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ABSTRACT

Anomaly-detection methods based on classification confidence
are applied to the DCASE 2020 Task 2 Challenge on Unsupervised
Detection of Anomalous Sounds for Machine Condition Monitor-
ing. The final systems for submitting to the challenge are en-
sembles of two classification-based detectors. Both classifiers are
trained with either known or generated properties of normal sounds
as labels: one is a model to classify sounds into machine type and
ID; the other is a model to classify transformed sounds into data-
augmentation type. As for the latter model, the normal sound is
augmented by using sound-transformation techniques such as pitch
shifting, and data-augmentation type is used as a label. For both
classifiers, classification confidence is used as the normality score
for an input sample at runtime. An ensemble of these approaches
is created by using probability aggregation of their anomaly scores.
The experimental results on AUC show superior performance by
each detector in relation to the baseline provided by the DCASE
organizer. Moreover, the proposed ensemble of two detectors gen-
erally shows further improvement on the anomaly detection perfor-
mance. The proposed anomaly-detection system was ranked fourth
in the team ranking according to the metrics of the DCASE Chal-
lenge, and it achieves 90.93% in terms of average of AUC and
pAUC scores for all the machine types, and that score is the highest
of those scores achieved by all of the submitted systems.

Index Terms— Anomaly Detection, Classification-based Con-
fident Score, Feature Learning

1. INTRODUCTION

Anomaly detection is the task of finding unusual samples in a set
of data. In the setting known as “unsupervised” anomaly detection,
the training data consists of only “normal” data; namely, anomalous
samples are not known a priori. Algorithms for anomaly detection
can be used in many applications such as quality inspection of prod-
ucts, maintenance of equipment, detection of network intrusions,
and detection of fraud. This work focuses on detecting anomalous
sounds coming from a machine to monitor the machine condition.
Anomaly detection is an important topic in machine learning.
Many approaches to solve this task have been proposed [1, 2]. Deep
learning is used in this work due to the type (i.e., sound) and amount
of data. Approaches using deep learning for unsupervised anomaly
detection can be broadly categorized as reconstruction-based meth-
ods and feature-learning-based methods. As for reconstruction-
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based methods, the model is trained to learn the distribution of nor-
mal samples, and anomalies can be detected by analyzing recon-
struction errors as an anomaly score [3, 4, 5]. The reconstruction er-
ror is usually higher for anomalies as the model is only trained to re-
construct the normal samples. As for feature-learning-based meth-
ods, a feature-extraction model is trained to map normal data into a
small region in the feature space. Anomalies can be detected by ana-
lyzing the distance from normal samples in the feature space [6, 7].
As a variation of feature-learning-based methods, classifier confi-
dence, specifically a maximum softmax probability (MSP), can be
utilized. As for this method, an anomalous sample is considered
to be outside of the distributions that the classifier learned, and it
generally has lower MSP [8].

To detect an anomalous sound in an unsupervised setting by us-
ing classification confidence, the following two approaches based
on feature learning are taken in this study. The first approach uses
normal sounds from all machine types and IDs to train a classi-
fier that predicts the machine type and ID for each normal sound.
The second approach uses data augmentation to generate pseudo
classes from normal sounds. The pseudo classes are then used to
learn a classifier that predicts which data-augmentation technique
was used for each sound sample (generated from normal sounds).
In the inference stage, a test sound clip, in which the sound is either
normal or abnormal, is sent to each of these classifiers in the two
approaches, to produce an anomaly score that is related to softmax
probability predicted by the classifier. Finally, these anomaly scores
are combined by using probability aggregation.

The two proposed classification-based approaches are de-
scribed in Section 2. Techniques to improve anomaly-detection
performance, including the ensemble methods, are described in
Section 3. Results of experiments on the development dataset of
DCASE 2020 Challenge Task 2 are presented in Section 4. Finally,
the conclusions of this study are presented in Section 5.

