Making Nested Parallel Transactions
Practical using Lightweight
Hardware Support

Woongki Baek, Nathan Bronson,
Christos Kozyrakis, Kunle Olukotun

Stanford University

% Introduction

// Parallelize the outer loop
for(1=0; i<numCustomer;i++){

atomic{

// Can we parallelize the i1nner loop?
for(J=0; j<numOrders;j++)
~_processOrder(1,],..);

13,

! Transactional Memory (TM) simplifies parallel programming

| Atomic and isolated execution of transactions
Q! Current practice: Most TMs do not support nested parallelism

! Nested parallelism in TM is becoming more important
*| To fully utilize the increasing number of cores
*| To integrate well with programming models (e.g., OpenMP)

A
% Previous Worlk: NPinTM

(!Software-only approach: [PPoPP [0], [SPAA 10]

| Use complex data structures or depth-dependent algorithm for NP

*| Degrade the performance of transactions

" | Excessive overheads even for single-level txns

*! Impractical unless performance issues are addressed

d!Full HTM approach: [Vachharajani 08]

*! Intrusive modifications in caches = Complicate HW design
" | For nesting-aware conflict detection & data versioning

*! Unlikely to be adopted unless HW complexity is lowered

(1!Needed: TM with practical support for nested parallelism

Contributions

!Propose Filter-accelerated Nested TM (FaNTM)

*| Goal: Make nested parallel transactions practical

| Performance: Eliminate excessive overheads of SW nested txns

= | By offloading nesting-aware conflict detection to HWV filters

*! Implementation cost: Simplify hardware design

= | By fully decoupling nested transactions from caches

!Quantify FANTM across different use scenarios
*! Small runtime overheads for top-level parallelism
*! Nested txns scale well, significantly faster than SW ones

*| Tradeoff between top-level and nested parallelism

Outline

d!Introduction

!Background

!Design of FANTM

!Evaluation

d!Conclusion

% Background: Semantics of Nesting

! Definitions

*! Family(T) = ancestors(T) [¥

descendants(T)

" | Transactional hierarchy has a tree structure

*| Readers(o): a set of active transactions that read “o”

! Writers(o): a set of active transactions that wrote to

!Conflicts

Wlancestors(T)

] |f there exists T such that Th

(1 ”

| T reads from “o”: R/W conflict

(M)writers(o), T'#T, and T'{¥]ancestors(T)

! T writes to “0”: R/'W or W/W conflict
= If there exists T’ such that T’[¥]readers(o){¥]writers(o), T'#T, and

Background: Example of Nesting

0 (a! @
1 %’ N /TZ Q! TI and T2 are top-level
, -Faﬁ | TI.1, T1.2: TI’s children
3 NT1.2
1 . Y} Q!'T=6: R/W conflict
5 R | T2 writes to A
6 > st A ol TI.I Readers(A)
7 O | TI.1 [%] Family(T2)
8 +stB
9 T1.1 CD ! T=8: No conflict
10 o */ T1.2 writes to B
11 ld A Join
12] @ Begin | TI [¥] Family(T1.2)
13 O Commit
14 Xﬁ;’o" ! Serialization order
-— st
. ! T2 TI

% FaNTM Overview

d!FaNTM is a hybrid TM that extends SigTM [ISCA 07]

! Advantage: Decoupling txns from caches using HW signatures
" No TM metadata in caches = Simplified HW

d!'Hardware extensions

! Multiple sets of HW structures to map multiple txns per core

! Network messages to remotely communicate signatures

!Software extensions

! Additional metadata to maintain transactional hierarchy information

*| Extra code in TM barriers for concurrent nesting

% Hardware: Overall Architecture

Po [BN BN PN.1
Private .o o Private
Cache Cache
l T T/
$ Filter (3 W) Filter

Intercannection Netwark

Shared Cache/Memaory

Q! Filters snoop coherence messages for nesting-aware conflict detection

*| Filters may intercept or propagate messages to caches

! Each filter consists of multiple Transactional Metadata Blocks (TMBs)
| R/W Signatures: conservatively encoding R/W sets
*| FV: a bit vector encoding Family(T)

%

TMB: Conflict Detection (Ld)

Ld Req.
from Tgr

Y %\ N
WSIg Hit?

l

Propagate

R/W Conflict
Y N
i Famy=? w
Propagate Nack Req.

Done

10

)

TMB: Conflict Detection (Ldx)

Ldx Req.
from Tgr

Propagate

Nacl!Req.

Propagate

Propagate

Done

11

% Software: Transaction Descriptor

struct transaction {

int Tid;

Log UndoLog;
struct transaction* Parent;
lock CommitLock;

}
! Tid: Transaction ID

!'UndoLog: Hold previous memory values (eager versioning)
*! Implemented using doubly-linked lists
! Entry: <addr, previous memory value, ptrs to neighbors, ...>

! Parent: Pointer to the parent’s descriptor

Q! CommitLock: Synchronize concurrent commits by children

12

Software: Read Barrier

TxLoad(aderj

RSiglnsert(addr);

return_val;

val=*addr;

}

d!Insert the address of the memory object in RSig

| No need to maintain a software read set

! Attempt to read the memory value

*! If the load request is successful (i.e., not nacked)
| The memory value is returned

! Otherwise, the TMB interrupts the processor
" | To abort the transaction (R/W conflict)

