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Abstract—As network function virtualization spread, network
service providers have been able to deliver various networks
flexibly and rapidly. In particular, products and services that
build network functions on a wide area network of organizations,
such as enterprises, have been spreading. Since the user sub-
strate environment and performance requirement differ in such
services, optimal virtualized network function (VNF) resource
sizing and placement need to be considered individually. To adapt
to such environmental diversity, methods for applying reinforce-
ment learning (RL), which includes an adaptive optimization
mechanism, have been proposed. However, current RL methods
have difficulty to complete learning on a real network because
of too many required explorations. We propose an accelerated
RL method that can learn proper VNF sizing and placement on
a real network under various environments. Our method divides
the RL process into two steps depending on the learning objective.
We compared the proposed and a conventional RL methods
through three scenarios with different substrates. We confirmed
that the conventional RL method cannot learn properly even
if it takes ten thousand explorations, whereas, our method
can learn a cost-efficient resource sizing and placement that
meets the performance requirements within only one thousand
explorations.

Index Terms—Resource Sizing, NFV Placement, Reinforcement
Learning, NFV service

I. INTRODUCTION

As network virtualization and softwarization spread through
the use of network function virtualization (NFV), a network
provider can deliver various virtual networks more flexibly
and rapidly than using raw hardware devices. Many solutions
have been proposed using these technologies to decrease
operating costs and service delivery time in various domains
such as carrier networks. Regarding enterprise networks, some
products and services that build network functions on-demand
on a wide area networks (WANs) of organizations have been
proposed. NFV Management and Orchestration formulated by
ETSI ISG [1] is a standard of NFV lifecycle management
including deployment of virtual network functions (VNFs). By
using an implementation [2] [3] compliant with this standard,
we can deploy a service function chain (SFC) consisting of
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VNFs. Also, Cisco provides Enterprise Service Automation [4]
as the NFV orchestrator that supports design and deployment
of SFCs.

Those who use such a service or product have a ded-
icated substrate network and communication requirements
corresponding to their business requirements. These users
need to consider optimal VNF resource sizing and placement
individually because network performance differs depending
on WAN specifications (bandwidth and latency), hardware
where the SFC is deployed, and so on. To determine these
configurations, methods for predicting network performance,
such as throughput and latency, have been proposed. There
are two major methods: one that models packet processing by
queuing theory, and the other, which is a machine-learning
method that uses measured values as learning data, the mod-
eling method cannot determine enough configurations because
an actual network contains factors outside the model. However,
with the machine-learning method, which uses supervised
learning approaches, it is difficult to prepare proper learning
data that can be applied to various environments in advance,
although it can take the factors outside the above model into
consideration.

To overcome this problem, reinforcement learning (RL) [5]
is a promising technology because it has a framework that not
only autonomously acquires behavioral models of networks in-
cluding performance but also generates a configuration-control
mechanism based on the models. However, conventional RL
methods cannot be easily applied to sizing and placement of
SFCs because of the issue of the time required to learn. That
is, the complicated task including a decision of a cost-efficient
placement and resource sizing of multiple SFCs first requires
more than 10,000 of explorations (for example, it takes more
than 24 hrs, if each exploration takes 10 seconds.); second is
that it is difficult for an SFC running on a dedicated substrate
to individually prepare a simulation environment in which real
network performance can be effectively and quickly measured.

We propose an SFC resource sizing and placement method
using an accelerated RL. The proposed RL method is exe-
cutable on not only a simulation but a real network environ-



ment because it requires less explorations. Our RL method
divides the RL process into two steps depending on the
learning objective. In the first step, the learning target is the
general performance dynamics of the SFC, and in the second
step, the target is the desirable configuration that depends
on a user’s specific substrate network and performance re-
quirements. The advantages of dividing the RL process into
two steps are as follows: the first step can be excluded from
explorations for individual users because it can be commonly
executed before the user service request. In the second step,
learning about just the user-specific factor, which depends on
the network specification and communication requirements, is
sufficient, and effective exploration is possible due to using
the knowledge from the first step.

We compared our RL method and a conventional RL
method on a real testbed network emulating five distributed
sites. We evaluated the methods through three scenarios with
different network environments. We confirmed that the conven-
tional RL method cannot learn the proper sizing and placement
strategy even if it takes 10,000 explorations, whereas, our
method can learn a cost-efficient policy that meets these
requirements within only one thousand explorations.

