propagation cost
and relative clustered cost metrics for each version.

6 Findings

This section describes the results of our analysis. Summarizing the evolution of Tom-
cat, Table 2 shows that the number of classes has nearly tripled between version 3.0
(353 classes) and 6.0.16 (923 classes). This is clear evidence of the need for modularity
measures that permit comparisons of code bases of different size.

To gain a better understanding of the relationship between the various modular-
ity measures of the Apache Tomcat code base, we computed the correlation between
propagation cost and relative clustered cost, and performed an F-test on the measures.
The correlation coefficient of 0.43 suggests a medium correlation, and the F-test result
of 1.03×10−12 suggests that the samples are similar in variance [5].

Initially, we expected the modularity of Tomcat to increase throughout the evolu-
tion of the product. The rationale for this expectation was that as a system evolves,

Table 1. Tomcat versions selected for analysis
Version Release

date
Description

3.0 Dec. 1999 The initial Apache Tomcat version.
3.1.1 Dec. 2000 Final version of Tomcat 3.1.x introduced WAR support, servlet

reloading and web server connectors for IIS and Netscape.
3.2.4 Nov. 2001 Final version of Tomcat 3.2.x introduced new features and major

changes for improving performance and stability.
3.3.2 Apr. 2002 Latest production release of Tomcat 3.x finished the refactoring ef-

fort, and introduced a more modular design by allowing adding and
removing modules that control the execution of servlet requests.

4.0.6 Oct. 2002 Final release of Tomcat 4.x introduced the Catalina servlet container.
4.1.37 Feb. 2006 Latest production release of Tomcat 4.1.x refactored Tomcat 4.x, and

added new features: JMX, Coyote, and a rewritten JSP compiler.
5.0.30 Aug. 2004 Final release of Tomcat 5.0.x introduced performance improvements

and a new standalone application deplorer.
5.5.26 Aug. 2007 Latest production release of Tomcat 5.5.x brought improvements in

performance, stability, and total cost of ownership.
6.0.16 Jan. 2008 Latest production release of Tomcat 6.x introduced memory usage

optimizations, advanced IO capabilities, and refactored clustering.

Design Evolution of an Open Source Project Using an Improved Modularity Metric 29

Table 2. Basic metrics for the selected Tomcat versions
Combined Jasper Tomcat-main

Version Classes Depends. Buses Classes Depends. Buses Classes Depends. Buses
3.0 353 1110 4 97 453 14 256 655 2
3.1.1 412 1461 5 108 529 17 304 928 4
3.2.4 331 1461 8 115 572 17 216 861 9
3.3.2 444 1901 9 124 594 17 320 1276 9
4.0.6 464 1939 7 146 653 14 318 1286 9
4.1.37 520 2317 4 119 627 10 401 1690 8
5.0.30 651 2916 5 205 1141 11 446 1775 3
5.5.26 771 3318 3 226 1196 10 545 2122 3
6.0.16 923 4007 4 242 1241 8 681 2766 5

Fig. 4. DSMs for Apache Tomcat 5.5.26 before and after clustering

its structure would be continually examined by developers. Specifically, we expected
that architectural improvements would also lead to increased modularity. For example,
when Tomcat 4.x introduced a new implementation of the servlet container based on
a new architecture (Catalina), we expected the new architecture to be more modular
because it was built from the ground up for flexibility and performance.

However, from Figs. 5a and 5b we observe that the propagation costs for Tomcat
3.3.2 and 4.0.6 are 9.6% and 14.6%, respectively, and the relative clustered costs are
0.0031 and 0.0035 (as highlighted by the dashed circles). Both metrics suggest that
version 4.0.6 is actually less modular than version 3.3.2 – the opposite of what we
expected to find. Similarly, from Figs. 5c and 5d, we see a spike in both propagation
cost and relative clustered cost for the Jasper subsystem between versions 4.0.6 and
4.1.37. With the introduction of version 4.1.37, Jasper became less modular.2

2 A third such event occurred with the introduction of version 3.2.4, which decreased modu-
larity from version 3.1.1. However, the interpretation the this event is similar to other two
events.

30 Roberto Milev, Steven Muegge, and Michael Weiss

Fig. 5a. Propagation cost Tomcat-main Fig. 5b. Relative clustered-cost Tomcat-main

Fig. 5c. Propagation cost Jasper Fig. 5d. Relative clustered-cost Jasper

Fig. 5e. Propagation cost combined Fig. 5f. Relative clustered-cost combined

A closer examination of the events (see also Table 1) surrounding these spikes in
propagation cost and relative clustered cost suggests that each decrease in modularity
was precipitated by a major architectural or implementation change. For all other re-
leases, whether major versions or incremental releases, the code became increasingly
more modular. Interestingly, each spike is immediately followed by an increase in
modularity. In fact, in each case, the increase in modularity of the consecutive version
more than compensated for the previous decrease.

Design Evolution of an Open Source Project Using an Improved Modularity Metric 31

Our data is not conclusive on why this pattern occurred, but we cautiously put
forward a plausible, albeit tentative explanation. Once new functionality is initially de-
ployed and working, focus shifts. Developers revisit the design and perform refactoring
and cleanup activities (consisting of changes to the structure, but not to the behavior
of the system). Increased understanding and experience gained through the original
implementation permits developers to more easily restructure the existing code into a
more modular design. The result is a significant increase in modularity that compen-
sates for the original decrease in the previous version.

