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Introduction 

!Transactional Memory (TM) simplifies parallel programming 

•! Atomic and isolated execution of transactions 

!Current practice: Most TMs do not support nested parallelism 

!Nested parallelism in TM is becoming more important 

•! To fully utilize the increasing number of cores  

•! To integrate well with programming models (e.g., OpenMP) 

// Parallelize the outer loop 

for(i=0;i<numCustomer;i++){ 

 atomic{ 

  // Can we parallelize the inner loop? 

  for(j=0;j<numOrders;j++) 

   processOrder(i,j,…); 

 }} 



 

Previous Work: NP in TM 

!Software-only approach: [PPoPP 10], [SPAA 10] 

•! Use complex data structures or depth-dependent algorithm for NP 

•! Degrade the performance of transactions 

!Excessive overheads even for single-level txns 

•! Impractical unless performance issues are addressed 

!Full HTM approach: [Vachharajani 08] 

•! Intrusive modifications in caches  Complicate HW design 

!For nesting-aware conflict detection & data versioning 

•! Unlikely to be adopted unless HW complexity is lowered 

!Needed: TM with practical support for nested parallelism 



 

Contributions 

!Propose Filter-accelerated Nested TM (FaNTM) 

•! Goal: Make nested parallel transactions practical 

•! Performance: Eliminate excessive overheads of SW nested txns 

!By offloading nesting-aware conflict detection to HW filters 

•! Implementation cost: Simplify hardware design 

!By fully decoupling nested transactions from caches 

!Quantify FaNTM across different use scenarios 

•! Small runtime overheads for top-level parallelism 

•! Nested txns scale well, significantly faster than SW ones 

•! Tradeoff between top-level and nested parallelism 
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Background: Semantics of Nesting 

!Definitions 

•! Family(T) = ancestors(T)  descendants(T) 

!Transactional hierarchy has a tree structure 

•! Readers(o): a set of active transactions that read “o” 

•! Writers(o): a set of active transactions that wrote to “o” 

!Conflicts 

•! T reads from “o”: R/W conflict 

! If there exists T’ such that T’ writers(o), T’ T, and T’ ancestors(T) 

•! T writes to “o”: R/W or W/W conflict 

! If there exists T’ such that T’ readers(o) writers(o), T’ T, and 

T’ ancestors(T)  



 

Background: Example of Nesting 

!T1 and T2 are top-level 

•! T1.1, T1.2: T1’s children 

!T=6: R/W conflict 

•! T2 writes to A 

•! T1.1  Readers(A) 

•! T1.1  Family(T2) 

!T=8: No conflict 

•! T1.2 writes to B 

•! T1  Readers(B) 

•! T1  Family(T1.2) 

! Serialization order 

•! T2  T1 

st A 

T1 T2 

T1.2 T1.1 

st B 

ld B 

ld A 

ld A 

T1.1 



 

FaNTM Overview 

!FaNTM is a hybrid TM that extends SigTM [ISCA 07] 

•! Advantage: Decoupling txns from caches using HW signatures 

!No TM metadata in caches  Simplified HW 

!Hardware extensions 

•! Multiple sets of HW structures to map multiple txns per core 

•! Network messages to remotely communicate signatures 

!Software extensions 

•! Additional metadata to maintain transactional hierarchy information 

•! Extra code in TM barriers for concurrent nesting 



 

Hardware: Overall Architecture 

! Filters snoop coherence messages for nesting-aware conflict detection 

•! Filters may intercept or propagate messages to caches 

! Each filter consists of multiple Transactional Metadata Blocks (TMBs) 

•! R/W Signatures: conservatively encoding R/W sets 

•! FV: a bit vector encoding Family(T) 



 

TMB: Conflict Detection (Ld) 

WSig Hit ? 
N Y 

Nack Req . 

Propagate 

Propagate 

Family ? 
N Y 

Done 

Ld Req .  

from T R 

R/W Conflict 



 

TMB: Conflict Detection (Ldx) 

WSig Hit ? 
N Y 

Nack Req . Propagate 

Family ? 
N Y 

Ldx Req .  

from T R 

Propagate Abort 

Propagate Family ? 
Y N 

RSig Hit ? 
Y N 

Done 

W/W Conflict R/W Conflict 



 

Software: Transaction Descriptor 

!Tid: Transaction ID 

!UndoLog: Hold previous memory values (eager versioning) 

•! Implemented using doubly-linked lists 

•! Entry: <addr, previous memory value, ptrs to neighbors, …> 

! Parent: Pointer to the parent’s descriptor 

!CommitLock: Synchronize concurrent commits by children 

struct transaction { 

 int Tid; 

 Log UndoLog; 

 struct transaction* Parent; 

 lock CommitLock; 

 ... 

