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ABSTRACT
Acoustic scene classification is the task of determining the environ-
ment in which a given audio file has been recorded. If it is a priori
not known whether all possible environments that may be encoun-
tered during test time are also known when training the system, the
task is referred to as open-set classification. This paper contains a
description of an open-set acoustic scene classification system sub-
mitted to task 1C of the Detection and Classification of Acoustic
Scenes and Events (DCASE) Challenge 2019. Our system consists
of a combination of convolutional neural networks for closed-set
identification and deep convolutional autoencoders for outlier de-
tection. On the evaluation dataset of the challenge, our proposed
system significantly outperforms the baseline system and improves
the score from 0.476 to 0.621. Moreover, our submitted system
ranked 3rd among all teams in task 1C.

Index Terms— acoustic scene classification, deep convolu-
tional autoencoder, open-set classification, outlier detection

1. INTRODUCTION

Acoustic scene classification is a subfield of machine listening,
where systems need to determine the environment in which given
audio files were recorded, and has always been an integral part of
the DCASE challenge [1, 2]. Additionally, there is growing interest
in open-set classification [3, 4] within the machine learning com-
munity since realistic scenarios and applications are almost always
open-set problems. The reason is that one can only very rarely cap-
ture the entire space of classes when training a classification system.
The only potential exception is a very artificial setup that ensures
no encounters of data belonging to novel or unknown classes when
running the system after training. But since change and evolution
in general are inevitable this setup seems very unlikely, especially
in real world applications. However, open-set classification is much
more difficult than closed-set classification because one also needs
to determine whether data belongs to one of the known classes or
not (outlier detection [5]), which is an a priori assumption in closed-
set classification. This difficulty is probably the reason why most
research has been focused on closed-set classification.

To promote this research direction, in this year’s edition of the
DCASE challenge there is a subtask of the acoustic scene clas-
sification task entirely focusing on the open-set setting (task 1C)
[6], which will also be the focus of this paper. The development
dataset consists of 44 hours of 48kHz audio belonging to some un-
known and ten known classes, namely airports, indoor shopping
malls, metro stations, pedestrian streets, public squares, streets with
medium level of traffic, traveling by a tram, traveling by a bus, trav-
eling by an underground metro and urban parks. The evaluation

dataset consists of 20 hours of audio. For all recordings the same
recording device has been used (unlike to subtask 1B where four
different devices have been used) and all have a length of 10 sec-
onds. To evaluate the performance of the systems, the final score
is computed as the weighted average accuracy of the known classes
and unknown classes. For more information about the task, see [6].

To our best knowledge, previous work for open-set acoustic
scene classification is extremely limited. Still, there are some papers
entirely focusing on that task as for example [7] where the authors
used one-class support vector machines for open-set classification.
Another way to detect outliers and thus make open-set classification
possible is to use deep convolutional autoencoders (DCAEs) [8, 9].
By training DCAEs with data belonging to the known classes, one
can expect that the neural networks learn to reconstruct this data
well but have difficulties when encountering data belonging to un-
known classes. In turn, the reconstruction loss can be used as a
heuristic to detect outliers.

The contributions of this work are the following. First and
foremost, a system for open-set acoustic scene classification is pre-
sented1. More specifically, we propose to use CNNs for closed-set
classification and DCAEs for rejecting unknown acoustic scenes via
outlier detection. As a last contribution, an effective way to com-
bine a closed-set classification system and outlier detection models
into a single open-set system is presented. It is also worth mention-
ing, that we did not use any external data resources nor pretrained
models for training our system. Although this makes the open-set
classification task even more challenging, it also enables us to pre-
cisely compare the performance of our system with other submitted
systems that did not use external data resources.

