Chapter 8

IMPROVING DISK SECTOR INTEGRITY
USING K-DIMENSION HASHING

Zoe Jiang, Lucas Hui and Siu-Ming Yiu

Abstract The integrity of data stored on a hard disk is typically verified by com-
puting the chained hash value of disk sector data in a specific order.
However, this technique fails when one or more sectors turn bad during
storage, making it impossible to compute their hash values. This pa-
per presents a k-dimension hashing scheme, which computes and stores
multiple hash values for each hard disk sector. The hash values for each
sector are computed in different ways; thus, when a hard disk develops
bad sectors, it is still possible to verify the integrity of the data in the
unaffected sectors. The paper also discusses how hashing parameters
may be tuned to achieve desirable properties, including minimizing the
probability that the integrity of a sector cannot be verified because other
sectors have gone bad.

Keywords: Evidence integrity, hard disks, hash values, k-dimension hashing

1. Introduction

This paper focuses on a common, but important, problem in digital
forensic investigations: Suppose certain data was written to a hard disk
when it was created for evidentiary purposes; after a period of time —
say one month — how could one prove that the hard disk contents are
the same as before?

The straightforward scheme is to calculate a chained hash value of
all the data in all the sectors in a specific sequence. This hash value
is digitally signed and stored in a secure location. At some point in
the future, when the integrity of the hard disk must be evaluated, the
chained hash value is recomputed and compared with the previous value.
If the two hash values match, the hard disk content is assumed not to

88 ADVANCES IN DIGITAL FORENSICS IV

have been modified; if the values do not match, data in one or more disk
sectors is somehow different from the original data.

The chained hashing scheme fails when the stored hard disk develops
one or more bad sectors. A hash value cannot be computed for a bad
sector and, consequently, the chained hash value for the entire hard
disk cannot be calculated. Moreover, as disk capacity increases, the
number of sectors increases, which makes the chained hashing scheme
less attractive.

This paper describes an improved hashing scheme, which computes
and stores multiple hash values for hard disk sectors. Specifically, hash
values computed in different ways are available for verifying the integrity
of a sector. Thus, when a hard disk develops one or more bad sectors,
it is still possible to verify the integrity of the data in the unaffected
sectors.

2. Background

This section describes the physical structure of hard disks and dis-
cusses hashing techniques for verifying the integrity of stored data.

2.1 Hard Disk Structure

A hard disk has one or more platters for storing data. Each platter
has two read/write heads, one for the top face of the platter and the
other for the bottom face. A platter is divided into tens of thousands of
tightly-packed concentric circles called tracks. A cylinder is the set of
tracks at which the heads are currently located.

Since tracks hold far too much information to be suitable as the small-
est individually-addressable units of storage on a disk, each track is fur-
ther divided into sectors that typically hold 512 bytes of data. Modern
hard disks may have several thousand sectors in a single track.

An individual sector is traditionally addressed using an ordered CHS
triple containing the cylinder, head and sector numbers (Figure 1). Due
to the 8.4 GB limit of the Int 13h interface, modern drives are no longer
specified using the CHS mode. Instead, they are addressed at the logical
level using logical block addressing (LBA). At the physical level, how-
ever, most modern hard disks still use the CHS mode. Therefore, by
accessing the integrated disk controller, which automatically translates
LBA to the physical geometry, it is possible to match CHS triples to the
physical hard disk characteristics [7].

Jiang, Hui & Yiu 89

Sio,jo.k0

\

An

ﬁ T

Figure 1. Hard disk structure.

2.2 Verifying Hard Disk Integrity

Most digital forensic tools (e.g, EnCase [3] and DESK [1]) use the
chained hashing scheme to verify the integrity of data on hard disks. A
change to just one bit in a sector, file or hard disk causes the hash value
to be different [2].

