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Abstract 10 

A number of widely referenced environmental and logistic advantages suggest biomass 11 

as an interesting feedstock to obtain energy in large quantities. One of the most 12 

important problems when using biomass is the amount of solid wastes produced, which 13 

causes deposition and corrosion phenomena (slagging and fouling) entailing energy 14 

efficiency decrement and maintenance problems.  15 

This work focuses on the study of ashes from eighteen different biomass samples, 16 

including energy crops, agricultural, industrial and forestry wastes and commercial 17 

fuels. 18 

Morphology (SEM) and grain size (PSD-LD) studies showed a homogeneous structure 19 

with low quantities of health risky fine particles for most samples after 550ºC burning. 20 

Compositional studies (EDXA, XRF) suggested that some of the studied samples, such 21 

as almond shell or rice husk, may respectively present high deposition and corrosion 22 

risks. 23 
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1. Introduction 29 

Constant growth in mankind’s energy requirements over the last century in addition to 30 

the high dependence on fossil fuels has outlined important environmental challenges. In 31 

this scenario, renewable energy sources appear to be a sustainable tool to complement 32 

and gradually substitute fossil fuels in energy production. Among them, biomass, 33 

regarded as a feedstock for thermal conversion, presents some advantages such as its 34 

neutrality concerning CO2 emissions during its life cycle [1] or its low N and S content 35 

that entails low NOx and SO2 emissions [2]. Besides this, biomass is considered as an 36 

autonomous resource which partially avoids foreign energy dependence [3]. Because of 37 

the advantages when using biomass for energy production, it has experienced a huge 38 

development in recent years.Nevertheless, it also presents some disadvantages, being 39 

one of the most important the generation of solid wastes [4]. Ash presence is highly 40 

negative for the combustion process as it involves energy efficiency losses and higher 41 

maintenance expenses due to unburnts and depositions (slagging and fouling) that cause 42 

thermal resistances in heat exchangers, corrosion phenomena and the increase of fumes 43 

and aerosol emissions [5, 6]. 44 

Ashes generated during the biomass combustion may present a variable composition 45 

with a wide range of mineral and inorganic components included in its structure. These 46 

can proceed from the vegetal biomass itself or from other contaminants added during 47 

pre-treatment or transport phases. Because of this, any quality control criterion suggests 48 

the exhaustive knowledge of ash characteristics, both morphological and compositional.  49 



To that aim, there are several analytical techniques available, commonly used by several 50 

authors that supply complete information about biomass samples. In that way Scanning 51 

Electron Microscopy (SEM) coupled to an Energy Dispersive X-Ray Analyzer 52 

(EDXA) allows simultaneous morphological and semi-quantitative compositional 53 

information of the studied sample. Biagini [7] and Umamaheswaran [8] use these 54 

techniques to study the structural variations of some biomass fuel after combustion 55 

processes. Xiao [9] evaluates the structural evolution of biomass ashes after different 56 

ashing temperatures. Nortey Yeboah [10] characterizes coal ashes with high carbon 57 

content that will be later co-fired with biomass. Carrasco [11] uses SEM to characterize 58 

bottom ash from biomass to use in concrete formulation and Abraham [12] studies 59 

several ash samples trying to find reuse for them in fertilizer, cement or pollutant 60 

adsorbent industries. Wang S. [13] employs EDXA to obtain the elemental composition 61 

of biomass fly ash. 62 

Sample’s morphology and grain size information can be obtained by developing 63 

Particle size distribution (PSD). Bridgeman [14] and Mediavilla [15] sieved and 64 

weighted fractions of biomass fuels to study the effect of raw materials size on 65 

combustion properties and kinetic parameters, respectively. Becidan [16] determined fly 66 

ash grain distribution, by previously dividing them in size cuts using an Electrical Low 67 

Pressure Impactor. Roy [17] studied particle size distributions of biomass samples by 68 

direct measure on SEM images and Wang G. [18] did the same to fly ashes by laser 69 

diffraction (LD). 70 

To obtain chemical composition data other techniques besides EDXA can be used. One of 71 

the most common is X-Ray Fluorescence (XRF). Reviews fromVassilev [19, 20] 72 

provide plenty of information about the elementary composition of several biomass 73 

samples. Some other authors also use this technique to study the biomass-ash deposition 74 



tendency of different ashes by using predictive coefficients [21, 22] or ternary diagrams 75 