13

Software: Write Barrier

TxStore(addr,val){

WSiglnsert(addr);

fetchEx(addr);

undoLog. insert(addr,*addr);
*addr=val ;

}

!Insert the address of the memory object in WSig

(!Broadcast an exclusive load request over the network

o! If this request is successful (i.e., not nacked)
*| The current memory value is inserted in the undo log
| Memory object is updated in-place (eager versioning)
| Otherwise, the TMB interrupts the processor
"I To abort the transaction (W/W conflict)

14

£
% Software: Commit Barrier

TxCommit(){

1T(topLevel O)){
resetTmMetaDatagz;t

else{
mergeSigsToParent();
mergeUndoLogToParent();
resetimMetabData();

}

}

Q!'If a top-level transaction

*! Finish by resetting TM metadata

! Otherwise (i.e., nested transaction)
| Merge R/WSigs to its parent (sending messages over the network)
*| Merge its undo-log entries to its parent
*! Finish by resetting TM metadata

15

Outline

d!Introduction

!Background

!Design of FaANTM

!Evaluation

d!Conclusion

16

)

Evaluating FaNTM

!Three questions to investigate

| QI: What is the runtime overhead for top-level parallelism?
" |Used STAMP applications
= | Runtime overhead is small (2.3% on average across all apps)

" | Start/commit barriers are infrequently executed = No major impact

| Q2: What is the performance of nested parallel transactions?

! Q3: How can we use nested parallelism to improve performance?

17

Q2: Performance of Nested Txns

Flat version Nested version (N1)

// Parallelize this loop atomic{
Tor(1=0; 1<numOps; 1+=C){ // Parallelize this loop

atomic{ Tfor(1=0; 1<numOps; 1+=C){

for(J=0;j<C;j++){ atomic{

accessRBtree(1,j),..):} for(J=0;j<C;j++){

} accessRBtree(1,j3,..):}

+ b3 s

d!rbtree: perform operations on a concurrent RB tree

! Two types of operations: Look-up (reads) / Insert (reads/writes)
(d!Sequential: sequentially perform operations
Q!Flat: Concurrently perform operations using top-level txns

(1!Nested: Repeatedly add outer transactions
! NI, N2, and N3 versions

18

% Q2: Performance of Nested Txns

3.0 |
8 25 =
s ‘ ‘ Idle
o 20 - \ \ “ Non-Leaf Cmt
= \ \
= 1.5 - \ \ ® Commit
§ 1.0 - \) = Abort
0.5 L 2y "'"
o | d N . N
= 0.0] = Busy

1 161 16 | 1 16 1 | 16

Flat N1 N2 N3

(!Scale up to 16 threads (e.g., NI with 16 threads = 6.5x faster)
*| Scalability is mainly limited by conflicts among transactions
! No major performance degradation with deeper nesting
| Conflict detection in HW =» No repeated validation across nesting
Q! Significantly faster (e.g., 12x) than a nested STM (NesTM) [SPAA 10]
| Making nested parallel transactions practical

% Q3: Exploiting Nested Parallelism

Flat version

Nested version

//

Parallelize outer loop

// Parallelize outer loop

fo

}
}

r(i=0;i<numOps;i++){

atomic{

for(J=0;j<numTrees;j++){
accessTree(i,j,..);

}

for(i=0;i<numOps;i++){
atomic {

// Parallelize inner loop

for(J=0; j<numTrees; j++){
atomic{
accessTree(i,j,..);
i

¥

!np-rbtree: based on a data structure using multiple RB trees

! Two types of operations: Look-up / Insert

" | Higher the percentage of inserts = Higher contention (top-level txns)

*| After accessing each tree, computational work is performed

d!Two ways to exploit the available parallelism

*! Flat version: outer-level parallelism

*! Nested version: inner- and outer-level parallelism

20

A
% Q3: Flat vs. Nested

Lower-Cont/Small Work Higher-Cont/Large Work

7.0 10.0
= = 9.0
g 6.0 g- 3.0
g. 5.0 8‘ 7.0 / 2
n (]
= 4.0 . 6.0 27
o o ”
> S 5.0 —
©3.0 - % Flat o 4.0 (e > Flat
520 *Nested S 3.0 #Nested
T ~- 35 .
o 1.0 g 20
& & 1.0

0.0 T T 0.0 T T

4 8 16 4 8 16
Number of Concurrent Threads Number of Concurrent Threads

Q! Lower contention (top-level) & small work =» Flat version is faster

*| Due to sufficient top-level parallelism & lower overheads

! Higher contention (top-level) & large work =» Nested version is faster

*| By efficiently exploiting the parallelism available in both levels

(1! Motivate research on nesting-aware runtime systems

| Dynamically exploit the parallelism in multiple levels

Conclusion

!Propose Filter-accelerated Nested TM (FaNTM)

*| Goal: Make nested parallel transactions practical

| Performance: Eliminate excessive overheads of SW nested txns

= | By offloading nesting-aware conflict detection to HWV filters

*! Implementation cost: Simplify hardware design

= | By fully decoupling nested transactions from caches

!Quantify FANTM across different use scenarios
*! Small runtime overheads for top-level parallelism
*! Nested txns scale well, significantly faster than SW ones

*| Tradeoff between top-level and nested parallelism

(d!More details (e.g., complications of nesting) in the paper

22

