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ABSTRACT

Joint sound event detection (SED) and sound source localization
(SSL) is essential since it provides both the temporal and spatial in-
formation of the events that appear in an acoustic scene. Although
the problem can be tackled by designing a system based on the
deep neural networks (DNNs) and fundamental spectral and spa-
tial features, in this paper, we largely leverage the conventional mi-
crophone array signal processing techniques to generate more com-
prehensive representations for both SED and SSL, and to perform
post-processing such that stable SED and SSL results can be ob-
tained. Specifically, the features extracted from signals of multi-
ple beams are utilized, which orient towards different directions of
arrival (DOAs), and are formed according to the estimated steer-
ing vector of each DOA. Smoothed cross-power spectra (CPS) are
computed based on the signal presence probability (SPP), and are
used both as the input features of the DNNS, and for estimating the
steering vectors of different DOAs. A triple-task learning scheme
is developed, which jointly exploits the classification and regres-
sion based criterion for DOA estimation, and uses the classification
based criterion as a regularization for the DNN. Experimental re-
sults demonstrate that the proposed method yields substantial im-
provements compared with the baseline method for the task 3 of the
DCASE challenge 2019.

Index Terms— Sound event detection, Sound source localiza-
tion, Deep neural networks

1. INTRODUCTION

Sound event detection (SED) aims to determine the time period
that an acoustic event appears, and been widely used in applica-
tions such as robotics, smart home and surveillance [1-3]. Recently
the focus has shifted to not only estimating the temporal informa-
tion of the acoustic event, but also determining the location of the
corresponding sound source. This raises the problem of joint SED
and sound source localization (SSL), namely, sound event localiza-
tion and detection (SELD). A microphone array is usually utilized,
such that the temporal and spatial samplings are simultaneously per-
formed to provide a richer description of the acoustic scene.
Conventionally the SED and SSL are separately treated, and
there have been enormous researches on each problem. Most of the
state of the art SED systems are now based on deep neural networks
(DNN) [1, 3-8], and the convolutional neural networks (CNN)
[6,7,9] and recurrent neural networks (RNN) [5, 6] are exploited to
learn the compact representations and the temporal characteristics
of the acoustic events, respectively. For SSL, conventional meth-
ods are generally based on analysing the cross-correlations between

*Equal contribution.

the multichannel signals [10-15], including the generalized cross-
correlation (GCC) [10], the multichannel cross-correlation coeffi-
cient (MCCC) [16] and the multiple signal classification (MUSIC)
[17-19] based approaches. Methods based on the DNNs are also
proposed [20-24], which use the cross-correlations as the input fea-
ture, and estimate the direction of the arrival (DOA) as a regression
or classification problem.

Since both SED and SSL can be achieved by using a DNN, to
cope with the SELD problem, a DNN-based end-to-end system is
usually trained, and the SED and SSL results are simultaneously
obtained by multi-task learning [25,26]. Shared bottom hidden lay-
ers are used to extract features for both SED and SSL, and then the
layers are split into different branches to adapt to the specific task.
In [26], the baseline system of the DCASE 2019 SELD task, the
conventional recurrent neural network (CRNN) is used to extract
the spectral and temporal characteristics of the acoustic events, and
the SED and SSL branches are respectively formulated using the
feed-forward (FF) networks.

In this paper, the conventional microphone array signal process-
ing is largely leveraged to generate comprehensive representations
for both SED and SSL, and to performing post-processing. We
extract the features from beamformed signals for multiple DOAs,
and compute the smoothed cross-power spectra (CPS) based on the
signal presence probability (SPP). The SELD problem is solved
in a triple-task learning scheme that uses the classification based
SSL criterion as a regularization for the DNN. Experimental results
demonstrate the superior performance of the proposed method com-
pared with the baseline system.

The rest of the paper is organized as follows. In Section 2 we
present the signal model. Feature extraction and the DNN structure
will be introduced in Section 3 and 4 respectively. The methods
for postprocessing the DNN outputs are described in Section 5, and
Section 6 elaborates the data augmentation and system ensemble
strategies. We evaluate the proposed method in Section 7 and draw
conclusions in Section 8.