The rest of this paper is organized as follows. We first
present related work in Section II then explain the problem
and details of the proposed method to solve this problem
in Section III. We discuss an evaluation we conducted to
compare the proposed RL method and a conventional RL
method and present the evaluation results in Section IV and
offer concluding remarks in Section V.

II. RELATED WORKS
A. VNF Resource Sizing and Placement Problem

The process of deploying SFCs is divided into three steps:
the first step involves specifying the necessary network func-
tion and building SFCs by assembling VNFs. The second
step involves determining the placement location of the VNFs
and the resource size from the performance requirements.
The third step is placing the VNFs on an actual execution
environment based on the design determined in the previous
steps. The first step has been studied as designing SFC
technology from abstract user requirements; specifically in the
fields of Intent-based Networking [6] and Policy Refinement
[7]. Many studies reported the third step as virtual network
embedding (VNE) [8] and VNF allocation [9] problems. Most
of the methods used to tackle these problems are aimed at
discovering cost-efficient placement and resource allocation in
a specific datacenter (DC) from the given resource allocation
[10] [11]. The second step, which is what we address in
this paper, has generally been investigated in terms of NFV-
performance-prediction technology because we can determine
the configuration required for given performance requirements
if we know the performance in a particular configuration.
There are two major methods of predicting performance:
one that models packet processing by queuing theory. The
other is a machine-learning method with measured values
as learning data. Gallardo et al. [12] proposed a queuing

model for the performance evaluation of a virtual switch. It
can approximate performance metrics, such as packet latency,
with good accuracy to determine the number of CPU cores.
However, it is not enough to predict performance of the whole
SFC because SFC performance is affected by not only packet
processing inside switches but also other processes such as
applications running on the same environment and not relevant
to the SFC. The difference between our proposed method
and that of modeling packet processing is that our method
takes all elements affecting SFC performance on the execution
environment into account by using the measured end-to-end
performance data obtained from a real network. Lei et al.
[13] proposed a latency-prediction method using a machine-
learning method called random forest regression. Similarly,
Gupta et al. [14] proposed a method that generates preferable
placement of VNFs using support vector regression (SVR).
The SVR model can predict the latency of SFCs from resource
usage and the geographical distance between DCs under the
assumed situation of fixed SFCs and service level agreement
(SLA). Since these methods use supervised learning, they
require all learning data in advance for every environment.
Therefore, a machine-learning engineer has to generate learn-
ing data suitable for the dedicated environment every time
because automation of generating such learning data does not
yet exist. The proposed method can automatically learn SFC
configurations on multiple dedicated environments.

B. Application of Reinforcement Learning

The two advantages of using RL for configuring the sizing
and placement of VNF are as follows. The first is the high
degree of freedom of the RL model because even if the
internal structure is unknown, the RL model can include any
variable if observable. The second is that RL does not require
learning data that can adapt to every assumed situation in ad-
vance because learning progresses incrementally by sequential
observations from learning the target environment. However,
RL generally takes a considerable number of explorations
to complete learning. Therefore, our accelerated RL method
overcomes this explorations issue.

There have been attempts in applying RL to deployment
optimization for virtual components regarding the resource-
allocation problem of Virtual Machines (VMs) in a cloud
environment such as large DC. Rao et al. [15] and [16] pro-
posed methods for autonomously learning resource allocation
of VMs satisfying SLA with RL. These methods include
effective modeling techniques for connecting RL and resource
allocation problems.

Tang et al. [17] reported on an application for a scale-
out control of VNFs in a telecom operator’s network as an
application of network management. They gave definitions of
the state space and reward function that enables the learning of
a scale-control policy that adequately controls resource usage
while satisfying SLA in traffic patterns in a telecom network.
S. I. Kim and H. S. Kim [18] tackled SFC allocation and pre-
sented a learning method that places VNFs on an appropriate
node that maximizes the performance of VNFs according to
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Fig. 1. Network topology.

the load condition of the physical network node and the link
with the unique reward function. However, this method cannot
be applied to an RL task that has an extensive exploration
space including a few placement-location representatives and
options of resource allocation because of using table lookup Q-
learning [19], which takes a huge amount of time to converge
under such a space. Mijumbi et al. [20] proposed a dynamic
virtual network allocation method against service requests
occurring at any time during service operation. Their method
can learn complicated cost-optimal resource allocation with
a set of small-space (approximately 5,000) RL tasks using
multi-agent RL. However, this method has to be executed on
a simulation environment because it requires more than 10,000
explorations to learn the optimal policy. Therefore, it cannot
be applied to SFCs including application or VNFs, which is
difficult to reproduce with a simulator. It also does not adjust
the balance between performance and cost, as mentioned in
Section I, because it is focused on the availability of virtual
network services.