2. FEATURE LEARNING FOR ANOMALY DETECTION

Classification-based approaches require classes in order to train a
classifier to discriminate a target machine class from other ma-
chines. Two types of classifiers are trained to classify (i) machine
type and ID and (ii) type of sound-data augmentation without using
an external dataset. Once the anomaly score is calculated from the
classifier confidence, a fixed threshold is used to determine whether
a sound clip is normal or abnormal. As for unsupervised anoma-
lous sound detection, the threshold can be defined according to the
policy applied to the result of data validation, e.g., maximizing F1
score or minimizing the test escapes.
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2.1. Machine type and ID as class labels

The dataset for DCASE 2020 Task 2 Challenge [9, 10, 11] has six
machine types: “ToyCar,” “ToyConveyor,” “fan,” “pump,” “slider,”
and “valve.” Each machine type has six (ToyConveyor) or seven
(the other machine types) machine IDs. Tuples of machine type and
ID are used as class labels. To classify a subset of these classes, a
neural network is trained by using the training data in the develop-
ment dataset, which contains only normal sounds. The last layer of
the model is the softmax function that outputs softmax probabili-
ties. In the inference phase, a test sound is classified by using the
trained model. Since the class of each test sound, i.e., machine type
and 1D, is known, the anomaly score s1(z) is calculated by using
the softmax probability of that particular class as follows:
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where y(x) is the trained model’s output and j is the target-machine
type and ID class index. Alternatively, MSP can also be used for the
anomaly score. With this approach, none of the sound-data augmen-
tation are used.

si(z) =1 —y;(z)

2.2. Types of sound-data augmentation as pseudo labels

Self-supervised feature learning [12] has been shown to be effec-
tive for tasks like anomaly detection [13, 14, 15]. It is often used
when there are no labels in the training data. An anomaly-detection
approach using geometric transformations on image data was pro-
posed by Golan er al. [14]. With that approach, a classifier is trained
to infer geometric transformations of images. The geometric trans-
formations consist of combinations of flip, Xy-translations, and ro-
tation. During the inference phase, anomalies are detected by com-
bining the softmax values of each geometric transformation. When
these geometric transformations were naively applied to a spectro-
gram of sound data as images, the performance of anomaly detec-
tion was poor.

As the second approach, k types of sound-data augmentation,
which includes combinations of pitch shift and time stretch, are ap-
plied to create pseudo labels to build a classifier. Then, a model is
trained to classify sound segments into k classes. During the infer-
ence phase, k types of sound-data augmentation are applied to the
target sound clip. The augmented k£ sound clips are divided into
multiple sound segments and these segments are inferred by using
the trained model. To get clip-wise values, the softmax probabilities
are averaged over the sound segments for the target sound clip. The
anomaly score s2(x) is then calculated by using the clip-wise soft-
max probabilities corresponding to the actual data-augmentation
type as follows:

@

Jj=0

where y(z) is the clip-wise softmax probability, Tj(x) is the jth
data-augmentation type, and k is the number of data-augmentation
types. Anomalies can be detected on the basis of this anomaly score.

3. TECHNIQUES FOR IMPROVING PERFORMANCE

3.1. Sound segments

The proposed method can take either the whole sound clip or seg-
ments of each sound clip as classifier inputs. However, the experi-
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ments showed that segmenting a sound clip into multiple sound seg-
ments improved the performance of anomaly detection. This perfor-
mance improvement might be explained by the fact that the anomaly
usually occurs only within a small part of the sound clip. Each test
sound is also segmented into segments, their anomaly score is indi-
vidually calculated, and all the scores are aggregated by averaging.

3.2. Center loss

It has been suggested that to learn a suitable feature for one-class
classification, two types of losses are required: a descriptiveness
loss and a compactness loss [Perera and Patel [16]]. The classifier
represents the descriptive part of the feature. How the feature is
compressed is explained in the following.

An approach for anomaly detection called deep Support Vector
Data Description (deep SVDD) was proposed by Ruff ez al. [6].
With deep SVDD, a deep-learning model is trained to map normal
input data to a minimized volume hypersphere in the feature space.
As a result, the difference between normal and anomaly inputs in
the feature space is maximized. Center loss was applied for deep
face recognition by Wen et al. [17] to enhance the discriminative
power of the deeply learned features as follows:

L=Ls+ XL, 3)
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where L, is cross-entropy loss, L. is center loss, and A, is center-
loss weight.

In our two approaches, center loss is used for training the clas-
sifier to map normal input data to a minimized volume hypersphere
in the feature space.

