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ABSTRACT

This paper considers a semi-supervised learning framework for
weakly labeled polyphonic sound event detection problems for the
DCASE 2019 challenge’s task4 by combining both the tri-training
and adversarial learning. The goal of the task4 is to detect onsets
and offsets of multiple sound events in a single audio clip. The en-
tire dataset consists of the synthetic data with a strong label (sound
event labels with boundaries) and real data with weakly labeled
(sound event labels) and unlabeled dataset. Given this dataset, we
apply the tri-training where two different classifiers are used to ob-
tain pseudo labels on the weakly labeled and unlabeled dataset,
and the final classifier is trained using the strongly labeled dataset
and weakly/unlabeled dataset with pseudo labels. Also, we apply
the adversarial learning to reduce the domain gap between the real
and synthetic dataset. We evaluated our learning framework using
the validation set of the task4 dataset, and in the experiments, our
learning framework shows a considerable performance improve-
ment over the baseline model.

Index Terms— Sound event detection (SED), Tri-training,
Pseudo labeling, Adversarial learning, Semi-supervised learning,
Weakly supervised learning

1. INTRODUCTION

The polyphonic sound event detection (SED) has been attracting
growing attention in the field of acoustic signal processing [1–8].
The SED aims to detect multiple sound events happened simultane-
ously as well as the time frame in a sequence of audio events. The
applications of the SED include audio event classification [9–11],
media retrieval [12, 13] and automatic surveillance [11] in living
environments such as Google Nest Cam [14] which analyzes the
audio stream to detect conspicuous sounds such as window break-
ing and dog barking among various sounds that could occur in daily
environments.

Several researches [2,7,8,10,15–18] have been previously pro-
posed . In [4], spectral domain features are used to characterize the
audio events, and deep neural networks (DNN) [10] is used to learn
a mapping between the features and sound events. In [18], multiple
instance learning was exploited to predict the labels of new, unseen
instances which rely on an ensemble of instances, rather than in-
dividual instances. In [5], convolutional recurrent neural networks
(CRNN) was introduced which is a combined network of convo-
lutional neural networks (CNN) [15, 16] and recurrent neural net-
works (RNN) [8] to get the benefits of both CNN and RNN. In [19],
Mean Teacher method was adopted where the teacher model is an
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Figure 1: The spectrograms of synthetic and real dataset samples
which have the same clip labels

average of consecutive student models to overcome the limitations
of temporal ensembling for semi-supervised learning.

In contrast to the task 4 of the last year’s challenge [20], a
synthetic dataset with strong annotation is additionally provided in
DCASE 2019 challenge’s task 4. Strong annotation includes on-
set, offset and class label of the sound events. Thus, how to utilize
strongly-labeled synthetic data and mutual complement between
real dataset and synthetic dataset is a challenging problem in weakly
labeled SED problem in DCASE 2019 challenge’s task 4. Previous
methods have not focused on complement of strongly labeled syn-
thetic dataeset. As shown in Figure 1, the log-mel spectrogram of
samples which have the same clip label from synthetic data and real
data seem too much different. For this reason, we assume that do-
main gap between synthetic data and real data exists and it causes
degradation of performance on test samples.

This paper presents a sound event detection combining adver-
sarial learning and tri-training. Adversarial learning helps to re-
duce the gap between synthetic and real data by learning domain-
invariant feature while tri-training method [21] which is one of the
semi-superived learning methods learns discriminative representa-
tions by pseudo labeling one the weakly labeled or unlabeled sam-
ples. Pseudo labels are obtained by agreement of output from con-
fident two labelers on unlable data. Inspired by these properties, we
present a weakly labeled polyphonic SED by considering both ad-
versarial learning and tri-training.

The proposed learning framework was evaluated using a vali-
dation set of the DCASE 2019 challenge’s task 4 [22]. In the evalu-
ation results, combined adversarial training and tri-training shows a
considerable performance improvement over the baseline model.
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Figure 2: The proposed learning framework includes feature extractor F , classifiers(pseudo-labelers) F1, F2, final classifier Ft and domain
classifier D. The dataset to train each component is shown in the figure (e.g. classifier F2 is trained using the strongly-labeled synthetic
samples S and weakly-labeled real samplesW . The pseudo-labels are obtained by agreement from two different classifiers F1, F2 and used
in training the final classifier Ft. The domain classifierD, connected to F via a GRL, classifies the input feature into real or synthetic. With the
GRL from D to F , the feature distributions between synthetic and real domain become similar, and thus we can obtain the domain-invariant
features.