[23, 24].  76 

Thermo  Gravimetrical Analysis (TGA) is used by several authors to thermally 77 

analyze different biomass samples and determine characteristic points in their burning 78 

profiles such as their ignition point, peak temperature, burn out temperature [25, 26] or 79 

kinetic parameters [27]. Our research group has recently proposed a mechanism to 80 

obtain proximate analysis data by using this analytical tool [28]. 81 

This work focuses on obtaining ash behaviour data of several different biomass samples 82 

and comparing them in order to determine which ones would be most suitable for use in 83 

further combustion processes. 84 

 85 

2. Materials and methods 86 

2.1 Samples 87 

In this work, eighteen different biomass samples were tested after air dried and grinded 88 

to assure homogeneity. They were chosen as represent all the classification groups, e.g. 89 

as these suggested by Ávila [29]. Energy crops (sorghum –S- and thistle –THI-), 90 

agricultural feedstocks (beetroot pellets –BP-, straw pellets –SP- and rice husk –RH-,), 91 

industrial sources (almond shell –AS-, coffee husk –CH-, olive stone –OS-, pine kernel 92 

shell –PKS- and vine orujillo –VO-) and forestry wastes (olive tree pruning –OTP-, pine 93 

apple leaf –PL-, and vine shoot chips –VSC-). In addition to this some of the most 94 

common commercial fuels currently available at the Spanish market were studied 95 

(briquette –BRI-, charcoal –CC-, pine and pine apple leaf pellets –PPLP-, wood chips –96 

WC- and wood pellets –WP-) 97 

General combustion-data for these samples is provided in Table 1. Their ashes obtained 98 

at 550ºC were also studied. This temperature was chosen as it is considered by several 99 



authors [30, 31, 32] to be the optimum one to determine their properties. Proximate and 100 

ultimate analysis data and higher heating values (HHV) are summarized from previous 101 

works by this research group [33].  102 

2.2 Experimental equipment  103 

SEM images were obtained, in this work, using a MEB JEOL-6100 equipment coupled 104 

to an INCA Energy 200 EDX analyser, to simultaneously obtain 3D images and semi-105 

quantitative elemental analyses. To this aim samples were previously air dried and 106 

grinded under 500 µm and covered with a thin gold layer, as they must be conductant.  107 

Particle size distribution was developed with a laser diffractometer Malvern 108 

Intrument’sMastersizer S2000. Samples were originally burned at 550ºC and the residue 109 

grinded to avoid coalescence, and measure real particle size 110 

XRF data was obtained using Phillips PW2404 equipment joined to a PW2540 111 

automatic sample loader. Samples ashes were obtained at 550ºC and later burnt at 112 

900ºC in order to obtain the mineral matter. Nine elements data (Si, Al, Fe, Mn, Mg, 113 

Ca, Na, K, Ti and P) were obtained, considered as oxides in its highest oxidation level.  114 

TGA experiments were developed in a Perkin Elmer STA 6000 thermobalance, using 115 

10mg of sample and a slow heating rate (5ºC/min) from room temperature up to 900ºC 116 

in an oxidant air-atmosphere with an air flow of 40 ml/min. 117 

3. Theory and calculation 118 

Slagging and fouling are two phenomena, directly related to deposition and corrosion, 119 

commonly observed when operating a biomass-powered combustion system. The first 120 

of them is produced at high temperature zones, mainly on grills or chamber walls, 121 

whilst the second istypical of low temperature zones, like the heat exchanger surfaces. 122 

They depend on the fuel’s chemical composition, conversion technology used and 123 

operating conditions [19]. 124 



XRF data is a useful tool to calculate some deposition-predictive indexes, some of 125 

which are included in Table 2, as this phenomenon is usually increased by high 126 

concentrations of low melting point elements, like Na, K, S, Cl (alkali sulphates or 127 

chlorides) and decreased by high melting point ones such as Ca, Mg or S (calcium or 128 

magnesium silicates).  129 

4. Results and discussion 130 

4.1 Morphology and size 131 

Due to space requirements, only the SEM images that show the most relevant facts are 132 

included in this work. In this way a yellow marked fibrous structure can be observed in 133 

the wood chips sample (figure 1). This is due to the high lignin levels of woody fuels 134 

which make them harder and more difficult to grind homogenously. Structural holes 135 

