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Abstract

In this project, we tackle the problem of depth estimation
from single image. The mapping between a single image
and the depth map is inherently ambiguous, and requires
both global and local information. We employ a fully con-
volutional architecture, which first extracts image feature by
pretrained ResNet-50 network. We do transfer learning by
replacing the fully connected layer of ResNet-50 with up-
sampling blocks to recover the size of depth map. The up-
sampling block combines residual learning concept. This
CNN-Residual network can be trained en-to-end, and runs
real time on images with enough computing power.

We demonstrate that our method of doing up-sampling
by CNN-Residual network yields better result than fully
connected layer, because it avoids overfitting. We also com-
pare our model with pure CNN network and illustrates the
effectiveness of tansfer learning. We also show the influence
of different loss functions during training. The results are
shown by comparing qualitative visualization and quantita-
tive metrics.

1. Introduction

As a fundamental problem in computer vision, depth
estimation shows the geometric relations within a scene.
These relations help provide richer representations of ob-
jects and their environment, often leading to improvements
in existing recognition tasks, as well as enabling many fur-
ther applications such as 3D modeling, physics and sup-
port models [28]], autonomous driving, video surveillance,
robotics [4], and potentially reasoning about occlusions.

Many successful techniques for depth estimation from
stereo images has been proposed. Provided accurate image
correspondences, depth can be recovered deterministically
in the stereo case.

While estimating depth from based on stereo images
or motion has been explored extensively, depth estimation
from monocular image often arises in practice, such as bet-
ter understandings of the many images distributed on the
web and social media outlets, real estate listing, etc, which
include both indoor and outdoor examples. Hence, it is not
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only a challenging task to develop a computer vision system
capable of estimating depth maps by exploiting monocu-
lar cues, but also a necessary one in scenarios where direct
depth sensing is not available. Moreover, the depth informa-
tion is well-known to improve many computer vision tasks
with respect to the RGB-only counterpart, such as in recog-
nition [22]] and semantic segmentation [2].

Estimating depths from a single monocular image is a
well-known ill-posed problem, since one captured RGB im-
age may correspond to infinite number of real world scenes,
and no reliable visual cue can be obtained. Several works
have tried to tackle this problem. Structure-from-Motion
method leverages camera motion to estimate camera poses
through different temporal intervals and, in turn, estimate
depth via triangulation from pairs of consecutive views.
Other works use variations in illumination [34] and focus
[31] as assumptions.

Recently, Convolutional Neural Networks (CNNs) have
been employed to learn an implicit relation between color
pixels and depth. We implemented an end-to-end trainable
CNN architecture combined with residual network to learn
a mapping between color image pixel intensity with corre-
sponding depth map.

2. Related work
2.1. Classic methods

In the single-view depth estimation problem, most works
rely on camera motion (Structure-from-Motion method
[21]]), variation in illumination (Shape-from-Shading [34])
or variation in focus (Shapre-from-Defocus [31]).

Without such information, single RGB image depth es-
timation has also been investigated. Classic methods rely
on strong assumptions about the scene geometry, relied
on hand-crafted features and probabilistic graphical mod-
els which exploits horizontal alignment of images or other
geometric information. For example, Saxena et al. [26]
predicted depth from a set of image features using linear
regression and a MRF, and later extend their work into the
Make3D system for 3D model generation [27]. However,
the system relies on horizontal alignment of images, and
suffers in less controlled settings. Inspired by this work,
Liu et al. [15] combine the task of semantic segmenta-



tion with depth estimation, where predicted labels are used
as additional constraints to facilitate the optimization task.
Ladicky et al. [10] instead jointly predict labels and depths
in a classification approach. Hoiem et al. [6] do not predict
depth explicitly, but instead categorize image regions into
geometric structures and then compose a simple 3D model
of the scene.

2.2. Feature-based mapping methods

A second type of related works perform feature-based
matching between a given RGB image and the images of
a RGB-D repository in order to find the nearest neighbors,
the retrieved depth counterparts are then warped and com-
bined to produce the final depth map. Karsch et al. [7] per-
form warping using SIFT Flow [[L6], followed by a global
optimization scheme, whereas Konrad et al. [8] compute
a median over the retrieved depth maps followed by cross-
bilateral filtering for smoothing. Instead of warping the can-
didates, Liu et al. [19]], formulate the optimization problem
as a Conditional Random Field (CRF) with continuous and
discrete variable potentials. Notably, these approaches rely
on the assumption that similarities between regions in the
RGB images imply also similar depth cues.