2. PROBLEM STATEMENT AND NOTATIONS

For SED, we denote a sound clip by x ∈ X and corresponding
y ∈ Y . The SED systems are expected to produce strongly labeled
output ys (i.e. sound class label with start time and end time) from
input x. However, for weakly labeled SED with semi-supervised
setting, dataset consists of strongly labeled data S = {(xsi , ysi )}mi=1,
weakly labeled data W = {(xwj , ywj )}nj=1 and unlabeled data
U = {xuk}lk=1. The weakly labeled data does not provide a tem-
poral range of events but sound class labels detected in a clip. We
focus on the usage of weakly labeled or unlabeled data and reduc-
ing domain gap between synthetic and real data. Thus, we combine
the adversarial learning based on gradient reversal layer (GRL) [23]
for reducing the domain gap and tri-training method for pseudo-
labeling weakly labeled or unlabeled data such that the networks are
learned to output discriminative representations on a real dataset.

3. PROPOSED METHOD

Our proposed method is based on CRNN [19] model, which showed
the first place of the task 4 in the last year’s challenge by combining
with Mean Teacher algorithm [24]. The whole architecture is shown
in Figure 2. A feature extractor F , which cosists of seven CNN
blocks and two bi-directional gated recurrent units (Bi-GRU) [25],
outputs shared features from log-mel features used as input for four
networks. Two labelers F1, F2 and classifier Ft predict multiple

classes for each time frame and class events for a clip from features
extracted by F . Let Ly be the classification loss with frame-level
classification lossLframe and clip-level classification lossLclip for
multi-label prediction.

Ly = Lframe + Lclip (1)

For training with frame-level classification loss and clip-level
classfication loss, binary cross entropy (BCE) loss is used with the
sigmoid output:

Lclip =

N∑

i=1

K∑

k=1

[yi,k log ŷi,k + (1− yi,k) log (1− ŷi,k)] (2)

Lframe =

N∑

i=1

T∑

t=1

K∑

k=1

[yi,t,k log ŷi,t,k+(1−yi,t,k) log (1− ŷi,t,k)]

(3)
where yi,k, yii,t,k ∈ [0, 1] are the label of sound class k of clip i
and the label sound class k at time frame t of clip i, respectively.
Also, ŷi,k is the predicted probability of sound class k of clip i,
and ŷi,t,k is ŷi,k at time frame t. A domain classifier D classifies
features from F into real or synthetic. Based on this architecture,
the proposed adversarial learning with tri-training framework for
SED will be explained in the next section.
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Figure 3: Two approaches of adversarial learning for sound event
detection problems

3.1. Adversarial learning

We denote strongly labeled synthetic dataset by S and weakly la-
beled or unlabeled real datasetW,U are the different domain (syn-
thetic or real). As shown in Figure 1, since the domain gap between
the synthetic and real dataset is quite big, we construct a domain
classifier to reduce the gap between two domains by adversarial
learning. The domain classifier D classifies input features into real
or synthetic. By applying the GRL [23] from D to the feature extrac-
tor F, we can obtain the feature representation whose distributions
are almost similar in both real and synthetic domain. We consider
two approaches to apply the adversarial learning for SED as shown
in Figure 3. First, D classifies the whole feature from F into one
result: real or synthetic (Adv.whole). In this case, GRL makes the
features from F domain-invariant. Second, D classifies each time
frame of the feature into real or synthetic (Adv.time). The second
approach is more appropriate than the first one since our architec-
ture predicts multiple sound event classes in each time frame from
features extracted from F . We denote θF , θF1 , θF2 , θFt and θD by
the parameters of each network, respectively. Also, Ld is the loss
for the domain classification. For training with domain classfication
loss, BCE loss is used with the sigmoid output:

Ld =

N∑

i=1

[di,t log d̂i,t + (1− di,t) log (1− d̂i,t)] (4)

where di,t is the label of real or synthetic at time frame t of clip i,
and d̂i,t is predicted probability at time frame t of clip i. Based on
GRL, the parameters are updated as follows:

θF ← θF − µ
(∂Ly

∂θF
− α∂Ld

∂θF

)
(5)

θF1,F2,Ft ← θF1,F2,Ft − µ
∂Ly

∂θF1,F2,Ft

(6)

θD ← θD − µ∂Ld

∂θD
(7)

Algorithm 1: The function Pseudo-labeling is the pro-
cess of assigning pseudo-labeling based on agreement
threshold from two labelers. We assign pseudo-labels to
weakly labeled or unlabeled samples when both predic-
tions of F1 and F2 are confident and agreed to the same
prediction.