To summarize, it is difficult to apply conventional RL
methods to a network service that must satisfy individual re-
quirements under different network substrates. The advantage
of our proposed method is that it can not only learn from an
extensive exploration space task but also be executed on a real
network.

III. RESOURCE SIZING AND PLACEMENT PROBLEM
DESCRIPTION AND PROPOSED METHOD

This section presents the resource sizing and placement
problem that we tackle and our method that can solve it. We
first give an overview of this problem. Next, we give a concrete
definition of an RL task that can be applied to the problem.
Finally, we discuss our proposed method.

A. Problem Overview

Figure 1 shows a network topology of a network service
using NFV. A network service user, such as an enterprise, has
several bases of activity (Locations A, B,... in Figure 1). These
bases and a DC are connected with a WAN. Communication-
destination servers, such as application servers, are placed in
the DC, whereas, client terminals are placed at each location.
Clients and servers communicate with each other. In addition,
we consider inbound traffic from the Internet to the DC as well
as outbound traffic from the DC to the Internet. Hardware
resources on which a user can deploy VNFs are equipped
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Fig. 2. Flow of service function chain (SFC) sizing and placement.

at each location. We call these resources points of presence
(POPs). VNFs to be deployed are deployed on one POP. We
assume that local POP resources vary for each POP and have
less than that of DC’s POP.

Figure 2 shows the flow of SFC sizing and placement. A
service user first chooses an SFC corresponding to a function
he/she wants to use from the provided SFC service menu.
Next, he/she specifies the traffic source (SRC) and commu-
nication destination (DST) where the SFC is to be deployed.
Additionally, the user inputs performance requirements about
the SFC such as throughput and latency. From these inputs, a
SEC designer chooses the place where each VNF (for example,
proxy, firewall (FW) and intrusion detection system (IDS))
related to the specified SFC is to be deployed. The amount
of resources allocated to each VNF is also decided. In this
paper, we do not consider the place VNF is deployed other
than the SRC and DST. When an NFV service users request
these SFC deployments, they need to decide the sizing and
placement of the SFCs that fulfill the requirements without
manual operation.

B. Definition of Reinforcement Learning Task

In this section, we give a definition of a RL task that can
solve the sizing and placement problem of SFCs presented
in the previous section. RL proceeds by interaction between
the environment and agent. In this paper, the environment
corresponds to the substrate network on which VNFs are
actually deployed and traffic flows. The agent is the subject
of solving the problem and attempts to learn a configuration
strategy, which is called a policy, with rewards obtained
from the environment as a clue. There are several learning
algorithms that differ in how reward is reflected as policy.
A policy returns a configuration change (or its probability
distribution), called action, such as placing a VNF on a specific
POP, allocating CPU resources to a VNF, and so on. A
well-learned policy can return actions that can satisfy user
requirements with less resource consumption in different SFC
configurations, which is called states. Defining the RL task that
solves the problem showed in the previous section means that
we specify the definition of the state, action, reward, learning
algorithm and policy that correspond to the problem.

1) Definition of common variables: Before defining each
element comprising an RL task, we give common variables
in Table I. an SFC instance represents an instance that can
be generated from a user’s request specifying SFC, SRC and
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TABLE I
COMMON VARIABLES FOR RL TASK DEFINITION.
name | description
Loc Set of locations (Including DC).
loc; € Loc(i =1,..,1) location 4.
SFC Set of SFC of service menu.
sfc; e SFC(j=1,..,J) SEC j.

VNF Set of VNF.
vnfry € VNF(k=1,..,K) | VNF k.

SFCI Set of SFC instances.

sfci(ii,i2,7) € SFCI Element of SFCI where SRC is
loc;, , DST is loc;, (i1 # i2) and
SFC is sfc; .

Presence of VNF where POP is
at SRC or DST, SRC is loc;,,
DST is loc;,, SFC instance is
sfci(ii,i2,7) and VNF is vn fi.
Amount of CPU allocation where
POP is at SRC or DST, SRC is
loc;,, DST is loc;,, SFC instance
is sfci(i1,i2,7) and VNF is vn fi.
Amount of memory allocation where
POP is at SRC or DST, SRC is
loc;;, DST is loc;,, SFC instance
is sfci(i1,42,7) and VNF is vn fi.