2. ACOUSTIC SCENE CLASSIFICATION SYSTEM

As already stated, this paper focuses on open-set acoustic scene
classification. But in order to do open-set classification one also
needs a well working closed-set classification chain. The reason is
that the system needs to 1) determine whether given data belongs to
one of the known classes (outlier detection) and if so, 2) predict the
most likely of the known classes (closed-set classification). Mathe-
matically, this corresponds to estimating

P (Y = yi,K = true|X = x)

=P (Y = yi|K = true, X = x)P (K = true|X = x)
(1)

where X and Y are random variables denoting the data and one
of the known class labels, respectively, and K is a binary random

1An open-source Python implementation of the presented system is
available here: https://github.com/wilkinghoff/dcase2019

https://doi.org/10.33682/340j-wd27
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variable indicating that the data belongs to one of the known classes
(see [10]). Thus, open-set classification (left hand side) can indeed
be decomposed into the subtasks closed-set classification and out-
lier detection (right hand side).

We will now present our feature extraction procedure followed
by descriptions of the closed-set classification and outlier detection
systems. This section is then concluded by a description of how to
combine both systems into a single open-set acoustic scene classifi-
cation system.

2.1. Feature extraction

Almost all recently proposed acoustic scene classification systems
as well as the baseline system utilize log-mel spectrograms as in-
put features (see e.g. [2, 11, 12]). As this is the state-of-the-art,
we also used log-mel spectrograms and closely followed [13] for
the parameter settings with a few changes. More precisely, we also
used a Hanning window size of 1024, a hop size of 500 and 64 mel
bins but used the cutoff frequencies 50Hz and 16000Hz. Addition-
ally, we normalized the audio files with respect to the maximum
norm before extracting the features. The resulting features are of
dimension 64× 442.

Furthermore, we utilized median filtering for Harmonic-
Percussive Source Separation [14] via Librosa [15] as many partic-
ipants have done in past editions of the DCASE challenge (see e.g.
[11, 16]). All mel-spectrograms were separated into harmonic and
percussive parts before applying the logarithm resulting in a total
number of three features per audio file: The log-mel spectrograms
themselves and their harmonic and percussive parts.

Before inserting the features into a neural network, we stan-
dardized them in two different ways. For closed-set classification,
we subtracted the mean and divided by the standard deviation of all
training data, which belongs to any of the ten known classes. When
detecting outliers, all features were standardized in the same way
but only data belonging to a single known class was used to com-
pute the mean and standard deviation. As we will train individual
DCAEs for each class, the data is standardized with respect to that
specific class beforehand.

2.2. Closed-set classification

In the era of deep learning, CNNs are the method of choice to clas-
sify log-mel spectrograms. Classifying acoustic scenes is not an
exception. The CNN proposed in [13] is reported to perform better
than the baseline system of the challenge. Thus, we used this CNN
as a starting point but changed a few details leading to an even bet-
ter performance while using less parameters. All CNNs have been
implemented using Keras [17] with Tensorflow [18] and their struc-
ture can be found in Table 1. For each of the three features, namely
log-mel spectrograms and their harmonic and percussive parts, an-
other CNN is trained for 6000 epochs with a batch size of 32 by
minimizing the categorical crossentropy. Mixup [19] and Cutout
[20] have been used to augment the training data, which are known
to be effective in terms of improving classification accuracy (see
[12]). Additionally, random shifts in time up to 60% of the entire
duration and up to 3 mel bins were used when augmenting data.
To acquire a single score per class, the geometric mean of the out-
put distributions obtained with the three CNNs is taken. But since
the classification accuracy obtained with the log-mel spectrograms
were higher on the validation set, their corresponding scores have
been multiplied with a factor of two to give them more weight than

Table 1: CNN architecture for closed-set classification.
Layer Output Shape #Parameters

