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ABSTRACT 

This paper proposes new image features for the acoustic scene 

classification task of the IEEE AASP Challenge: Detection and 

Classification of Acoustic Scenes and Events. In classification 

of acoustic scenes, identical sounds being observed in different 

places may affect performance. To resolve this issue, a 

covariance matrix, which represents energy density for each 

subband, and a double Fourier transform image, which 

represents energy variation for each subband, were defined as 

features. To classify the acoustic scenes with these features, 

Convolutional Neural Network has been applied with several 

techniques to reduce training time and to resolve initialization 

and local optimum problems. According to the experiments 

which were performed with the DCASE2017 challenge devel-

opment dataset it is claimed that the proposed method outper-

formed several baseline methods. Specifically, the class average 

accuracy is shown as 83.6%, which is an improvement of 8.8%, 

9.5%, 8.2% compared to MFCC-MLP, MFCC-GMM, and 

CepsCom-GMM, respectively. 

Index Terms— Acoustic scene classification, covari-

ance learning, double FFT, convolutional neural network 

1. INTRODUCTION 

Audio signals ranging from speech and general sounds (non-

linguistic sound) to background sounds may be quite informative 

in characterizing context such as presence of humans, objects, 

their activities, or the environment. Among these contexts, loca-

tion information is not only vital in multimedia analysis but also 

widely applicable to many tasks in scene understanding [1-2]. 

Location information is also useful as prior information for en-

hancing performance of speech/acoustic event recognition [3-4]. 

Thus, Acoustic Scene Classification (ASC) which focuses on 

identifying where the audio signal has been obtained has drawn 

considerable attention. IEEE AASP Challenge: Detection and 

Classification of Acoustic Scenes and Events (DCASE) 2017 

also included this task as the ASC challenge. 

Typically, an ASC system consists of feature extraction and 

classification. In feature extraction, Mel Frequency Cepstral 

Coefficients (MFCCs) and Perceptual Linear Prediction (PLP) 

have been applied as the early stage of the proposed ASC sys-

tem. Low-level spectral features such as zero-crossing rate, 

spectral statistics, and timbre were employed for ASC by com-

bining them with MFCCs [5]. A Bag-Of-Frames (BOF) method, 

which considers an acoustic scene as a set of bags of various 

sounds, was applied to ASC [6-8]. The BOF approach has used 

statistical distribution (e.g. histogram) as features, which repre-

sents the occurrence count of cepstral features, quantized by a 

codebook like dictionary. However, the BOF approach is too 

sensitive to training data due to the requirement of training 

phases in both feature extraction and classification. 

Recently, approaches based on i-vector which is widely be-

ing used for speaker recognition has also been applied for ASC 

[9]. Since i-vector is extracted from hyper-dimensional vector 

space by applying factor analysis, potential discriminable char-

acters can be revealed with the feature. In the last challenge, 

numerous approaches based on deep learning were introduced. 

Mun et al. proposed a classification framework based on bottle-

neck feature extraction with Deep Neural Networks (DNN) [10]. 

Takahashi et al. investigated DNN-Gaussian Mixture Model 

(GMM) framework for classifying MFCCs [11]. Similarly, Con-

volutional Neural Network (CNN) was applied for classifying 

log-mel spectrograms [12]. In [13], an ensemble method which 

is composed of hundreds of CNNs was proposed for stochastic 

feature extraction. Recurrent Neural Network (RNN) based 

approaches were also proposed [14-15]. In [16], combined CNN 

and Long Short-Term Memory (LSTM) model has been pro-

posed for ASC. For applying deep learning methods, sufficient 

training data is required to avoid local optimum problems. Thus, 

manipulation of development datasets is also considered as one 

of the major issues for training DNNs. 

