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ABSTRACT 

We adapted methods from the speaker recognition literature to 
acoustic event detection (or audio-tagging) and applied represen-
tational similarity analysis, a cognitive neuroscience technique, 
to gain a deeper understanding of model performance. Experi-
ments with a feed-forward time-delay neural network architec-
ture (TDNN) were carried out using the FSDKaggle2018 da-
taset. We examined various system optimizations such as speed 
and reverb augmentation, different input features (spectrograms, 
mel-filterbanks, MFCCs and cochleagrams), as well as updates 
to the network architecture (increased or decreased temporal 
context and model capacity as well as drop-out and batch-nor-
malization). Most system configurations were able to outperform 
the original published baseline and, primarily using speed aug-
mentation, our system was able to outperform a harder baseline 
derived from a model pre-trained on many times more data. Ad-
ditional experiments applying representational similarity analy-
sis to the network embeddings allowed us to understand what 
acoustic features the different systems used to perform the task. 

Index Terms— Audio tagging, acoustic event recognition, 
speaker recognition, explainable features, acoustic features 

1. INTRODUCTION 

Objects and events in the environment can be recognized based 
on the sound patterns they generate [1]. Automated sound identi-
fication (also called sound/acoustic event recognition or audio 
tagging) supports many critical information retrieval [2], hearing 
assistance [3], urban planning [4], and monitoring [5] applica-
tions. Recognition systems can also provide insight into human 
[6] and animal [7] auditory processing. Despite its obvious im-
portance, sound recognition is not a solved problem. Continued 
development will help address many remaining gaps in perfor-
mance and yield new insights for acoustics and machine percep-
tion research. 

Many modern approaches to sound recognition take the 
rich deep learning literature on visual object recognition as a 
starting place [8, 9, 10]. These methods essentially treat the task 
as an image classification problem based on a spectrogram input. 
However, such an approach has a number of shortcomings (see 
[11] for discussion). Most notably it is a sub-optimal treatment of 
the inherently temporal nature of sound. That is, to comply with 
the constraints of image recognition methods, an incoming audio 
example is normally chunked into fixed size spectrogram images 

that are fed to a 2-dimensional convolutional network architec-
ture. Chunks are then classified individually or the systems’ hy-
potheses are averaged over time points. This results in a slightly 
awkward treatment of audio examples that frequently vary in du-
ration. Also, if examples are labelled at the file-level, individual 
chunks run the risk of not containing any information related to 
the target sound due to pauses or interruptions. Indeed, some re-
sults have suggested that chunk averaging may be sub-optimal 
relative to systems designed to handle variable length input [12]. 

Other lines of research have emerged for identifying 
specific classes of sound sources such as human speakers [13, 
14]. Speaker recognition in particular has made remarkable pro-
gress using deep learning techniques that stem from language and 
speech modeling [15, 16]. These approaches give special atten-
tion to how information unfolds in time [17], for example, by sta-
tistically pooling time windows to create an intermediate global 
representation within the network [18] that is further processed. 
This approach can also be used to recognize acoustic scenes [19].  

With these branches of acoustic research in mind we 
present a series of experiments where we applied successful tech-
niques from speaker identification to the task of sound event 
recognition. We also study adaptations of this framework to bet-
ter fit the sound event recognition task. In the end, we achieved 
accurate performance on a well-studied recognition dataset [20], 
beating the initial published baseline as well as another stronger 
baseline that uses an image-recognition-based system pre-trained 
on many more hours of data [8]. Finally, we provide insight into 
the performance differences among these systems by exploring 
their respective embedding spaces using representational similar-
ity analysis [21]. 

2. STUDY DESIGN 

2.1. Data and Task 

Our goal was to apply speaker recognition techniques to sound 
event recognition. Thus, we aimed to select a dataset that was or-
ganized analogously to typical speaker recognition datasets [14, 
22]. This involves a large number of discrete target classes with 
numerous training examples where each example corresponds to 
a single target class. We chose to conduct our experiments using 
the popular audio-tagging dataset, FSDKaggle2018 (see [20] for 
details). Briefly, this is a curated collection of publicly available 
data that is user generated and user tagged. The data was then 
binned by the authors of the corpus into 41 discrete classes 
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according to a well-established acoustic event ontology [2]. 
Clips vary in duration and the number of training examples is 
unbalanced across classes. Our experiments were carried out on 
the full (manual and user-labelled) portion of the dataset. This 
dataset does not contain a validation partition, so we created one 
by holding out one third of the manually labelled examples of 
each class from the training partition. Model selection was done 
on this validation set. We then report final system performance 
of the selected model on the test partition. All audio data were 
down-sampled to a 16kHz sampling rate. 