Input (64, 442) 0
Convolution (kernel size: 3x3) (64, 442, 64) 640
Batch Normalization (64, 442, 64) 256
Non-linearity (ReLU) (64, 442, 64) 0
Convolution (kernel size: 3x3) (64, 442, 64) 36,928
Batch Normalization (64, 442, 64) 256
Non-linearity (ReLU) (64, 442, 64) 0
Average-Pooling (pool size: 2x3) (32, 147, 64) 0
Convolution (kernel size: 3x3) (32, 147, 128) 73,856
Batch Normalization (32, 147, 128) 512
Non-linearity (ReLU) (32, 147, 128) 0
Convolution (kernel size: 3x3) (32, 147, 128) 147,584
Batch Normalization (32, 147, 128) 512
Non-linearity (ReLU) (32, 147, 128) 0
Average-Pooling (pool size: 2x3) (16, 49, 128) 0
Convolution (kernel size: 3x3) (16, 49, 196) 225,988
Batch Normalization (16, 49, 196) 784
Non-linearity (ReLU) (16, 49, 196) 0
Convolution (kernel size: 3x3) (16, 49, 196) 345,940
Batch Normalization (16, 49, 196) 784
Non-linearity (ReLU) (16, 49, 196) 0
Average-Pooling (pool size: 2x3) (8, 16, 196) 0
Convolution (kernel size: 3x3) (8, 16, 256) 451,840
Batch Normalization (8, 16, 256) 1,024
Non-linearity (ReLU) (8, 16, 256) 0
Convolution (kernel size: 3x3) (8, 16, 256) 590,080
Batch Normalization (8, 16, 256) 1,024
Non-linearity (ReLU) (8, 16, 256) 0
Global-Average-Pooling 256 0
Dense (Softmax) 10 2,570

∑
1,880,578

the scores resulting from the other two features. Using this heuristic
enabled us to use the entire development set, i.e. training and val-
idation split, for training the CNNs and led to better performance
because more data results in more knowledge. Note that one can
usually achieve better results when carefully tuning model-specific
weights but this would have required additional labeled data to ob-
tain meaningful scores for training these weights.

2.3. Outlier detection

To detect outliers, we used one-class classification models, more
concretely DCAEs. For each of the known classes, another DCAE
was trained using only training data belonging to that particular
class. By doing so, we avoided the direct usage of training data
belonging to any unknown class. The reason for doing this is that
the variability of the unknown class space cannot be captured suffi-
ciently by using samples of unknown classes. However, in order for
the outlier detection models to learn to distinguish between strong
outliers and weak outliers, which are noisy samples still belonging
to the known class a DCAE is trained for, samples belonging to
unknown classes are still needed. A way to use these samples for
training will be explained later in subsection 2.4.

The particular structure we have chosen for the DCAEs can be
found in Table 2. The basic task is to reduce the feature space di-
mension from 64× 442 to 16× 110 and reconstruct the input fea-
tures as accurately as possible. More precisely, we trained another
DCAE for each of the ten known classes resulting in a total of ten
models per feature type. Again, we implemented the DCAEs with
Keras [17] and Tensorflow [18]. To train the DCAEs, we mini-
mized the mean squared error for 1000 epochs using a batch size
of 32. In contrast to the CNNs, no data augmentation techniques
were applied while training, which is the reason why less epochs
are sufficient. We still trained different models for all three features
but this time only the training data split of the development set has
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Table 2: DCAE architecture for outlier detection.
Layer Output Shape #Parameters

Input (64, 442, 1) 0
Convolution (kernel size: 3x3) (64, 442, 64) 640
Batch Normalization (64, 442, 64) 256
Non-linearity (ReLU) (64, 442, 64) 0
Convolution (kernel size: 3x3) (64, 442, 64) 36,928
Batch Normalization (64, 442, 64) 256
Non-linearity (ReLU) (64, 442, 64) 0
Average-Pooling (pool size: 2x2) (32, 221, 64) 0
Convolution (kernel size: 3x3) (32, 221, 128) 73,856
Batch Normalization (32, 221, 128) 512
Non-linearity (ReLU) (32, 221, 128) 0
Convolution (kernel size: 3x3) (32, 221, 128) 147,584
Batch Normalization (32, 221, 128) 512
Non-linearity (ReLU) (32, 221, 128) 0
Average-Pooling (pool size: 2x2) (16, 110, 128) 0
Convolution (kernel size: 3x3) (16, 110, 128) 147,584
Batch Normalization (16, 110, 128) 512
Non-linearity (ReLU) (16, 110, 128) 0
Convolution (kernel size: 3x3) (16, 110, 128) 147,584
Batch Normalization (16, 110, 128) 512
Non-linearity (ReLU) (16, 110, 128) 0
Up-Sampling (size: 2x2) (32, 220, 128) 0
Zero-Padding (32, 221, 128) 0
Convolution (kernel size: 3x3) (32, 221, 64) 73,792
Batch Normalization (32, 221, 64) 256
Non-linearity (ReLU) (32, 221, 64) 0
Convolution (kernel size: 3x3) (32, 221, 64) 36,928
Batch Normalization (32, 221, 64) 256
Non-linearity (ReLU) (32, 221, 64) 0
Up-Sampling (size: 2x2) (64, 442, 64) 0
Convolution (kernel size: 3x3) (64, 442, 1) 577
Non-linearity (ReLU) (64, 442, 1) 0

