Chapter 14

FORENSIC WEB SERVICES

Murat Gunestas, Duminda Wijesekera and Anoop Singhal

Abstract Choreography, orchestration and dynamic invocation allow new web ser-
vices to be composed from existing ones. However, these compositions
create service interdependencies that can be misused for financial fraud
and other illegal purposes. When a misuse is reported, investigators
have to navigate through collections of logs to recreate the invocation
scenario in order to evaluate the misuse claims. We propose the cre-
ation of forensic web services that can securely maintain transaction
records between web services. An independent entity could use the
stored records to reproduce the complete transaction history when in-
vestigating a misuse claim.

Keywords: Web services, service oriented architecture, transaction forensics

1. Introduction

Web services are being used for many commercial, government and
military purposes. New web services can be created by seamlessly inte-
grating existing web services using techniques such as choreography, or-
chestration, dynamic invocation and brokering. These service-level com-
positional techniques create complex dependencies between web services
of different organizations. When they are exploited, multiple servers
and organizations are affected, resulting in considerable financial loss
and infrastructure damage.

Investigating web service incidents requires that the dependencies be-
tween service invocations be retained in a neutral and secure manner
so that the alleged activity can be recreated while preserving evidence
that could lead to and support prosecution. Evidence extracted from
web servers, such as XML firewall alerts from endpoint services and web
server log records, have limited forensic value. Defendants can claim

164 ADVANCES IN DIGITAL FORENSICS 1V

that they did not send the messages in question or that the plaintiffs
altered the logs to make their cases.

To address these issues, we propose Forensic Web Services (FWSs),
which preserve the evidence needed to recreate composed web service
invocations independent of the parties with vested interests. Note that
a simple non-repudiation argument with multiple log records has no
forensic value. Also, web service forensics cannot be treated as a bilateral
problem between two web services because of dynamic compositions.
Consequently, FWSs provide web-service-based forensic capabilities to
web services. This requires FWSs to be integrated with web services
that require them; these web services are referred to as customer web
services. In order to do so, FWSs provide a centralized service access
point to customer services. The information retained by FWSs as a
trusted third party can be provided to forensic examiners. Previous
proposals for monitoring web services [6] and generating evidence [10,
16, 26] are primarily for business purposes. We are not aware of similar
applications that support forensic investigations.

Organizations that are tightly integrated through web transactions
and processes can benefit from FWSs in many ways. They can hold their
partner services accountable when their vulnerabilities affect transaction
confidentiality, availability, etc. Also, the details of malicious activity
can impact punitive measures and damage claims. We show that non-
repudiable logging of critical information exchanges is an effective way to
meet these needs. Some logging and processing approaches already exist
for web services [5, 6, 28]. Also, Sremack [30] has proposed an approach
for conducting online investigations. However, these approaches do not
employ a trusted third party to generate and preserve evidence or offer
conclusive evidence as provided by the FWS framework.

2. Web Service Attacks

Numerous web service attacks, such as WSDL/UDDI scanning, pa-
rameter tampering, replays, XML rewriting, man-in-the-middle attacks,
eavesdropping and routing detours have been identified [7-9, 17, 18,
20, 27] and characterized (see, e.g., [31, 33]). To motivate the need
for FWSs, we discuss the cross-site scripting (CSS) attack [9], which is
presented in Figure 1. An attacker with stolen credentials injects ma-
licious data, invoking an update operation on a weather service that
stores a script (including instructions to steal cookies) in web browsers.
Next, a web application, say Portal Web Application in Figure 1, re-
trieves this malicious data when invoking a get operation and publishes
weather information to its subscribers in HTML, thereby making the

Gunestas, Wijesekera & Singhal 165

Portal Web Posr‘:f‘llitv:b
Application (Ending Point
(Victim) for CSS)
S
HTML content Q
with mal scripts
P HTML content %
NG with mal scripts Web Service
@’ Messaging
%

'/
1

N\
. conten (Weather

Tarcet Client Web Service
arget Clien ‘ (Stepping
P I dat
(6.0, cookies) %’ St::"e)

‘(’:;s_‘::':o'k‘f:;‘; Target Client

Target Client

NI

Personal data Web Service
(e.g. cookies) Messaging
3
% Meteorology
o Web Service
Fishing Net (Starting Point
Application for CSS)

Attacker

Figure 1. Cross-site scripting attack.

subscribers send their personal information (stored in cookies) to the
attacker’s Fishing Net Application.