2. SIGNAL MODEL

We briefly introduce the signal model that will facilitate the deriva-
tions in this paper. With Q <= 2 sources and M = 4 microphones,
the short-time Fourier transform (STFT) domain reverberant signal
in the m-th microphone is expressed as

Q
Yot £) =D Honp(£)Sq(t, f), 0
q=1

where Sy (¢, f) is the STFT signal of the g-th source, Ha, q(f) is
the room impulse response (RIR) from the g-th source to the m-th
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microphone. We ignore the additive noise since the signal-to-noise
ratio (SNR) is typically high in the training and testing sets of the
DCASE 2019 SELD task.

3. FEATURE EXTRACTION

The steps of extracting the features by using the conventional signal
processing techniques are introduced in this section.

3.1. Smoothed CPS

The phase of the CPS implies the phase difference between chan-
nels, which is closely related to the DOA of the sound source. With
the multichannel signal, the CPS between the m-th microphone and
the first microphone is computed by recursive smoothing as

le(t7 f) = Oéle(t - 17f) + (1 - O‘)Y'r)rkl(tvf)yl(t f)7 (2)

where 0 < o < 1 is a smoothing factor.

Since the phase difference between channels is randomly dis-
tributed when the signal is inactive, we apply a mask to the CPS,
such that the effect of inactive periods is removed, and the mask is
computed according to the signal presence probability (SPP) using
the first channel signal based on [27]. With the SPP, P(t, f), the
time-frequency (TF) domain mask is defined by

M(t, f) =11, if P(t, f) > 0.6;0, otherwise.} 3)
and the resulting masked CPS is calculated as

Since a hard thresholding is performed in (3), to further re-
move the fluctuations caused by the probably non-smooth mask,
the smoothed CPS is further obtained by

R (t, f) = [Ron1 (t = 1, f) 4+ R (8, £)]/2. (5)

3.2. Steering Vector

The steering vector describes the relationships between the multi-
channel signals for a certain DOA. Although in this challenge the
explicit positions of the microphones are unknown, it is possible to
estimate the steering vectors for different DOAs from the labelled
development dataset.

Ignoring the level difference, the M X 1 steering vector is de-
termined by the phase differences between channels, whose m-th
element can be calculated from the extracted smoothed SPS by

[ B (2, f)]

With the development dataset, for each DOA, the segments with
only one active source are selected, and the corresponding steering
vector is computed by averaging the phase of the smoothed CPS in
this segments. Since 36 azimuths and 9 elevation angles are present,
totally 36 x 9 = 324 steering vectors are computed.

Fig. 1 displays the angular spectrum of the steering vector be-
tween the first two channels. The DOA index is divided into 36 in-
tervals and in each interval 9 elevations are included. It can be seen
that the angular spectrum changes smoothly for different elevations
in each interval, and the angular spectrum can act as a distinct fea-
ture for each DOA. The estimated steering vector will be used to
perform beamforming and to estimate the DOA of each source in
the subsequent procedures.

}, where the DOA in (¢, f) is ¢. (6)
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Figure 1: The angular spectrum of the steering vector between the
second and first channel.

3.3. Multiple DOA Beamforming

With the estimated steering vectors, we use beamforming to achieve
signal separation in the case of overlapping acoustic events. Since
the DOA of each source is unknown, eight fixed beamformers are
designed to extract the signals from different DOAs, and the two
elevations and four azimuths of the eight target DOAs are {—25°,
25°} and {—170°:90°:100°}, respectively. Simple delay and sum
(DS) beamformers are adopted, since the noise level is low, and can
be assumed to be spatially white across microphones (In this case
the minimum variance distortion response (MVDR) beamformer is
equivalent to the DS beamformer). In this way eight beamformed
signals are obtained, and used to extract the power spectrum fea-
tures along with the multichannel raw signals.

3.4. Power Spectrum Features

We extract the power spectrum features of the twelve channel sig-
nals, which include the four channel raw observations and eight
channel beamfomer outputs. 96-dimensional log-Mel and con-
stant Q-transform (CQT) features are extracted based on the STFT-
domain power spectra, and are fed into the DNN for SELD.

4. DNN FOR SELD

4.1. Input Feature

The input features of the DNN consist of three parts: 1) the log-Mel
and CQT features described in Section 3.4, 2) the angular spectra of
the four-channel STFT-domain microphone signals, 3) the angular
spectra of the four-channel smoothed CPS. The last two parts repre-
sent the phase information that is useful for SSL. Here the FFT size
is chosen as 2048, and only the lower 512 bins of the whole fre-
quency range are used to compute the angular spectra of the STFT-
domain signals and the smoothed CPS.

