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ABSTRACT 

Although it is typically expected that using a large amount of 

labeled training data would lead to improve performance in deep 

learning, it is generally difficult to obtain such DataBase (DB). 

In competitions such as the Detection and Classification of 

Acoustic Scenes and Events (DCASE) challenge Task 1, partici-

pants are constrained to use a relatively small DB as a rule, 

which is similar to the aforementioned issue. To improve Acous-

tic Scene Classification (ASC) performance without employing 

additional DB, this paper proposes to use Generative Adversarial 

Networks (GAN) based method for generating additional train-

ing DB. Since it is not clear whether every sample generated by 

GAN would have equal impact in classification performance, 

this paper proposes to use Support Vector Machine (SVM) hy-

per plane for each class as reference for selecting samples, which 

have class discriminative information. Based on the cross-

validated experiments on development DB, the usage of the 

generated features could improve ASC performance. 

Index Terms— acoustic scene classification, genera-

tive adversarial networks, support vector machine, data 

augmentation, decision hyper-plane  

1. INTRODUCTION 

One of the fundamental issues in deep learning is availability of 

large labeled data set. It has been consistently shown over the last 

decade that larger labeled data set with deeper network layers can 

lead to improved results. However, it is not easy to collect large 

amounts of labeled data, so it is necessary to extract the maxi-

mum performance with a small amount of data depending on the 

application. An example of such constraint is the case of the 

IEEE DCASE challenge Task 1 for ASC [1-3]. Although it has 

been well known that the given ASC DB of the competition is 

insufficient for high classifier performance, there has not been 

much attempt on augmenting the insufficient amount of data 

among the participants by using methods such as semi-supervised 

learning (or pre-training) employing additional databases [4-7]. 

This is because one of the rules in DCASE challenge prohibits 

the use of external DBs other than the DCASE Task 1 develop-

ment set. Obviously, pre-training network using additional DB 

larger than the development set could improve ASC performance, 

as shown in our previous research [8]. However, this is not al-

lowed in the DCASE challenge. 

Therefore, to improve ASC performance without employing 

additional DB, our DCASE 2017 work focuses on DB generation. 

To generate new samples using only the development DB, we 

propose to use GAN models. The GAN learns two sub-networks: 

a generator and a discriminator. The discriminator reveals wheth-

er a sample is generated or real, while the generator produces 

samples to pass through the discriminator as real data. The GANs 

are first proposed by Goodfellow et al. [7] to generate images 

and gain insights into neural networks. Then, Deep Convolution-

al GANs (DCGANs) [9] addressed the issue of instability inher-

ent in training GAN. The discriminator of DCGAN can serve as a 

robust feature extractor. On the other hand, GANs also demon-

strate potential in generating images for specific applications. 

Pathak et al. [10] proposed an encoder-decoder method for image 

inpainting, where GANs are used as the image generator. Several 

researches have attempted to use the GAN generated samples as 

training samples. For labeling the generated samples, the gener-

ated samples were all taken as one class in the discriminator in 

[4-5]. Zheng [6] adopted a novel regularization approach by 

assigning a uniform label distribution to the generated samples. 

Although additional data generated by GAN may lead to im-

proved classifier training, it is not clear whether every data point 

generated by GAN would have equal impact in classifier perfor-

mance. As it has been shown by SVM, those support vectors that 

reside near decision boundary are generally crucial in providing 

key information in classification [16]. We believe that perfor-

mance could be improved by selecting the generated data by 

measuring decision value (distance) from decision hyper-plane of 

SVM for each class. 

Recently, GAN has been applied to several acoustic applica-

tions, such as voice conversion, speech synthesis and speech 

enhancement [11-13]. These applications have reference signals 

for training, such as the same contents of speech set that multiple 

speakers uttered [11], reference speech already generated by 

conventional synthesis methods [12], or noisy/clean speech sam-

ple pairs [13]. In the case of classifications, typically there is no 

reference signal which the generator can be built up from. There-

fore, instead of training the GAN based speech sample (raw 

waveform) generator, we propose to use the GAN as an ASC 

feature generator.  