Although many approaches have attempted ASC applica-

tions, they still suffer from realistic environment problems. Even 

in the same environment, audio signals may vary depending on 

presence of people, objects, and their behaviors. For example, in 

a café, a microphone may collect differing occurrences of sounds 

such as cleaning, coffee grinding, or people talking. Therefore, 

the feature vectors obtained in cafés will likely be widely scat-

tered in a feature space, although these vectors have originated 

from the same place. Meanwhile, features representing conver-

sations will always be observed in all environments where there 

are people. As illustrated by this example, performing location 

classification for ASC is a challenging task in realistic environ-

ments. 

This paper describes an ASC method which is applied for 

the DCASE 2017 challenge under this practical issue. According 
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to a hypothesis that sound frequency over the time may differ 

according to places, two types of image features, covariance 

matrix and double Fast Fourier Transform (FFT) image, are 

proposed. These features represent temporal energy density and 

energy variations for each frequency, respectively. Also, they are 

insensitive to training data, because they can be obtained with-

out any trained data. To perform scene classification with these 

features, Convolutional Neural Network (CNN) is considered. 

Additionally, the appropriate CNN structure is also investigated 

to improve performance. In experiment, the proposed method is 

demonstrated by using the DCASE 2017 challenge database [17]. 

The remainder of this paper is organized as follows. Sec-

tion 2 explains proposed image features with its motivation. 

Section 3 introduces CNN approaches for classifying the pro-

posed features. After a discussion on the experimental results, 

conclusions are drawn in the final section. 

 

Figure 1: Human voice spectrograms included in develop-

ment dataset for DCASE2017 challenge; (a) in library, a 

part of “b027_190_200.wav” (b) in home, a part of 

“a031_100_110.wav” 

2. PROPOSED IMAGE FEATURE 

2.1. Motivation 

Although the spectrograms are obtained in distinct places, hu-

man voices are heard in both places, library and home as shown 

in Figure 1. In this case, many conventional features extracted 

from spectrum may encounter confusion due to not only human 

voice but also other sounds heard anywhere, because their spec-

trums look very similar to each other. To overcome this prob-

lem, it is necessary to search for difference by the combination 

of spectrums during a finite interval. One method to observe 

this combination of these spectral features is via histogram with 

BOF. However, BOF is too sensitive to training data, because it 

requires training phases for feature extraction as well as classi-

fication. 

In this paper, to representing combination of spectrums 

during a finite interval, covariance matrix and frequency analy-

sis of frequency bins are considered. Figure 2 shows covariance 

matrices and images obtained by performing FFT on spectro-

gram in each frequency bin. As shown in Figure 2, library and 

home can be distinguished by using these images. Based on this 

fact, two image features, covariance matrix of spectrums (COV) 

and Double FFT Image (DFI), are proposed. 

 

Figure 2: Two image features corresponding to Figure 1; (a) 

covariance matrix in library (b) frequency analysis in library 

(c) covariance matrix in home (d) frequency analysis in 

home 

 

Figure 3: Procedure for obtaining proposed image feature 

2.2. Image Feature Extraction 

Figure 3 shows the procedure of obtaining the two image fea-

tures. A 1-dimensional wave is transformed to spectrogram after 

pre-emphasis. In Filtering, a compressive Gammachirp fil-

terbank is applied to all spectrums for dimension reduction [18]. 

The result of Filtering is partitioned into several blocks that are 

composed of consecutive filter responses. For each block, COV 

is calculated by performing expectation as 

  [:, ] [:, ] ,   [:, ]
Ti i i i

E X m X X m X X m B     C   (1)  

where Bi is a set whose elements are filter responses included 

in the ith block. Ci is a covariance matrix of the ith block. X and 

Xi are filter responses in each frame and frame average, respec-

tively, and m is frame index. 