4.2. DNN structure

The structure of the DNN is shown in Fig. 2. In the proposed
network structure, separate CNNs are adopted for the log-Mel fea-
tures and the phase (angular spectrum) features respectively, and the
learned features are concatenated and sent into the GRU layers to
account for the temporal evolution of the acoustic event. Different
with the baseline method in [26] which jointly learns a classification
network for SED and a regression network for SSL, here, a triple-
task learning scheme is developed, which jointly exploits the clas-
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Figure 2: The DNN structure for SELD. BN represents batch nor-
malization, and FC represents fully-connected network.

sification and regression based criterion for DOA estimation. In the
classification based DOA estimation network, since 36x9 DOAs are
considered in the 3D space, the learning target is defined as a 324
sparse vector, whose element is one if the sound source appears at
the corresponding DOA. The classification based DOA estimation
criterion acts as a regularization for the DNN, and it is shown that
it helps to improve the performances of both SED and SSL, which
are determined by the SED label and DOA value. The optimization
criterion for the SED classification, DOA classification and DOA
regression are binary cross-entropy, binary cross-entropy and mean
square error, respectively, and the loss functions are combined with
a weight as [1,50,50] for joint optimization during training.

It should be noted that the DOA cannot be inferred only from
the DOA label outputs because of the ambiguity of assigning the
DOA to the correct sound source in the overlapping scenarios.
Therefore, the regression based DOA learning target is necessary
for constructing the DNN.

5. POST-PROCESSING

5.1. DOA Estimation

Although the SSL is integrated into the DNN as a learning task, the
resulting DOA estimates exhibit high fluctuation over time. This is
probably because that, although the phase features for SSL keep
constant during the source active period, since the DNN is also
adapted for SED, the layers for SSL are effected by the time-varying
log-Mel features. To overcome this problem, the DOA is finally es-
timated by the conventional SRP-PHAT method, and the DOA es-
timates from the DNN are only used as anchor points to solve the
ambiguity problem of assigning DOA to the source.

Given the steering vector and the smoothed CPS estimated in
Section 3, in each frame, a 36 x 9 spatial spectrum can be computed,
whose element indicates the cost function value of the SRP-PHAT
algorithm. According to the number of active sources () inferred by
the SED estimation, the corresponding highest Q peaks are selected
from the SRP-PHAT spatial spectrum, and the peak is determined if
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Table 1: Systems for ensemble

System Signals for feature extraction
Log-Mel 4-channel raw signals
Log-Mel&CQT  4-channel raw signals

Log-Mel + BF 4-channel raw signals + 8-channel

beamformer outputs

the point satisfies: a) being the highest point in a 5 X 5 neighbouring
region which picks the neighbours by —2 : 1 : 2, and b) being
higher than 0.7 times the highest SRP-PHAT value. If two source
are active simultaneously, a peak is assigned to the closer source
according to the DOA estimated by the DNN.

5.2. Temporal Spatial Consistency

We assume that a sound source is static and there is no short
pause during the active period. Short pauses with duration less
than 200 ms are removed by using the estimation results before the
pause. Then the estimated DOAs for each continuous time interval
of the acoustic event are further smoothed using a weighted voting
strategy. For each frame in the active interval, a vote is given to
the corresponding DOA, and two additional votes are assigned if
there is only one active source in the current frame. The DOA of
the acoustic event for the whole active interval is determined by the
DOA with the highest votes, and then applied to all frames in the
active interval.

6. DATA AUGMENTATION AND SYSTEM ENSEMBLE

The development data is augmented to improve the generalization
ability of the trained model. Similar to automatic speech recogni-
tion [28], the speed of the training data is perturbed by 0.9 and 1.1,
respectively, and the label of the speed-perturbed training data can
be calculated by scaling the beginning and finishing time of each
acoustic event by the corresponding factor. During training, we ex-
ploit the dataset with the original speed as the validation set to select
the best model.

