Object Detection based on Convolutional Neural Network

Shijian Tang
Department of Electrical Engineering
Stanford University
sjtang@stanford.edu

Abstract

In this paper, we develop a new approach for detecting
multiple objects from images based on convolutional neural
networks (CNNs). In our model, we first adopt the edge box
algorithm to generate region proposals from edge maps for
each image, and perform forward passing of all the propos-
als through a fine-tuned CaffeNet model. Then we get the
CNNs score for each proposal by extracting the output of
softmax which is the last layer of CNN. Next, the proposals
are merged for each class independently by the greedy non-
maximum suppression (NMS) algorithm. At last, we evalu-
ate the mean average precision (mAP) for each class. The
mAP of our model on PASCAL 2007 test dataset is 37.38%.
We also discuss how to further improve the performance
based on our model in this paper.

1. Introduction

Convolutional neural networks (CNNs) has been widely
used in visual recognition from 2012 [[1] due to its high ca-
pability in correctly classifying images. In [1]], the authors
show an extremely improvement on the accuracy of image
classification in ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). And CNNs become the most prefer-
able choice for solving image classification challenges. Be-
sides image classification, researchers have extend the ap-
plication of CNNs to several other tasks in visual recogni-
tion such as localization [2]], segmentation [3]], generating
sentences from image [4]], as well as object detection [J5].

In our project, we mainly focus on the task of object de-
tection which has tremendous application in our daily life.
The goal of object detection is recognise multiple objects in
a single image, not only to return the confidence of the class
for each object, but also predict the corresponding bounding
boxes.

Among most of the works in object detection, region
CNNs (rCNN) [5] is the most remarkable one that combines
selective search [6]], CNNs, support vector machines (SVM)
and bounding box regression together to provide a high per-

Ye Yuan
Department of Computer Science
Stanford University
yy0222Q@cs.stanford.edu

formance in object detection.

In this paper, we will provide an alternative approach of
object detection by reducing the complexity of the rCNN.
First, we adopt edge box [7]], a recent published algorithm to
generate region proposals, instead of selective search used
in rCNN. [8] shows that even though the mean average pre-
cision (mAP) between edge boxes and selective search are
almost the same, edge boxes runs much faster than selective
search. Secondly, we remove all of the class specific SVMs,
and directly use the output of softmax in the last layer of
CNN as our score. To compensate the possible performance
degrade raised by removing SVMs, we carefully design our
training data to fine-tune CNN. Fig.[T]is an overview of our

model.

Figure 1: The overview of our object detection system. 1).
Edge box algorithm generates proposals. 2). A fine-tuned
CNN with object classes plus one background class to ex-
tract the CNN features for each proposal. 3) Employ the
softmax to give the confidence (score) of all the classes for
each proposal (which is typically the last layer of CNN).
4). For each class, independently use the non-maximum
suppression (NMS) to greedily merge the overlapped pro-
posals.

In addition to the previous model, we also develop a tra-
ditional model as our baseline. In this model, we adopt slid-
ing window to generate proposals, and use histogram orien-
tation gradient (HOG) features to describe such proposals.
Then we use our trained linear SVM to score each proposal.

The rest of this paper can be organized as follows. In
section |2} we briefly summarize the previous work in ob-
ject detection and introduce the state-of-art approaches. In
section [3] we will cover more details of the technical ap-
proaches in our model including the general framework,
theoretical background as well as performance evaluation

metrics. In section[d} we will present our experiment results
and briefly discuss the results. Section [5| will conclude our
work and discuss the method to further improve the perfor-
mance of our model.

2. Background

Object detection becomes an attractive topic in visual
recognition area in the last decade. In the early stage, people
tend to design features from raw images to improve the per-
formance of the detection. Among these features, SIFT [9]
and HOG [10] features are the most successful ones. These
features combined with SVMs have successfully detect the
pedestrians from images. However, when these models are
applied into multiple classes and object detection in a single
image, the performance is not as our expected.

Instead of using linear SVMs, some other works try to
use ensemble SVMs [[11]] as well as latent SVMs [12] based
on HOG feature description. But the performance of object
detection still barely improves.

People switch to focus on CNNs since [1] shows a signif-
icant improvement of classification accuracy by employing
a deep CNNs. Unlike classification, the detection task also
requires us to localize the object by specifying a bound-
ing edge box. Therefore, we can not directly use CNNs
in object detection without solving the localization prob-
lem. [2] tries to treat the localization problem as a regres-
sion task. But the performance has minimal improvement.
Then other researchers [13]] adopt the sliding window com-
bined with CNNs as one possible solution. However, due
to the exhaustive nature of sliding window with high com-
putational complexity, this method can not be practically
implemented. Even though sliding window approach can
not work in practice, this method provides an idea that is
solving localization by classifying region proposals of the
images.