(blue) that confer this fuel a high specific surface but low density, are also detected. On 136 

the other hand, harder samples such as pine kernel shell (Figure 2a) present, before 137 

burning, isolated particles of high size and quite regular sphere-shape. Those two effects 138 

co-exist in the pine and pine apple leaf pellets sample (Figure 2b and 2c) which is a mix 139 

between a woody fuel and a harder one. Images observed after 550ºC treatment changes 140 

due to thermal effect are easily seen. At this point structural chemical bonding has been 141 

broken so hemicellulose, cellulose and lignin of most biomass samples have turned into 142 

gaseous CO2 and CH4 having lost up to 70% of their initial weight, giving a finely 143 

divided structure. Some particles are outlined (orange) in this structure are unburnts, 144 

formed by alkali sulphates with high melting points not vaporized at low temperatures 145 

that gain relative weight at high temperatures.Low melting point elements may also 146 

agglomerate forming particle clusters and high melting temperature compounds. 147 

Concerning particle size distribution, ash particles can be classified in thin or thick if 148 

they, respectively, cross or do not cross a 400 µm mesh sieve [11]. Fly ash is usually 149 



considered to have a diameter between 0.2 and 200 µm and bottom ash as between 200 150 

and 1000 µm [35]. The concept PM10 (particulate matter 10) meansthe quantity of 151 

particles under10 µm that float in the atmosphere polluting its composition. This group 152 

includes the PM2.5 (particulate matter 2.5 µm) ones, or breathable particles, that can 153 

affect human health by penetrating human airways. In this work, PSD results obtained 154 

by laser diffraction, are divided in five ranges (under 10, 10-100, 100-200, 200-400 and 155 

over 400 µm) and their results compared. It is interesting for ashes to have as higher 156 

thick or bottom ash fractions as possible (more than 200 µm particles) that are easily 157 

removed from the bottom of the chambers, avoiding contamination and health damage 158 

risks. As can be seen in Figure 3 most of the studied samples have more than 80 % of 159 

ash particles thicker than 200 µm, beetroot pellets, pine and pine-apple pine pellets or 160 

vine orujillo more than 90 % of them. On the other hand wood pellets and almond shell 161 

were found to have, respectively, 35 and 45 % of particles under fly ash considered 162 

diameter. None of the samples presented PM10 values over 3% and PM2.5 detected 163 

values were negligible in every case, with only charcoal and pine kernel shell samples 164 

reaching 0.1 %. 165 

4.2 Chemical composition  166 

Figure 4 presents the results obtained for EDXA analysis after 550 ºC ashing 167 

temperature as an average of six measure points throughout SEM-observed sample. As 168 

can be seen in Table 1, raw fuel structure is, as expected, basically organicwith a vast 169 

majority of C and O in the sample composition and a C/O ratio between 0.8 and 1 in 170 

most caseswhich is influential in biomass reactivity and indicates higher heating 171 

value.Beetroot pellets, sorghum and vine shoot chips present a ratio slightly lower,close 172 

to 0.7 and rice husk far under this value with a 0.38 ratio, being a highly oxygenated 173 

structure that confers low HHV to this fuel. On the other hand charcoal presents a 174 



4.68C/O ratio, as it underwent a previous pyrolysis. When these data are compared 175 

with the ones obtained after 550ºC burning (Figure 4), it can be highlighted that at this 176 

temperature most of the carbon structure was eliminated and the proportion of high 177 

melting-temperature elements has increased. C values are commonly between 15-25% 178 

while O (which still remains in oxides) carbonates or sulphates has slightly increased 179 

until 40-60%. Charcoal differs from these results due to the previously explained 180 

reasons. Concerning other elements it is remarkable the high silicon peaks observed in 181 

charcoal (40%), pine kernel shell or straw pellets (10%). K and Ca, key elements in 182 

fouling and slagging generation, are also interesting being the first ones close to 5% in 183 

most samples, with the exception of straw pellets (10%), charcoal (15%), pine and pine 184 

apple leaf pellets (20%) or vine orujillo (30%). Ca values are slightly above K ones, 185 

with olive stone, wood or beetroot pellets (10%) and charcoal (30%) above the average. 186 