Input: strongly labeled synthetic data S =
{
(xsi , y

s
i )
}m
i=1

weakly labeled real dataW =
{
(xwj , y

w
j )
}n
j=1

unlabeled real data U =
{
(xuk)

}l
k=1

pseudo-labeled weakly labeled dataWpsl = ∅
pseudo-labeled unlabeled data Upsl = ∅
for i = 1 to iter do

Train F, F1, F2, Ft, D with mini-batch from labeled
training set S,W,U

end
Wpsl = Pseudo-labeling(F, F1, F2,W)
Upsl = Pseudo-labeling(F, F1, F2,U)
for j =1 to iter do

Train F, Ft, D with mini-batch from labeled training
set S,W and pseudo-labeled training setWpsl,Upsl

end

where µ, α are the learning rate and hyperparameter of GRL, re-
spectively.

3.2. Tri-training

We apply the tri-training method to train a network using the
pseudo-labeled weakly labeled samples Wpsl and pseudo-labeled
unlabeled samples Upsl. The entire procedure of tri-training is
shown in Algorithm 1. First, we train common feature extractor
F , two labeling networks F1 and F2 , a final classifier Ft and a
domain classifierD with labeled samples S,W and unlabeled sam-
ples U . Second, pseudo-labeled samples are obtained by F1 and F2

trained with labeled samples. When the confidences of both net-
works’ outputs exceed the agreement threshold, the prediction can
be considered reliable. We set this threshold to 0.5 in the experi-
ments. Also, we expect each labeler to obtain different classifiers
F1 and F2 given the same training data, we use the following regu-
larization loss:

L = Ly + λ

∣∣∣∣∣

(
WF1

|WF1 |

)>(
WF2

|WF2 |

)∣∣∣∣∣ (8)

where WF1 and WF2 are weights of first layer of two labelers F1

and F2, respectively. We set λ to 1.0 based on the validation set.
Then, we use both labeled samples S,W and pseudo-labeled sam-
plesWpsl,Upsl for training F, Ft, andD. Then, F and Ft will learn
from the labeled real dataset.

4. EXPERIMENTS

4.1. Dataset

The DCASE 2019 challenge’s task 4 [22] provides the following 3
subsets of the dataset in the training: 1,578 clips of the weakly la-
beled set, 14,412 clips of the unlabeled in-domain set and 2,045
clips of the synthetic set with strong annotations of events and
timestamps. Weakly labeled and unlabeled in-domain sets are from
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Audioset [26] which drawn from 2 million YouTube videos. The
synthetic set is generated with Scaper [27] to increase the vari-
ability of the output for soundscape synthesis and augmentation.
These audio clips are 10 second-long and contain one or mul-
tiple sound events among 10 different classes (speech, dog, cat,
alarm/bell/ringing, dishes, frying, blender, running water, vacuum
cleaner and electric shaver/toothbrush) which may partly overlap.

4.2. Experimental setup

The model was developed using PyTorch [28] and all experiments
were conducted on an a GeForce GTX TITAN X GPU 12GB RAM.
Also, our architecture was trained with a mini-batch size of 64 us-
ing Adam optimizer [29] with an initial learning rate of 0.001 and
exponential decay rate for the 1st and 2nd moments of 0.9 and
0.999, respectively. The input audio clips are down-sampled from
44.10 kHz to 22.05 kHz. And, the log-mel spectrogram is extracted
from the audio clip with the size of 640× 128: 128-bin is used, and
2048-window with 345-hop is used to convert into 640 frames.

4.3. Experimental results

We evaluated our proposed framework using the DCASE 2019 chal-
lenge’s task4 validation dataset. We could not measure performance
on evaluation dataset since the labels of evaluation dataset are not
available yet. The macro event-based F1 scores and segment-based
F1 scores on validation dataset are shown in Table 1. Segment-based
metrics evaluate an active/inactive state for each sound event in
a fixed-length interval, while event-based metrics evaluate sound
event class detected in the fixed-length interval. The baseline of
DCASE 2019 challenge’s task 4 used the Top-1 ranked model [19]
of DCASE 2018 challenge’s task 4, which proposed Mean Teacher
method for SED; however, this baseline was designed with smaller
architecture. Thus, we designed our baseline model based on orig-
inally Top-1 ranked model in DCASE 2018. Our baseline consists
of feature extractor F and classifier Ft which are trained using the
strongly labeled synthetic data and weakly labeled real data without
Mean Teacher algorithm. The baseline showed 24.15% event-based
F1 score. For the comparisons, the official results of various SED
frameworks submitted for the DCASE 2019 challenge’s task 4 are
shown in Table 1.