Instead of sliding window, several algorithms are also
capable to generate proposals efficiently, such as objectness
[[14], selective search [6], category-independent object pro-
posals [15], constrained parametric min-cuts (CPMC) [16]
and edge [7]. In the rCNN paper [5], the authors choose
selective search as proposal generation algorithm due to its
fast computational time. In this paper, we will choose a new
published algorithm named edge instead of selective search
for object detection.

Other people also develop weakly supervised learning
[[17] and deformable CNNs [18] to detect objects last year.
3. Approach

In this section, we will cover the details of our object
detection model.

3.1. Proposal generation

In this paper we will use the edge boxes as our proposal
generation algorithm. The basic idea of edge boxes is that
this algorithm generates and scores the proposal based on
the edge map of the image. Specifically, in the first step we
should generate an edge map with a structured edge detec-
tor where each pixel contains a magnitude and orientation
information of the edge.

Then we group the edges together by a greedy algorithm
where the sum of orientation of all the edges in the group
is less than pi/2. After that, we will compute the affinity
between two edge groups which is important for the score
computation.

Next, for a given bounding box, we will compute the
score of the bounding box based on the edge groups entirely
inside the box.

At last, we use the non-maximal suppression to merge
the bounding box to get the proposals.

Compared with the selective search which has been cho-
sen in the rCNN, [8]] shows that for VOC 2007 dataset, the
mAP of edge boxes is 31.8% which is slightly larger than
selective search with mAP as 31.7%. One advantage of
edge boxes is that the runtime is much faster than the ma-
jority of the proposal generation schemes. For edge boxes,
the average runtime is 0.3 seconds while for selective search
as 10 seconds.Therefore, the edge boxes decreases the time
complexity without degrading the performance. Hence, we
choose the edge boxes as the proposal generation algorithm.

3.2. Training procedure

In this paragraph, we will describe preparing our training
data and fine-tuning caffe model. As we mentioned in sec-
tion[I] for compensating the removal SVMs from the rCNN,
we will carefully design our training data, especially for the
background data.

In the rCNN model, the authors train both CNN and class
specific SVMs using different training data set. For CNN,
they choose the bounding box with IoU (intersection over
union) larger than 0.5 as positive data, others as negative
(background) data. For SVMs, they use the ground-truth
as positive data to improve localization precision, IoU less
than 0.3 as negative data and ignore all the rest of cases.

In our approach, all the training data are extracted from
the raw images. As we eliminate the SVMs, we did not
choose IoU as 0.5 to split positive and negative (also known
as background) data for CNN, because that would decrease
the performance of localization. Our schemes are as fol-
lows. For the detection problem, during the test time, the
number of background proposals is typically much larger
than that of the positive proposals. Hence, intuitively, we
need more background data compared with positive data for
training. So, we collect background data four times larger
than the positive data. Note that we will not add more back-

ground data, since it will make the training dataset imbal-
ance and, therefore, harder for a classifier to classify it.

Then we divide the background data into four folders
1,2,3,4. For folder 1, the IoU with ground truth are be-
tween 0.5 and 0.7, for folder 2, the IoU with ground truth
are between 0.3 and 0.5, for folders 3 and 4, the IoU with
ground truth are less than 0.3. In the case of positive data,
we randomly extract a region from raw image, if the loU
with ground truth is larger than 0.7, it is a positive data with
the same class label as the ground truth. The last step is
shuffling all the data. By designing the training data in this
way, we can suffer a precise localization without class spe-
cific SVMs.

The next step is fine-tuning the pre-trained CNN mod-
els using the generated training data as we described above.
We choose the CaffeNet model as our pre-trained model.
This model is a replicate of AlexNet, having 5 convolu-
tional layers and pre-trained on the ILSVRC2012 dataset.
We change the output number of last layers to 21 (for VOC
2007 dataset, 20 object classes plus 1 background class).
We will describe the process and results for tuning the Caf-
feNet model.

3.3. Testing procedure

In the testing time, we firstly generate regional propos-
als by edge boxes, and then perform the forward pass for
all of the proposals through the fine-tuned CNN. Note that
since the input size of CaffeNet model is fixed as 227 x 227
pixels, the proposals with different shapes are resized to the
required shape before forward pass.