3. Forensic Web Services Framework

The Forensic Web Services (FWSs) framework consists of two services.
One generates pairwise evidence when transactions occur between pairs
of web services. The other composes evidence generated from pairwise
transactions and creates complex transaction scenarios on demand.

The FWSs framework uses trusted third parties that sit in between
transactions. To obtain forensic services, all web services must sign up
with a FWS (Figure 2), and all FWSs agents must cooperate by pro-
viding relevant pairwise transactional evidence that they have stored.
Four roles are involved in the process: sender, receiver, operator FWS
and non-operator FWS. The operator FWS refers to a FWS selected by
either party to manage the steps listed below; the non-operator FWS
belongs to the other party. A FWSs registry is available to locate all
registered FWSs servers. FWSs systems must satisfy the following re-
quirements:

166 ADVANCES IN DIGITAL FORENSICS IV

FWSs-Registry
and Other

Services

FWS-1
Member
WSs
Handlers

FWS-3
Member
WSs
Handlers

- Comprehensive

n Evidence

| Generation Flows

l Pairwise Evidence
| 4= — —» Generation Flows
(WS-Forensics)

<4——» FWSs Service
Invocations

FWS-2 Member WSs
Handlers

Figure 2. Forensic Web Services framework.

m The web service call stack must be enriched with a WS-Forensics
layer.

®m A message format is required to communicate with WS-Forensics
layer messages and store them in FWSs servers.

= All web services must use a client agent that re-routes their trans-
actional messages through FWSs servers.

s The underlying system must provide a trust base and crypto-
graphic services.

The web service stack has three layers: the bottom layer consists of
SOAP messages, the middle layer WS-SecureConversations and the top
layer WSDL specifications (Figure 3). A forensic layer is added between
the middle and top layers to re-route transactions through FWSs servers.
The sender web service and receiver web service communicate using their
WSDLs independently of the underlying WS-Forensics layer.

WS-Forensics uses the following message format:

(#session|#message| #signatureK (#session|#message /sequence
|#message /envelope))
where # refers to the points in XML format, | denotes concatenation
and / points to the subparts of elements. Also, “session” identifies a

Gunestas, Wijesekera & Singhal 167

Sender WS Receiver WS
Forensic WS
WSDL o A WSDL
WS-Forensics AWS-Forensics @ WS-Forensics
WS-SecConv. WS-SecConv. WS-SecConv.
WS-Trust WS-Trust WS-Trust
SOAP Y|e—» (6 SOAP V| e—p» |e sOAP

Figure 3. 'WS-Forensics stack.

WS-Forensics conversation and “message” is the upper layer content
and its sequence number in the conversation. Both endpoints (sender
and receiver) sign a session.

FWSs store messages in two formats: LogRecordIndex (LRI) and Lo-
gRecord (LR) without signatures, where LRI records a single fwsMes-
sage, LR stores entire WS-Forensics sessions, including all fwsMessages
delivered to and/or generated by FWSs. LRIs are stored at both end-
points while LRs are stored only at the operator FWS. FWSs also
timestamp all messages. LR contains a record index with the final
timestamp, status and the last sequence value of the conversation. All
transaction information is reliably intercepted and re-routed through
FWSs servers using sender and receiver processes positioned in front
of each web service endpoint. The sender process uses the FWSs han-
dler exposed by the forensics layer, adds the extra routing information
to conform with the WS-Forensics message format and passes it to the
WS-SecureConversation or WS-Trust handler exposed by the WS-Trust
layer. Similarly, the receiver process verifies the signatures, extracts the
SOAP message and passes it to the intended service or port type.