Mg presents a nearly constant value of 3-5% for most samples and the low Na values 187 

(around 1 are the other remarkable notes. Cl values detected in the rice husk sample are 188 

extremely high, reaching 30%, this may proceed from fertilizers or a bad homogeneity 189 

of measure points, but there are some herbaceous species with high natural values in 190 

themselves.  191 

X-Ray fluorescence measured values are presented in Table 3. These are used to 192 

calculate deposition predictive equations and their results compared with ternary 193 

diagrams and experimental experience. Every predictive equation proposed in Table 3 194 

was calculated and meaningful differences were noticed for the same sample. Due to 195 

this, only the most referenced equations are proposed and compared in this work, one 196 

to predict slag (Rb/a) and one to predict fouling (Fu), but both can be used to predict 197 

general deposition and their results compared. These results are presented in Table 3 198 

following a colour criterion, red, orange and green being high, medium and low 199 



deposition risk respectively. As can be seen deposition predictions obtained from both 200 

equations agree in the samples with high and low values but present some 201 

contradictions in the intermediate ones, conceding high or medium deposition risk in 202 

some cases depending on the considered equation. When these results are compared 203 

with the ones obtained by using ternary diagrams this tendency can be confirmed. 204 

In this way when a sample presents more than 50% (mass percentage in ashes) of CaO 205 

or SiO2 combined with more than 15% of K2O, its ashes can easily agglomerate and 206 

therefore deposit. This means the samples on the right of the red line drawn on the 207 

SiO2-CaO-K2O diagram (Figure 5). As can be determined,samples AS, CC, PPLP, PL, 208 

PKS, VO and WP present high deposition risks, all of them were considered as high or 209 

medium risk by using predictive equations. Some contradictions are also noticed, for 210 

example fuels with the highest deposition predictive values like VSC, THI or CH are 211 

not supposed to present high risk according to this diagram. 212 

The SiO2+Al2O3+Fe2O3-+Na2O+TiO2-CaO+MgO+MnO-K2O+P2O5+S (Figure 6) 213 

diagram is also presented. This classifies samples according to their acidity (high, 214 

medium or low) which is influential oncorrosion phenomena and melting point (S, C, K 215 

and CK types). S and K types present high deposition risks due to silicates formation 216 

and potassium presence. C type is expected to have high melting temperature (and 217 

therefore, low depositions) due to high Ca levels. CK type is an intermediate between C 218 

and K. According to this, results are quite homogeneous if compared with SiO2-CaO-219 

K2O diagram ones, as they both consider PPLP, PL, PKS, SP and VO as high 220 

deposition risk samples and AS and WP as medium risk ones. The same contradictions 221 

with predictive equations as in the previous case are noticed.  222 

When compared with experimental experience, it should be stated that most of the 223 

samples except PKS, VO and WP presented no deposition problems when burning on a 224 



crucible. These samples are predicted as high deposition risk with both graphic 225 

methods, so they must be considered, for our tested samples, as more reliable. 226 

Regarding acidity, following the explained criterion only RH presents high acidity 227 

values, meaning high corrosion risk in the burning equipment, which agrees with high 228 

chlorine values measured by EDXA. 229 

4.3 Thermogravimetric study 230 

As previously stated, thermogravimetry is a versatile tool that can be used in several 231 

ways to study biomass and its wastes. One of the most common uses for the burning 232 

profile of a sample, that relates weight loss and temperature, is to determine 233 

characteristic points: ignition point, when a fuel begins to react, and peak point, when 234 

mass loss speed is the highest in the sample, related with its reactivity. Table 4 shows 235 

the characteristic points obtained for the selected samples. In this work, TGA is also 236 

use to compare different biomass samples char and ash thermal behaviour; this means 237 

when fuel’s weight attains a steady speed after peak temperature, and before the 238 

reaction end, from 400 to 850 ºC.  239 

As can be seen ignition temperature is in the range 170-200 ºC for every sample except 240 

THI,that falls 130ºC,entailing higher auto-ignition risk if appropriate conditions, like 241 

high powdery atmospheres, are reached, and WC and CC that increase until 212 and 242 