Ps'rc/dst(ilv i2,J, k)

Cs'rc/dst(il 112, 7, k)

Msrc/dst(ilv 12,7, k)

DST. For example, the SFC menu provides two SFCs (sfcy,
sfca), and locations are defined as location-A (locy) and DC
(locg). The SFCI defined in Table I is represented as fol-
lows: SFCI = {sfci(loci,loca, sfer), sfeci(locy,loca, sfes),
sfci(locg,locy, sfcr), and sfci(loca,locy, sfea)}.

2) Definition of state: The states we address in this
paper are formed as a vector listing the amounts of resource
allocation for each VNF (When a VNF is regarded as a VM,
similar state design is adopted [15] [16]). Specifically,
state s S S = {(Psy'c(il, 12,7, k}), Csrc(ily 12,7, k),
Msrc(ilyi%jvk)v Pdst(i17i27j7k)7 Cdst(i17i27j7k)7
Mdst(il,iz,j, k)) \foreach(il,ig) = { ilpi |7:1,’L.2 €
{1,..,1} , 41 #i2)}}, where ;, P;, is a permutation.

3) Definition of action: The actions ¢ € A we address in
this paper increase or decrease the number of CPU or memory
usage assigned to VNFs or changing the placement of a VNF.
The step size of the increase and decrease is constant for
each resource defined in advance. The design that defines the
increase and decrease of resource allocation size as an action
is general because several studies have adopted it [15] [16]
[20]. This has the effect of efficiently learning the relationship
between state and reward by sequentially searching for similar
states (adjacent states) when searching the state space. We
have to consider moving a VNF as an action. Therefore, we
restrict the movable VNF to a VNF that does not involve the
movement of other VNFs, in other words, a VNF deployed
at the edge of a POP. This restriction prevents significant
configuration change at one action.

4) Definition of reward: We use two different reward func-
tions depending on the learning objective. These two functions
correspond to two-step RL which we discuss in III-C. The
first function simply returns SFC performance as rewards
because the first RL step is aimed at learning the general
performance dynamics not depending on a user’s environment

and requirement. In this paper, we use throughput latency ratio
as the performance of the SFC. Hence, the first reward function
Tstep1 (11,12, J) is represented as

o throughputssci(i is.i
Fetepl (217 227]) _ Z sfci(i1,iz,g) )

SFCI

] (D
aLencys ei(is is.j)

The second function represents the degree of satisfaction of
comprehensive user requirements considering resource con-
sumption. To specify the degree of satisfaction, we first define
the variable deg representing the degree of satisfaction of
a single SFC instance as min,,ecmetric{mper fm /toer fim},
where Metric is a set of performance metrics, mper f,,, is the
measured performance value of metric m, and tper f is target
performance value of m. If a small value is more preferable
than a large one, the inverse value is used. Since deg takes a
minimum value among the performance-achievement degrees
of all metrics, it can always reflect the metric to be improved
the most. Next, we define a user’s utility function regarding
the performance of single SFC instance as the combination
of the linear function using deg and step function that has an
upper and lower limit. That is, the utility function (i1, iz, j)
for each SFC instance is shown as

K deg > b
u(iy, iz,j) =4 0 deg <d 2
2 (deg —d) Otherwise

where K is the upper limit and an arbitrary constant.
The variables d and b (d < b) adjust the range of
deg where the utility function linearly varies. Finally, the
reward of the second RL step rgsgep2(it,i2,7), involv-
ing consideration of resource consumption, is defined as
Tstep2(i1,12,7) = Y gper (i, l2,7)/cost, where cost is
ZSFCI(wCPUC(ih ig,j) + wmemM(il, ’L'Q,j)) and Wepy and
Wmem are the weights per unit resource for each resource and
specified by the user in advance. This reward definition returns
the maximum value when the requirements are satisfied with
a margin (b) while suppressing resource consumption.