Kornblum [5] recently proposed the context triggered piecewise hash-
ing (CTPH) scheme to identify modified versions of known files (where
data may have been inserted, modified or deleted). Although the CTPH
scheme was designed for files, it can be applied to hard disks — a bad
sector is considered to correspond to the portion of a file that has been
modified. However, the CTPH scheme has high computational time re-
quirements of O(nlogn) where n is the size of the data being hashed.
It is, therefore, not feasible to apply CTPH to large capacity hard disks
(e.g., those exceeding 120 GB).

Jiang, et al. [4] have proposed a 3-dimension hashing scheme with
better performance than the CTPH technique. This scheme computes
multiple hash values to reduce the impact of bad sectors on disk integrity
verification while requiring only a linear (O(n)) increase in computa-
tional time. The 3-dimension hashing scheme calculates hash values for:
(i) all sectors with the same cylinder and head numbers (A4, in Figure 1)
for all cylinder and head numbers; (ii) all sectors with the same cylinder
and sector numbers (A, in Figure 1) for all cylinder and sector numbers;
and (iii) all sectors with the same head and sector numbers (4. in Figure

90 ADVANCES IN DIGITAL FORENSICS IV

1) for all head and sector numbers. Thus, every hash value that is stored
has a physical meaning.

3. k-Dimension Hashing Scheme

The 3-dimension hashing scheme significantly reduces the probability
that one or more bad sectors will affect the integrity verification of a hard
disk. However, it has some limitations. A major drawback is that it is
not always possible to obtain information about the physical structure of
the hard disk; this is mainly due to the large capacities of modern hard
disks and the diversity of technologies they employ [7]. For example, a
USB thumb drive that uses solid state technology requires an integrity
checking scheme that does not involve physical drive characteristics.

The k-dimension scheme described in this section extends 3-dimension
hashing by using an arbitratry k (k > 0). This provides more freedom
to design hashing schemes, including schemes that do not rely on the
physical characteristics of hard disks. The only requirement is that the
sectors in a hard disk being verified form a sequence.

Let N be the total number of disk sectors in a hard disk, and let p be
the probability that any one disk sector becomes a bad sector after some
period of time. We investigate the fail probability (Py) of an integrity
proof of a disk sector. This occurs when all the hash values involving
the disk sector cannot be computed because other sectors involved in
the hash computations have gone bad.

A 1-dimension hashing scheme is the trivial case that computes one
hash value for all NV sectors. The integrity proof of a disk sector is viable
only when all the sectors are good sectors, which occurs with probability
(1 —p)N=1). Consequently, the fail probability Pris1—(1- p)N-1D),

For a 2-dimension scheme, the N sectors give rise to an N x Ny (2-
dimensional) array where N7 and Ny are integers such that Ny x Ny = N.
The minimum value of P; occurs when N; = Ny = NY2. In this case,

1

the probability Py is equal to 1 — {(1 — p)[N(E)_l]}Q.

Similarly, for a k-dimension hashing scheme, where the sectors form
a k-dimensional array, the minimum value of P; occurs when the size
of each dimension N, is equal to N1/ k.l Therefore, for a k-dimension
scheme with £ > 1, Py ={1 — (1 —p)[N(k)_l}}k .

Note that extra hash values must be stored when implementing the
k-dimension hashing scheme. In general, the total number of hash values
(Num) stored is equal to k - NG

Jiang, Hui & Yiu 91

Increasing the number of dimensions k decreases the fail probability
Py, but the number of hash values Num also increases. It is, therefore,
necessary to examine how Py may be reduced while Num is also reduced.

One strategy is to divide the N disk sectors into j blocks (j > 1) and
apply the k-dimension hashing scheme to each individual block. This
strategy is simple and effective. Even in the 1-dimension case, by setting
J to N, the probability Py can be reduced to 0 with Num set equal to
N! This is the absolute minimum value of P;; therefore, it is necessary
to consider the combined effect of the dimension size k and the number
of blocks j.

Upon substituting the number of blocks j in place of the number of
disk sectors NV, the fail probability for the k-dimension hashing scheme
is given by:

Ny (g _q
Pr={1—-p " M
The corresponding number of hash values to be stored is given by:
ARG
Num:j-k-(F) " (2)

4. Analysis of k-Dimension Hashing

Tables 14 present the fail probabilities and the numbers of hash val-
ues required to be stored for various values of N (number of sectors) and
p (probability that a sector becomes bad).