For ASC feature extraction, we used a combined structure of 

LSTM and CNN with inputs, such as spectrogram and log Mel-

Filter Bank (MFB) energy. Using the extracted ASC features, a 

SVM hyper-plane and a GAN generator for each class were 

trained. Using the GAN generator, sample pool for each class 

were generated. Afterwards, based on the criterion of SVM deci-
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sion value and the classification rate on the seen/unseen valida-

tion DB, feature sampling and new SVM training are conducted 

iteratively. We used the feature set configuration, which shows 

the highest performance on seen and unseen data, as the final 

training DB. More details will be covered in Section 2.2. 

2. PROPOSED FRAMEWORK 

The process of the proposed GAN based framework is depicted 

in Figure 1. Following the development DB setup of the baseline 

system [14], we divided the development DB at 3: 1 ratio for 

training and validation. For validating the GAN generated sam-

ples, we divided the training part in half, Tr-A and Tr-B in Fig-

ure 1. The GAN based feature generation and selection were 

done individually for each class. Therefore, a total of 15 GANs 

were trained. After the feature samples were generated and se-

lected by GAN and SVM, the augmented feature sets were used 

for training and validation with Fully Connected Neural Net-

work (FCNN) and SVM for final classification. For improving 

performance, we conducted late fusion on SVM and FCNN 

results. 

 

Figure 1: Block-diagram of the proposed framework 

2.1. Mid-level ASC feature extraction  

For spectrogram or Mel filter-based feature input, various types 

of networks have been studied in DCASE 2016 [3]. Among the 

various approaches, we chose a structure of parallel combination 

of LSTM and CNN [1] to extract both sequential and local time-

frequency associated information. Using the network in Figure 2, 

we could get the classification results directly for the develop-

ment DB, but we extracted the mid-layer values of network as 

ASC feature for further processing. For more information on 

mid-level feature extraction, see [15] or [8] for the visual object 

classification or ASC. As mentioned in the introduction, due to 

difficulty of generating raw waveforms using GANs, we used the 

mid-layer values as ASC features to train GAN and generate 

„fake‟ data. 

 

Figure 2: The neural net structure for the feature extractor 

 

Figure 3: The iterative routine of the DB generation/selection 



Detection and Classification of Acoustic Scenes and Events 2017                                                                          16 November 2017, Munich, Germany 

2.2. Generative adversarial net based training feature set 

augmentation  

The process of the proposed GAN based feature generation and 

selection are depicted in Figure 3. As shown in step (a), a GAN 

for each class was trained using the part of the development set, 

which excludes the validation part for following steps. More 

details of GAN configuration will be covered in Section 3.2. 

Using the trained GANs, we generated „fake‟ samples and 

organized the sample feature pools for each class as shown in 

step (b). Before using the generated samples, an SVM hyper-

plane for each class (target class vs. the others) was first deter-

mined from the real data set to establish a baseline performance. 

We chose the bus class as an example. Note that half of the 

training set was used for training and the other half was used for 

validating SVM performance. As shown in step (c), we checked 

classification performance of SVM with the sum of the training 

and validation set accuracy. Considering the SVM update in the 

next step, we added a weight (α, which is bigger than 1) to the 

unseen data, i.e. validation accuracy.  

In step (d), we subsampled „fake bus‟ features from the 

generated bus feature pool and checked decision values on the 

SVM hyper-plane trained from Tr-A set. As shown in step (e), 

we sorted the fake samples by the distance order, and chose a 

preset number of the nearest samples. Additionally, we also 

included small number of samples near the hyper-plane that 

were classified as non-bus by handicapping their decision value. 

We then merged the near boundary fake samples with the real 

samples of Tr-A set. Step (f) shows the new SVM hyper-plane 

trained by the merged set. Before training the new SVM, we 

added random vectors, which are scaled to the magnitude of the 

samples, to reduce the sample bias of the generation using GAN. 