2.3. CNN based methods

Recently, CNN based depth estimation methods begin to
dominate. Since the task is closely related to semantic la-
beling, most works have built upon the most successful ar-
chitectures of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [25], often initializing their networks
with AlexNet [9] or the deeper VGG [30]. Eigen et al. [3]
are the first to use CNN for single image depth estimation.
The authors addressed the task by employing two deep net-
work stacks. The first network makes a global coarse depth
prediction for the whole image, and the second refines this
prediction locally. This idea is later extended in [2]], where
three stacks of CNN are used to additionally predict surface
normals and labels together with depth. Unlike the deep
learning structures used in [3, 2], Roy et al. [24] combined
CNN with regression forests [14]], using very shallow ar-
chitectures at each tree node, thus limiting the need for big
data.

Another direction for improving the quality of the pre-
dicted depth maps has been the combined use of CNNs and
graphical models. Liu et al. [17]] propose to learn the unary
and pairwise potentials during CNN training in the form of
a conditional random field (CRF) loss and achieved state-
of-the-art result without using geometric priors. This idea
makes sense because the depth values are continuous [18].
Li et al. [13] and Wang et al. [32] use hierarchical CRFs
to refine their patch-wise CNN predictions from superpixel
down to pixel level.

2.4. Fully convolutional networks

The deep learning based methods mentioned above in-
crease the accuracy on standard benchmark datasets consid-
erably, and are the best in the state of the art. Meanwhile, re-
searchers are trying to improve CNN method accuracy fur-
ther. Recent work has shown that fully convolutional net-
works(FCNs) [20] is a desirable choice for dense prediction
problems due to its ability of taking arbitrarily sized inputs
and returning spatial outputs. [1] uses FCN and adopts CRF
as post-processing. Besides classical convolutional layers,
[12] uses dilated convolutions as an efficient way to expand
the receptive field of the neuron without increasing the pa-
rameters for depth estimation; [23]] uses transpose convolu-
tion for up-sampling the feature map and output for image
segmentation.

Laina et al. [11] proposed a fully connected network,
which removes the fully connected layers and replaced with
efficient residual up-sampling blocks. We closely follow
this work in this project. We reimplemented the architecture
in PyTorch, and compared the performance of this method
with pure CNN.

3. Methods

We experimented with three CNN based methods. We
will illustrate each one in the next subsections, and compare
their performance in the experiment section.

3.1. CNN+FC

The first architecture follows the work in [3]], where the
authors used coarse and fine CNN networks to do depth es-
timation. We basically reimplemented the structure of the
coarse network in the paper.

As shown in Figure Eka), the network consists of two
parts, convolution layers and fully connected layers.The in-
put RGB image first goes through convolution layers with
11 x 11,5 x 5,3 x 3 filters. Batch normalization, ReLU
layers and 2 x 2 max-pooling layers follow the convolution
layers. After 6 convolution layers, the data goes through
2 fully connected layers, and the final output is resized to
be the size of the ground truth depth map. Dropout is used
after the first fully connected layer to avoid overfitting.

The total number of parameters of all the convolution
layers are 27232. In contrast, the number of parameters of
the two fully connected layers are 73293824, which is as-
tronomical. As shown in the experiment part, this model
can overfit thousands of images, but fails to get reasonable
result on validation set. Even adding dropout layers won’t
fix the problem.

3.2. Pure CNN

In order to fix the overfitting issue, we replace the fully
connected layers with convolution layers instead. This



(a) Architecture of CNN+FC network

(b) Architecture of pure CNN network

(c) Architecture of CNN+Residual network
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Figure 1. Architecture of three networks used in this project.

heavily reduces the number of parameters used, and when
the number of convolution layers are proper, can achieve or
outperform the CNN+FC network.

As shown in Figure Ekb), this network consists of 8 con-
volution layers. Since convolution layers take into account
both global and local information, we expect this network
to have a better behavior. As demonstrated in class, big
convolution filters can be replaced with more layers of con-
volution with smaller size filters, which reduces the total
number of parameters to train and can obtain similar results.
We replaced the 11 x 11 and 5 x 5 filters with 3 x 3 filters.
Each convolution layer is followed by batch normalization
to facilitate training process, and then followed by ReLU
activation layer. 2 X 2 max-pooling is used to downsample
the original image to obtain the size of depth map.

We tried a variation of this architecture as well. When
we read through the papers that use CNN based method for
depth estimation, we found that the original image is usually
downsampled to have a small height and width feature, and
then upsampled to have the size of the final depth map. So
we changed the last two layers of this network. The second
last layer is followed by a 2 x 2 max-pooling layer, and the
last layer is replaced with a transposed convolution layer to
upsample the input. This architecture is referred to as CNN-

transpose in the experiment section.