To simplify the presentation and related discussion, the data in Tables
1-4 is plotted to create the graphs in Figures 2 through 7. Figures 2
and 3 present the data in Table 1. Figures 2 and 4 present the data in
Table 2. Figures 5 and 6 present the data in Table 3. Figures 5 and 7
present the data in Table 4. Note that Figures 2, 3 and 4 correspond to
N = 1.152e8 while Figures 5, 6 and 7 correspond to N = 3.6e8.

As expected, increasing the number of dimensions k£ while keeping the
number of blocks j fixed yields a lower fail probability Py. However, the
data also reveals that, when k is increased by 1, Py drops by a value of
approximately p. This anomaly can be partially explained by simplifying
Equation 1 above. Given that (1 —e)™ can be approximated by 1 —em
when e is very small and integer m > 1, the equation for P, simplifies

to:
{p- [(N/5)MP = 13-,
Upon further simplification and ignoring the —1 term, Py is given by:

pF - (N/).

92

ADVANCES IN DIGITAL FORENSICS 1V

Table 1. Py and Num for N = 1.152¢8, p = le — 5.
j/k 1-D 2-D 3-D 4-D
1e0 Py 1 1.0de—2 1.10e—7 1.11le—12

Num 1 2.15e4 7.10e5 4.45¢6
lel Py 1 1.10e—3 1.10e—8 1.07e—13
Num 1.00el 6.79e4 1.53e6 7.91e6
1e2 Py 1 1.00e—4 1.10e—9 1.02¢e—14
Num 1.00e2 2.15e5 3.30e6 1.41e7
1e3 Py 6.84e—1 1.00e—5 1.10e—10 9.21e—16
Num 1.00e3 6.79¢5 7.10e6 2.50e7
led Py 1.09¢e—1 1.00e—6 1.00e—11 7.67e—17
Num 1.00e4 2.15e6 1.53e7 4.45e7
1e5 Py 1.14e—2 1.08e—7 8.50e—13 5.42¢—18
Num 1.00e5 6.79¢6 3.30e7 7.91e7
1e6 Py 1.14e—3 9.47¢—9 5.80e—14 2.68¢e—19
Num 1.00e6 2.15e7 7.10e7 1.41e8
le7 Py 1.05e—4 5.73e—10 2.00e—15 5.03e—21
Num 1.00e7 6.73e7 1.50e8 2.50e8
Le8 Py 1.52¢—6 5.37e—13 1.10e—19 1.68e—26
Num 1.00e8 2.15e8 3.30e8 4.45e8
N Py 0 0 0 0
Num 1.15e8 2.30e8 3.50e8 4.61e8

Table 2. Py and Num for N = 1.152e8, p = 1le — 10.
j/k 1-D 2-D 3-D 4-D
1e0 Py 1.15e—2 1.15¢—12 1.14e—22 1.11e—32

Num 1 2.14e4 7.10e5 4.45¢6
lel Py 1.15e—3 1.15e—13 1.14e—23 1.10e—33
Num 1.00el 6.79e4 1.53e6 7.91e6
1e2 Py 1.15e—4 1.15e—14 1.12e—24 1.02¢—34
Num 1.00e2 2.15e5 3.30e6 1.41e7
1e3 Py 1.15e—5 1.15e—15 1.08e—25 9.22¢—36
Num 1.00e3 6.79¢5 7.10e6 2.50e7
led Py 1.15e—6 1.13e—16 1.01le—26 7.68¢e—37
Num 1.00e4 2.15e6 1.53e7 4.45e7
1e5 Py 1.15e—7 1.09e—17 8.53e—28 5.42¢—38
Num 1.00e5 6.79e5 3.30e7 7.91e7
1¢6 Py 1.14e—8 9.47¢—19 5.78¢—29 2.68¢—39
Num 1.00e6 2.15e7 7.10e7 1.41e8
le7 Py 1.05€9 5.73e—20 1.99¢e—30 5.03e—41
Num 1.00e7 6.79e7 1.53e8 2.50e8
Le8 Py 1.52e—11 5.37e—23 1.13e—34 1.68e—46
Num 1.00e8 2.45e8 3.30e8 4.45e8
N Py 0 0 0 0
Num 1.15e8 2.30e8 3.50e8 4.61e8