3.3. Ensemble methods

Ensemble methods focus on the idea of combining different re-
sults of dissimilar sub-models to enhance the overall performance
of anomaly detection. Ensemble methods face challenges such as
interpretability and compatibility of scores across different types of
sub-models. Such challenges can be categorized as either score uni-
fication or score aggregation.

As for the proposed method, the statistical-scaling method de-
scribed in [18] is used for interpreting and normalizing the scores
of the sub-models. This method converts an anomaly score output
by a sub-model, which cannot be directly interpreted as probability
estimate into a range [0, 1], e.g., autoencoder’s reconstruction error-
based approach. This rescaling process not only provides compat-
ibility with other sub-models’ scores for calculating later ensem-
ble score but can also establish sufficient contrast between inliers
and outliers. On the basis of the resemblance of the scores for the
normal samples in the training data, the Gamma distribution was
chosen under the assumption of s;(x) ~ I'(«a, 3;), where s;(x) is
the anomaly score of sub-model 7. Subsequently, the scaled sub-
models’ scores, §;(x), can be obtained by taking the cumulative
distribution function (CDF) F; (z; aui, 3;) over the fitted distribution
from normal samples in the training data, i.e.,

8i(z) = Fi(w; 04, Bi)

_ vile, Bisi(x))
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where «; is a shape parameter and f3; is a rate parameter.
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The scores of the sub-models are then combined by using prob-
ability aggregation [19] as follows:

n
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where n is the number of sub-models, f;(x) is the score of each
sub-model, and f.(x) is the final ensemble score. This aggregation
can be used to combine either the raw anomaly score, s;(z), or the
anomaly score scaled with CDF, §;(x).

4. EXPERIMENTS

4.1. Experimental protocols
4.1.1. Audio preprocessing

In the experiment, a dataset is provided by the challenge orga-
nizer [11]. All audio clips in the dataset are sampled at 16 kHz. For
each clip, short-time Fourier transform (STFT) is calculated with
window size of 64 ms and hop length of 32 ms. A 128-bin logmel
spectrogram is then extracted as an audio feature. For a 105 clip, a
feature is a 128 x 313 tensor. Depending on the technique used for
anomaly detection, this audio feature might be divided into overlap-
ping segments before being input into the neural network. Explicit
normalization was not applied to the feature; instead, normalization
layers are used in the neural network, which should provide similar
normalization effect.

4.1.2. Neural-network architecture

Two neural-network architectures are used in this experiment.
The first network (inouetl8) is previously used in DCASE 2018
TaskS [20]. The architecture of the second network (pvmilk20) is
detailed (together with number of parameters) in Table 1. Both
networks use Convolutional Neural Network (CNNs), followed by
global max pooling, and fully connected layers. This structure al-
lows the models to be used with arbitrary length input.

Table 1: Information about the neural network

(a) Architecture of model pvmilk20.

Layer

Log Mel Spectrogram

CNN[8, k=(7, 1), s=(1, 1), p=(3, 0)] + BN + ReLU
CNN[8, k=(1, 7), s=(1, 3), p=(0, 2)] + BN + ReLU
CNN[32, k=(5, 1), s=(1, 1), p=(2, 0)] + BN + ReLU
CNN[16, k=(5, 1), s=(1, 1), p=(2, 0)] + BN + ReLU
CNNJ16, k=(1, 5), s=(1, 3), p=(0, 1)] + BN + ReLU
Swap(ch, freq)

Output size
(ch, freq, time)
(8, freq,time)
(8, freq,time)
(32, freq, time)
(16, freq, time)
(16, fregq, time)
(freq, 32, time)

Global max pooling + Dropout(0.2) freq
Dense(128) 128
Dense(class) + Softmax class
(b) Number of parameters of each model
Network Parameters
inouetl8 [20] 396039 to 403263
pvmilk20 22510 to 27025

Number of parameter varies with number of output classes.
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4.1.3. Configuration for method proposed in Section 2.1

A classifier is trained by using machine type and ID as labels. The
training data in the development and additional training datasets are
used to train a single model to detect anomalies in the test data of
both the development and evaluation datasets. No external dataset
was used. A different set of hyperparameters is manually chosen to
train a model for each machine type by checking the performance
on the test split of the development dataset as shown in Table 2.