3.3. CNN+Residual

Our third and most promising architecture follows the
work in [[11]. The essence is that we do transfer learning
with extracted image features, and the transfer learning in-
volves not only training the fully connected layer as we do
in classification tasks, but also convolution and up projec-
tion to construct a depth map.

The structure is shown in Figure [[(c). The input RGB
image is fed as input to the pretrained ResNet-50 network.
We take the extracted image feature before fully connected
layer, which has the dimension of 10 x 8 x 2048. In or-
der to obtain depth map with higher resolution, we need to
do upsampling. As illustrated in [33[], unpooling layers in-
crease the spatial resolution of feature maps by performing
the inverse operation of pooling. The up projection block
used in this network consists of unpooling layers with con-
volution layers, which is shown in the lower right in Fig-
ure [} An input feature with size H x W x C first goes
through an unpooling layer, which doubles the feature size
to 2H x 2W x C' by mapping each entry to the upper left
corner of a 2 x 2 kernel. The expanded entries are filled
with zeros or the averaged value of its two nearest neigh-



bors. The expanded data is then fed into a 5 x 5 convolution
layer, which is guaranteed to be applied to more than one
non-zero elements at each location. This is then followed
by ReLU activation and a 3 X 3 convolution. In addition to
this up convolution architecture, a projection connection is
built from lower resolution feature map to the block output.
To keep the dimension consistent, an up-convolution (un-
pooling and 5 x 5 convolution) is also added on this branch.

4. Dataset

We use NYU Depth Dataset V2 [29] for this task. This
dataset is composed of 4K indoor scenes, taken as video
sequences using a Microsoft Kinect camera. Because the
depth and RGB cameras operate at different variable frame
rates, we associate each depth image with its closest RGB
image in time, and throw away frames where one RGB im-
age is associated with more than one depth. We use the
camera projections provided with the dataset to align RGB
and depth pairs; pixels with no depth value are left miss-
ing and are masked out. To remove any invalid regions
caused by windows, open doorways and specular surfaces
we also mask out depths equal to the minimum or maximum
recorded for each image.

KITTI is another popular dataset frequently used in
depth estimation projects. Since our calculation resources
are limited, we will compare the feasibility of our algorithm
based on the training result on NYU dataset only.

5. Experiments

In this section, we give qualitative results of our models
as well as quantitative metric evaluations. We also compare
the performance of different loss functions on this task. All
experiments are implemented in PyTorch.

5.1. Visualization of depth output
5.1.1 CNN+FC

We set up a simple version of CNN+FC architecture and
overfit on a small dataset. In our implementation, the
coarse part of the CNN architecture in [3]] is used and batch
normalization is added right after each convolution layer.
Dropout is added after the FC layer with the probability of
0.5. Mean square error function is used as our loss function
on a per pixel basis. Adam is chosen as our optimizer, with
the learning rate set to be 1e — 3. L2 regularization is added
with the weight decay to be 1le — 4.

3590 images are fed to our training process and 399 im-
ages are used for validation. Batch size is set to 32 during
training. Preliminary results are shown in[2] On the left is
the loss over time. From this graph, we are clearly overfit-
ting our data: the training loss keeps decreasing while the
validation loss reduces to the point of 1300 then stops de-
creasing. On the right are some examples from our training

sets. The first row is the input images. The second row
is the ground truth. The third row is the prediction on our
training data, which, again, is the result of overfitting our
data.

5.1.2 Pure CNN

This fully convolutional network consists of 8 convolution
layers, and batch normalization and ReLU activation fol-
lows each convolution layer. We removed fully connected
layers in this model to avoid overfitting. Although we re-
duce the number of parameters to train drastically, the mem-
ory usage of convolution layers are more, and we reduced
the batch size to 8 to avoid "out of memory’ error. Learning
rate is set to 1e — 3. We used Adam optimizer in this task.

The results of pure CNN network and CNN-transposed
network are shown in Figure [3] These are trained on 300
images over 20 epochs. As we tried to train with thousands
of images, the average training loss is difficult to converge,
but the training and validation loss drop in the same pace.

The CNN-transposed network uses transposed convolu-
tion to upsample and obtain the depth map. As we can see
from the figure, both methods produce visually reasonable
depth prediction, but artifacts exist. The depth map of trans-
posed convolution model is strided. This implies this up-
sampling method is not optimal. In the convolution model
with only downsampling convolution layers, the predicted
depth maps are smooth, but we can see that the depth maps
resemble more of the original images than the depth images.
More training cycles may resolve this problem.