233 ºC, respectively.  243 

Peak temperature values, when a sudden volatile matter and a huge mass loss occur, are 244 

usually between 230-330 ºC. CC, because of its pyrolytic origin, presents a lower 245 

volatile matter quantity, and a more constant mass loss, this value increasing up to 246 

487ºC. 247 

Figures 7 and 8 show the mass loss of the studied sample’s from 400 to 850 ºC. As can 248 

be seen, every sample (except VO and CC) has lost more than 60% of its original 249 



weight at this relatively low temperature. In the focused range, mass loss decreases 250 

quite homogeneously until a turning point when combustion reaction ends. This one 251 

changes quite a lot depending on the selected fuel, from nearly 500ºC of PL, THI or 252 

RH to 800 ºC for AS, CC or VO. It is interesting to have a high reaction-end 253 

temperature which permits to obtain fuel yields in a wider operation range. 254 

5. Conclusions 255 

In this work different biomass samples have been characterized by SEM, XRD, PSD, 256 

FRX and TG in order to establish which ones are the most desirable for combustion 257 

applications. 258 

SEM images showed that the natural structure of harder biomass fuels (shells or husks) 259 

makes them easier to homogenise andhandle, than fibrous ones (wood or straw). The 260 

ashes obtained after 550 ºC burning present a homogeneous finely-divided structure 261 

with presence of unburnt. 262 

PSD study demonstrated that BP and PPLP generate a vast majority of thick ashes, 263 

while the selected brand of WP and AS have more than 35% of fine particles, 264 

increasing environmental and health risks with their use. 265 

Deposition predictive equations, combined with FRX based ternary diagrams and 266 

experimental experience suggest that AS, PPLP, PL, PKS or VO present high 267 

deposition risks, decreasing the energy yield of the reaction. RH sample has huge 268 

corrosion risks due to its acidity which is confirmed by Cl presence measured by 269 

EDXA. 270 

TG study showed that THI presented a low ignition point which has direct influence on 271 

auto-ignition and explosive atmospheres generation. AS, CC and VO present wider 272 

reaction ranges thank to their higher reaction-end temperature. 273 
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Table 1 

Tested fuels analytical values. 

Sample 
Proximate analysis 

HHV 
Ultimate analysis 

M Ash VM FC N C S H O C/O 

AS 8.68 2.2 82 15.8 18275 0.3 46.35 0.22 5.67 47.46 0.98 

BP 12.5 9 76 15 15095 1.19 38.94 0.51 5.23 54.13 0.72 

BRI 5.84 0.8 85 14.2 18498 1.24 46.74 0.1 6.39 45.53 1.03 

CC 5.29 5.9 26 68.1 29712 0.65 79.34 0.3 2.74 16.97 4.68 

CH 9.6 5.8 76.2 18 18236 2.53 45.06 0.48 6.42 45.51 0.99 

OS 11 1.4 78.3 20.3 17884 1.781 46.55 0.11 6.33 45.229 1.03 

OTP 8.7 13 78 9 17342 1.47 45.36 0.28 5.47 47.42 0.96 

PPLP 8.2 3.2 75 21.8 18147 0.4 42.26 0.27 4.81 52.26 0.81 

PKS 9.14 1.3 80 18.7 18633 0.27 47.65 0.11 6.33 45.2 1.05 

PL 8.33 2.7 77.6 19.7 18893 0.31 47.91 0.6 4.9 46.28 1.04 

RH 7.27 13.7 74 12.3 15899 0.21 26.69 0.17 2.88 70.05 0.38 

S 6.1 17 62 21 11872 0.73 37.89 0.21 5.94 55.23 0.69 

SP 7.3 9.8 79 11.2 16584 0.56 47.89 0.17 5.51 45.87 1.04 

TH 11.6 0.2 80.67 19.13 17747 0.48 43.89 0.28 6.46 48.89 0.90 

VO 9.5 12.7 79 8.3 17742 1.91 44.15 0.58 5.31 48.05 0.92 

VSC 22 9.7 66 24.3 14631 0.61 40.15 0.31 5.02 53.91 0.74 

WC 25.6 1.5 68.6 29.9 15162 0.13 42.2 0.27 5.51 51.89 0.81 

WP 7.7 1.3 82 16.7 18218 0.6 46.79 0.32 6.13 46.16 1.01 

M. ash. VM and FC respectively mean moisture Ash, volatile matter and fixed carbon. Measured in mass 

percentage. HHV is the higher heating value measured in J/g. C. N. H. O and S are the mass percentage of 

carbon, nitrogen, hydrogen, oxygen and sulphur.  