We selected this dataset because, relative to other op-
tions, it strikes a good balance in terms of dataset size (up to 18 
hours of training data), diversity (41 discrete classes), and label 
specificity (generally, a single class-label per clip). Some more 
thoroughly labelled datasets exist but are limited in their number 
of target classes [23] or training examples [24]. While other 
larger datasets often sacrifice label purity and usually contain 
multiple classes per clip [2, 4, 9].  

We compare performance against the published base-
line for this dataset from [20] (mAP@3 = 0.70). A harder base-
line was also generated using Google’s YAMNet system trained 
on their AudioSet corpus [8, 25]. We extracted YAMNet embed-
dings for each sound token (no augmentation) and then trained a 
single fully connected layer between those embeddings and 41 
output units for the corpus’ target classes. The shallow YAMNet 
embedding network was trained for 100 epochs and we retained 
the model with the highest performance on the validation parti-
tion (validation performance: accuracy = 0.79, mAP@3 = 0.86; 
test performance: accuracy = 0.78, mAP@3 = 0.85). 

2.2. Network Architecture and Training 

Our initial TDNN model was an implementation of the x-vector 
system developed by Snyder and colleagues for speaker recogni-
tion [18, 26] that we reproduced in PyTorch (using [27]). Be-
cause it is based on feed-forward units, TDNN networks are 
faster and more efficient to train than recurrent networks, such as 
LSTMs (c.f., [17]).  

A TDNN models temporal context via a hierarchy of 
layers that progressively see larger windows of time via dilations 
that occur in higher layers. Variable length audio input is handled 
by a combination of frame-level and segment-level components 
within the model. At the frame-level, the TDNN structure slides 
over frames of the variable length input. The output of these lay-
ers is projected to a set of units over which the mean and stand-
ard deviation are calculated for a given example (audio file). The 

mean and standard deviation of these units are concatenated to 
comprise a statistics pooling layer that begins the segment-level 
processing. Above the statistics pooling layer are two fully con-
nected layers (which comprise the embedding layers) followed 
by 41 output units, one for each of the target classes. 

Specifically, we re-created the architecture described 
by [26] with a context of five input time-frames (of the input 
spectrogram) in the first layer. Layer two received layer one’s 
output with a context of three frames and a dilation of two before 
sending output to layer three which also has a context of three 
frames with a dilation of three. Layers four and five both have 
contexts of one. Thus, layers three and higher operated over a to-
tal context of 15 spectrogram frames. All TDNN and embedding 
layers have 512 units. The layer just prior to the statistics pooling 
layer projected to 1500 units that were used to calculate a mean 
and standard deviation which were concatenated before output to 
the first fully connected layer, followed by the second fully con-
nected layer (each with 512 units).  

Audio files were represented to the network via a time-
frequency representation. Speaker and sound event recognition 
studies have used a variety of different inputs, so we tested multi-
ple popular representations to determine an optimal set of fea-
tures. We explored many Kaldi-style representations using 
torchaudio all with a 25-ms window and 10-ms hop size. Because 
we used a higher sample rate (16k) than the original x-vector net-
work implementation (8k), we allowed an increase in the number 
of frequency bins for each representation: spectrograms (201 fre-
quency bins), mel-filterbanks (80 mel bins) and MFCCs (mel-fre-
quency cepstral coefficients; 40 cepstral features). We also gen-
erated a cochleagram representation to approximate the periph-
eral auditory system of a human listener (which we instantiated 
via [28]; upper frequency limit = 8k, 4 times overcomplete band-
pass filter sampling, output down sampled to 100 Hz). All audio 
was zero-padded for 5-ms at onset and up to 5 ms at offset before 
windowing. During training, each input spectrogram was normal-
ized (between 0 and 1), and the durations of input examples were 
standardized to between 1-second and 30 seconds either via loop-
ing spectrograms that were too short (until they exceeded 101 
frames), or by truncating them (to 3001 frames if they exceeded 
that).  