After that, we will extract the output of the softmax as a
21-element vector for each proposal, with each entry in the
vector represent the confidence of the corresponding pro-
posal in each class.

The we employ the non-maximum suppression (NMS)
algorithm to ignore the redundant proposals. The basic idea
of this algorithm is that sort the proposals by the confidence
(also known as score), and then ignore the proposals over-
laping with a higher-scored proposal. The threshold of the
overlap is typically defined as the IoU between two propos-
als. Note that the IoU threshold will affect the performance
of our detector, which should be tuned carefully to achieve
the best performance.

To evaluate the performance of the detection, we use the
mean average precision (mAP). The mAP equals to the in-
tegral over the precision-recall curve p(r).

1
mAP:/ p(r)dr (1)
0

To determine the precision-recall curve, we need to com-
pute the true positive and false positive value of our predic-
tion first. We use the IoU (intersection of union) to deter-

mine the successful detection by

A red n A t
JoU = preat 17 gt 2
Apred U Agt ()

where Ap,.q and A, are the areas included in the predicted
and ground truth bounding box, respectively. Then we des-
ignate a threshold for IoU, for example 0.5, if the IoU ex-
ceeds the threshold, the detection marked as correct detec-
tion. Multiple detections of the same object are considered
as one correct detection and with others as false detections.
After we get the true positive and false positive values, we
can compute the precise-recall curve, and then evaluate the
mAP. Details about the error analysis can be found in [19].

3.4. Baseline model

As the baseline, one approach of generating proposal we
experimented is using features. [LO]The process of localiza-
tion and classification are separated. Firstly, HOG features,
a binary-classification SVM and Non-Maximum Suppres-
sion are used for localisation, and then result boxes from
the previous process will be classified by CNN.

When in the training process of the SVM, comparable
numbers of object and background boxes are used. HOG
features of such boxes are passed into the SVM to train the
weights. SVM will determine if one box contains objects or
only background.

In the testing process. HOGs of sliding windows of
threes shapes and three scales are passed into the trained
SVM to obtain scores on each label. Then, NMS is used to
take away bounding boxes that overlap others with higher
scores. The proposals remained after this process will be the
localization of the objects. These region will then passed
into the CNN for classification. The mAP we obtained
based on this model is 22.6%.

For more detail of this model, please have a look as our
CS 231A final project report.

4. Experiment Results
4.1. Dataset description

We adopt the VOC 2007 dataset in our project, which is
a popular dataset for classification, detection and segmenta-
tion [20]. This dataset contains 5011 images for the task of
detection and classification. All the images are divided into
training set and validation set. For the training dataset we
have 2501 images, and 2510 images for validation.

The objects in the dataset can be classified into 20
classes. Each image contains more than one object which
are not necessarily in the same class. The total number of
objects in this dataset is 12608, with 6301 in training dataset
and 6307 in validation dataset. On the average, there will be
2.51 objects per image. Therefore, this dataset is an appro-
priate choice for detection problem. In addition, the objects

can be also described by the regular objects and difficult ob-
jects. The difficult objects are typically not clearly visible
such as occluded by other objects. These objects marked as
difficulty can not be simply classified or detected without
additional information such as the view of the image. This
is beyond the topic of this project. Therefore, in our project
we ignore the difficult objects as most other works did.

As we mentioned in the previous section, we have pre-
processed the training data as well as validation data for
fine-tuning CNN. We have generated 30120 training data
with 6024 positive images labeled by 20 classes, and 24096
background images. Also, we get 30232 validation data
with 6064 positive images and 24168 background images.
Fig. 2 illustrates the samples of resized training data with
positive and negative labels.

For the test data, the VOC 2007 has released the whole
test dataset with 4952 images and the corresponding ground
truth bounding box for each object. There is no object la-
beled as “difficult” in the test dataset.

(d)

Figure 2: The samples from training data with all images
resized into 256 x 256 pixels. The first two rows are positive
image, and the second two rows are negative images.

4.2. Fine-tuning Caffe

The goal of the training process is to fine-tune the pre-
trained CaffeNet model on our dataset. Our strategy is that

first we have frozen all the layers except for the last layer
(softmax layer), then use a relatively aggressive learning
rate to train the last layer from scratch. This procedure is
equivalent to use the 4096 dimension CNN features to train
a softmax classifier. We initialize the learning rate as 0.001
and decrease the learning rate by a factor of 0.9 after every
2000 iterations. After the 10000 iterations, the validation
accuracy is 0.780875, with loss as 0.758219.