 



Table 2  

Review of deposition-predictive indexes. 

Method Formulae Deposition criteria 

Base/acid ratio 

[9, 14, 21, 22] 

 

𝑅𝑏
𝑎⁄
=
𝐹𝑒2𝑂3 + 𝐶𝑎𝑂 +𝑀𝑔𝑂 + 𝐾2𝑂 + 𝑁𝑎2𝑂

𝑆𝑖𝑂2 + 𝑇𝑖𝑂2 + 𝐴𝑙2𝑂3
 

P2O5 may be also added as a Basic oxide [34] 

< 0.5  low 

0.5-1  medium 

> 1  high 

Silicon/alumina 

ratio [9, 14, 22] 
𝑆
𝐴⁄ =

𝑆𝑖𝑂2

𝐴𝑙2𝑂3
 

<0.31 or > 3  low 

0.31-3  high 

Iron/calcium 

ratio [14, 22] 
𝐼
𝐶⁄ =

𝐹𝑒2𝑂3

𝐶𝑎𝑂
 

<0.31 or > 3  low 

0.31-3  high 

Slagging index 

[14, 22] 𝑅𝑆 = 𝑅𝑏
𝑎⁄
· 𝑆 

< 0.6  low 

0.6-2  medium 

> 2  high 

Slag viscosity 

index [9, 14] 𝑆𝑅 =
𝑆𝑖𝑂2

𝑆𝑖𝑂2 + 𝐹𝑒2𝑂3 + 𝐶𝑎𝑂 +𝑀𝑔𝑂
· 100 

>78  low 

66.1-78  medium 

<66.1  high 

Chlorine content 

[14] Weight percentage of Cl. in an “as received” fuel 

sample 

<0.2  low 

0.2-0.3  medium 

0.3-0.5  high 

>0.5  really high 

Fouling index I 

[14] 𝐹𝑢 = 𝑅𝑏
𝑎⁄
· (𝐾2𝑂 + 𝑁𝑎2𝑂) 

< 0.6  low 

0.6-40  high 

>40 extremely high 

Fouling index II 

[21] 
𝐹 =

𝐾2𝑂 +𝑁𝑎2𝑂

2 · 𝑆 + 𝐶𝑙
 Higher as higher F 

Alkali index [14] 

𝐼𝐴 =
1

𝐻𝐻𝑉
· 𝐴𝑠ℎ · (𝐾2𝑂 + 𝑁𝑎2𝑂) 

>0.17  probably 

fouling 

> 0.34  sure 

I parameter [23] 
𝐼 =

𝐶𝑎𝑂 +𝑀𝑔𝑂

𝐾2𝑂 + 𝑁𝑎2𝑂
 >2 no sinter 

Total alkali 

content [14, 22] 𝑇𝐴 = (𝐾2𝑂 + 𝑁𝑎2𝑂) 
<0.3  low 

0.3-0.4  medium 

> 0.4  high 

 H fouling index 

[9] 
𝐻 = 𝑅𝑏

𝑎⁄
· 𝑁𝑎2𝑂 if  

𝐹𝑒2𝑂3

𝐶𝑎𝑂+𝑀𝑔𝑂
> 1 

𝐻 = 𝑁𝑎2𝑂 if 
𝐹𝑒2𝑂3

𝐶𝑎𝑂+𝑀𝑔𝑂
< 1 and  𝐶𝑎𝑂 +𝑀𝑔𝑂 > 2 

<3 medium 

>3  high 

Fusion temp 

index [18] 
𝐹 =

𝑆𝑖𝑂2 + 𝐾2𝑂 + 𝑃2𝑂5
𝐶𝑎𝑂 +𝑀𝑔𝑂

 
Higher tendency as 

higher F value 

Each element/oxide symbol means its weight percentage of obtained from elemental analysis (S), 

EDXA (Cl) or XRF (oxides). HHV is the higher heating value measured in GJ/kg and ash the ash 

mass percentage of the measured sample. 