To capture these observations, we propose three propositions that can guide future
research on the evolution of modularity of (open source) software systems:

Proposition 1. Major architectural and implementation changes cause the modularity
of a software system to decrease at first.

Proposition 2. Major changes are followed by periods of refactoring and cleanup ac-
tivities, which cause the modularity of the software system to increase again.

Proposition 3. The increase in modularity as a result of refactoring and cleanup ac-
tivities more than offsets the decrease in modularity due to a major change.

7 Conclusion

In this paper we examined the evolution of a large open source system, and proposed
an improved modularity metric that allows the comparison of code bases of differ-
ent size. The method makes improvements over existing approaches based on Design
Structure Matrices [15]. It also presents an alternative as well as a complement to other
approaches to measuring evolving software complexity [20].

We provided initial evidence that as a large software system evolves, major ar-
chitectural changes, at first, lead to an increase in modularity, but are followed by
refactorings and cleanup activities which lead to a subsequent increase in modularity.
We formulated propositions around these observations that can guide future research
on the evolution of software system modularity.

References

1. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity. MIT Press, Cam-
bridge (2000)

2. Baldwin, C.Y., Clark, K.B.: The architecture of participation: does code architecture miti-
gate free riding in the open source development model, Management Science, 52(7), 1116–
1127 (2006)

3. Browning, T.R.: Applying the design structure matrix to system decomposition and inte-
gration problems: A review and new directions, IEEE Transactions on Engineering Man-
agement, 48(3), 292–306 (2001)

4. Christensen, C.M., Michael, R., Verlinden, M.: Skate to where the money will be, Harvard
Business Review, November, 72–81 (2001)

32 Roberto Milev, Steven Muegge, and Michael Weiss

5. Cohen, J.: Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erl-
baum, Hillsdale, NJ (1988)

6. Eppinger, S.D.: Model-based approaches to managing concurrent engineering, Journal of
Engineering Design, 2(4), 238–290 (1991)

7. Eppinger, S.D., Whitney, D.E., Smith, R.P., Gebala, D.A.: A model-based method for or-
ganizing tasks in product development, Research in Engineering Design, 6(1), 1-13 (1994)

8. Fernandez, C.I.G.: Integration analysis of product architecture to support effective team
co-location. Master’s thesis, Sloan School of Management, Cambridge (1998)

9. Garud, R., Kumaraswamy, A., Langlois, R.N.: Managing in a Modular Age: Architectures,
Networks, and Organizations, Blackwell Publishing (2002)

10. Henderson, R.M., Clark, K.B.: Architectural innovation: the reconfiguration of existing
product technologies and the failure of established firms, Administrative Science Quarterly,
35, 9-30 (1990)

11. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence (2nd edition). University of
Michigan Press, Ann Arbor (1992)

12. Idicula, J.: Planning for concurrent engineering. Research report, Gintic Institute, Singa-
pore (1995)

13. LaMantia, M.J., Cai, Y., MacCormack, A., Rusnak, J.: Analyzing the evolution of large-
scale software systems using design structure matrices and design rule theory: two ex-
ploratory cases. In: Working IEEE/IFIP Conference on Software Architecture (WICSA
2008), IEEE, Washington, 18–22 (2008)

14. Langlois, R.L., Robertson, P.L.: Networks and innovation in a modular system: lessons
from the microcomputer and stereo components industries, Research Policy, 21, 297–313
(1992)

15. MacCormack, A., Rusnak, J., Baldwin, C.Y.: Exploring the structure of complex software
designs: an empirical study of open source and proprietary code, Management Science,
52(7), 1015–1030 (2006)

16. O’Reilly, T.: The Open Source Paradigm Shift. In: DiBona, C., Stone, M., Cooper, D.:
Open Sources 2.0: The Continuing Evolution, 253–272 (2005)

17. O’Reilly, T.: What is Web 2.0: Design Patterns and Business Models for the
Next Generation of Software, http://www.oreillynet.com/pub/a/oreilly/
tim/news/2005/09/30/what-is-web-20.html (2005)

18. Parnas, D.L.: On the criteria To be used in decomposing systems into modules, Communi-
cations of the ACM, 15, 1053–1058 (1972)

19. Sanchez, R., Mahoney, J.T.: Modularity, flexibility, and knowledge management in product
and organization design, Strategic Management Journal, 17, 63–76 (1996)

20. Sangwan, R.: Structural epochs in the complexity of software over time, IEEE Computer,
July, 66–73 (2008)

21. Simon, H.A.: The Sciences of the Artificial (3rd edition). MIT Press, Cambridge (1996)
22. Steward, D.V.: The design structure system – a method for managing the design of complex

systems, IEEE Transactions on Engineering Management, 28(3), 71–74 (1981)
23. Thebeau, R.E.: Knowledge management of system interfaces and interactions for product

development processes. Master’s thesis, MIT, Cambridge (2001)
24. Ulrich, K.: The role of product architecture in the manufacturing firm, Research Policy,

24(3),419–440 (1995)