Then for the next step of fine tuning, we release all the
layers, and train them together. Here, we choose a rela-
tively small learning rate initialized as 5e-6, and decrease
the learning rate by a factor of 0.9 after every 2000 itera-
tions. After 30000 (40000 in total) iterations, we can get
the the validation accuracy as 89%. And the loss is 0.4474,
as Fig. [3] shows.

10315 13:43:04.158149 31477 net.cpp:163] pool5 needs backward computation.

10315 13:43:04.158154 31477 net.cpp:163] reluS needs backward computation.

10315 13:43:04.158159 31477 net.cpp:163] conv5 needs backward computation.

10315 13:43:04.158164 31477 net.cpp:163] relu4 needs backward computation.

10315 13:43:04.158167 31477 net.cpp:163] conv4 needs backward computation.

10315 13:43:04.158172 31477 net.cpp:163] relu3 needs backward computation.

10315 13:43:04.158176 31477 net.cpp:163] conv3 needs backward computation.

10315 13:43:04.158180 31477 net.cpp:163] norm2 needs backward computation.

10315 13:43:04.158185 31477 net.cpp:163] pool2 needs backward computation.

10315 13:43:04.158190 31477 net.cpp:163] relu2 needs backward computation.
43:04.158197 31477 net.cpp:163] conv2 needs backward computation.
:43:04.158202 31477 net.cpp:163] norml needs backward computation.

10315 13:43:04.158207 31477 net.cpp:163] pooll needs backward computation.

10315 13:43:04.158211 31477 net.cpp:163] relul needs backward computation.

10315 13:43:04.158216 31477 net.cpp:163] convl needs backward computation.

10315 13:43:04.158221 31477 net.cpp:165] label_data_1_split does not need backward

computation.

10315 13:43:04.158226 31477 net.cpp:165] data does not need backward computation.

10315 13:43:04.158231 31477 net.cpp:201] This network produces output accuracy
10315 13:43:04.158236 31477 net.cpp:201] This network produces output loss

10315 13:43:04.158253 31477 net.cpp:446] Collecting Learning Rate and Weight Decay.
10315 13:43:04.158262 31477 net.cpp:213] Network initialization done.

10315 13:43:04.158267 31477 net.cpp:214] Memory required for data: 343020208

10315 13:43:04.158380 31477 solver.cpp:42] Solver scaffolding done.

10315 13:43:04.158413 31477 caffe.cpp:112] Resuming from models/bvlc_reference_caff
enet/caffenet_train_new_detection_iter_40000.solverstate

10315 13:43:04.158421 31477 solver.cpp:222] Solving CaffeNet

10315 13:43:04.158427 31477 solver.cpp:223] Learning Rate Policy: step

10315 13:43:04.158431 31477 solver.cpp:226] Restoring previous solver status from m
odels/bvlc_reference_caffenet/caffenet_train_new_detection_iter_40000.solverstate
10315 13:43:07.867102 31477 solver.cpp:570] SGDSolver: restoring history

10315 13:43:08.971534 31477 solver.cpp:248] Iteration 40000, loss = 0.233718

10315 13:43:08.971586 31477 solver.cpp:266] Iteration 40000, Testing net (#@)

10315 13:44:54.584064 31477 solver.cpp:315] Test net output #0: accuracy = 0.89
1551

10315 13:44:54.584198 31477 solver.cpp:315]
(* 1 = 0.44774 loss)

10315 13:44:54.584209 31477 solver.cpp:253] Optimization Done.
10315 13:44:54.584214 31477 caffe.cpp:121] Optimization Done.
root@tang311702211:~/caffe#

Test net output #1: loss = 0.44774

Figure 3: The accuracy and loss for the fine-tuned CaffeNet
for VOC 2007 object detection task.

4.3. Testing results

In the testing procedure, we first generate proposals for
each test image by edge boxes. The average run time for
each image is around 0.3 seconds. However, for each image
the number of proposals ranges from 2000 up to 6000. We
use the terminal GPU+Caffe instance, the forward pass for
each proposal takes roughly 54 ms per proposal and around
1.8 to 5.4 minutes per image (including the time of load
and save files). Based on the analysis above, we can con-
clude that for the worst case the total runtime for pass all
the test images is roughly 445.68 hours. Hence, for this
course project, we need to reduce the number of proposals
per image heuristically.