Each training run comprised 100 epochs and we re-
tained the model from the epoch with the highest accuracy on the 

Cochleagram Mel-Filterbank MFCC Spectrogram Cochleagram Mel-Filterbank MFCC Spectrogram

Initial Baseline TDNN Model 0.73(Δ0) 0.74(Δ0) 0.24(Δ0) 0.75(Δ0) 0.79(Δ0) 0.8(Δ0) 0.32(Δ0) 0.81(Δ0)
Diff. Maps 0.74(Δ0.016) 0.75(Δ0.012) 0.16(Δ-0.078) 0.75(Δ0.002) 0.8(Δ0.006) 0.81(Δ0.007) 0.24(Δ-0.087) 0.81(Δ-0.005)
Reverb Aug. 0.77(Δ0.043) 0.79(Δ0.043) 0.7(Δ0.464) 0.77(Δ0.022) 0.82(Δ0.03) 0.84(Δ0.035) 0.78(Δ0.453) 0.82(Δ0.011)
Speed Aug. 0.83(Δ0.099) 0.88(Δ0.134) 0.76(Δ0.526) 0.87(Δ0.117) 0.87(Δ0.079) 0.91(Δ0.103) 0.82(Δ0.493) 0.9(Δ0.089)
Smaller Net: 256 Units 0.72(Δ-0.004) 0.76(Δ0.019) 0.45(Δ0.218) 0.74(Δ-0.01) 0.78(Δ-0.012) 0.82(Δ0.013) 0.56(Δ0.234) 0.8(Δ-0.011)
Larger Net: 1024 Units 0.74(Δ0.015) 0.75(Δ0.007) 0.4(Δ0.166) 0.76(Δ0.007) 0.8(Δ0.009) 0.81(Δ0.007) 0.5(Δ0.178) 0.81(Δ0.001)
Reduced Context-Layer 0.72(Δ-0.011) 0.74(Δ-0.002) 0.43(Δ0.194) 0.73(Δ-0.02) 0.78(Δ-0.018) 0.81(Δ0.002) 0.54(Δ0.216) 0.8(Δ-0.015)
Added Context-Layer 0.74(Δ0.007) 0.75(Δ0.011) 0.56(Δ0.326) 0.74(Δ-0.012) 0.79(Δ-0.001) 0.81(Δ0.001) 0.65(Δ0.332) 0.8(Δ-0.015)
Batch-Norm, Drop-Out 0.76(Δ0.031) 0.8(Δ0.055) 0.63(Δ0.39) 0.78(Δ0.033) 0.81(Δ0.016) 0.85(Δ0.044) 0.71(Δ0.392) 0.84(Δ0.026)
Speed+Reverb Aug. NA 0.87(Δ0.126) NA NA NA 0.9(Δ0.093) NA NA
Speed+Reverb, Diff. Maps, Batch-Norm+Drop-Out NA 0.86(Δ0.113) NA NA NA 0.89(Δ0.084) NA NA
Speed+Reverb, Batch-Norm+Drop-Out NA 0.85(Δ0.109) NA NA NA 0.89(Δ0.084) NA NA
Speed+Reverb, Diff. Maps NA 0.87(Δ0.129) NA NA NA 0.91(Δ0.1) NA NA

Accuracy mAP@3

Table 1: Performance of different model architectures and training configurations on the validation partition. Parentheses indicate 
change in performance from our baseline TDNN model on the first line. 

81



Detection and Classification of Acoustic Scenes and Events 2021  15-19 November 2021, Online
  

 

validation partition. Batches were of 16 examples (shuffled be-
tween epochs). We used PyTorch’s cross-entropy loss function 
with a stochastic gradient descent optimizer (learning rate: 0.001, 
momentum: 0.9, weight decay: 0.001). Because there was an im-
balance of training data among classes, weights were applied in 
the loss function that gave more weight to low occurrence classes 
relative to the class with the highest number of training exam-
ples. We report raw accuracy on the validation and test partitions 
as well as mean Average Precision @ 3 (mAP@3).  

2.3. Study of Network Architecture and Training Parameters 

We carried out a number of experiments to optimize inputs and 
model parameters during training. The baseline for these experi-
ments was the performance of a network structured like the orig-
inal x-vector network configuration [26], albeit with a larger in-
put representation to take advantage of the higher sampling rate 
(see above). Throughout, we compared the performance of four 
front-end, time-frequency representations (spectrogram, MFCC, 
mel-filterbank, or cochleagram input). In terms of input optimi-
zations we also attempted to help the network efficiently learn 
spectral and temporal variability cues by appending 2 “differ-
ence maps” to the input time-frequency representation: 1) the 
first derivative in each frequency channel over time and, 2) first 
derivative in each time bin over frequencies.  