Jiang, Hui & Yiu

Table 3. Py and Num for N = 3.6e8, p = le — 10.
j/k 1-D 2-D 3-D 4-D
1e0 Py 1 3.00e—2 3.50e—7 3.50e—12

Num 1 3.79¢e4 1.52¢6 1.05e7
lel Py 1 3.40e—3 3.50e—8 3.41e—13
Num 1.00el 1.20e5 3.27e6 1.86e7
1e2 Py 1 3.53e—4 3.50e—9 3.28¢—14
Num 1.00e2 3.79¢5 7.04e6 3.30e7
le3 Py 9.73¢—1 3.56e—5 3.40e—10 3.05e—15
Num 1.00e3 1.20e6 1.50e7 5.88e8
led Py 3.02e—1 3.56e—6 3.30e—11 2.66e—16
Num 1.00e4 3.79¢e6 3.30e7 1.05e8
1e5 Py 3.50e—2 3.48e—7 2.90e—12 2.07e—17
Num 1.00e5 1.20e7 7.00e7 1.86e8
1e6 Py 3.60e—3 3.23e—8 2.30e—13 1.27e—18
Num 1.00e6 8.79¢7 1.50e8 3.32¢8
le7 Py 3.00e—4 2.50e—9 1.20e—14 4.41e—20
Num 1.00e7 1.20e8 3.30e8 5.88e8
Le8 Py 3.00e—5 8.05e—11 1.50e—16 2.03e—22
Num 1.00e8 3.79¢8 7.99e8 1.05e9
N Py 0 0 0 0
Num 4.00e8 7.20e8 1.10e9 1.44€9

Table 4. Py and Num for N = 3.6e8, p = le — 10.
j/k 1-D 2-D 3-D 4-D
1e0 Py 3.54e—2 3.60e—12 3.60e—22 3.50e—32

Num 1 3.79¢e4 1.52¢e6 1.05e7
lel Py 3.60e—3 3.60e—1 3.60e—23 3.42¢—33
Num 1.00el 1.20e5 3.27e6 1.86e7
1e2 Py 4.00e04 3.60e—14 3.50e—24 3.28¢—34
Num 1.00e2 3.79¢5 7.04e6 3.30e7
1e3 Py 4.00e—5 3.59e—15 3.50e—25 3.05e—35
Num 1.00e3 1.20e6 1.50e7 5.88e8
led Py 4.00e—6 3.56e—16 3.30e—26 2.66e—36
Num 1.00e4 3.79e6 3.30e7 1.05e8
1e5 Py 4.00e—7 3.48e¢—17 2.90e—27 2.07e—37
Num 1.00e5 1.20e7 7.00e7 1.86e8
1e6 Py 4.00e—8 3.23e—18 2.30e—28 1.27e—38
Num 1.00e6 8.79¢7 1.50e8 3.32¢8
le7 Py 4.00e—9 2.50e—19 1.20e—29 4.41e—40
Num 1.00e7 1.20e8 3.30e8 5.88e8
Le8 Py 3.00e—10 8.05e—21 1.50e—31 2.03e—42
Num 1.00e8 3.79e8 7.99e8 1.05€9
N Py 0 0 0 0
Num 4.00e8 7.20e8 1.10e9 1.44€9

94

ADVANCES IN DIGITAL FORENSICS 1V

1e9 T
1e8 -
1e7
1e6 €
§ 1e5
1e4
1e3
1e2
1et

N

1
] L

1e0 1e1 1e2 1e3 1e4d j1e5 1e6 1e7 1e8 1e9

' L L Lo

Figure 2. Num versus j for N = 1.152e8.