We find that VOC 2007 test dataset, most of the objects
are large. Therefore, we can remove the proposals with tiny
area which is generally impossible to be good candidates

VOC 2007 | aeroplane bicycle bird boat bottle bus car cat chair cow mAP
ToU=0.1 0.4188 0.5458 0.2947 0.2402 0.1807 0.4377 0.5187 0.4964 0.1719 0.2815
ToU=0.2 0.4271 0.5485 0.3014 0.2436 0.1939 0.4427 0.5259 0.5007 0.1771 0.2856
ToU=0.3 0.4340 0.5536 0.3041 0.2529 0.1943 0.4542 0.5291 0.5116 0.1779 0.2797
IoU=0.4 0.4378 0.5555 0.3023 0.2541 0.2045 0.4551 0.5261 0.5163 0.1792 0.2829
TIoU=0.5 0.4316 0.5493 0.2987 0.2563 0.2022 0.4506 0.5229 0.5098 0.1774 0.2701
Esemble 0.4378 0.5555 0.3041 0.2563 0.2045 0.4551 0.5291 0.5163 0.1792 0.2856
VOC 2007 | diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor | mAP
ToU=0.1 0.2620 0.4795 0.3796 0.4258 0.4347 0.1955 0.2006 0.2908 0.5455 0.3773 0.3589
TIoU=0.2 0.2690 0.4889 0.3831 0.4364 0.4620 0.2032 0.2025 0.3008 0.5541 0.3843 0.3665
TIoU=0.3 0.2703 0.4945 0.3842 0.4368 0.4757 0.2048 0.2134 0.3063 0.5538 0.3930 0.3712
TIoU=0.4 0.2711 0.4872 0.3789 0.4467 0.4831 0.2053 0.2143 0.3085 0.5507 0.3835 0.3722
TIoU=0.5 0.2684 0.4798 0.3672 0.4460 0.4865 0.2031 0.2129 0.3035 0.5455 0.3775 0.3680
Ensemble 0.2711 0.4945 0.3842 0.4467 0.4865 0.2053 0.2143 0.3085 0.5541 0.3930 0.3738

Table 1: The mAP performance of our model. Each column in the table corresponding to the average precision for each class,
and the mAP is the mean of the average precision for all the class. The IoU denotes the overlap threshold in NMS. When
IoU=0.4, we can achieve the best mAP as 0.3722. After ensemble the results from various loUs together, we get 0.3738 mAP.

for object bounding boxes. We also further test that if we
cut down the proposals with area smaller than 2000 square
pixels (which equals to 44.7x44.7 pixels image), the total
number of proposals are reduced to around 2000 per image,
i.e., almost half of the proposals generated by edge boxes
are tiny. Therefore, considering most of the object are large
in test dataset, to speed up our calculation, we can safely
remove the proposals with its area smaller than 2000 square
pixels without degrading the performance too much.

Then we pass all the proposals to the CNN and get the
softmax scores for each proposal. Next, for each class, we
perform the NMS, to eliminate the overlapped proposal. At
last we compute the mAP. Note that we have find that the
mAP depends on the the threshold of IoU in NMS. There-
fore, we have tuning the IoU from 0.1 to 0.5, and then
find that IoU = 0.4 yields the best mAP performance as
0.3722. The mAP can be further improved by ensemblly
choose the maximum average precision for each class com-
pared among all the IoU values, we can improve the mAP to
0.3738. The results are summarized in Table 1. The precise-
recall curve for all of the 20 classes in the case of IoU = 0.4
are listed in the Appendix 1. And several example detec-
tions in Appdendix 2.

4.4. Performance analysis and further improvement

From the above results, we can find that in the follow-
ing classes, the performance of our model degrades heavily.
These classes are bottle, chair, pottedplant and sheep. The
average precision for those classes are around 20%. After
checking the test data set carefully, we have found that the
objects belong to these classes are relatively small. This is
why the performance is not as well as we expected. We

have choose the two images in the test dataset to illustrate
this phenomenon in Fig. We can observe that, in the
above figure, the two sofas are tiny and the detector is not
able to recognize them. It mislabeled a person and a bot-
tle. On the other hand, the large chair is detected with high
confidence.

To increase the performance, recall that to save time, we
have heuristically discard the proposals with area less than
2000 square pixels. This may induce the poor performance
in detecting tiny objects.

Besides, the pre-trained CNN model we adopt here is
not deep enough. If we switch to the deeper network such
as VGG, the confidence as the output of CNN will be better.
Additionally, the data augmentation could be another choice
to improve the performance.

At last, to improve the accuracy of localization, we can
further adopt the regressor as [5] does. Also, we can add
more ground truth data as our training data, therefore, the
network will prefer the bounding box close to the ground
truth.