5) Learning algorithm: In this study, we adopted algo-
rithms based on value iteration in which there has been exten-
sive investigation into the IT resource allocation problem as an
RL algorithm. Algorithms based on value iteration work on the
assumption that the value is expressed by the scalar value for
each state. These algorithms learn a policy through improving
the state-value function. A state-value function takes a state
as input and returns the estimated value of the state. A policy
refers to a rule that determines actions that can transition
to a higher value state. Algorithms based on value iteration
includes Monte Carlo (MC) [21], Q-learning [19], and SARSA
[22]. In this study, we used the MC algorithm, which is a
simple algorithm of updating the state-value function. When
the state S = {s;]¢ = 1,..., N} and reward {r;|i = 1,..., N}
(N is the number of actions) are observed in one series of
exploration, which is called episode, the return for state s;,
which represents the discounted present value per episode Ry, ,
is R,, = Zf\; r;6'~1, where § is a discount rate (0 < & < 1).
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Fig. 3. Overview of 2-step reinforcement learning (RL)

In the MC algorithm, the estimated state-value is the average
of R,, for each state.

The state space shown in III-B2 can be huge. For instance,
a user specifies four SFCs. Each SFC has an average of
three VNFs, and there are five assignment patterns of each
CPU and memory. The size of the state space under this
condition is approximately 5432 = 524 &~ 10'7. It is difficult
to complete learning with such a large state space size if we
execute table-lookup-type learning that records and updates
the estimates of the value for each state because the memory
area for storing the table becomes enormous or a large number
of explorations is required until convergence of the value
function. Therefore, we use a learning method called function
approximation that approximates the state-value function with
an arbitrary prediction function rather than a list of state and
estimated value pairs. With function approximation, the state-
value function is updated by improving the parameters of
an approximation function. With function approximation in
MC algorithm, the approximation function is determined by
determining the parameter 6 of the approximation function
V (s, 0) that minimizes the prediction error using the learning
data set < S, Rg >, where S is the union of .S of each episode,
and Rg is the set of Rs(s € S).

6) Policy definition: In this paper, the policy to decide an
action 7 (s, a) is expressed as the probability of taking action a
on state s. In exploration during learning, 7 (s, a) is calculated
using the softmax policy [23] as follows.

V(S(s,a),0) )

exp(

ZaGA exrp ( T
where 7 is the so-called inverse temperature, and S(s,a)
represents the set of states of the transition destination when
taking action a in state s. Our proposed method is done by on-
policy learning (it means learning target policy and exploration
policy is the same) using the above policy.

C. Two-Step Reinforcement learning

1) Overview: The overview of two-step RL we proposed
is shown in Figure 3. The first step involves learning the
general performance characteristics of each SFC excluding
a service user’s specific requirements, such as performance
and resource cost, on each POP. SFC providers or users can
carry out this learning step in advance before a user’s service
request. Therefore, the execution time of learning does not

affect the lead time of the service. This step generates two
outputs. The first is the policy that expresses what placement
and allocation are preferable when the upper limit of a POP’s
allocated resources and resource cost are not considered. The
second involves learning the log data consisting of a list of
state and reward pairs during that state.

In the second step, the RL agent learns the optimal allo-
cation and placement control policy depending on a service
user’s specific environment. Acceleration of learning at this
step leads to shortening the lead time of service delivery. In
the first step, the RL agent learns an SFC’s behavior, such
as performance, without assuming any knowledge about that
behavior. Whereas, in the second step, the RL agent improves
the policy by diverting the knowledge obtained at the first step.
Finally, the policy converged at this step is the optimal policy
for a user’s specific environment and requirements.

2) Learning at first step: We define the RL tasks for each
SFC in the first RL step. SRC and DST are assigned to
the location that has enough resources. A user’s requirements
of performance and resource cost weights are not specified.
Hence, the state and action explained in III-B can be applied
to this first RL step without any consideration, and the reward
function is the throughput latency ratio, the equation (1).

3) Learning at second step: There are two differences
between learning at the second step and that at the first step.
The first is to initialize the approximate function V (s, 6) of the
state-value function using the learning result of the first step
before the start of learning (the initial policy in Figure 3 is
generated from this V (s, #)). The second is to update V' (s, 0)
repeatedly during learning in consideration of the learning data
from the first step. The details are given below.

a) Initialization of approximation function: In the first
step learning, RL tasks are defined for each SFC, and learning
is executed. Therefore, as many approximation functions are
generated as the number of SFCs after learning. We define