As was done in step (c), the classification performance of new 

SVM was checked with the sum of the training (Tr-A) and vali-

dation set (Tr-B) accuracy. If the accuracy score of the new 

SVM outperforms the previous SVM score, the reference SVM 

hyper-plane was replaced with the new one and the iteration 

continues again with the fake sample subsampling in the step (d). 

If not, the iteration proceeds to the step (d) without replacing the 

reference hyper-plane. All steps of subsampling, sorting, select-

ing, merging and performance checking are repeated until the 

iterative process reaches a preset number of rounds or the per-

formance converged. Once the SVM performance is optimized, 

the associated support vectors of fake bus features were used for 

the augmented training set. The entire process is repeated with 

the Tr-B as the training set for GAN and SVM, and Tr-A as the 

validation set. As shown in Figure 4, the whole processes are 

repeated for each acoustic scene class. The amount of feature 

pool was approximately 50 times that of the training DB (Tr-A 

or Tr-B), and amount of selected features was a similar to the 

training DB. In other words, the amount of the final augmented 

DB was about twice that of the original DB. 

 

Figure 4: Final augmented training set for 15 classes 

3. EXPERIMENTAL SETTINGS AND RESULTS 

3.1. Input features and mid-level feature extractor configura-

tion 

For generating input features, audio signals sampled at 22.05 

kHz sampling frequency were divided into 23.2ms frames with 

512-size Discrete Fourier Transform (DFT). MFB and DFT 

spectrogram features were used as the input of the ASC feature 

extractor individually. Following [2], we used left, right, average 

and difference of both channel audio inputs. Total 4-types of 

sources were grouped into one DB set. We followed most of the 

details in neural network of [1]. The specific network architec-

ture of the mid-level feature extractor is depicted in Table 1.  

 

Table 1: The model specifications. (Batch size : 200 samples) 

 MFB case DFT case 

Input 
Input feature length : 1 [sec] / overlapping : 0.5 [sec] 

[40 (feat.) x 42 (time-frame)] [256 (feat.) x 42(time-frame)]] 

LSTM  

#1 & 2 

Hidden unit (300) / ReLU / 

Dropout (0.2) 

Hidden unit (400) / ReLU / 

Dropout (0.2) 

Conv. #1 

4 x 4 (stride 1) / 10 filters / 

ReLU / Dropout (0.2)/ 

2 x 2 max-pooling  

16 x 8 (stride 1) / 10 filters 

/ReLU / Dropout (0.2) 

2 x 2 max-pooling 

Conv. #2 

4 x 4 (stride 2) / 4 filters / 

ReLU / Dropout (0.2) 

2 x 2 max-pooling 

8 x 4 (stride 2) / 4 filters 

/ReLU / Dropout (0.2) 

2 x 2 max-pooling 

Mid-layer for 

ASC feat. 

Hidden unit (800) / FCNN layer consists of  

two hidden layers with 400 ReLU units for each 

FCNN 

#1-3 
Hidden unit (300) / Final Soft-Max layer (15) / Dropout (0.2) 

3.2. Generative adversarial network configuration 

As mentioned in the introduction, various types of GANs have 

been widely researched. In this work, we do not focus on inves-

tigating more sophisticated sample generation methods. Instead, 

we use a basic GAN model [7, 9] to generate samples from the 

training data and show that these samples help to improve dis-

criminative learning for the unseen validation data. In the GAN 

for 2-D images, the convolutional layer of DCGAN is generally 

used [4-6, 9] for 2-D matrix, but in this work, we used FCNN to 

process the feature vector (800 x 1 [dim.]) for simplicity. In 

order to help convergence of the discriminator, we added the 

normalized mean feature vector of the each class along with the 

random value as a GAN input. The specific network architecture 

of the GAN is depicted in Figure 5. 