5.1.3 CNN+Residual

The CNN+Residual model is the architecture proposed by
[L1] which uses resNet50 [5] without the last fully-connect
layer and pooling layer as feature extractor, and then uses
upprojection blocks to upsample the extracted feature. Due
to the size of the network, training of this network takes
a long time. We trained this network on a smaller dataset
with 500 images. We varied the unpooling layer in the up-
projection and compare the results in[5.4] We also tested
the influence of using pretrained parameters in[5.5]

5.2. Metrics evaluation

For images with ground truth depth value y and predicted
value ¢, we use three different metrics to quantify the per-
formance of different network architecture: percentage of
pixels with relative error ¢ = max{£, %} less than 1.25,
ly—91

absolute relative difference and root mean squared

error /1 (§—y)2. We compare the performance in

CNN-+ResNet yields the best performance. This may be-
cause of the good feature extraction done by the pretrained
ResNet50.
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Figure 2. Training results of CNN+FC network
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Figure 3. Training results of CNN network

t <125 Absreldiff RMSE
CNN+FC 0.307 3.4e5 1.12
CNN 0.195 1.2e6 1.22
CNN-+trans 0.143 3.2e5 1.23
CNN-+Res 0.634 2.35¢e4 1.74

Table 1. Metric evaluation results

5.3. Comparison of loss functions

For a image of n pixels with the true depth y and pre-
dicted depth ¢, the loss function B(§, y) is defined in three
different ways:

5.3.1 Mean squared error

5.3.2 Scale-invariant mean squared error

A
=LY -2y

where d; = logy; — logg;, A € [0,1]

5.3.3 Berhuloss
) 1[G —yl
B(g.y) = n {(Q—y)2+c2
2c

where ¢ = tmaz;(|9;

if [y —yl <c

otherwise

— y;|) for each image.

5.3.4 Comparison

We compare the performance of different loss function us-
ing fully convolution network without transpose convolu-
tion in 2] Network using RMSE loss yields the highest
percentage with 1.25 error threshold. Meanwhile scale-
invariant loss results in the smallest absolute relative dif-
ference and Berhu loss gives rise to the smallest RMSE.

t < 1.25 Absrel diff RMSE
RMSE 0.380 4.52e6 1.23
Scale-invariant 0.195 1.21e6 1.22
Berhu 0.352 1.76e6 0.98

Table 2. Metric evaluation of different loss functions

5.4. Comparison of Different Unpooling Methods

In CNN+Residual model,we compared two different un-
pooling methods in upprojection block. One is to use zero



to fill the empty entries, another is to use the average value
of the two nearest neighbor to fill the empty entry (average
unpooling). We compared the two methods by training the
model on a small dataset of 25 images with 120 epochs. The
results are shown in Table [3|and Figure 4]

t <1.25 Absreldiff RMSE
Normal Unpooling | 0.0537 1.28e6 6.18
Average Unpooling | 0.0557 1.27e6 6.37

Table 3. Metric evaluation of different unpooling methods

From Figure fi] we could clearly see that the generated
depth maps of normal unpooling methods have many grid
patterns which are likely due to the different portion of zeros
received in the downstream CNN filters, where the outputs
of average unpooling are much more smooth. The perfor-
mance of the two different unpooling methods are simil-
iar. Probably more training epochs would make them have
a larger difference.

5.5. Influence of Transfer Learning

There are pretrained parameters of CNN+Residual
model on NYU dataset, which enables transfer learning.
To test the influence of initial parameters, we trained the
CNN+Residual model with two different initial parameters.
For both models, we used pretrained resNet50 [S]. Then
for the upprojection blocks, we initialized one with small
random numbers and the other with pretrained parameters.
We trained two models on a dataset of 500 images with 20
epochs. The results are shown in Table ] and Figure 5]

t <1.25 Absreldiff RMSE

Random Initialization 0.634 2.35e4 1.74
Transfer Learning 0.729 1.43e6 0.734

Table 4. Metric evaluation of different initialization

From Figure E] we could see that, for same number of
epochs, the random initialized model performs much worse
than the transfer learning one. There are obvious grid pat-
tern in the random initialized one. The metric evaluation
of the transfer learning model is also better. These results
show the benefit of using pretrained models and doing trans-
fer learning.

6. Conclusion

Depth prediction using monocular image plays an es-
sential role in many practical applications and is challeng-
ing because of the inherent ambiguity. In this project, we
approach this problem using CNN and compare the per-
formance of different CNN architecture on NYU Depth
Dataset V2. CNN with fully connected layer like the one
used in [3] is powerful but can easily overfit on the dataset
because of the large number of parameters in fully con-
nected layer. This motivates us to use only convolutional

layers and stack more layers to increase the receptive field.
This architecture yields acceptable result while reduces a
large number of model parameters. We also try [[18] which
is a CNN architecture using transfer learning on the ResNet
[S] and are able to get reasonable results on the validation
set.
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