V;(s,0) as an approximation function of SFC;. The initial
state of the second RL step is decided by V; (s f). That is,
we predict V' (s,0) with Y gper VC(;S te) and decide the initial
state sg as argmaxsesV(s,0) (f it is difficult to obtain
the maximum value analytically based on the property of
the approximate function, it is replaced with an approximate
solution). The s’ is a state vector for Vj(s, §) that is replaced
with SRC and DST of the second step task with the location
corresponding to the first step.
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Next, we generate a multidimensional normal distribution
whose dimension is dims and center is sg. Based on this
probability density function, we sample an arbitrary number
of states. Sampled states are defined as T' = {t;]i = 1,.., N}
(An actual state vector must be discrete. Therefore, it will
be discretized as appropriate). The initial policy is generated
from Vj,;+(s,0) obtained from supervised-learning with data
D1 < T, Rr >. The Rr is the set of prediction values from
V(t;,0).

b) Update of approximation function: The RL agent
updates V;,;:(s,6) with the training data set D2 < S, Rg >
obtained in the second step then, updates the updated V' (s, )
repeatedly with the newly obtained training data for every
episode. While updating, we basically emphasize data D2 for
predicting the unsearched state but D1 is also used as required.
To use the above idea, we take into account the weight of the
data for prediction (since learning of regression models using
weighted data is common, this is an updating method that
does not specialize in a specific approximation function). We
introduce the weight vector w for D1 as follows.

M
Wy = H (1 - ezp(*|51n - 52m|)) 4
m=1
where learning data D1 = {(s1p, Rs,,)[n =1,..,N} ,D2 =
{(s2m, Rs,,,)im = 1,.., M}, and |81,, — S2yn| is the Euclidean
distance between si, and ss,,. To prevent being affected
by the scale of state-vector element value, each value is
normalized with the average and variance of the set of si,.
As an intuitive explanation of the above equation, this means
that the distant data do not change the weight (as 1), and the
weight becomes close to 0 (replaced with D2) for closer data.
The approximation function is updated with the weight vector
that combines w,, with the weight vector for D2, all elements
of which are one (1,..,1).

IV. EVALUATION
A. Environment and scenario

We evaluated the proposed method and conventional method
through three network environments with the mixture of multi-
ple kinds of traffic. Three network environments have different
spec to compare the environment-adaptability. Furthermore,
to make the environment closer to reality, each traffic has
different network path, SFC and performance requirement.

We first give an overview of the evaluation environment.
The hardware we used consisted of 18 rack-mounted servers
(Intel (R) Xeon (R) CPU E5504 @2.00 GHzx8/16 GB of
RAM/1-Gbps Ethernet) and a network switch that connects
these servers. We installed OpenStack [24] on them and built
simulated network environments, i.e., WAN, Internet and local
network, at each location by using Neutron, which is a compo-
nent of OpenStack. We used VyOS [25], which is open-source
software router, to connect between these networks. VyOS has
a latency emulation function for network verification where
it gives an arbitrary delay to packets output from specific
network interfaces. In the evaluation, this function was used

to emulate the delay of the WAN by a setting a 10 msec
delay on the WAN-side interface of the router installed at the
boundary between the WAN and location and 20-msec delay
at the boundary interface with the virtual Internet environment.
The bandwidth of the WAN was 1 Gbps (the delay of WAN
changed by varying the scenarios in the second step presented
in IV-C). We also set up five locations, i.e., a head office,
three branch offices, and DC, because we assumed a medium-
sized enterprise network environment. The maximum amount
of CPU and memory usage (the number of CPU cores/memory
(GB)) allocated to the POP at each location is head office (4
cores/8 GB), branch office 1 (2 cores/2 GB), branch office
2 (1 core/2 GB), and branch office 3 (0.5 core/1 GB). We
assumed the DC had unlimited resources regarding both CPU
and memory.

VNFs were built as a Docker [26] container that can allocate
resources rapidly and flexibly. The step size of resource-
allocation change was 0.05 cores on the CPU and 100 MByte
on the memory. The details of VNFs and SFCs used in the
evaluation are shown in Table II and Table III, respectively.
The generated traffic in the evaluation was intended for a Web
application placed on the DC and for data-transfer service
hosted via the Internet. At the end of each RL action, we
measured the performance metrics (throughput and latency)
with Apache JMeter [29] and calculated the rewards.

TABLE II
VIRTUALIZED NETWORK FUNCTIONS (VNFS)
No. | name | description
1 Proxy | Cache server built with Nginx [27].
2 Fw Built with Snort [28]. Defined by about 100 drop
rules and start up with in-line (IPS) mode.
3 IDS Built with Snort using published registered rule.

TABLE III
SFCs

No. | VNF chain | description

1 Proxy-FW-IDS | For in-house website (almost static) connection.

2 FW-IDS For internal and external website connection.

3 IDS-FW

For public cloud service connection.