1e-0

1e-5 | e ;

S
’

1e-10-

Qe-15" 1 1 -

1e-20"

1e-251

T LT T RS pRups Sppur S
i S

i
- Y E

1e-30 ‘ ‘
1e0 1e1 1e2 1e3 1e4j1e5 1e6 1e7 1e8 1e9

Figure 3. Py versus j for N = 1.152e8, p = le — 5.

1e-0 T T T T T T T T

1e-5 | — .

1e—10:____ =1 : . |

1e-15- 7t 5 0
\1e-207 k=2 g

Q 1e-25- | il
1e-30 : k=3

I T

1e-35 : 5
1e-40r i k=4
1e-45" :
1e-50 . et — . ‘

1e0 1e1 1e2 1e3 1e4d j1e5 1e6 1e7 1e8 1e9

Figure 4. Py versus j for N = 1.152e8, p = le — 10.

,,,,,,,,

e

Jiang, Hui & Yiu 95

1e10

1e9 | 1
1e8 - i 1
1e7 - , : o
1e6 | ! : : : |

g L T ; : : :

S 1ed .. P ; L : 1
ted - 7 i o .
1e3 | : S i 1
1e2 | : b ; 1

L 7 ; : ; i
et k=1 | 3 b ' !
1e0 1el 1e2 1e3 1e4d j1e5 1e6 1e7 1e8 1e9
Figure 5. Num versus j for N = 3.6¢e8.
1e-0
1e-5 " y_o b
i, y . E I‘...~ E
1e-10- =3/ ; : i i 4 j
R A IR
te-15- 4y em S -
1e-20/ E e
1e-25 ; L i b i i
1e0 1el 1e2 1e3 1e4 jle5 1e6 1e7 1e8 1e9
Figure 6. Py versus j for N = 3.6e8, p = le — 5.
190 T T T T T T T T
1e-5 | -]
k=1
le-100.. : y il
1e-15" B R L R R —
=2 ' -------- ..

Je—20’ ! :: '--.,: 4

Q e, : i :
1e-25- A : Hoob

k=3 - a A :
1e-30- i i &]
1e-35- PP it L SO E e 55 ; 1
k=4 : : VT —— ' !
1e-40" dood e
1e-45 | I S R I H !
1e0 1e1 1e2 1e3 1ed4/ 1e5 1e6 1e7 1e8 1e9

Figure 7. Py versus j for N = 3.6e8, p = le — 10.

96 ADVANCES IN DIGITAL FORENSICS IV

Therefore, for fixed NV and j, every increment in k reduces Py by a factor
of p.

This leads to the observation that even if j is changed (but not by too
much), it is beneficial to use a higher dimension to reduce the probability
P;. The reduction in Py due to higher k is parameterized by p. Specifi-
cally, it is advantageous to use a higher dimension when probability p is
low.

Note that in practice the expected number of bad sectors in a hard disk
is low and the probability p is very low. For example, when N = 1.152¢e8
and p = le — 5, the expected number of bad sectors is more than 1,000,
which is not realistic. Our studies indicate that p = le — 10 is a more
realistic value. Nevertheless, the data corresponding to p = 10e — 5 is
presented to show the behavior of the hashing scheme for a p value that
is not very small.

Another observation from the graphs is that although Py is expected
to drop to zero for j = N, this does not occur even when j is close to N
(see Figures 4 and 7).

Figures 2—4 can be used to determine the appropriate number of di-
mensions to be used given a fixed Num (number of hash values to be
stored). First, Figure 2 is used to determine the number of blocks (j)
for each dimension value (k) that will require Num hash values. Next,
Figure 3 or 4 is used to determine the probabilities P corresponding to
the 7 values for each value of k. Finally, the value of k that yields the
lowest fail probability Py is selected.

To illustrate the methodology, consider a fixed Num value of 1e7. The
four squares in Figure 2 identify the points with this Num value and k&
=4, 3, 2 and 1. The j values of these four points are recorded. Next,
the four points in Figure 3 with these j values and k = 4, 3, 2, 1 are
identified (these are marked as squares in Figure 3). The P; values
corresponding to these four points can then be read from Figure 3. The
lowest fail probability Py occurs for £ = 4. Similar analysis can be
performed using Figures 5-7.