WS-Forensics is designed to run over a secure layer with the fol-
lowing services (that are already satisfied by WS-Trust [21] and WS-
SecureConversation [22]):

m Authentication: Senders, receivers and FWSs nodes.

m Delegated Authentication: As a trusted third party, FWSs
nodes authenticate themselves to the receiver on behalf of the
sender.

» Channel Confidentiality and Integrity: FWSs nodes must
ensure the confidentiality and integrity of channels between senders
and receivers.

m Reliability: Messages in channels between FWSs nodes and cus-
tomer nodes must be reliable.

168 ADVANCES IN DIGITAL FORENSICS IV

Sender WS Forensic WS Receiver WS

FWSMessage Seq:1

t1

FWSMessage Seq:1

FWSMessage Seq:2

FWSMessage Seq:2 {2 —FWSMessage Seq:3

Figure 4. Operator FWS managing SELP.

4. Collecting Pairwise Evidence

FWSs collect pairwise transactional evidence using the Simple Evi-
dence Layer Protocol (SELP) [10]. Four roles are employed: sender,
receiver, operator FWS and non-operator FWS. The following steps are
performed by the operator FWS (see Figures 4 and 5):

1. The operator FWS receives MsgSeq.1, which contains (#session|
#message|#signatureSender-K(#session|“1” |#env)).

2. It validates and stores the message, creates an LR and LRI for
MsgSeq.1 and notifies the non-operator FWS.

3. It forwards MsgSeq.1 to the receiver and starts a timer.

4. If the response MsgSeq.2 does not reach in time, the operator FWS
signs MsgSeq.-1((#session|#message|#signatureF WS-K (#session
|“-1”|#env))), stores the message and sends it back to the sender;
also, it creates an LRI, which is sent to the non-operator FWS.
However, if MsgSeq.2 ((#session|#message|#signatureReceiver-K
(#session|“2” |#env))) arrives on time then, it stores the message
and forwards it to the sender; also, it creates an LRI, which is sent
to the non-operator FWS.

5. It creates, signs and sends MsgSeq.3 ((#session|#message|#signa
tureFWS-K (#session| “3” |#env))) to the receiver. It also stores
the message in the LR and sends the LRI to the non-operator FWS.
Dependencies between stored data are maintained using LRIs.

The SELP protocol and FWSs event logs retain the evidence required
to verify the sender’s claims of timely transmission, the receiver’s claims

Gunestas, Wijesekera & Singhal 169

Non-Operator

Operator FWS
FWS FWSofReceiver
EWSofSender

T
Sender WS |
T
' I LRI(MsgSeq.1)/: Receiver WS
|

Figure 5. Operator FWS storing pairs.

not to have received messages in a timely manner, either party’s claims
of non-availability of the other party, and any contractual violations.

5. Creating Evidence for Scenarios

This section describes the main data types and algorithms used to
collect and preserve evidence of pairwise transactions involving web ser-
vices.

FWSs store information exchanged between pairs of services in LRI
tables that are used to generate service dependencies expressed as a
dependency graph. Dependency graph nodes have the complex type
WebServiceNode, where each WebService Node has a unique ID and field
NodeLevel, which expresses the degree of adjacency of the node to the
root of the graph. The field NodeThreshold expresses the maximum de-
gree of adjacency from the root. The edges of the graph are represented
using the complex data type LogRecordEdge with SenderID and Re-
cetverID attributes. An authorized requestor generates evidence bags by
providing the required arguments using generateEvidenceBagPortType,
a port that calls other FWSs to collect dependent evidence residing in
its log records. FWSs use StorageService, MembershipQueryService, Se-
curityService, EvidenceBagService and other auxiliary internal services.
The FWSs Registry manages the member registration processes. The
operation getF'WSPortType called by the FWSs nodes retrieves the 1D