With our baseline model, we applied the adversarial learning
method in two ways. The domain classifier D predicted real or syn-
thetic on whole feature map (Adv.whole) and on features in each
time frame (Adv.time). Both adversarial learning approaches im-
proved the performance as shown in Table 1. These approaches
reduced domain gap between synthetic and real feature distribu-
tions, thsu we could improve performance since the validation set
was also from the real audio clips. The Adv.time and Adv.whole
achieved 31.33% and 30.65%, respectively. The Adv.time method
showed better performance than the Adv.whole since the architec-
ture tries to predict multi-label in each time frame. We also per-
formed pseudo-labeling method using tri-training procedure. The
tri-training method achieved 30.23%. Tri-training method showed
better performance than the adversarial learning in evaluating
segment-based F1 scores. Finally, we evaluated the combined archi-
tecture: adversarial learning with the tri-training. When we trained
two labelers in tri-training, we also trained domain classifier si-
multaneously for adversarial learning. After training two labelers
with adversarial learning, more confident labelers for predicting
sound event classes on real dataset were obtained. Then, we as-
signed pseudo-label to weakly labeled and unlabeled samples based

Table 1: The event based macro F1 scores and segment based macro
F1 scores of proposed methods on validation dataset in DCASE
2019 challenge’s task 4

Model Macro F1 (%)
Event-based Segment-based

Wang YSU task4 1 19.4% -
Kong SURREY task4 1 21.3% -
Wang NUDT task4 3 22.4% -
DCASE 2019 baseline [22] 23.7% 55.2%
Rakowski SRPOL task4 1 24.3% -
mishima NEC task4 4 24.7% -
Lee KNU task4 3 26.7% -
bolun NWPU taks4 2 31.9% -
Kothinti JHU task4 1 34.6% -
ZYL UESTC task4 2 35.6% -
Kiyokawa NEC task4 4 36.1 % -
PELLEGRINI IRIT task4 1 39.9% -
Lim ETRI task4 4 40.9 % -
Shi FRDC task4 2 42.5% -
Yan USTC task4 4 42.6 % -
Delphin OL task4 2 43.6% -
Lin ICT task4 3 45.3% -
Our baseline 24.15% 57.70%
Adv.whole 30.65% 59.06%
Adv.time 31.33% 59.26%
Tri-training 30.23% 62.86%
Adv.whole + Tri-training 32.64% 60.48%
Adv.time + Tri-training 35.10% 60.67%

on two labelers. We trained the final classifier with labeled samples
and pseudo-labeled samples by tri-training scheme. In combining
the adversarial learning with tri-training method, we considered the
previous two approaches: Adv.whole and Adv.time. The tri-training
method combined with Adv.whole approach showed 32.64% event-
based F1 score and the tri-training method combined with Adv.time
achieved 35.10%. Adv.time+Tri-training achieved the highest event-
based F1 score of our models. The tri-training method achieved
62.86% segment-based F1 score and it is better than Adv.time+Tri-
training. We think that adversarial learning contributes more to in-
ference exact sound label in time frame while the tri-training con-
tributes more to inference the exact boundary of the sound event.

5. CONCLUSION

In this paper, we consider the semi-supervised learning framework
for weakly labeled SED problem for the DCASE 2019 challenge’s
task4 by combining both tri-training and adversarial learning. The
entire dataset consists of the synthetic data with the strong label
(sound event labels with boundaries) and real data with weakly la-
beled (sound event label) and unlabeled dataset. We reduce domain
gap between strongly labeled synthetic dataset and weakly labeled
or unlabeled real dataset to train networks to learn domain-invariant
feature for preventing degradation of performance. Also, we utilize
pseudo labeled samples based on confident multiple labelers trained
by labeled samples. Then, networks learn the discriminative rep-
resentation of the unlabeled dataset. The tri-training method com-
bined with adversarial learning on each time frame shows a consid-
erable performance improvement over the baseline model.
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