Table 2: Hyper-parameters for the method proposed in Section 2.1

Machine Training Model Input Ac
data feature [Eq. (4)]

ToyCar Group A pvmilk20 segment 0.1000
ToyConveyor | ToyConveyor pvmilk20 segment 0.2000
fan Group B pvmilk20 segment 0.1000
pump all pvmilk20 clip 0.0075
slider Group B pvmilk20 segment 0.1000
valve all inouetl8 clip 0.1500

Group A = (ToyCar, ToyConveyor) and Group B = (fan, pump, slider, value).

When a segment is used as an input feature, sound clips are
divided into 3.072's segments with hop length of 1.536s. A batch
size of 384 and 256 is used with the pvmilk20 and inouet18 models,
respectively. All the models are trained by using an Adam optimizer
with Ir = 0.001,8 = (0.9,0.999) and an SGD optimizer with
Ir = 0.5 on the center loss. The best model is manually chosen
by considering the highest classification accuracy on the validation
split in the training data.

4.1.4. Configuration for the method proposed in Section 2.2

Two sound-augmentation techniques, pitch shifting and time
stretching, is used to create pseudo labels. Three different param-
eters are used for each technique: half steps of —0.1, 0, and +0.1
for pitch shifting and stretch factor of 0.9, 1.0, and 1.1 for time
stretching. A total combination of 9 types of sound augmentation
are thus created. These sound augmentations are then applied to
sound samples of each machine ID to create pseudo labels.

For each machine type, one single classifier is trained for detect-
ing anomalies in the test data of both the development and evalua-
tion datasets. Pseudo labels of all machine IDs of the same machine
type in the development and additional training datasets are consid-
ered as training data. That is, for all machine types except ToyCon-
veyor, the classifier is trained to recognize 63 pseudo classes, which
are the combination of 7 machine IDs and 9 types of sound augmen-
tation. In the case of ToyConveyor, which has only 6 machines IDs,
a total of 6 x 9 = 54 classes are available for training the classifier.

As for this second method, the inouet!8 network architecture is
used for all machine types. Each sound clip is divided into 3.072s
segments with hop length of 1.536s. Batch size is taken as 300,
and center loss weight is taken as A = 0.005. All the models
are trained over 100 epochs using an AdamW optimizer with Ir =
0.001, 8 = (0.9,0.999), and weight decay = 0.001. An SGD
optimizer is used with Ir = 0.5 for updating center loss.

During the development of this second method, various alterna-
tive approaches to create pseudo classes have been attempted. Some
examples are image transformation (flipping, xy-translations, rota-
tion) on the logmel spectrogram, alternative parameters or more pa-
rameters for pitch shifting and time stretching, decomposing an au-
dio sample into harmonic and percussive components, and adding
harmonic and percussive sounds as pseudo classes. However, the



Detection and Classification of Acoustic Scenes and Events 2020

experiments showed that the above-described configuration pro-
vided the best anomaly-detection performance.

4.1.5. Configuration for the method proposed in Section 3.3

The ensemble step consists of two main tunable parts: CDF scaling
and aggregation function. For CDF scaling, two different configu-
rations were tried to get the machine-dependent (MD) and machine-
independent (MI) Gamma distributions. That is, as for the for-
mer, each machine type has its own fitted distribution for each sub-
model. Whereas the latter uses all six machine types together to fit
one shared distribution for each sub-model. Our experimental re-
sults showed that MI is 2-7% better than MD in terms of AUC of
the development test set. For the aggregation function, other than
the previously mentioned method for probability estimate aggrega-
tion [19], naive arithmetic mean and product were also tested as
ensemble scoring functions. While the results showed competitive
AUC performance among the three tested aggregation functions, the
probability aggregation function given as Equation 6 performed up
to 6% better in terms of pAUC. As for these ensemble configura-
tions, the best-performing setting, that is, MI-fitted distribution and
probability estimate aggregation, was chosen for the submission.

4.2. Results and discussion

The following four types of approaches were submitted for the
DCASE 2020 Task 2 Challenge:

(i) Probability aggregation [Eq. (6)]
(i) Probability aggregation of CDF-scaled scores [Eqgs. (5),(6)]
(iii)) Machine types and IDs as class labels [Eq. (1)]
(iv) Sound data augmentation types as pseudo labels [Eq. (2)]
The AUC results are listed in Table 3.