∑
668,545
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Figure 1: Structure of our proposed open-set acoustic scene classi-
fication system.

been used because the validation data set is needed in the next step.
Note that using ReLU as an activation function in the last layer pre-
vents the DCAE to perfectly reconstruct the data again since nega-
tive output values cannot be produced. But interesting events that
are typical for an acoustic scene correspond to high energy in a mel-
spectrogram and thus are still positive after normalization. An ex-
ample are bird calls, which can only very rarely be heard in a metro
but are one of the acoustic events one expects to hear in a park.
Therefore, a DCAE trained on data belonging to the class “park”
should be able to reconstruct bird calls but a DCAE associated with
the class “park” should not, leading to a high reconstruction loss
when encountering audio containing birds. In conclusion, the usage
of ReLU can be seen as a form of regularization in this case and
helped to improve the performance when detecting outliers.

2.4. Combined system

Since both subproblems, closed-set classification and outlier detec-
tion, have been tackled in some way, we can now determine the final
output of the system. The only problem left is that, while the soft-

max output of the CNNs can be interpreted as a probability distri-
bution, the loss of the DCAEs is just the mean squared error, which
is not even bounded and scaled differently for each DCAE. More-
over, there is not only a single loss value per file but ten. Hence, it
is highly non-trivial to find a suitable decision criterion when trying
to detect outliers.

To solve this issue, we used logistic regression as implemented
in Scikit-learn [21]. The idea is to treat the ten losses as ten di-
mensional features and train a binary classifier with them. For this
purpose, we also made use of all audio files belonging to unknown
classes. Although it is not a good idea to use these files or their
spectral features directly for training a binary classifier, their losses
should look much more close to each other (equally bad) than the
outliers themselves. Hence, it may be a valid assumption to use
them as valuable training data. In addition to that, the logistic re-
gression model is very simple compared to all neural networks in-
volved before. Thus, there is less room for the model to learn more
than differentiating between losses corresponding to known classes
and the “strange looking ones” belonging to unknown classes. In or-
der to obtain meaningful positive examples of loss values belonging
to known classes, we used the validation split of the development
set. This is the only reason why the data files have not been used
for training the DCAEs before.

To decide whether given data should be treated as an outlier,
we used a threshold of 0.5 for all probabilities resulting from the
logistic regression model. This means that for each encountered
audio file, the class belonging to the maximum likelihood is cho-
sen but if the score is smaller than 0.5, it is labeled as “unknown”
instead. Choosing this particular threshold makes sense because
the logistic regression model has been trained with balanced class
weights to compensate for the different number of known and un-
known training samples. In addition to that, we also labeled all
audio files that had a maximum likelihood score less than 0.5 in
the closed-set classification evaluation as “unknown”. The underly-
ing assumption is that most resulting scores are very high anyway
and thus very small scores indicate that the model has difficulties
in deciding which class the encountered data belongs to. This may
indicate data belonging to unknown classes. See Figure 1 for an
abstract overview of the entire system.