5. Conclusion

Overall in this project, we have learned hands on expe-
rience in working with CNN such as debugging network,
transfer learning and working with Caffe. We also adopt
the CNNs to solve the detection problem and try to improve
the exist model such as rCNN.

In this paper, we provide a new model for object detec-
tion based on CNN. In this model, we use the edge boxes
algorithm to generate proposals, and use a fine-tuned the
CaffeNet model to generate the score for each proposals.

Figure 4: The red box is the ground truth bounding box, and
green one is generated from our model with number as the
confidence. The detector will sometimes fail to detect tiny
objects.

Then, we merge the proposals by NMS.

Our model achieves the 0.3738 mAP on VOC 2007
dataset. To further improve this model beyond the scope
of this project, we will use all the proposals generated from
the edge boxes rather than throw the tiny proposals as we do
in this paper. Furthermore, we will change a more deeper
network to increase the accuracy of classification as well
as to add the ground truth bounding boxes into the training
data to improve the localization accuracy.

6. Appendix

6.1. Precise-recall curve for IoU=0.4

Figure 5: aeroplane Figure 6: bicycle

Figure 7: bird Figure 8: boat

Figure 9: bottle Figure 10: bus

Figure 11: car Figure 12: cat

Figure 13: chair Figure 14: cow

: §

Figure 15: diningtable Figure 16: dog

6.2. Example detections

Here are several example detections. The red boxes are
the detected bounding box with the class and confidence
associate with each box.

Figure 17: horse

Figure 19: person Figure 20: pottedplant

Figure 21: sheep Figure 22: sofa

¥

Figure 23: train Figure 24: tvmonitor

References

[1] A. Krizhevsky, I. Sutskever, and G. Hinton. Ima-
geNet classification with deep convolutional neural

networks. In NIPS, 2012. 1, 3,4, 7

[2] C.Szegedy, A. Toshev, and D. Erhan. Deep neural net-
works for object detection. In NIPS, 2013. 2

[3] L. Jonathan, S. Evan, D. Trevor, Fully convolutional
networks for semantic segmentation, to appear in
CVPR 2015.

[4] K. Andrej, Li Fei-Fei, Deep visual-semantic
alignments for generating image descriptions.

=

person 0,843

bicycle 0560

Sl person 0 928

aeroplarne 0,998

arXiv:1412.2306.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and
semantic segmentation. in Proc. CVPR, 2014.

[6] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeul-
ders, Selective search for object recognition. in Proc.
1JCV, 2013.

[7] C. Lawrence Zitnick and Piotr Dollar, Edge Boxes:
Locating Object Proposals from Edges. in ECCV
2014.

[8] H. Jan, B. Rodrigo, S. Bernt How good are detection
proposals, really? arXiv:1406.6962.

[9] D. Lowe. Distinctive image features from scale-
invariant keypoints. IJICV, 2004. 1

[10] N. Dalal and B. Triggs. Histograms of oriented gradi-
ents for human detection. In CVPR, 2005. 1

[11] M. Tomasz, G. Abhinav and E. Alexei. Ensemble of
exemplar-SVMs for object detection and beyond. in
Proc. ICCV 2011.

[12] P. Felzenszwalb, R. Girshick, D. McAllester, and
D. Ramanan. Object detection with discriminatively
trained part based models. TPAMI, 2010. 2, 4,7, 12

[13] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fer-
gus, Y. LeCun OverFeat: integrated recognition, lo-
calization and detection using convolutional networks.
arXiv:1312.6229, 2014.

[14] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the
objectness of image windows. TPAMI, 2012. 2

[15] I. Endres and D. Hoiem. Category independent object
proposals. In ECCV, 2010. 3

[16] J. Carreira and C. Sminchisescu. CPMC: Automatic
object segmentation using constrained parametric
min-cuts. TPAMI, 2012. 2, 3

[17] C.Ramazan, V. Jakob and S. Cordelia. Weakly super-
vised object localization with multi-fold multiple in-
stance learning. arXiv:1503.00949 2015.

[18] O. Wanli, L. Ping and Z. Xingyu et al. DeepID-Net:
multi-stage and deformable deep convolutional neural
networks for object detection. arXiv:1409.3505 2015

[19] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnos-
ing error in object detectors. In ECCV. 2012

[20] M. Everingham and J. Winn, The PASCAL Visual Ob-
ject Classes Challenge 2007 (VOC2007) Development
Kit. 2007

