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ABSTRACT 

Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., 
offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall 
thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health 
monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided 
waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided 
access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness 
of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion 
damage was monitored based on the effect on the wave propagation and interference of the different modes. The change 
in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found 
to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential 
for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance. 
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1. INTRODUCTION 

Corrosion is one of the limiting factors for the service life of ships and offshore structures due to the corrosive marine 
environment leading to thickness reduction in metallic structures [1, 2]. It is therefore essential that these structures are 
monitored nondestructively to predict and hence prevent failure. Corrosion occurs in several different forms, with either 
pitting corrosion or generalized thickness reduction due to ‘uniform’ corrosion as common types prevalent in ship hulls 
[1]. Pitting corrosion is difficult to detect as it is typically localized. Ultrasonic methods have been shown to have good 
sensitivity to small changes in thickness and both surface and subsurface flaws. In recent years, advances have been 
made in the development of low frequency guided ultrasonic wave inspection systems for the monitoring of large 
technical structures, e.g., offshore oil platforms, oil storage tanks, or pipelines [3, 4]. Such structures are often 
constructed using large plate-like components and are subject to corrosion and fatigue damage during their service life 
[5, 6]. Efficient monitoring of the structural integrity of large areas of such structures from a single monitoring location 
can be achieved using a guided ultrasonic wave array system [7, 8]. Guided waves have stress distributed through the 
thickness of the structure and can propagate over large distances. At structural defects, e.g., severe thickness reduction 
due to corrosion pitting, the guided wave mode is scattered and part of its energy reflected back towards the monitoring 
location. This allows in principle for the efficient nondestructive testing and monitoring of large technical structures [9]. 
Guided wave monitoring systems usually operate at low frequencies below the cut-off frequencies for higher order wave 
modes to generate only the fundamental (A0 or S0) wave modes, simplifying signal interpretation. The low frequency 
operating range necessitates larger wavelengths and thus limited sensitivity to small defects.  

The application of guided ultrasonic wave modes in the higher frequency-thickness range has been investigated for non-
destructive testing purposes [10]. The S0 mode (around 5 MHz mm) was used for corrosion detection in aircraft 
structures [11], and longitudinal modes (above 15 MHz mm) were employed for plate inspection [12]. This type of 
ultrasonic waves allows for the inspection of structures over reasonably long distances, and can be employed even if 
local access to the inspected part is not possible. The employed wavelengths are comparable to those commonly used in 
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bulk wave ultrasonic testing (UT), possibly allowing good sensitivity for the detection of small defects [12]. The use of 
high frequency guided waves (coupled Rayleigh-like waves) at around 6.75 MHz mm has been studied for the detection 
and localization of surface defects in plates [13]. This wave type can be interpreted as the superposition of the first anti-
symmetric A0 and symmetric S0 Lamb wave modes [14]. These high frequency guided wave modes in plates are easily 
generated and received selectively above the cut-off frequencies of the higher Lamb wave modes using standard 
Rayleigh wave angle beam transducers. Standard pulse-echo measurements using a Rayleigh angle wedge transducer 
have been shown to allow for the detection of small surface defects in plates. Using a combination of time-of-flight and 
frequency evaluation of the reflected pulse, the defect location and damaged plate side could be determined [15]. 
Rayleigh-like waves were also used for in-situ monitoring of fatigue crack growth in tensile, aluminum specimens [16].  

In the frequency range of interest for this investigation (around 5 MHz mm), there is a slight difference between the 
phase velocities of the first anti-symmetric (A0) and symmetric (S0) Lamb wave modes. Therefore, during propagation 
there is a continual shift in relative phase, causing the transfer of the wave energy between the plate sides. The 
significant distance for this energy exchange, the so-called beatlength [17] or beat wavelength [18], is given by 
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with kA0 and kS0 the wavenumbers of A0 and S0, respectively. This interference depends strongly on both the frequency 
and thickness of the structure, as it is governed by the inverse of the difference between the phase velocities of the two 
fundamental Lamb wave modes. This effect has been investigated in this study to monitor the thickness reduction due to 
generalized corrosion in steel specimens. The concept was in a first step demonstrated by monitoring the thickness 
reduction for milled, uniform thickness specimens to develop reference measurements and gain an understanding of the 
sensitivity of the methodology [2]. During accelerated corrosion of a steel plate specimen the thickness reduction was 
monitored using longitudinal and high frequency guided ultrasonic waves to verify the applicability during actual 
corrosion leading to thicknesses reduction.  

 

 
 

Fig. 1. Accelerated corrosion setup impressing DC current on steel plate specimen in NaCl solution, with steel specimen, 
copper cathode connected to DC source, water tank with filters and heater. 
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3. GUIDED WAVE PROPAGATION FOR UNIFORM THICKNESS REDUCTION 

The first plate specimen was milled in 0.2 mm steps from a uniform thickness of 11.0 mm (+/- 0.01 mm) to a thickness 
of 9.43 mm. For each of the nine available plate thicknesses the guided ultrasonic wave propagation along the center line 
of the specimen was measured and the amplitude at 0.45 MHz (FFT) versus propagation distance curve analyzed. The 
amplitude variation due to the beating effect between the two fundamental Lamb wave modes can be clearly observed in 
Fig. 3. The amplitude decreases as the wave propagates from the excitation location and then periodically increases and 
decreases again. It has to be noted that this effect depends strongly on the frequency-thickness product, so that in the 
time domain the amplitude reduction is less pronounced as the wave pulse contains energy over a range of frequencies. 
The measurement curves do not go to zero amplitude and show some variation over shorter length scale due to an 
interference with higher wave modes and slightly different effective excitation amplitudes for the A0 and S0 modes [21]. 
The measured amplitude curves were fitted using Matlab with the theoretically predicted exponentially decreasing cosine 
curve and good agreement for the principal features can be seen in Fig. 3 for the measurements at different plate 
thicknesses. The experimental beatlength matched well with the theoretically predicted beatlength using Disperse [22] 
with maximum error of less than 8% for all cases (table 1).  