170 ADVANCES IN DIGITAL FORENSICS IV

—

partnerLinks: SecurityService; VirusScannerService;
SignatureDetectionSrv; RootFWS; Requestor; FWSRegistry
variables: EvidenceBagln; EvidenceBagOut; LogRecordEdges;
DependentsBagln; DependentsBag;
LogRecordEdgesForEvidenceGraph;
begin
receive EvidenceBagln from Requestor
invoke getFWSs(RootWS) in FWSRegistry
assign RootFWS partnerLink
assign EvidenceBagln to DependentsBagln
invoke collectDependents(DependentsBagIn) in RootFWS
assign DependentsBag to LogRecordEdges
0. assign distinct ArrayOfFWSTTP from LogRecordEdges
«—!— Invokes a set of FWSTTPs to get actual LREs by their LRIs —
«—!— using flowN loop structure —
11. flowN N=‘countNodes(’ ArrayOfFWSTTP ‘...)’ indexVariable="index’

B

500N oot w

12. partnerLink: OwnerFWSOfLogRecords

13. variables: LogRecordEdgesOutput

14. assign OwnerFWSOfLogRecords partnerLink

15. invoke getLogRecordsByValue in OwnerFWSOfLogRecords

16. receive LogRecordEdgesOutput as getLogRecordsByValue callback
«—l—————— Stores the result

17. append LogRecordEdgesForEvidenceGraph

from LogRecordEdgesOutput
18. end of flowN
19. assign LogRecordEdgesForEvidenceGraph to EvidenceBagOut

20. invoke scan(EvidenceBagOut) in VirusScannerService

21. invoke detect(EvidenceBagOut) in SignatureDetectionSrv
22. invoke signAndEncrypt(EvidenceBagOut) in SecurityService
23. reply EvidenceBagOut to Requestor

24. end

Figure 6. Building evidence bags.

of the registered FWS of any web service. The operation registrylnfo-
PortType is used for member registration and de-registration.

FWS build digital evidence bags [11] using the pseudo BPEL algo-
rithm presented in Figure 6 [14]. First, a requestor starts building digi-
tal evidence bags (Line 4) by invoking the generate EvidenceBag process
with the suspected root WebServiceNode, StartTime (defines the start
time), TimeThreshold (defines the time range) and Node Threshold (de-
fines the node range), which are included in the FvidenceBagln message.
In Lines 5-8, the FWS gets the FWS that controls the root node, which
is the start point for the collection process. The FWS assigns the address
of the rootFWS partner link and continues by invoking the collectDe-
pendents process, which runs recursively over many FWSs with the De-
pendentsBagIn message as parameter (see Figure 7 for details). Depen-

Gunestas, Wijesekera & Singhal 171

«—I— Starts extracting values (timeThreshold, nodeThreshold, etc.) —
- from DependentsBagln and initializes creating the —
«—!— WebServiceNodes and LogRecordEdges instances of GRAPH —

1. baseTime = startTime - timeThreshold
2. for each logRecordIndex LRI in FWS {
3. timeThreshold=timeTreshold - (startTime - LRI.timeStamp)
4. start Time=LRI.timestamp
5. for each webServiceNode WS in GRAPH {
6. if (SenderWS | ReceiverWS € LRI & LRI ¢ GRAPH
& R.timestamp > baseTime & WS.nodeLevel
< WS.nodeThreshold) {
7. Add LRI as edge into GRAPH
8. if (LRI’s partner web service PWS ¢ GRAPH) {
9. PWS.nodeLevel=WS.nodeLevel+1
10. PWS.nodeThreshold=nodeThreshold
11. Add the PWS into GRAPH }
12. if (LRI's PWS ¢ this. FWS & LRI's PWS ¢ GRAPH) {
13. NeighbourFWS = getFWS(PWS)
14. NeighbourFWS.collectRecords(DependentsBagIn)
15. Merge DependentsBagOut into GRAPH}}}}