To obtain DFI, FFT is performed on each subband of filter 

responses as 

 1: [ ,:] ,   [ ,:]
i i

k KF X k X k B D   (2)  

where Di is a DFI of the ith block, F is a function for FFT. 
K and k is the number of frequency bin and frequency index, 

respectively. Finally, min-max normalization is performed on 

both Ci and Di for representing gray-scale image. 
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3. CONVOLUTIONAL NEURAL NETWORK 

Many deep learning methods suffer from several problems such 

as over-fitting, local optimum, and training time. In CNN, the 

number of parameters is reduced by sharing weights in convolu-

tions to avoid over-fitting problems. Also, CNN is well known 

to be appropriate for classifying image. From these reasons, 

CNN is applied for classification of proposed image feature. As 

shown in Figure 4, the CNN structure consists of three parts; 

input, convolution, and fully connected. 

 

Figure 4: A CNN structure applied for classification of pro-

posed image features 

3.1. CNN Input 

Similar to human perception, stereo sound contains additional 

information such as direction of sound and spatial characters. 

Since these are also helpful for location recognition, CNN input 

is composed of four images which are COVs and DFIs obtained 

from each channel. These inputs are converted to gray scale 

image whose pixel value is integer within 0 to 255. Thus, all 

pixels in the proposed feature are normalized with zero-mean 

and unit-variance. 

In feature extraction, the number of filters included in the 

considered filterbank is set to 64, and the number of double FFT 

points is set to 128. 

3.2. Convolution 

 In training of the deep network, obtaining initialization param-

eters is very important to avoid local optimum problem. Since 

CNN structures are empirically determined, training time is 

also another issue. To alleviate these problems, batch normali-

zation has been applied in every layer [19]. Thus, three sub-

steps, convolution, batch normalization, and pooling, are con-

ducted in this step. 

In convolution, if a large filter is used, microscopic features 

can be obtained, but the number of training parameters is also 

increased. To avoid this constraint, convolutions are iteratively 

performed with a small filter. Based on this concept, filter sizes 

applied to final structure are depicted in Figure 4. After convo-

lution, Batch Normalization (BN) is also performed. 

In pooling, the image size is diminished in half by applying 

max pooling. Note that the number of tensors is increased after 

pooling. This is also iteratively performed after every convolu-

tion iteration. 

3.3. Fully connected 

After all iterations, the result of Convolution is reshaped to 

vector (8x8x32 dimension) for application to the fully connect-

ed network. In this time, Rectified Linear Unit (Relu) function 

is used for activation function. The number of nodes in each 

layer is depicted in Figure 4. 

4. EXPERIMENT 

4.1. Experimental Setting 

For performance assessment, DCASE2017 development dataset 

that consists of 15 scenes, bus, café/restaurant, car, city center, 

forest path, grocery store, home, lakeside beach, library, metro 

station, office, residential area, train, tram, and urban park, 

was used. By using four fold lists provided by DCASE2017 

committee, cross-validation tests were conducted. 

For performance comparison, several baselines were con-

sidered. Firstly, the results of MFCC-MLP and MFCC-GMM 

were provided by DCASE2017 challenge committee [20]. Sec-

ondly, CepsCom that is a 240-dimensional vector composed by 

concatenating four cepstral features was evaluated by using 128 

mixture GMM [21]. Finally, CepsCom based i-vector frame-

work was considered [22]. Based on 128 mixture GMM, a 400 

dimensional i-vector was extracted in this experiment. After 

applying multi-class Linear Discriminative Analysis (LDA) to 

400 dimensional i-vector, classification was performed by using 

a minimum Cosine Distance Score (CDS). 

In proposed method, the length of block was empirically set 

to 1 second. Thus, CNN was trained with approximately 33,000 

inputs in each fold test. (Note that about 45,000 inputs were 

used for evaluation) 

4.2. Experiment Results 

 The accuracies according to classes are summarized in Table 1. 