Table 3: DCASE2020 Task2 Challenge performance

(a) AUC performance for development dataset

Machine type | baseline 1) (i) (iii) @iv)
ToyCar 78.77 95.66 | 95.74 | 92.48 | 91.37
ToyConveyor 72.53 81.71 | 81.60 | 76.90 | 79.45
fan 65.83 89.05 | 88.73 | 89.13 | 81.27
pump 72.89 93.32 | 93.20 | 91.60 | 90.44
slider 84.76 99.50 | 99.47 | 99.31 | 98.08
valve 66.28 99.77 | 99.77 | 99.53 | 98.81

(b) AUC performance for evaluation dataset

Machine type | baseline @) (i) (iii) >iv)
ToyCar 80.14 93.80 | 93.16 | 91.06 | 93.06
ToyConveyor 85.36 87.32 | 87.41 | 79.88 | 85.82
fan 82.80 98.83 | 98.84 | 98.98 | 91.35
pump 82.37 94.61 | 94.37 | 93.87 | 92.95
slider 79.41 95.89 | 95.68 | 92.63 | 96.29
valve 57.37 97.69 | 97.82 | 98.02 | 96.07

Using a classifier trained with machine type and ID, system (iii)
provides AUC > 90% for all machine types, except ToyConveyor.
One interpretation of experimental results is the fact that the data
of ToyConveyor are very distinct from other machine types and IDs
or even among different IDs, which can be seen from the classifi-
cation accuracy. This distinction makes the feature space learned
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from the data not so sensitive towards small changes between nor-
mal and anomaly samples. Another interesting fact is that the num-
ber of parameters of the model is relatively small, especially for the
pvmilk20 model. System (iv) using data augmentation also provides
higher AUC than the baseline in the case of all machine types.

Using a sound segment as an input can improve AUC perfor-
mance (2-8%) for some machine types, especially for ToyConveyor,
i.e., fan, ToyCar, ToyConveyor in the case of system (iii) and 7oy-
Conveyor in the case of system (iv). One assumption could be that
data of ToyConveyor has dominant background sound compared to
others and processing it as a segment allows the model to recognize
the background sounds and distinguish them from the anomalies.

Combining center loss with the proposed methods can improve
AUC performance (2-5%) in the case of some machine types. In
the challenge, both systems (iii) and (iv) use this loss in all clas-
sifiers, while the former manually chooses the weight by checking
the performance obtained by the test data in the development set.

During the development, naive arithmetic mean and product
were computed as ensemble scoring functions with and without
CDF scaling for comparison. The ensemble with probability ag-
gregation showed better overall performance compared to the stan-
dalone methods (see Table 3). For each machine type, the perfor-
mance of the ensemble system (i) or (ii) is close to or better than
that of the best standalone method, system (iii) or (iv).

On the basis of the challenge rule [11], the proposed method is
4™ in team ranking, and it performs best in terms of valve machine
type. Furthermore, it becomes 1* in the system ranking when con-
sidering the averages of AUC and pAUC over all machine types on
the evaluation dataset as shown in Table 4.

Table 4: Averages of AUC and pAUC over all machine types on evaluation
set for the top 10" systems in the system ranking. The proposed system (i)
shows the highest average score even when all 127 systems are considered.

Team ranking System name Average of (AUC, pAUC)
(masked) on evaluation set
1 TeamA 22 89.77
1 TeamA_2_1 89.74
1 TeamA 2.3 90.15
2 TeamB_2_4 90.40
3 TeamC_2_2 90.21
3 TeamC_2_1 90.59
4 System (ii) 90.68
4 System (i) 90.93
3 TeamC_2 4 90.03
5 TeamD_2_3 87.20

5. CONCLUSIONS

Two types of classification-based approaches are proposed to solve
the anomaly-detection problem set in DCASE 2020 Task 2. The
classifiers are trained using only normal sound in the development
set to learn the distribution of normal data, and the model confi-
dence is used to calculate anomaly score. The proposed systems for
anomaly detection do not use an external dataset or a pre-trained
model. The experimental results on AUC show superior perfor-
mance on anomaly detection compared to the baseline. The pro-
posed systems show competitive performance in the case of all ma-
chine types in the challenge with relatively small network sizes.
The proposed systems are expected to improve the overall perfor-
mance by incorporating approaches such as larger networks and re-
construction error-based algorithms.
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