} 



 

Software: Read Barrier 

!Insert the address of the memory object in RSig 

•! No need to maintain a software read set 

!Attempt to read the memory value 

•! If the load request is successful (i.e., not nacked) 

!The memory value is returned 

•! Otherwise, the TMB interrupts the processor 

!To abort the transaction (R/W conflict) 

TxLoad(addr){ 

 RSigInsert(addr); 

 val=*addr; 

 return val; 

} 



 

Software: Write Barrier 

!Insert the address of the memory object in WSig 

!Broadcast an exclusive load request over the network 

•! If this request is successful (i.e., not nacked) 

!The current memory value is inserted in the undo log 

!Memory object is updated in-place (eager versioning) 

•! Otherwise, the TMB interrupts the processor 

!To abort the transaction (W/W conflict) 

TxStore(addr,val){ 

 WSigInsert(addr); 

 fetchEx(addr); 

 undoLog.insert(addr,*addr); 

 *addr=val; 

} 



 

Software: Commit Barrier 

! If a top-level transaction 

•! Finish by resetting TM metadata 

!Otherwise (i.e., nested transaction) 

•! Merge R/WSigs to its parent (sending messages over the network) 

•! Merge its undo-log entries to its parent 

•! Finish by resetting TM metadata 

TxCommit(){ 

 if(topLevel()){ 

  resetTmMetaData();} 

 else{ 

  mergeSigsToParent(); 

  mergeUndoLogToParent(); 

  resetTmMetaData(); 

 } 

} 
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Evaluating FaNTM 

!Three questions to investigate 

•! Q1: What is the runtime overhead for top-level parallelism? 

!Used STAMP applications 

!Runtime overhead is small (2.3% on average across all apps) 

!Start/commit barriers are infrequently executed  No major impact 

•! Q2: What is the performance of nested parallel transactions? 

•! Q3: How can we use nested parallelism to improve performance? 



 

Q2: Performance of Nested Txns 

!rbtree: perform operations on a concurrent RB tree 

•! Two types of operations: Look-up (reads) / Insert (reads/writes) 

!Sequential: sequentially perform operations 

!Flat: Concurrently perform operations using top-level txns 

!Nested: Repeatedly add outer transactions 

•! N1, N2, and N3 versions 

// Parallelize this loop 

for(i=0;i<numOps;i+=C){ 

 atomic{ 

  for(j=0;j<C;j++){ 

   accessRBtree(i,j,…);} 

 } 

} 

Flat version 

atomic{ 

 // Parallelize this loop  

 for(i=0;i<numOps;i+=C){ 

  atomic{ 

   for(j=0;j<C;j++){ 

    accessRBtree(i,j,…);} 

  }} 

} 

Nested version (N1) 



 

Q2: Performance of Nested Txns 

! Scale up to 16 threads (e.g., N1 with 16 threads  6.5x faster) 

•! Scalability is mainly limited by conflicts among transactions 

!No major performance degradation with deeper nesting 

•! Conflict detection in HW  No repeated validation across nesting 

! Significantly faster (e.g., 12x) than a nested STM (NesTM) [SPAA 10] 

•! Making nested parallel transactions practical 



 

Q3: Exploiting Nested Parallelism 

!np-rbtree: based on a data structure using multiple RB trees 

•! Two types of operations: Look-up / Insert 

!Higher the percentage of inserts  Higher contention (top-level txns) 

•! After accessing each tree, computational work is performed 

!Two ways to exploit the available parallelism 

•! Flat version: outer-level parallelism 

•! Nested version: inner- and outer-level parallelism 

// Parallelize outer loop 

for(i=0;i<numOps;i++){ 

 atomic{ 

  for(j=0;j<numTrees;j++){ 

   accessTree(i,j,…); 

  } 

 } 

} 

Flat version 

// Parallelize outer loop 

for(i=0;i<numOps;i++){ 

 atomic { 

  // Parallelize inner loop 

  for(j=0;j<numTrees;j++){ 

   atomic{ 

    accessTree(i,j,…); 

   }} 

 }} 

Nested version 



 

Q3: Flat vs. Nested 

! Lower contention (top-level) & small work  Flat version is faster 

•! Due to sufficient top-level parallelism & lower overheads 

!Higher contention (top-level) & large work  Nested version is faster 

•! By efficiently exploiting the parallelism available in both levels 

!Motivate research on nesting-aware runtime systems 
•! Dynamically exploit the parallelism in multiple levels 

Lower-Cont/Small Work Higher-Cont/Large Work 



 

Conclusion 

!Propose Filter-accelerated Nested TM (FaNTM) 

•! Goal: Make nested parallel transactions practical 

•! Performance: Eliminate excessive overheads of SW nested txns 

!By offloading nesting-aware conflict detection to HW filters 

•! Implementation cost: Simplify hardware design 

!By fully decoupling nested transactions from caches 

!Quantify FaNTM across different use scenarios 

•! Small runtime overheads for top-level parallelism 

•! Nested txns scale well, significantly faster than SW ones 

•! Tradeoff between top-level and nested parallelism 

!More details (e.g., complications of nesting) in the paper 