In baseline systems except i-vector-CDS, the performance is 

shown to be about 75%. Although logMel-MLP and MFCC-

GMM shows similar performance (i.e. class averaging accura-

cy), CepsCom-GMM shows the best averaging accuracy, which 

is an improvement of 0.6%. In logMel-MLP and MFCC-GMM, 

accuracies above 90% can be obtained in car, city center and 

office, and accuracy below 60% is shown in train. On the other 
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hand, MFCC-GMM outperforms other methods in café and 

residential area while logMel-MLP outperforms others in met-

ro-station and office. This difference may come from that dif-

ferent classifier, MLP or GMM, which has been applied to each 

method. In addition, the features is also different. Since 40 

filters for Mel filterbank are used for feature extraction, logMel 

is a 40-dimensional vector while MFCC is a 12-dimensional 

vector by conducting Discrete Cosine Transform (DCT). In case 

of CepsCom-GMM, this method outperforms others in city 

center and tram. 

In i-vector-CDS, the performance is about 62%. An UBM 

is very important for extracting i-vector, and a huge volume of 

database including a lot of scenes is required for training UBM. 

Despite this fact, development dataset consisted of 15 scenes is 

only used for training UBM in this experiment. To obtain relia-

ble results using i-vector, a larger database is required to suc-

cessfully training UBM. 

According to the results, the proposed method outperforms 

other methods. The class average accuracy was observed as 

83.6%, which is an improvement of 8.8%, 9.5%, 8.2% com-

pared to MFCC-MLP, MFCC-GMM, and CepsCom-GMM, 

respectively, which implies that the best class accuracies were 

obtained for most classes. Additionally, confusion matrices for 

CespCom-GMM and the proposed method are shown in Figure 

5. As mentioned previously, spectrum based features such as 

MFCC and CepsCom confuse scenes where common sound may 

be heard. Although class accuracies have been lower than base-

line in café and office, the proposed method resolves this prob-

lem as shown in bus, library, home and train. To additionally 

improve performance of the proposed method, the confusion 

between park and residential area has to be resolved. 

5. CONCLUSIONS 

This paper proposed new image features, COV and DFI, for 

resolving an issue that common sounds can be heard anywhere. 

The COV is a covariance matrix of spectrums which represents 

energy densities for each frequency subband. The other feature, 

DFI, represents variation of energy in each subband, which can 

be obtained by performing FFT. These features can be easily 

obtained without training data. To perform classifying using 

these features, CNN is applied with several techniques for re-

ducing training time and resolving problems about initialization 

and local optimization. Efficiency of proposed method is 

demonstrated in experiment with development dataset provided 

for DCASE2017 challenge. From the results, proposed method 

outperforms other methods by means of class average accuracy 

with 83.6%, which is an improvement of 8.8%, 9.5%, 8.2% 

compared to MFCC-MLP, MFCC-GMM, and CepsCom-GMM, 

respectively. 

 

Figure 5: Confusion matrices for CepsCom-GMM and the proposed method (a) CepsCom-GMM (b) Proposed 

 

Table 1. Experiment results for four baseline systems and proposed system 

[%] Avg. beach bus cafe car city forest groc. home lib. metro office park resid. train tram 

logMel-MLP 74.8 75.3 71.8 57.7 97.1 90.7 79.5 58.7 68.6 57.1 91.7 99.7 70.2 64.1 58.0 81.7 

MFCC-GMM 74.1 75.0 84.3 81.7 91.0 91.0 73.4 67.9 71.4 63.5 81.4 97.1 39.1 74.7 41.0 79.2 

CepsCom-GMM 75.4 78.2 82.9 75.0 91.0 91.7 61.1 81.4 70.8 58.0 78.1 96.8 53.9 74.7 54.6 83.5 

i-vector-CDS 61.9 79.5 63.5 56.7 32.1 86.9 68.4 77.9 54.8 56.7 69.4 66.0 55.1 48.7 51.5 64.0 

Proposed 83.6 88.5 93.8 73.1 93.2 86.3 97.1 84.6 82.5 77.8 89.2 91.0 73.1 70.5 70.1 82.7 
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