We then examined the effectiveness of common data 
augmentation strategies gleaned from work on speech tasks [29, 
30] (see also [31]): simple speed augmentation (plus and minus 
10%, thus altering any pitch by the same amount) and reverb 
augmentation (instantiated via [32]), both of which were carried 
out on the audio files prior to extracting a time-frequency repre-
sentation. Augmentation by background noise and babble was 
not examined, since these recordings already contained some. 
Sounds similar to those in this dataset are also often used in 
noise augmentation for speech tasks, which risked confusing 
class labels during training.  

Next, we turned our attention to optimizing the net-
work architecture in various ways: varying the number of units 
in each layer (feed forward layer 256 or 1024 and number of 

statistics pooling layer units 750 and 3000, respectively), in-
creasing or decreasing temporal context before statistical pooling 
(by removing or duplicating layer 3), and adding batch norm and 
50% dropout. Based on these experiments we studied a final set 
of models that used combinations of the best performing param-
eters and optimizations.  

3. RESULTS 

Model performance is summarized within Table 1. Differences 
relative to our baseline TDNN configuration are indicated in pa-
rentheses. Without any modifications the initial TDNN models 
outperformed the original published baseline given most of the 
feature input options, although performance using MFCCs was 
generally poor. Not every optimization we experimented with 
improved performance and some optimizations varied in how 
much they improved performance given different input features.  

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●● ●
●

●

●●

●

●
●

●
●
●●

● ●

●

●

●●●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●●●
●

●

●
●
●

●

●
●

●

●
●

●

●
●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●● ●

●

●
●

●

●●

●

●

●

● ●
●
●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●
●
●

● ●●
●

●

●

●

●●

●●

●

●

●

●
●

●
●

● ●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●
●

●●

●

●

●

●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

● ●●
●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●●

●
●

●
●
●

●

●

●
●

●

●

●

● ● ●● ● ●
●●

●

●
●

●
●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●●

●
●

●
●● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●
●

●

●

●

●

● ●

●

● ●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

● ●●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

● ●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●
●

● ●

●

●●

●

●

●

●
●
●●

●

●●
●

●

●

●

●

●

●

●●

●

●●●● ●
●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●
●

●
●

●

●

●
●

● ●
●●

●

●

● ● ●
●

●
●
●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

● ●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

● ●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●● ●●
●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