 



 

Table 3  

X-Ray fluorescence data. 

 XRF data Equations 

 SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 Rb/a Fu 

AS 31.0 4.4 1.2 0.1 6.3 25.7 1.4 25.8 0.1 3.9 1.7 46.4 

BP 42.3 5.2 1.5 0.1 6.3 35.1 1.2 4.2 0.3 3.8 1.0 5.4 

BRI 24.5 9.6 1.8 1.3 7.5 39.2 1.9 10.1 1.7 2.5 1.7 20.2 

CC 15.9 3.1 2.2 0.4 7.3 45.0 2.7 15.4 0.2 7.8 3.8 68.1 

CH 5.3 1.5 1.9 0.4 14.4 59.4 1.5 11.5 0.1 3.9 12.8 166.8 

OS 26.6 6.2 3.1 0.1 11.7 37.0 0.9 11.0 0.4 3.0 1.9 23.0 

OTP 50.1 3.9 1.6 0.1 2.6 33.5 0.5 5.5 0.4 1.9 0.8 4.8 

PPLP 49.2 5.6 1.1 0.1 4.9 6.5 1.3 27.1 0.1 4.1 0.7 21.2 

PL 18.1 4.7 6.3 0.3 14.2 11.5 1.9 35.3 0.1 7.7 3.0 112.3 

PKS 51.3 4.1 2.9 0.1 4.8 7.5 1.4 24.6 0.1 3.3 0.7 19.2 

RH 88.2 1.3 0.4 0.3 1.1 1.8 0.4 4.9 0.0 1.7 0.1 0.5 

S 53.9 7.2 3.3 0.1 1.9 29.5 0.7 2.2 0.5 0.8 0.6 1.7 

SP 53.5 1.6 0.6 0.1 2.3 20.6 0.9 17.8 0.1 2.5 0.8 14.3 

THI 5.5 1.2 1.5 0.1 10.5 69.3 0.9 5.0 0.1 5.8 12.6 73.8 

VO 23.9 4.1 1.3 0.1 9.2 15.9 1.7 32.9 0.1 10.8 2.2 75.5 

VSC 6.6 1.0 0.6 0.7 14.7 53.6 0.7 9.5 0.1 12.7 10.3 105.4 

WC 28.8 5.1 7.4 0.7 5.2 35.5 1.8 5.7 6.5 3.4 1.4 10.2 

WP 21.3 4.8 3.7 0.4 8.8 28.5 1.7 20.9 1.8 8.1 2.3 51.8 

 

 

 



Table 4 - Characteristic points of TGA analysis. 

Sample Tignition (ºC) Tpeak (ºC) Treaction-end (ºC) 

AS 171 296 791 

BP 183 232 750 

BRI 169 340 611 

CC 233 478 775 

CH 170 322 550 

OS 195 289 609 

OTP 180 325 548 

PPLP 178 331 697 

PL 183 318 506 

PKS 194 333 716 

RH 188 319 521 

S 195 331 525 

SP 170 287 619 

THI 130 339 531 

VO 182 269 804 

VSC 195 324 550 

WC 212 340 517 

WP 200 332 631 

 

  



 

 
 

Figure 1. Wood chips SEM captures at room temperature (a x65 magnifications and b 

x2000) and after 550ºC burning (c x50 magnifications). 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b c 

800 µm 20 µm 1 mm 



 

Figure 2. Pine kernel shell (a room temperature x20) and pine and pine-apple leaf 

pellets’ (b room temperature x40 and c after 550ºC burning x350) SEM captures 
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2 mm 1 mm 10 µm 



 

Figure 3. Particle size distribution of the selected biomass samples. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4. Results obtained from EDXA analysis. 

 

 

 

 

 



 

Figure 5. SiO2-CaO-K2O ternary diagram. 

 

 

 

 

 



 

Figure 6.  SiO2+Al2O3+Fe2O3-+Na2O+TiO2-CaO+MgO+MnO-K2O+P2O5+S ternary 

diagram. 



 

Figure 7. TGA profiles for several biomass samples from 400ºC (I). 

 



 

Figure 8. TGA profiles for several biomass samples from 400ºC (II). 

 