Upon investigating several different Num values, we have observed
that it is better to use a higher dimension value k provided that Num
is at least the minimum number of hash values needed by dimension
k. Two examples in Figures 2—4 and Figures 57 illustrate the effect of
increasing the dimension. The squares and circles in the figures corre-
spond to Num values of 1e7 and 1e6, respectively. In both cases, it is
clear that for the given Num value, a higher dimension value k yields
a lower fail probability Pr. Upon comparing the two groups of points
(squares and circles), it is apparent that a higher j value produces a
lower fail probability Py for the same dimension k.

Jiang, Hui € Yiu 97

5. Observations

Our analysis indicates that k-dimension hashing is very effective at
reducing the fail probability P;. For example, the fail probability for 10
blocks (with p = le — 10 and N = 1.152e8) reduces from 1.15¢ — 2 in
the straightforward scheme of using one hash value for the entire hard
disk to 1.10e — 33 when 4-dimension hashing is used. This is a drastic
decrease in fail probability. Similar reductions occur for other parameter
settings.

Our findings can be summarized in the following recommendations. If
the minimization of the fail probability P is the principal goal and Num
hash values can be stored, where Num < N (number of disk sectors),
then it is best to use the highest possible k-dimension hashing scheme.
On the other hand, if Num is close to or larger than N, then the 1-
dimension hashing scheme with Py = 0 is the best choice.

Note that these recommendations ignore the overhead involved in han-
dling large numbers of hash values, especially when the hash values have
to be digitally signed (as in many digital forensic tools [1, 3]). The Merkle
hash tree [6] is a low overhead approach for signing multiple hash values
[8]. Nevertheless, it is important to investigate the effect of the overhead
involved in digital signing on the choice of dimension.

6. Conclusions

The k-dimension hashing scheme is a robust technique for verifying
the integrity of data stored on hard disks. The scheme computes the
hash values for each sector in multiple ways; thus, when one or more
sectors go bad, it is still possible to verify the integrity of the data in the
unaffected sectors. Our future research will investigate applications of
k-dimension hashing to enhancing evidence preservation and detecting
evidence tampering with high probability.

Acknowledgements

This research was partially supported by the Research Grants Council
of the Hong Kong Special Administrative Region under Project Nos.
HKU 7136/04E and HKU 7132/06E.

References

[1] K. Chow, C. Chong, K. Lai, L. Hui, K. Pun, W. Tsang and H.
Chan, Digital evidence search kit, Proceedings of the First Inter-
national Workshop on Systematic Approaches to Digital Forensic
Engineering, pp. 187-194, 2005.

98

2]

ADVANCES IN DIGITAL FORENSICS 1V

J. Foster and V. Liu, Catch me, if you can, presented at Black
Hat Japan 2005 (www.blackhat.com/presentations/bh-usa-05/bh-
us-05-foster-liu-update.pdf), 2005.

Guidance Software, EnCase, Pasadena, California (www.guidance
software.com).

Z. Jiang, L. Hui, K. Chow, S. Yiu and P. Lai, Improving disk sector
integrity using a 3-dimension hashing scheme, Future Generation
Communication and Networking, vol. 2, pp. 141-145, 2007.

J. Kornblum, Identifying almost identical files using context trig-
gered piecewise hashing, Proceedings of the Sixzth Digital Forensic
Research Workshop, 2006.

R. Merkle, A certified digital signature, Proceedings of the Ninth
International Cryptology Conference, pp. 218-238, 1989.

The PC Guide, Hard Disk Drives (www.pcguide.com/ref/hdd).

M. Wang, S. Yiu, L. Hui, C. Chong, K. Chow, W. Tsang, H. Chan
and K. Pun, A hybrid approach for authenticating MPEG-2 stream-
ing data, Proceedings of the International Workshop on Multimedia
Content Analysis and Mining, pp. 203-212, 2007.