In the development stage, we develop three subsystems to fi-
nally produce an ensemble system. The three subsystems exploit
the same DNN structure and post-processing strategy, and differen-
tiates only in the power spectrum part of the input features, which
are summarized in Table 1. In each frame, the SED estimate of the
ensemble system is first determined by weighted majority voting,
then the DOA is given by the DOA output of the system that yields
the estimated event type. In the case of controversial DOA estimates
from different systems, the system with smaller DOA difference
between the DNN output and post-processing is chosen. Different
ensemble weights can be chosen for each subsystem. During en-
sembling, the subsystems are duplicated according to their weights,
and the SELD results are finally obtained from all the duplicated
subsystems by majority voting. For instance, if the weight vector is
[0.2,0.2,0.6], the third system is duplicated three times in the ma-
jority voting stage.

In the evaluation, since four cross-validation combinations are
available for each system in Table 1, in total we exploit 12 systems
to generate the SELD estimates for the evaluation set. The same
strategy is utilized to ensemble the 12 systems.



Detection and Classification of Acoustic Scenes and Events 2019

Table 2: Performances on the development set

System ER F-score  DOA error FR SELD score
baseline 0.39 0.775 34.82 0.829  0.245
Log-Mel 0215  0.869 9.36 0.888  0.127
Log-Mel&CQT 0.173  0.899 9.66 0.890 0.110
Log-Mel + BF 0.148 0914 9.78 0.907  0.095
Xue JDAI task 3.1  0.113  0.934 9.00 0.906 0.081

Table 3: Ensemble weights for submitted systems

System Weighting vector for
Log-Mel, Log-Mel&CQT, Log-Mel+BF
Xue_JDAI task 3.1  [0.33,0.33,0.33]
Xue JDAI task 3.2 [0.16, 0.33, 0.5]
Xue JDAI task 3.3 [0.2,0.2, 0.6]
Xue JDAI task 3.4 [0.2,0.4,0.4]

7. EVALUATION

7.1. Data and Experimental Setup

The proposed method is evaluated on the DCASE 2019 challenge
SELD development dataset [29,30], which is recorded using a four
channel microphone array. The development set is divided into four
cross-validation splits, with each split consisting of 100 utterances
sampled at 48 kHz, and the duration of each utterance is one minute.
Eleven kinds of acoustic events are included, and up to two events
may appear simultaneously in a frame. The azimuths and the el-
evations of the acoustic events are distributed within the range of
[—180°, 170°] and [—40°, 40°], respectively, all with a 10° incre-
ment.

We compare the systems used for ensemble and the ensemble
system with the baseline method in [26]. In all experiments, the
hop size is set to 20 ms and the FFT size is 2048. Each minibatch
contains 16 feature sequences, with each of them having a length of
128.

The metrics introduced on [31] are used for evaluation, which
include the F-score and error rate (ER) for SED, and the DOA error
and frame recall (FR) for SSL. An SELD score is calculated based
on the above four metrics to provide an overall evaluation of the
SELD performance.

7.2. Results

The performances of different systems are shown in Table 2. Only
the ensemble system ‘“Xue_JDAI_task_3_1” is shown for example.
We totally generate four ensemble systems which adopt different
weights for ensembling the subsystems. The weights for different
ensemble systems are summarized in Table 3. It can be seen that
all the three proposed systems yield substantially better results than
the baseline system. Compared with the system which only adopts
the Log-Mel features of the four-channel signals, we notice that, the
absolute ER of SED is reduced by 4% by exploiting the CQT fea-
tures, and another 2.5% gain is obtained by using the beamforming
outputs from multiple DOAs. By integrating the three systems, we
can finally achieve an ER of 11.3% for SED, which is significantly
lower than the baseline system. On the other hand, it is shown that
the DOA error is reduced to approximately 9° with the DOA esti-
mation method in Section 5.1.
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Figure 3: Illustration of the SELD performance for the ensemble
system.

Fig. 3 displays the SELD performance of the ensemble system
on one utterance. We can observe that for almost all cases the pro-
posed system can yield both accurate and stable SED and SSL esti-
mates.

8. CONCLUSIONS

In this paper we propose we an SELD method which leverage the
conventional microphone array signal processing techniques. Based
on the smoothed CPS, the steering vector for each DOA is esti-
mated, and is used to design the beamformers for multiple DOAs
and for DOA estimation in the postprocessing stage. A triple-task
learning scheme is used, which uses the classification based SSL
criterion as a regularization for the DNN. The effectiveness of the
proposed method is demonstrated by the experiments on the devel-
opment dataset of DCASE 2019 challenge SELD task.
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