3. EXPERIMENTAL RESULTS

3.1. Closed-set classification

Closed-set classification is not the focus of this paper. Still, it is
a vital part of any open-set classification system (see Equation 1).
Therefore, we compared the performance of our closed-set classi-
fication system to those obtained with other systems. For this pur-
pose, we used the datasets provided for subtask A of task 1. Us-
ing the datasets of subtask C for this purpose is impossible because
the score also includes the system’s outlier detection performance,
which also affects the closed-set classification accuracy. The results
can be found in Figure 2.

It can be seen that our closed-set classification accuracies are
significantly higher than the ones obtained with the baseline system
and with the system provided in [13]. Furthermore, our ensemble,
which utilizes all three features types, performs significantly better
than all models based on a single feature type. This justifies the final
design of our closed-set classification system. We also included the
winning system [22] to give an example of how much performance
can be gained when improving the system.
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Figure 2: Comparison of closed-set classification accuracies ob-
tained in task 1A.
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Figure 3: Comparison of all submitted systems’ open-set classifi-
cation scores obtained on the evaluation dataset of task 1C (final
challenge results).

3.2. Open-set classification

The open-set classification performances on the evaluation dataset
of task 1C obtained with all submitted systems including ours can be
found in Figure 3. One can see that all systems outperform the base-
line system as well as the system presented in [13] on the evaluation
dataset. More concretely, the relative performance gain of our pro-
posed system with respect to the score is 30.5% when comparing
to the challenge’s baseline system. Since these improvements are
larger in this open-set setting than in task 1A, much of the success
can be credited to using DCAEs for outlier detection. In contrast
to the results obtained in the closed-set classification task, the accu-
racy of our ensemble significantly degraded for the known classes,
which looks a bit strange at first sight. But since the accuracy signif-
icantly improved on the unknown classes, more test samples were
predicted as outliers by the ensemble also resulting in more false
rejections and a lower accuracy on the known classes.

When comparing all submitted systems, one can distinguish the
three leftmost systems (baseline [6], CVSSP baseline [13] and Mc-
Donnell [23]), which have a relatively low accuracy on the unknown
classes and thus are detecting only a few outliers, from the other sys-
tems. Because this also results in fewer false rejections, these three
systems have a comparatively high accuracy on the known classes.

Compared to them, the other systems have a much higher accuracy
on unknown classes and thus are detecting more outliers. However,
since this also results in more false rejections, this degrades the per-
formance on the known classes. It is worth pointing out that Lehner
[24] has the highest accuracy on the unknown classes but the lowest
accuracy on the known classes. In conclusion, this system detects
too many outliers. The fact that our system ranks 3rd among all
submitted systems shows that the overall structure of our open-set
acoustic scene classification system is suitable for the task.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an open-set acoustic scene classification
system that has been submitted to task 1C of the DCASE challenge
2019. It has been shown that a combination of CNNs for closed-
set classification and DCAEs for outlier detection yields significant
improvements over the baseline system. In fact, our system out-
performed the baseline system by 30.5% without using any exter-
nal data resources, increasing the score from 0.476 to 0.621 on the
evaluation dataset. Using the presented system, our team ranked 3rd
overall in task 1C of the challenge.

For future work, we plan to improve the structure of the DCAE.
In addition, using the mean squared error of DCAEs for outlier de-
tection is just a heuristic since the loss function to be optimized
does not directly aim at rejecting unknown examples. Instead of us-
ing DCAEs, one may also train a neural network with another loss
function that is specifically targeted at one-class classification (e.g.
[27]). The results can also be compared to those obtained with an
OpenMax layer [28], which can be understood as the open-set ver-
sion of a softmax layer. Another path to be investigated is to make
use of embeddings as for example the L3-Net embedding [29] or
OpenL3 [30]. These embeddings could be used in the same way
as i-vectors [31] or x-vectors [32] in open-set speaker identification
(see e.g. [10]). Note that both, i-vector and x-vector, have been suc-
cessfully applied for closed-set acoustic scene classification [33, 34]
in past editions of the DCASE challenge. Thus, utilizing embed-
dings seems promising. Lastly, using external data for training the
models or improving our relatively simple closed-set classification
model with more sophisticated techniques as for example an atten-
tion mechanism [35] also improves the open-set performance.
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