 
Figure 5: The neural network structure of GAN for each class 
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3.3. Classifier and late fusion 

To assess the performance of the proposed DB augmentation, we 

conducted a number of experiments on the original DCASE 

2017 development set and the augmented DB set, which consists 

of original samples and selected fake samples. As shown in the 

lower part of the Figure 1, SVM and FCNN were used as classi-

fiers for the ASC feature inputs. The FCNN consists of 3-hidden 

layers with 300 hidden nodes and the SVM with a radial basis 

function kernel were used. For late fusion on the multiple classi-

fier, we used linear logistic regression [2,17] on classification 

scores of DFT features with SVM and FCNN, and MFB features 

with SVM and FCNN in both cases of original and augmented 

DB. (8 =2 x 2 x 2=[feat. types] x [classifier types] x [DB types]) 

3.4. Results  

We compared the average ASC accuracies over all scenes for the 

SVM and FCNN classifiers trained by the original DB and the 

augmented DB expended by the proposed framework. The file- 

based (10 [sec]) classification results are given in Table 2. For 

evaluation, the average waveforms on stereo audio input were 

used. Table 3 shows the class-wise classification accuracy on the 

fusion cases. As shown in Table 2, the proposed framework with 

the augmented DB set achieved higher accuracy than other cases. 

This can be interpreted that the proposed augmented DB set 

could infer properties of unseen DB and usage of the generated 

features could generalize or improve ASC performance. As giv-

en in Table 3, although the performances of the all classes were 

not improved by the proposed method, but the overall average 

accuracy outperformed the conventional approaches. 

Table 2: Comparing the performance of the conventional and 

the proposed method (average accuracy on 4-fold validation) 

Avg. 

acc. 

[%] 

with original 

development set 
with augmented set 

DFT- 

FCNN 

MFB- 

FCNN 

DFT-

SVM 

MFB-

SVM 

DFT-

FCNN 

MFB- 

FCNN 

DFT-

SVM 

MFB-

SVM 

75.4 75.1 78.2 79.3 83.2 83.7 81.6 85.6 

 

Table 3: The class-wise accuracy comparison on the dev. set 

Acc. [%] 
Baseline 

[14] 

Fusion w/o 

augmented DB case 

Fusion on 

all cases 

Beach 75.3 70.9 71.8 

Bus 71.8 82.1 87.2 

Café 57.7 71.8 87.2 

Car 97.1 89.0 88.5 

City 90.7 85.6 98.7 

Forest 79.5 97.3 94.9 

Groce. 58.7 83.3 79.5 

Home 68.6 76.0 89.7 

Lib. 57.1 82.0 96.2 

Metro 91.7 90.7 84.6 

Office 99.7 95.1 96.2 

Park 70.2 69.9 71.8 

Resid. 64.1 71.8 87.2 

Train 58.0 71.8 82.1 

Tram 81.7 84.6 91.0 

Avg. 74.8  81.5 87.1 

3.5. Submissions 

The experiments shown in the Table 2-3 were conducted with 

the default setting of the DCASE 2017 development (4-fold 

cross validation). However, in order to reflect more information 

of the development set for the challenge submission, we con-

ducted the additional ASC feature generation based on the vari-

ous DB configurations, such as 2-fold, 3-fold and 8-fold frame-

works. In particular, additional DB augmentation processing was 

conducted on similar class pairs, such as train/tram, home/library 

and park/residential area. We will analyze a quantitative rela-

tionship between DB configuration and performance for the 

future research, after ground truth of the evaluation DB is pub-

lished. 

4. CONCLUSION AND FUTUREWORK 

In order to improve ASC performance, this paper proposed a 

framework to generate feature samples using GANs. The novel 

method of using SVM hyper-plane to select features for perfor-

mance improvement was proposed. Based on the experimental 

result of DCASE 2017 development set, we confirmed that the 

usage of the generated features could improve ASC performance. 

GAN and Variational Auto Encoders (VAEs) have shown im-

pressive performance improvements in some studies, but it is 

still difficult to generate suitable training samples without bias. 

In order to alleviate the issue, we used an iterative method with 

added random values in the generated samples to mitigate the 

issue of sample bias and over fitting. Nevertheless, further statis-

tical considerations and additional quantitative experiments are 

needed for generalization of training from GAN generated sam-

ples. 
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