16. return GRAPH in DependentsBagOut format

Figure 7. Collecting dependent processes.

dentsBagln is assigned the values in the EvidenceBagln message in Line
7. The FWS is returned a final DependentsBag message by the children
of the recursive call and the returned message contains LogRecordEdges
only with index information (LRI). In order to convert LogRecordEdges
with LRIs into LogRecordEdges containing LRs (actual contents of mes-
sages), the generateFEvidenceBag process first extracts distinct fwsttps
from LogRecordEdges into an array in Line 10. In Lines 11-8, the flowN
structure in BPEL is used to create dynamic parallel execution scopes
for each fwsttp.location. For each fwsttp.location, dynamic partner links
OwnerFWSOfLogRecords are also created. Then, getLogRecordsBy Value
operations in these partner links are invoked for each parallel scope and
the results are combined in the LogRecordEdgesForEvidenceGraph. Lo-
gRecordEdgesForEvidenceGraph is assigned to EvidenceBagOut, which
constitutes the actual FEwvidenceGraph document. Other bookkeeping
procedures such as scanning and signature verification are applied be-
tween Lines 20 and 22. Finally, a response is sent to the requestor in
Line 23.

The generateEvidenceBag process in Figure 6 is a wrapper of the col-
lectDependents process inspired by King and Chen’s dependency graph
algorithm [15] and Wang and Daniels’ evidence graph generation algo-
rithm [32]. The algorithm in Figure 6 first creates instances of WebSer-

172 ADVANCES IN DIGITAL FORENSICS 1V

viceNodes and LogRecordEdges and loads the DependentsBagln message
into these objects setting the WebServiceNode part as a root node for
the execution of the algorithm. All the other values in the input mes-
sage are loaded into the corresponding variables (e.g., time Threshold and
nodeThreshold). After the initialization phase, the algorithm listed in
Figure 7 is used. The created objects WebServiceNodes and LogRecord-
Edges are the nodes and edges of the dependency graph (GRAPH). The
GRAPH is constructed based on two facts. First, the algorithm tra-
verses the LRIs in decreasing order of time to search for dependent web
service nodes among the sender/receiver fields of the log records; these
are inserted into LogRecordEdges, which sets the SenderID, ReceiverlD
and DependencyDirection attributes provided their timestamp is within
the time threshold. Second, when a new partner web service is found in
the LRIs, it is added to the WebServiceNodes object only if the current
web service node’s nodeLevel is less or equal to nodeThreshold.

6. Related Work

To the best of our knowledge, no distributed forensic framework exists
for investigating interrelated web services. However, the research efforts
discussed in this section share some common features with our objectives
and /or methods.

The FWSs design is influenced by WS-NRExchange [26], especially
its implementation of fair non-repudiation using the Coeffey-Saidha pro-
tocol [4]. However, unlike FWSs, WS-NRExchange does not address
choreography and service compositions.

Herzberg and Yoffe [10] proposed the use of an evidence layer for e-
commerce transactions located on top of the transport layer. The FWSs
framework incorporates their SELP specification, which was designed
for the evidence layer.

FWSs use trusted third parties for pairwise evidence generation as do
Coffey and Saidha [4]. Certified e-mail protocols [19] have also been used
without trusted third parties [16]. Onieva and co-workers [23] proposed
the use of inline trusted third parties for e-commerce transactions with
multi-recipient cases through these intermediaries, but not for forensic
applications. Bilal and colleagues [3] have used BPEL to implement a
non-repudiation protocol for web services; however, their solution does
not use trusted third parties and, therefore, lacks message content han-
dling capabilities.

FWSs use handlers in an existing web service architecture [1, 2, 12,
24]. Axis2 [25] also implements web service standards such as Rampart

Gunestas, Wijesekera & Singhal 173

for WS-SecureConversation, Rahas for WS-Trust, Sandesha2 for WS-
RM, and Kandula for WS-Coordination [13].

