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1. Introduction. While investigating the distribution of substrings

within the collection of character strings [1], we became interested in the

concept of (linear) “patterns.” Thus, realizing that the character strings

ABAAC,

XZXXP,

and % ∗ %%$

are examples of the same “pattern,” we set out to determine the number

of “patterns” of a given length.

After developing a definition for the term “pattern,” we arrived at

what was (at least to us) a surprising and interesting relationship between

the number of patterns of a given length and Stirling Numbers of the

Second Kind.

2. Notation and Definitions. One way to determine whether or

not character strings, such as those given above, are examples of the same

pattern is to use a “coding” function, f , that defines a correspondence

between a character string and a sequence of non–negative integers by

identifying each character of the string with its location and whether or
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not it has occurred previously. More specifically, for the character string

S = c1c2c3 · · · cn ,

of length n, we define

f(S) = {ai}
∞

i=1 ,

where ai = min {1 ≤ k ≤ n : ci = ck} for 1 ≤ i ≤ n and ai = 0 for i > n.

For example,

f(a ∗ b# ∗ ∗a) = {1, 2, 3, 4, 2, 2, 1, 0, 0, . . .} .

With this in mind, we make the following definition.

Definition. A sequence {ai}
∞

i=1 of integers is called an “n–pattern

sequence” if

(1) ai = 0 for i > n ,

and for i ≤ n,

ai = i or ai = aj for some j < i .

Thus, an n–pattern sequence emphasizes the location of an integer in

the sequence, and we see that the above coding function, f , defines a

correspondence between each character string and a unique n–pattern

sequence. Hence, the determination of the number of patterns of length

n, is equivalent to the determination of the number of n − pattern

sequences. Some specific examples are:
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{1, 0, 0, 0, 0, 0, . . .} is the only 1 − pattern sequence .

{1, 1, 0, 0, 0, 0, . . .} and

{1, 2, 0, 0, 0, 0, . . .} are the only 2 − pattern sequences .

{1, 1, 1, 0, 0, 0, . . .},

{1, 1, 3, 0, 0, 0, . . .},

{1, 2, 1, 0, 0, 0, . . .},

{1, 2, 2, 0, 0, 0, . . .}, and

{1, 2, 3, 0, 0, 0, . . .} are the only 3 − pattern sequences.

After further investigation it can be found that, in addition to the

above, there are

15 4−pattern sequences,

52 5−pattern sequences,

203 6−pattern sequences,

877 7−pattern sequences,

and so forth. This raises the question as to how the sequence

1, 2, 5, 15, 52, 203, 877, . . .

is generated.
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3. Automata. To count the number of n–pattern sequences (which

is the number of patterns of length n over an alphabet with an infi-

nite number of symbols) we define an automaton which, after n moves,

produces all n–pattern sequences. For a general discussion of various au-

tomata, see [2]. Our automaton will have an infinite number of states,

i.e.

S = {S0, S1, S2, . . .} .

To construct all n–pattern sequences, start with the 0–pattern sequence

{0, 0, 0, 0, . . .}

in state S0. A (k + 1)–pattern sequence can be constructed from a k–

pattern sequence by replacing the first zero in the k–pattern sequence

with either k + 1 or a previous term of the k–pattern sequence. We say

that this construction process has reached state Si if the (k + 1)–pattern

sequence has i distinct non–zero members. For example, the 5–pattern

sequence

{1, 2, 1, 4, 2, 0, 0, 0, . . .}

is in state S3 since the 5–pattern sequence has 3 distinct non–zero mem-

bers. From this sequence we can construct the 6–pattern sequences

{1, 2, 1, 4, 2, 6, 0, 0, . . .}
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in state S4, or
{1, 2, 1, 4, 2, 1, 0, 0, . . .},

{1, 2, 1, 4, 2, 2, 0, 0, . . .},

{1, 2, 1, 4, 2, 4, 0, 0, . . .},

all in state S3.

A pictorial representation of the number of possible transitions from

state to state in the automaton is,

where the numbers above the arrows denote the number of possible tran-

sitions from one state to another state. For example, if the construction

process is in state Sk, there is one possible transition to Sk+1 while there

are k possible transitions back into state Sk. Hence, the transition matrix

defined by the above automaton is,

T =



















0 1 0 0 0 0 0 . . .

0 1 1 0 0 0 0 . . .

0 0 2 1 0 0 0 . . .

0 0 0 3 1 0 0 . . .

. . . . . .

0 0 0 k 1 . . .

. . . . . .



















,

where the entry in the ith row and the jth column is the number of ways

that a transition from state Si−1 to Sj−1 is possible.
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Now the sum of the first row of T n is the number of possible n–

pattern sequences. In fact, the entries in the first row of T n are the

number of n–pattern sequences in states S0, S1, S2, . . .. This follows by

induction on n, the structure of T , and the fact that T k+1 = T · T k.

Thus, we only have to determine the sum of the first row of T n to

find the number of patterns of length n which can be constructed using

an infinite alphabet.

4. Stirling Numbers of the Second Kind. Consider the follow-

ing examples of the first row of various powers of T :

The first row of T is : 0 1 0 0 0 0 . . .

The first row of T 2 is : 0 1 1 0 0 0 . . .

The first row of T 3 is : 0 1 3 1 0 0 . . .

The first row of T 4 is : 0 1 7 6 1 0 . . .

The first row of T 5 is : 0 1 15 25 10 1 . . .

No discernible pattern for the entries in the first row of powers of T seem

to present itself at first. However, one of the authors thought that the

first row of T 4 looked familiar, and upon some thought realized that he

had seen such a sequence before. He was correct! In [3; page 66], a table

listing the Stirling Numbers of the Second Kind is given, and the entries

of the first row of the various powers of T match exactly with the rows

of this table. It might be recalled that Stirling Numbers of the Second

Kind are used to convert a power to an expression involving binomial
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coefficients and can be defined recursively by

{

n

m

}

= m

{

n − 1

m

}

+

{

n − 1

m − 1

}

,

where
{

n

n

}

= 1,

{

n

1

}

= 1, and

{

n

0

}

= 0 .

We would like to recommend Knuth [3] for a more detailed discussion of

the Stirling Numbers.

Since the first row of T is

0, 1, 0, 0, 0, . . . ,

the first row of T k+1 is the second row of T k. Using this and the above

recurrence relation, it follows immediately by mathematical induction

that,

Theorem. The number of patterns of length n which can be con-

structed using an infinite alphabet is

n
∑

k=1

{

n

k

}

.

The reader might note that the sum given in the above theorem is

known as the “nth Bell number,” which is the number of partitions of a

set with n elements. Here, we have shown the connection between the

number of patterns of length n over an infinite alphabet and the nth Bell

number.
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