We evaluated environment adaptability of the proposed
method on three scenarios (scenarios 1, 2 and 3) in the
second RL step. These scenarios differed in substrate network
specification of the WAN as shown in Table IV. The list
of SFC instances and cost factor are shown in Table V and
VI, respectively. The size of the exploration spaces of these
scenarios was approximately 10%°. We implemented a python
[30] module that controls executions of RL running on a VM
deployed on the OpenStack environment. This module also
controls the agents, updates the approximation function, and
calculates rewards in the manner we presented in the previous
section.

B. First RL step

In the first RL step, we evaluated the learning degree of
performance characteristics by the comparing a learning model
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TABLE IV
WAN SPECIFICATION FOR EACH SCENARIO IN SECOND STEP

scenario

bandwidth (Gbps) 1.0 | 1.0 | 05
latency (round trip, msec) | 10 | 20 | 40

TABLE V
SFC INSTANCES AND PERFORMANCE REQUIREMENTS IN SECOND STEP

SEC throughput latency
instance | SFC SRC DST (req/sec) (msec)
1 1 Head office DC 11.0 200

2 1 Branchl DC 10.5 250

3 1 Branch2 DC 9.5 250

4 1 Branch3 DC 9.0 250

5 2 Head office DC 9.5 400

6 2 Branchl1 DC 10.5 400

7 2 Internet DC 5.0 600

8 3 DC Internet 0.3 4000

using three approximation functions, i.e., linear approximation
based on tile coding [31] (CMAC), gradient boosting decision
tree (GBDT) [32] [33], and multi-layer perceptron (MLP)
[34]. CMAC is one of the most basic state coding method
used with the linear function approximation. GBDT is a
decision tree algorithm with high accuracy [13], and MLP
is a neural network model. Basically, the meta-parameters of
these approximation functions were determined from cross-
validation. The validation range of the main parameters for
each approximation function is as follows: tile size (CMAC)
is 0.25 (value of each element of a feature vector is normalized
with [0,1]); number of layers (CMAC) is 4, offset (CMAC)
is 0.2; max tree depth (GBDT) is chosen from [3,5,8,12];
number of hidden layers (MLP) is chosen from [3,4, 5]; and
unit size (MLP) is 50 or 100. The reward function shown
in III-B4, which is based on the performance of each SFC,
was used for this step. The iteration length of an episode was
fixed as 20 actions. The inverse temperature parameter 7 while
exploring was 1.0, and the J of the discount rate for calculating
returns was set to 0.2. The meta-parameters of each learning
algorithm were determined using the evaluation results of
preliminary experiments conducted under the same conditions
as those in first RL step. Figure 4 illustrates the results from
the first step for each SFC (performance metrics are plotted
by moving average of past five episodes for smoothing the
graph). As the episode advanced, the learning with GBDT
indicated throughput increase and latency decrease for all
SFCs, although there was some stochastic fluctuation. To
evaluate prediction accuracy of approximation functions, Table
VII shows the mean coefficients of detgrmination R2s in cross
validation. The R2 is defined as 1 — %, where N is
sample size, y; is the observed value, g)lzlls the predicted value,
and ¥ is the average of y;. The R2 is 1.0 when all observed
values are predicted completely and O when all prediction
values are average values. The cross-validation method was
k-fold [35], and the number of folds was 5. We combined the
data obtained from learning with each approximate function,

TABLE VI
COST FACTORS IN SECOND STEP

location | head office | branchl | branch2 | branch3 | DC
CPU/core:wepu 1.1 1.2 1.2 1.2 1.0
MEM/GB:wmem 1.1 1.2 1.2 1.2 1.0

and used the data as evaluation data. These results indicate
that GBDT approximation had the highest R2. Since the other
approximation functions, CMAC and MLP, could not predict
SFC performance, their R2s were negative value (it means it
is worse than predicting all value as the average). Therefore,
we confirmed that the learning algorithm using GBDT as
an approximation function could acquire well-learned policy
reflecting SFC performance characteristics. This is because the
real state-value function of this task that contains dynamically
moving bottle necks is fitted to the GBDT suitable for ap-
proximating nonlinear and noncontiguous functions. On the
other hand, since the other approximation functions required
more data to learn SFC dynamics, it seemed that learning
did not proceed. In fact, we observed that the learning using
CMAC progressed after more than 500 episodes on RL task of
SFC 1 in the preliminary experiment. Although we could not
observe a progress with MLP, it seems that more explorations
are required for convergence of many parameters. In response
to this, we conducted an evaluation for the second step by
using GBDT as the approximate function.
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Fig. 4. Comparison of different approximation functions in first step