WSLogA [5] tracks web service invocations by logging them using
SOAP intermediaries. However, unlike FWSs, it does not have a dis-
tributed collection mechanism for gathering comprehensive forensic evi-
dence from services sharing multiple servers.

Research in the area of network forensics has also inspired the design of
the FWSs framework. These include Wang and Daniels’ use of intrusion
detection system alerts to generate evidence graphs for network forensic
analysis [32] and ForNet’s use of router logs in its distributed network
forensics framework [29].

7. Conclusions

Composed, choreographed and stand-alone web services span many
applications. Consequently, the exploitation of a vulnerability in one
service can impact many other services. The Forensic Web Services
framework supports the investigation of attacks and the assignment of
blame. This capability is provided as a service to other web services by
logging service invocations. All the logged data is preserved in a digital
evidence bag, which can be used to recreate attacks in a forensically-
sound manner.

References

[1] Apache Software Foundation, Axis2 Architecture Guide (ws.apache
.org/axis2/0.95/Axis2 ArchitectureGuide.html), 2006.

[2] BEA Systems, Specifying SOAP handlers for a web service, BEA
WebLogic Workshop Help (Online), San Jose, California (edocs.bea
.com/workshop/docs81/doc/en/core/index.html).

[3] M. Bilal, J. Thomas, M. Thomas and S. Abraham, Fair BPEL
processes transaction using non-repudiation protocols, Proceedings

of the IEEE International Conference on Services Computing, pp.
337-340, 2005.

[4] T. Coffey and P. Saidha, Non-repudiation with mandatory proof of
receipt, ACM SIGCOMM Computer Communication Review, vol.
26(1), pp. 6-17, 1996.

[5] S. da Cruz, L. Campos, M. Campos and P. Pires, A data mart
approach for monitoring web services usage and evaluating quality

of services, Proceedings of the Twenty-Fighth Brazilian Symposium
on Databases, 2003.

174

[6]

ADVANCES IN DIGITAL FORENSICS 1V

S. da Cruz, M. Campos, P. Pires and L. Campos, Monitoring e-
business web service usage through a log based architecture, Pro-
ceedings of the IEEE International Conference on Web Services, pp.
61-69, 2004.

Y. Demchenko, L. Gommans, C. de Laat and B. Oudenaarde, Web
services and grid security vulnerabilities and threats analysis and
model, Proceedings of the Sixth IEEE/ACM International Work-
shop on Grid Computing, 2005.

S. Faust, SOAP web services attacks (www.net-security.org/dl/arti
cles/SOAP_Web_Security.pdf), 2003.

D. Green, Attacking and defending web services, presented at
the Nebraska CERT Conference (www.certconf.org/presentations
/2006 /files/TA2.pdf), 2006.

A. Herzberg and I. Yoffe, The Delivery and Evidence Layer, Report
2007/139, Cryptology ePrint Archive (eprint.iacr.org/2007/139
.pdf), 2007.

C. Hosmer, Digital evidence bag, Communications of the ACM, vol.
49(2), pp. 69-70, 2006.

IBM Corporation, JAX-RPC handlers collection, Armonk, New
York (publib.boulder.ibm.com/infocenter /wasinfo/v6r0/index.jsp?
topic=/com.ibm.websphere.pmc.express.doc/sibusresources/JAXR
PC Handler_CollectionForm.html), 2007.

C. Jayalath and R. Fernando, A modular architecture for secure
and reliable distributed communication, Proceedings of the Second
International Conference on Awailability, Reliability and Security,
pp- 621-628, 2007.

M. Juric, Business Process Ezxecution Language for Web Services,
Packt Publishing, Birmingham, United Kingdom, 2006.

S. King and P. Chen, Backtracking intrusions, ACM SIGOPS Op-
erating Systems Review, vol. 37(5), pp. 223-236, 2003.

S. Kremer, O. Markowitch and J. Zhou, An intensive survey of fair
non-repudiation protocols, Computer Communications, vol. 25(17),
pp- 1606-1621, 2002.