● ●

●

●●

●

●

●

● ●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●
●
●●●

●

●●●
● ●

●
●

●

●
●●●●

●

●

●

●
●●

●

●●

●

●●●●●●●●

●●●

●

●
●● ●●

●
●
●

●

●●●●●●
●●

●
●

●● ●●
●

●

●●●

●

●
●●●
●

●●●●
●
●●

●● ●
●●

●
●

●

●● ●
●

●●
●

●

●●●●●●

●
● ●●

●
●●●
●
● ●●●
●●●●
●

●

●
●●
●●●●
●●
●
●●

●
●●●
●●

●●
●
●●●

● ●
●

●
●

●

●
●●●

●
●●●

●

●

●

●●●
●●
●
●●

●
●●●●●●●●

●●

●●●●●●●●●

●

●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●
●
●●●

●
●●●
●●●●●●●
●●●●●●●●●●
●●
●●●●
●●●●●

●
●●●
●
●●●●●●

●●● ●

●●●●
●●

●

●●●
●

●●●

●

●

●●●

●
●

●

●

●● ●●
●

●

●

●●●● ●●
●
●●●●

●

●●●

●

●
●●●●●●

●

●

● ●

●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●

●●●●●●●●

●

●●●●●●

●
●●●●●
●
●●
●

●
●

●
●●
●
●●
●●●●●●●●●●●

●

●●●●

●

●●●●●

●●●●●●●●

●

●●●●●●● ●●●

●
●●●●●●

●

●●

●●●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●●● ●●●●●●
●
●

●

●●●●
●

●●●●
●●

●

● ●●●●●●●●●●●●

●

●
●●
●

●

●

● ●●
●
●

●

● ●
●●

●

●
●●

●
●
●
●

●●
●
●
●

●●●●
●●●
●
●●●●●

●
●
●●

●●
●

●

●
● ●
●●
●
●●

●●

●

●
●
●

●
●

●
●●●
●●●
●●

●
● ●●
●

●
●
●●● ●●●● ●●

●

●●●
●
● ●
●

●
●

●
●

●●●

●

●●

●

●

●

●●●

● ●

●
●

●●

●
●

●●

●

●●●

●

●●●●●
●

●

●

●●

●

●

●

●
●●● ●

●
●●

●

●

●

●
●
●

●●●●●●●●●●●●●
●
●●
●
●●●●●
●●●●●●

●●●●● ●●●●●●● ●●●●●●●●● ●●●

●

●●●●●

●●● ●
●

●

●●●●●
●

●●●● ●●●●●●●
●●
●●●
●●●●●●●●●
●●●
●

●

●●●●
●●
●●●●
●
●●

●●
●
●

●

●

●

●

●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

● ●

●

●
●●

●

●●
●

●
●

●

●

●
●●●
●●

●

●●●
●

●
●

●

●●●●

●

●●●●

●

●●

●

●●●●●●
●

●

●●●●●●●●●●●●
●

●●●●●●
●●●●●●●
●
●●●●●●●●
●●●●●●●●●●

●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●●

●

●●●
●

●●●●●
●●●●

●
●

●

●●●●●●●●●●●●
●

●●

●●●

●

●●●
●●

●

●● ●●

●

●●●●●

●

●
●

●

●●

●

●

● ● ●●

●

●

●

●
●●●●●

●●

●

●●
●●

●
●

●

●
●

●●

● ●
●●

●
●

●

●●● ●●
●●

●●
●
●
●●● ●
●
●

●
●
●

●
●●

●

●

●
●

●
●
●

●●●
●
● ●
●

●●
●
●●●●●●
●●●●
●

●●●●
●

●

●

●

●
●●●

●●
●●

●
●●

●
●●

●●
●●●
●
●
●●●●●

●
●

●●
●
●●●
●●
●
●●
●●●

●

●●
●
●●●●

●●●

●●●●●●●●●
●●●

●

●

●●●●●
●

●●●●●●●●●●●●●●●
●●

●●
●●●●●●●●●
●●●●●●

●
●●●
●●
●
●
●

●●●
●●

●

●
●●●●
●
●
●
●●●
●●

●

● ●
●●●
●
●●●
●

● ●●●
●
●●●●●●●●●●●●●●

●●●●

●
●●●●

●
●●
●

●

●●●●●
●●

●

●●●●●●●

●

●●●●●
●●●●●●●

●

●●●
●
●
●● ●●●
●

●
●

●

●
●
●

●

●●
●

●●

●

●●●●●

●●●●●●●
●●
●●●●●●
●
●●●●
●●●●
●●●●●
●
●●

●

●●
●

●● ●
●

●●●●●
●●●●

●
●●
●●

●
●

●

●●●●●●
●●●●●●●●●●●●

●
●●●●●

●●

●●
●●

●●●
●

●

●
●

●●●●

●

●
●

●
●

●
●

●
●

●

●
●

●

● ●●● ●●
●●●● ●

● ●

●

●

●
●●

●

●

●
●●
●●●●● ●●

●● ●
●●

●
●●●●●●●●●●●●

● ●
●
●●

●

●●●●●●
●
●●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

● ●

●

● ● ●●

●

●

Tambourin Tearing Telephone Trumpet Vln_r_fdd Writing

Micrwv_vn Oboe Saxophone Scissors Shatter Snare_drm Squeak

Gong Harmonica Hi−hat Knock Kys_jngln Laughter Meow

Elctrc_pn Fart Fireworks Flute Fngr_snpp Glocknspl Gnsht_r_g

Chime Clarinet Cmptr_kyb Cough Cowbell Doubl_bss Drwr_pn__

Acstc_gtr Applause Bark Bass_drum Brpng_r_r Bus Cello

Figure 1: Our top performing TDNN model's embedding space visualized using t-SNE. Points correspond to examples in the test 
set. Insets in the right panel call out examples for each target class and serves as a color code. 

Table 2: Description of some acoustic features used in 
the representational similarity analyses. 

 

Derived based on: 1) Energy envelope or, 2) ERB (cochleagram) 
representation in the Timbre Toolbox [35, 36], 3) YIN [37],  4) modulation 
power spectrum [38]. Table adapted from [33]. 

Feature Description Interpretation

Log-Attack-Time1 Log of the time difference between 

attack onset and ending

Lower values = faster onset time

Temporal Centroid1 Center of gravity of the energy 

envelope

Lower values = earlier temporal 

centroid

Spectral Centroid2 Center of gravity of the spectral 

(ERB) envelope

High values = higher frequency 

centroid

Spectral Flatness2 Ratio of geometric and arithmetic 

means of the ERB spectra

Measures noise/harmonic content. 