TABLE VII
MEAN COEFFICIENTS OF DETERMINATION (R2) IN CROSS VALIDATION
SFC | GBDT | CMAC | MLP
SFCI [ 0.6213 | —3.760 x 1028 | —0.8192
SFC2 | 0.7476 | —1.938 x 1030 | —4.695
SFC3 | 0.9740 | —1.308 x 103" | —3.306

C. Second RL step

In the evaluation of the second RL step we evaluated three
scenarios (scenarios 1, 2 and 3). These scenarios differed in
substrate network specifications. Additionally, along with com-
paring learning speed, we evaluated the RL policy learned only
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Fig. 5. Distribution of degree of meeting requirements after 50 episodes.

from D2 (data obtained in second step). This task involved a
conventional RL without prior knowledge from the first step.
The learning meta-parameters were the same as in the first
step, but we used the user requirement-based reward function
discussed in III-B4 (K = 100, d = 0.8, b = 1.1). Figure
5 shows the degree of meeting the performance requirement
(deg) that we discussed in III-B4 after 50 episodes (50 episode
corresponds to 1,000 explorations and about 17 hrs if one
exploration takes 30 sec). The area colored with gray in
Figure 5 corresponds to the desirable range of deg. That is,
deg is desired to be not only greater than 1.0 but also less
than 1.2, and if deg is too large, it means over allocation
of computing resources. Though the upper of desirable deg
should be determined based on probabilistic fluctuation range
of deg, we set it to 1.2 from the preliminary experiments
(therefore, reward function parameter b is set to 1.1 as the
center of the range). With the proposed RL method, all deg
values are greater than 1.0. It means that all SFC instances
met the performance requirements shown in Table V in all
scenarios. Furthermore, almost all deg are less than 1.2 except
SFC instance 5 in scenario 1 and SFC instance 3 in scenario
2. Whereas, there was no SFC instance which deg is within
the desirable range through all scenarios in the conventional
RL. This result shows that the proposed method could learn
the proper configuration environmental adaptively.

Figure 6 illustrates how the RL progressed. The tile color
corresponding to the SFC instance, and the episode indicates
deg (the lighter the color, the higher the deg, and if deg
is greater than 1.0, it is regarded as 1.0). The proposed RL
method learned to control placements and resource allocations
to meet the given performance requirements as an episode
progressed. Whereas, the conventional RL without using the
knowledge from the first step could not progress learning
within 50 episodes. This is because that since the proposed
RL uses the knowledge from the first step, the initial state is
relatively near the optimal configuration, additionally, it can
explore efficiently. We continued using the conventional RL
until episodes 500 (10,000 explorations) for each scenario,
however, learning hardly progressed. This suggests that with
the conventional RL method, it is difficult to learn the proper
configuration on a real network in which the number of
explorations is limited.

Figure 7 shows trends in resource cost defined in I1I-B4 re-
garding computing resource consumption. Despite the fact that
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additional resources were necessary for some SFC instances
to satisfy the requirements, the proposed method did not
always increase the amount of consumption in all scenarios.
This means that our method not only adds resources but also
reduces them if possible. Hence, our method can also learn a
cost-efficient control policy.

V. CONCLUSION

We proposed a method for solving VNF resource sizing and
placement problems using accelerated RL divided with two-
steps depending on the generality of the learning target. With
the proposed method, VNF the resource sizing and placement
problem of SFCs was formulated as a RL task. We also
presented an effective technique that uses the knowledge about
the performance dynamics of SFCs to learn a practical RL task
with individual environment and requirement by weighting and
mixing learning data.

We showed that the learning using GBDT as a state-value
approximation function converges faster with the proposed
method. Moreover, for three scenarios with different network
environments, we showed that the proposed RL method can
learn the cost-efficient configuration that meets the perfor-
mance requirements within only 1,000 explorations, whereas,
general RL cannot even if it takes 10,000 explorations. This
is because that the first step learning reduce actual exploration
space in the second step in advance. Additionally, the method
requires all SFCs available to be learned in the first step.

The major future work is prospecting the environment-
adaptability of the proposed method more precisely and
improve it. For that, we will need additional evaluation to
measure how much the method can handle fluctuations of
environment and requirements.
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