J. Mallery, J. Zahn, P. Kelly, W. Noonan, E. Seagren, P. Love,
R. Kraft and M. O’Neill, Hardening Network Security, McGraw-
Hill/Osborne, Emeryville, California, 2005.

M. Mclntosh and P. Austel, XML signature element wrapping at-
tacks and countermeasures, Proceedings of the Second ACM Work-
shop on Secure Web Services, pp. 20-27, 2005.

Gunestas, Wijesekera & Singhal 175

[19]

[20]

[21]

22]

23]

[24]

[25]

[27]

S. Micali, Certified e-mail with invisible post offices, presented at
the Sixth Annual RSA Data Security Conference, 1997.

W. Negm, Anatomy of a web services attack: A guide to threats
and preventative countermeasures (www.bitpipe.com/detail/RES
/1084293354_294.html), 2004.

OASIS Web Services Secure Exchange Technical Committee, WS-
Trust V1.0, OASIS (www.oasis-open.org/committees/download
.php/16138 /oasis-wssx-ws-trust-1.0.pdf), 2006.

OASIS Web Services Secure Exchange Technical Committee, WS-
SecureConversation 1.3, OASIS (docs.oasis-open.org/ws-sx/ws-sec
ureconversation /200512 /ws-secureconversation-1.3-os.html), 2007.

J. Onieva, J. Zhou, M. Carbonell and J. Lopez, Intermediary non-
repudiation protocols, Proceedings of the IEEE International Con-
ference on E-Commerce Technology, pp. 207-214, 2003.

Oracle, Using JAX-RPC handlers, Oracle Application Server Web
Services Developer’s Guide, Redwood Shores, California (down-
load.oracle.com/docs/cd/B31017_01/web.1013/b28974 /jaxrpchand
lers.htm), 2006.

S. Perera, C. Herath, J. Ekanayake, A. Ranabahu. D. Jayasinghe, S.
Weerawarana and G. Daniels, Axis2: Middleware for next genera-
tion web services, Proceedings of the IEEFE International Conference
on Web Services, pp. 833-840, 2006.

P. Robinson, N. Cook and S. Shrivastava, Implementing fair non-
repudiable interactions with web services, Proceedings of the Ninth
IEEE International EDOC Enterprise Computing Conference, pp.
195-206, 2005.

J. Rosenberg and D. Remy, Securing Web Services with WS-
Security: Demystifying WS-Security, WS-Policy, SAML, XML Sig-
nature and XML Encryption, Sams Publishing, Indianapolis, Indi-
ana, 2004.

M. Rouached and C. Godart, Analysis of composite web services us-
ing logging facilities, Proceedings of the Second International Work-
shop on FEngineering Service-Oriented Applications: Design and
Composition, pp. 74-85, 2006.

K. Shanmugasundaram, N. Memon, A. Savant and H. Bronnimann,
ForNet: A distributed forensics network, Proceedings of the Second
International Workshop on Mathematical Methods, Models and Ar-
chitectures for Computer Networks Security, pp. 1-16, 2003.

176 ADVANCES IN DIGITAL FORENSICS IV

[30] J. Sremack, Investigating real-time system forensics, Proceedings
of the First International Conference on Security and Privacy for
Emerging Areas in Communication Networks, pp. 25-32, 2005.

[31] A. Vorobiev and J. Han, Security attack ontology for web services,
Proceedings of the Second International Conference on Semantics,
Knowledge and Grid, p. 42, 2006.

[32] W. Wang and T. Daniels, Building evidence graphs for network
forensics analysis, Proceedings of the Twenty-First Annual Com-
puter Security Applications Conference, pp. 254-266, 2005.

[33] W. Yu, P. Supthaweesuk and D. Aravind, Trustworthy web services

based on testing, Proceedings of the IEEE International Workshop
on Service-Oriented System Engineering, pp. 159-169, 2005.