 

 
 

Fig. 3. Measured amplitude of high frequency guided wave at 0.45 MHz (FFT) along milled steel specimen, measured using 
laser interferometer: (a) 11.00 mm; (b) 10.39 mm; (c) 9.80 mm, (d) 9.43 mm thickness; measured amplitude: blue dots; 
exponential fit: red solid line. 
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Table 1. Theoretical and experimentally measured beatlength on milled steel plate specimen. 

Thickness 
[mm] 

Theoretical 
Beatlength

[mm] 

Experimental 
Beatlength 

[mm] 

Error 

11.00 287.5 307.2 6.85% 

10.84 270.2 290.9 7.66% 

10.64 249.8 252.9 1.24% 

10.39 226.1 222.2 -1.72% 

10.14 204.7 198 -3.27% 

10.01 194.3 195.1 0.41% 

9.80 178.4 184.6 3.48% 

9.58 163 165.4 1.47% 

9.43 153.2 153.5 0.20% 
 

4. GUIDED WAVE PROPAGATION FOR CORRODED SPECIMEN 

The accelerated corrosion of the second plate specimen was interrupted regularly at intervals of about 30 hours. For each 
plate thickness the guided ultrasonic wave propagation along the center line of the specimen was measured. The 
amplitude versus propagation distance curve was analyzed and compared to the closest matching curve obtained for the 
milled specimen. Similar behavior with periodic amplitude and decrease due to the wave interference can be seen in  
Fig. 4. The experimental amplitude variation for the corroded plate specimen is similar to the one obtained for the milled 
specimen. The fit of the exponentially decreasing cosine curve matches the amplitude measurements on the corroded 
plate quite well, and the decrease in beatlength with decreasing thickness can be clearly observed. The maximum error 
between theoretical and experimental beatlength is slightly larger than for the uniform (milled) thickness reduction, with 
a maximum error of about 10% (table 2). This slightly reduces the sensitivity for the determination of the plate thickness 
reduction, but would be sufficient to detect generalized corrosion before it affects the structural integrity.      

Shown in Fig. 5 is the experimentally obtained beatlength at 0.45 MHz for the milled and corroded specimens against the 
actually measured plate thickness. Reasonably good agreement with the theoretically predicted beatlength can be 
observed with the decrease in beatlength with specimen thickness. For the thicker specimens the maximum laser 
measurement length was comparable with the beatlength, resulting in a larger error in the value obtained from the fitting 
procedure. This error decreased with reduced beatlength and overall a good match and significant change in beatlength 
can be observed. 

For the maximum change in thickness of about 1.6 mm (14%) the beatlength changed by approximately 46% for both the 
milled and corroded specimen. The method is sensitive enough to allow a determination of the plate thickness reduction 
with a resolution of about 0.2 mm (2% of plate thickness), which would be more than sufficient to detect generalized 
corrosion before it affects the structural integrity of a ship hull or offshore installation.      
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Table 2. Theoretical and experimentally measured beatlength for corroded steel plate specimen. 

Measured  
Thickness  

[mm] 

Theoretical 
Beatlength

[mm] 

Experimental 
Beatlength 

[mm] 

 

Error 

10.80 265.9 274.5 3.23% 

10.67 252.7 270.6 7.08% 

10.49 235.3 259.3 10.20%

10.30 218.3 216.1 -1.01% 

9.82 179.8 183.8 2.22% 

9.60 164.3 168.1 2.31% 

9.42  152.6 162.3 6.36% 
 

 
Fig. 4. Measured amplitude of high frequency guided wave at 0.45 MHz (FFT) along corroded steel specimen, measured 

using laser interferometer: a) 10.80 mm; b) 10.49 mm, c) 9.82 mm, d) 9.42 mm approximate thickness; measured 
amplitude: blue dots; exponential fit: red solid line. 
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Fig. 5. Comparison of theoretically predicted beatlength (solid, red line) against measured beatlength (fit from laser 

amplitude measurements at 0.45 MHz):  milled specimen: blue circles; corroded specimen: black squares. 

5. CONCLUSIONS 

This contribution investigated the monitoring of wall thickness reduction using high frequency guided ultrasonic waves 
propagating along the structure and allowing for the measurement over a reasonable propagation length as compared to 
through-thickness point measurements. The required high frequency guided wave modes were excited using standard 
wedge transducers and measured using a laser interferometer. The length scale of the amplitude beatlength due to the 
interference of the wave modes was quantified from a fit of the experimentally measured amplitude curves along the 
propagation distance. Uniform plate thickness reduction was achieved by milling the plate specimen to the required 
thicknesses and good agreement of the measured beatlength with theoretical predictions was achieved, demonstrating the 
sensitivity of the proposed methodology. Wall thickness loss due to accelerated corrosion resulted in a comparable 
reduction of beatlength and could be measured with similar precision. The achieved sensitivity would be sufficient to 
detect generalized corrosion before it affects the structural integrity, e.g., of ship hull plates. The measurement 
methodology will be further developed using standard wedge transducers to allow for point measurement and evaluation 
of the beatlength and thus plate thickness reduction, allowing for the fast measurement in an industrial environment. 
Further investigations will explore the sensitivity of the high frequency guided ultrasonic waves to typical pitting 
corrosion.        
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