Higher values are flatter/noisier

Spectral Variability2 1 minus the correlation of ERB 

channel spectra between timepoints

Higher values = more variable 

envelope

Aperiodicity3 Amount of aperiodic energy in the 

signal

Higher values = more aperiodic

ERB Energy2 Amount of energy in the spectral 

representation at each timestep

Sum of squared amplitudes in the 

spectral representation.

Raw ERB cochleagram2 Raw ERB representation of each of 

77 channels: 30 Hz to 16 kHz

Energy in each channel over time.

Mod. Power Spectrum4 2D-FFT of Gaussian spectrogram Degree of joint spectral/temporal 

modulation rates

Derived based on: 1) Energy envelope or, 2) ERB cochleagram representation in the Timbre Toolbox 

[39, 40], 3) YIN [41],  4) modulation power spectrum [42]. Adapted from [37].
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Speed and, to a lesser degree, reverb augmentation were particu-
larly beneficial, as was batch-norm and drop-out. Changing tem-
poral context and model capacity often hurt performance. 
 Only with speed augmentation were some of our 
TDNN models able to beat the performance of the stronger 
YAMNet-baseline system on the validation partition. To further 
improve our system we explored combinations of optimizations 
that were beneficial in the initial experiments. These combina-
tion experiments were carried out using mel-filterbank input fea-
tures because these achieved the highest performance relative to 
other initial TDNN systems. A model trained with speed and re-
verb augmentation with the spectrotemporal difference maps us-
ing the mel-filterbanks as input features achieved the highest 
validation performance among these combination experiments. 
However, no combination experiments out-performed the initial 
mel-filterbank TDNN model trained with speed-augmented data, 
so this was selected as our final model to evaluate the test data 
(accuracy = 0.82, mAP@3 = 0.86), which slightly out-performed 
the YAMNet-baseline. Class separation within the embedding 
space of this top-performing model is visualized in Figure 1. 
 

4. REPRESENTATIONAL SIMILARITY ANALYSIS 

Performance of our final model and the YAMNet-baseline were 
both quite high, despite operating over the audio differently. 
Thus, we were interested in better understanding whether any dif-
ferences existed in how these systems internally represented au-
dio examples and the influence of different acoustic qualities. To 
do this, we employed a method called representational similarity 
analysis [21] which can provide a high-level understanding of 
complex systems by correlating inter-item distances among dif-
ferent representations of a set of probe examples. We extracted 
network embeddings (i.e., activations from the layer just prior to 
the 41-class output layer) from our final, best performing model 
and from the YAMNet model for each example in the test parti-
tion. Then among each model’s embeddings, we calculated the 
cosine distance of the network representations for each pair of 
test examples, to populate two 1600 by 1600 network-dissimilar-
ity matrices (one matrix for each network). The network-dissimi-
larity matrices were compared against another set of inter-item, 
acoustic-dissimilarity matrices (absolute value of feature differ-
ences) for a set of well-studied acoustic features derived for each 
test item (see Table 2 and [33] for detailed description). These 
acoustic distances were contained within another set of 1600 by 
1600 acoustic-dissimilarity matrices, (one matrix per feature). 
Note, because these dissimilarity matrices are symmetrical across 
the diagonal, only one unique item pairing was analyzed (e.g., 
item-1 vs item-2 or item-2 vs item-1).  

We carried out rank-order semi-partial Spearman corre-
lations between each network-dissimilarity matrix and the set of 
acoustic-dissimilarity matrices. In each semi-partial test, a corre-
lation was derived between the network-dissimilarity matrix, and 
the target acoustic-dissimilarity matrix, while holding the other 
features constant. Only correlations that were interpretable (i.e., 
positive) and statistically significant after false-discovery rate 
correction were retained. 

The representational similarity analysis is summarized 
in Figure 2. We found that despite their high performance, our 
model and the YAMNet model’s embedding spaces were only 
modestly correlated (rs = 0.31). Both models’ performance was 

most strongly associated with acoustic cues for aperiodicity, 
spectral centroid, and spectral variability, albeit with differences 
in the relative importance of these features. This is similar to fea-
tures that influence dissimilarity ratings among human listeners 
[33] and neural representations [34]. 

5. CONCLUSION 

We examined the effectiveness of different speaker recognition 
methods on an audio-tagging task. We were able to obtain good 
performance, beating the original baseline for this dataset, and a 
more challenging YAMNet-baseline derived from a system 
trained on many hours more data. The TDNN architecture ap-
pears to derive great performance benefit from data augmenta-
tion (particularly speed augmentation). Representational similar-
ity analyses implicated a set of acoustic features that are also as-
sociated with sound recognition in the human auditory system.  
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